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Abstract. The notion of a centerpoint of a finite set of points in two and higher 
dimensions is a generalization of the concept of the median of a set of reals. In this 
paper we present a linear-time algorithm for computing a centerpoint of a set of n 
points in the plane, which is optimal compared with the O(n log 3 n) complexity of 
the previously best-known algorithm. We use suitable modifications of the ham- 
sandwich cut algorithm in [Me2] and the prune-and-search technique of Megiddo 
[Mel] to achieve this improvement. 

I. Introduction 

We all have an intuitive idea as to what phrases like "the very center of the square" 
or "the very center of the city" mean. To capture this intuition in a quantitative 
way, the center of a set of n points, ~ ,  in ~a is defined as the maximal subset of 
9t a such that any closed half-space intersecting this subset contains at least 
Fn/(d + 1)7 points o f ~  [YB]. This subset is nonempty for any finite configuration 
of points (see, for example, [E]). Furthermore, it is closed and convex. A centerpoint 
is a member of the center of ~ .  

On the real line ~R, a centerpoint is no other than a median of ~.  Thus a 
centerpoint can be viewed as a generalization of the median of a set of reals. On 
the other hand, the center can also be viewed as a particular k-hull of ~. The 
k-hull of ~ is a maximal subset (closed and convex) of ~R a such that any closed 
half-space intersecting this subset contains at least k points of ~.  For instance, 
the 1-hull of ~ is its convex hull and the center is its Fn/(d + 1)-]-hull. 

The interesting algorithmic problem of computing a centerpoint has been 
considered by various researchers. Cole et al. gave an O(n log s n) algorithm for 
computing a centerpoint of a planar set of points [CSY]. Subsequently, Cole 
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improved this bound to O(n log 3 n), using the powerful technique of slowing down 
a sorting network [C]. In this paper we propose an optimal linear-time algorithm 
for computing a centerpoint of a planar set of points by using suitable modifica- 
tions of the ham-sandwich cut algorithm for a pair of separable point sets [Me2] 
and the prune-and-search technique of Megiddo [Mel] .  

Linear-time algorithms, however, were known for computing an approximate 
or e-centerpoint [Ma], [T], [Me2]. We obtain this weaker type of center- 
point if we decrease the lower bound, in the above definition of the center, to 
I - n O -  e)/(d + 1)-], where 0 < e < 1. Actually, Megiddo [Me2] only gave an 
algorithm for computing a partition of a (planar) set of n points with two lines 
such that each closed quadrant contains at least Ln/4J points. An algorithm for 
computing an e-centerpoint, where 0 < e < �88 is implicit in this. 

In the description of our algorithm below, we assume the usual RAM model 
of computation; the point set ~ ,  however, is not assumed to be in general position. 

The paper is organized as follows. In Section 2 we discuss which points 
to prune. In Section 3 we describe the method used to find these points. The 
algorithm is presented in Section 4. Section 5 contains an analysis of the time 
complexity of the algorithm. Conclusions and directions to further research are 
given in Section 6. 

2. What To Prune 

Let ~ be a finite set of points in the plane. In the subsequent discussion we use 
the following notation. We denote the center of ~ by CENTER(~) and the k-hull 
o f ~  by H U Lk(k, ~). We use the notations ~ n ,  ~ n ,  ~FGn . . . .  to denote the points 
of ~ contained in H, G c~ H, F n G n H . . . . .  respectively, where F, G, H . . . .  are 
any closed or open half-planes. We denote the complement of a set S by g. As we 
frequently need to use the numbers FI~]/3-] and F I l l / 3 - ]  - F I l l / 4 ]  in this and 
the following sections, we denote these by N~, and M~, respectively. 

The basic idea of our algorithm is to use the prune-and-search strategy of 
Megiddo [Mel] .  Clearly, we cannot hope to compute CENTER(~) by a naive 
application of this technique, since the center of a reduced set need not be the 
same as the center of the original set. However, it might be possible to prune 
points in such a way that the center of the pruned set is a subset of the center of 
the original set. If so, by repeated pruning we may at least be able to compute a 
centerpoint, if not some larger subset. Below we show that this is indeed possible, 
and as a first step toward this goal we make the following important observation. 

Observation 2.1. I f  g-" is the set of vertices of a triangle that contains CENTER(.~), 
then CENTER(.~) is a subset of CENTER(~- u .~). 

Proof. Let C be any centerpoint of ~ ,  i.e., c e CENTER(.~). By definition, any 
dosed half-plane, say H, that contains c also contains at least Ne, points of ~.  
Since by assumption c is contained in the triangle formed by ~,, we have 
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Y c~ H :~ ~3~ so that H contains at least one point of J .  Thus H contains at least 
N~, + 1 = N.~, , :  points of ~'  u ~.. Since H is arbitrary, it follows that c is in 
CENTER(~ w ~-). [ ]  

The above observation has the following important  consequence�9 If we can find 
a set of three points, g ,  in ~ such that the triangle formed by these points contains 
the center of ~ - Y,, then by discarding these three points we can achieve the goal 
of ensuring that the center of the pruned set is a subset of the center of the original 
set. The following lemma gives a sufficient characterization of such a triplet of 
points�9 

Lemma 2.1. Let J-  be three points of ~ such that HULL(N~ - 1, ~ )  is contained 
in the (closed) triangle formed by J.. Then C E N T E R ( ~ -  5-) is a subset of 
CENTER(~). 

Proof. Let c be a centerpoint of ~'  - J -  and let T be the triangle formed by J .  
We claim that c lies inside T. Otherwise, if c lies outside T, and therefore outside 
HUI_I_(N~ - 1, 9~), then an open half-plane that contains c and at the same time 
contains less than N ~ -  1 points of ~ exists. It can be easily seen that this 
half-plane contains less than Ne~ - 1 = N ~ _ :  points of ~ - ~-- (Fig. 1). This 
contradicts the assumption that c is a centerpoint of ~ - ~ .  Hence c is contained 
in T and therefore CENTER(~ - Y )  is also contained in T. 

The proof  of the result now follows from Observation 2.1. [ ]  

Remark. We would like to point out a subtlety involved here. Had  we chosen 
the triangle 3-  to contain CENTER(~)  instead, we could not have guaranteed the 
conclusion of the above lemma. Fig. 2 shows why. 

The above lemma suggests an algorithmic solution to the problem of comput ing 
a triplet of  points that  can be pruned�9 Since an open half-plane that contains less 

< N.,~ - 1 
points 
of ~' 

D 

�9 �9 , ~ -  

HULL(N~ -- l, .~) 

Fig. 1. CENTER(.~ - ~-) ~- CENTER(~) .  
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Removal of three points may expand the center. 

than k points of ~ does not intersect HULL(k,~), we find three open half- 
planes, each containing less than N ~ -  1 points of ~ and situated so that 
the intersection of their complements is a bounded triangle. This triangle contains 
H U L L ( N ~  - 1, ~). If this triangle is of nonzero area, then a required triplet is 
formed by choosing a point each from the closure of the pairwise intersections of 
these half-planes (Fig. 3). 

The snag in this solution is that there are configurations of points for which 
we cannot find such a triplet for any choice of these open half-planes. An example 
of such a configuration is shown in Fig. 4, where the points are evenly arranged 
on the circumference of a circle�9 

To overcome this problem, we enlarge the scope of the above lemma, allowing 
for the choice of four points�9 For this we briefly review the concept of a Radon 
point�9 Any set of at least four points in the plane can be partitioned into two 
disjoint subsets such that the intersection of their convex hulls is nonempty. A 
Radon point of this set is a point in this intersection. A Radon point of four 

Q 

< 

Q . /  . . . . . .  ~ . - - l  . . . .  ~ "  �9 ~'- 

Fig. 3. Pruning of triplets Y- from ~ .  
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Fig. 4. A pathological configuration. 
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points is unique when these points are vertices of a quadri lateral  of nonzero area 
(Fig. 5). 

L e m m a  2.2. Let .~ be any four points of ~ such that the (closed) convex hull 
of .~ contains H U L L ( N e ~ -  1 ,~) .  Then C E N T E R ( ( ~ -  .~)u {q}) is a subset of 
CENTER(~),  where q is the Radon point of .~. 

Proof. Let c be a centerpoint of ( ~  - _~) u {q}. Consider any closed half-plane H 
that contains c. Then, by definition, it contains at least N(~_a)~te} points of 

- 2 )  {q}.  

We claim that  c lies in the convex hull, Q, of .~. Let p be a point  that lies outside 
Q, and therefore outside H U L L ( N ~ -  l, ~) .  It is then possible to find an open 
half-plane that  contains p and contains less than N ~ -  1 = N(e-a)~q} points of 
( ~  - -~) u (q}. Hence p is not a centerpoint of ( ~  - _~) u {q}. Therefore c cannot  
lie outside Q. 

p P 
.o. . ~ .  . q 

\ 
P q r a r ~ Radon "Point 

Radon Points / 
Radon Point 

.............. Z .......... 
q a s 

Fig. 5. Radon point(s) of four points p, q, r, and s. 
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H 

HULL(N~ - 1, ~)  

Fig. 6. Substitution of .~ by its Radon point q. 

To complete the proof, we have to show that any closed half-plane H which 
contains c contains at least N~, points of @,. Clearly, H contains at least Nt~_~)u ~q~ 
points of (@,-  .~)u {q}. Three different cases arise, depending on the relative 
positions of the points of -~. 

Case 1: The four points in .~ form a nonconvex quadrilateral This case is a trivial 
application of Lemma 2.1. The three convex vertices of Q form a triangle that 
encloses HULt_(N~,-1,@,) and the concave vertex is q. Thus by Lemma 2.1 
CENTER((@, - .~) u {q}) ~_ CENTER(@,). 

Case 2: The four points of  ~ form a convex quadrilateral but their Radon point q 
does not belong to H. Since the quadrilateral Q and the half-plane H both contain 
c, their intersection is nonempty. Thus H contains at least one of the vertices of 
Q and therefore at least N~ = Nt~,_a)u{~} + 1 points of @,. 

Case 3. The four points of  ~ form a convex quadrilateral and their Radon point q 
belongs to H (Fig. 6). In this case H contains at least two points of .~. We can 
therefore delete q from H and still claim that H contains at least N ~  points o f~ .  

Thus in all cases H contains at least N.~ points of @,. Since H is arbitrary, 
c is a centerpoint of ~ as well. Hence CENTER((@,- .,~)w {q}) is a subset of 
CENTER(@'). [ ]  

The above lemma is the cornerstone of our pruning mechanism. In the next 
section we show how to use ham-sandwich cuts to make a clever choice of four 
open half-planes so that we can prune a fraction of the input set by repeatedly 
applying the last two lemmas. 

3. How To Prune 

In this section and afterward we use the words left, right, up, and down, wherever 
these are unambiguous, to simplify the arguments. 
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Fig. 7. The intuition behind pruning. 

Suppose we choose four open half-planes, call them L, U, R, and D (mnemo- 
nics for Left, Up, Right, and Down, respectively), such that each contains less than 
N~ - 1 points o f ~  and their closures at least N~ points, and together they enclose 
a nonzero bounded area. Why do we expect this choice to give us a triplet/ 
quadruple of points .~ satisfying the conditions of Lemma 2.1/2.2? We give an 
intuitive justification of this below. 

If the pairwise intersections of"adjacent"  half-planes (i.e., L and U, U and R, 
etc.) are empty we would get a configuration as shown in Fig. 7. In this 
configuration the total number of points in all the half-planes taken together 
exceeds the total number of points in ~ by approximately one-third! This is 
impossible. So we might attempt to construct the four half-planes in such a way 
that this excess is distributed evenly among the pairwise intersections of the 
adjacent half-planes and thereby obtain approximately M~ triplets/quadruples of 
points satisfying the conditions of Lemma 2.1/2.2. 

It is possible to do this as the construction below shows. 

3.1. Computation of Open Half-Plane L 

We fix L as follows. We determine an extreme point p o f ~  with minimum abscissa, 
and join all the remaining points to it. We compute the line that passes through 
p such that its slope is the (N~ - 1)th largest of the slopes of the above lines. The 
open half-plane above this line is chosen to be L. Clearly, it takes linear time to 
compute L. This way we make sure that L contains less than N~ - 1 points and 
its closure contains at least these many points of ~.  Moreover, this half-plane 
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contains at least two points on its boundary. Really speaking, this latter require- 
ment is not necessary but it helps us to treat the four half-planes uniformly in the 
analysis of the algorithm. 

3.2. Computation of Open Half-Plane U 

Since the point set ~ can be degenerate we need to be careful in the construction 
of U in order that none of the closed quadrants determined by the boundaries of 
L and U contains too few points of ~.  This will also result in an even distribution 
of points among the pairwise intersections of adjacent half-planes. 

To achieve this we use the ham-sandwich cut algorithm of Megiddo [Me2]. 
However, the ratios in which we propose to divide the point sets are arbitrary. 
As we show below, Megiddo's algorithm can be easily adapted to take care of this 
aspect. 

As is usual, we consider the dual problem, letting the boundary of L be the 
y-axis in the primal plane. Under the duality transformation that we consider, 
points that lie on the boundary of L map to horizontal lines; the set of points 
that lie in L map to a set of lines, ~ - ,  with negative slopes; and the set of points 
that lie in the interior of/S map to a set of lines, 6r +, with positive slopes. In order 
to get the type of ham-sandwich cut we want, we put the horizontal lines in ~e-.  
Let us assume that Z,e § contains at least N~, - M~ lines in the dual plane. It can 
be seen that the boundary of U corresponds to that point in the dual plane which 
has less than M~ lines of . ~ -  above it; at least these many lines of ~q- passing 
through or above it; less than Ne~ - M~ lines of Z,e + above it; and at least these 
many lines of ~ +  passing through or above it. We compute this point as 
follows. 

It can be easily seen that we can resolve a query for any positive (negative) 
slope query line in Megiddo's method as follows. We first compute the Me~th 
((N~ - Me~)th) intersection of the lines in ~ -  ( ~ + )  with the query line. We then 
count the number of lines in &a+ (LP-) lying strictly above and the number of 
lines in ~ '+  (L,r passing through this intersection point. If  the sum of these two 
counts is smaller than N~  - Me~ (M~), then the solution point lies below the query 
line. If the first count is greater than or equal to N~ - M~ (M~), then it is above 
the query line, else it is same as the intersection point. By thus changing the method 
of query resolution, we get the solution point in linear time. This gives us the 
required half-plane U in the primal plane (Fig. 8). 

3.3. Computation of Open Half-Planes D and R 

The open half-plane D is determined with respect to L in a similar manner by 
changing "above"  to "below" throughout the above discussion. Thus we make 
sure that D contains the "lower end" of the boundary of L whereas U contains 
the "upper  end." 
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( ) M.~, N.~, - M~, 

. . . . . . . . . . . .  . J  . . . . . . . . . . . . . . . . . . . .  

Ne~ - M.~ I~l - 2N:,. + Me~ 

L 

Fig. 8. Computation of L and U. 

The half-plane R is also determined similarly except that U plays the role of L 
here. We also ensure that R contains the "right end" of the boundary of U whereas 
L contains the "left end." 

The idea behind choosing D and R in this way is to make the boundaries of 
the half-planes U, R, D, and L the adjacent sides of a bounded quadrilateral such 
that the half-planes face "outward." This is so because if the interior of E contains 
at least N~, -- M~ points of ~', then the boundaries of both U and D are disjoint 
from the boundary of L and it can be seen that the intersection of the complements 
of the above half-planes is bounded. As explained before, it can also be seen that 
R n D contains nonzero points of ~ .  Moreover, since each of these half-planes 
contains less than N~ - 1 points o f ~ ,  the intersection of the complements of these 
encloses H 13 LL(N~, - 1, ~). 

However, in the computation of U it is quite possible that the set Z# § contains 
less than N~ - M~ lines. The consequence of this is that the computed U may 
have the same boundary as that of L and thus the intersection of the complements 
of the open half-planes may be unbounded. This is inadmissible in our algorithm. 
So we need to take care of this degenerate case separately. 

3.4. The Degenerate Case 

If there are more than N~, points on the boundary of L, then the ~oundaries of 
U and D, as computed above, is the same as that of L. This degeneracy is detected 
in the algorithm when ~ § contains less than N~ - M~ lines, i.e., interior of E 
contains less than N~, - M~ points o f ~ .  There is no loss of generality if we assume 
that L also contains less than N~, - M~. Otherwise, we can switch the sides of L 
and let the interior of/S, be our new L. We will then be able to compute the other 
half-planes, as required, with respect to this open half-plane. 



300 S. Jadhav and A. Mukhopadhyay 

Let the interior of/S, be the open half-plane R. We compute the open half-planes 
U and D as follows. We first distribute the alternate points of ~ on the boundary 
of L between the sets R and L. Let these resulting sets be 5eR and 5a~., respectively. 
We then compute U and D by the ham-sandwich cut algorithm such that these 
satisfy the following properties: these contain less than a total of N~ - 1 points 
of # and contain an equal number of points of 5es and 5~L. The half-planes U 
and D are computed such that these contain the "opposite ends" of the boundary 
of L. It can be seen that if L, R, U, and D are computed in this manner, then each 
of the pairwise intersections of the adjacent half-planes contains at least M~ 
(approximately 2M~) points of # .  Since the intersection of the complements of 
these contains H U L L ( N ~ -  M~,  ~), we can apply pruning at least M~ times, 
similarly as in the nondegenerate case that we describe below. 

The degeneracy of open half-planes taken care of, we may assume safely that 
the open half-planes L, U, R, and D can be computed such that these meet our 
requirements. 

3.5. The Prunin9 Step 

We have been able to ensure by the construction of the half-planes as above that 
the closure of each of the sets L ~ U, L c~ D, and R n U contains at least M~ 
points of ~ .  We prove later that the closure of R n D also contains at least this 
many  points. However, for the rest of this section we assume this. 

It is now clear how we can prune points. Two points of detail, however, must 
be noted. First, in order to ensure that the conditions of Lemmas 2.1 and 2.2 
remain valid throughout the pruning step, we must choose a triple or a quadruple 
of points in such a way that, whenever there is a possibility that the conditions 
of the above lemmas are violated in the successive pruning steps, we delete an 
interior point in an open half-plane. Second, to maximize the number of points 
that are pruned, we must ensure that no two points of a quadruple, selected for 
pruning, belong to either R n L or U c~ D. 

To implement the above observations we maintain the points that are candi- 
dates for pruning in six disjoint sets, namely, ~t.v, ~vR, ~ao ,  ~Ln, ~ .R ,  and ~vo. 
The points on the boundaries are put in the relevant sets. So, the four sets, L n U, 
L c~ D, R n U, and R n D, are now effectively divided into six sets, three of which 
correspond to choices of triangles Y. 

We discard the triangles ~Y- and substitute quadruples .~ by their Radon points 
such that a maximum number of the above half-planes contain an interior point. 
Substitution of .~ is done as follows. If .~ form a convex quadrilateral we delete 
it from ~ and add the intersection point of the diagonals to ~ .  Otherwise we 
delete the convex vertices but retain the concave one. We can repeat this pruning 
procedure on the reduced set of points thus obtained, since the half-planes L, U, 
D, and R continue to contain less than N~, - 1 points of the reduced set ~ ,  until 
one of the four sets is empty. We note that this reduces the size of ~ by 
approximately one-fourth. 
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4. The Centerpoint Algorithm 

It is now clear, from the discussion in the previous sections, how we can find a 
centerpoint of g~. 

In each iteration we compute the points that are to be discarded or replaced. 
By throwing away these points we reduce the size of the set by a nonzero fraction. 
When the size of the set becomes so small (of size at most 10) that no more points 
can be discarded we halt the pruning procedure and compute a centerpoint by 
any straightforward method. 

The algorithm is given below. 

Algorithm 1. C E N T E R P O I N T  
Input: Set of Points 
begin 

do 
Compute the open half-planes L, U, D, and R 
Update ~ by deleting ~-'s and replacing -~'s by their respective Radon points 

while there is some replacement/deletion 
enddo 
Compute a centerpoint by any bruteforce method 

end 

We justify that anytime during the pruning step each half-plane contains less 
than N~ - 1 points where #t is the current set of points. 

We first argue for a deleted point that is also an interior point of a half-plane. 
We first consider the case when four points are pruned and their Radon point 
is added to the set g~. If a point that is pruned lies in the interior of a half-plane 
and the Radon point does not lie in that half-plane, then the number of points in 
this half-plane is decreased by one. Since the total number of points decreases by 
three, the number of points is less than N~ - 1 = N~ - 2 where ~t is the new set. 
Now suppose that the Radon point also lies in this half-plane. Since a half-plane 
that contains a Radon point of four points contains at least two of these points, 
in this case also the number of points in the half-plane decreases by one. The same 
argument holds for triplets of points. 

Now we consider the case when there is no interior point among the four 
pruned points in a half-plane. In this case the Radon point also does not belong 
to it. We consider the worst case in which for every choice of a quadruple or a 
triplet of points those chosen from this half-plane lie on its boundary (Fig. 9). This 
case is simpler to analyse and it is easy to see that same argument extends to the 
other cases. It is clear that when we start pruning, the number of points in each 
of the open half-planes is less than N~ - 1 points. Let us see what happens when 
we have to prune the last triplet or quadruple of points after applying pruning 
M~ - 1 times. The maximum number of points in this open half-plane is less than 

N~ - M~, 
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F ig .  9. T h e  w o r s t  ca se  o f  p r u n i n g [  

N.~ - 2M~,  

since M~ - 1 points in the corner quadrants are already pruned. The total number 
of points at this instant is 

[~L - 3M.~ + 3. 

The number in the previous expression is exactly one less than the ceiling of this 
number. Thus the last set of points can also be pruned. It can easily be seen that 
we can also do the pruning in the intermediate steps. 

The proof of correctness of this algorithm now follows from Lemmas 2.1 and 
2.2. In the next section we give an analysis of the running time of this algorithm. 

5. Analysis of the Centerpoint Algorithm 

For  the purpose of the proofs in this section, we assume that the boundaries of 
the half-planes L, U, D, and R do not contain any point of ~ .  This assumption 
is not necessary to establish the linearity of our algorithm but it simplies the proof 
to a great extent. This can be achieved by slightly perturbing the points of ~ such 
that: no point migrates across the boundary of any half-plane; each corner region, 
such as L n U, etc., contains exactly M~, points o f ~ ;  and each half-plane contains 
at least Ne, points of ~ .  Intuitively, such a perturbation does not matter because 
if we can prove that the perturbed set ~Ro contains M~ points, then these many 
points also belong to the closure of ~Ro in the nonperturbed set ~ .  As a 
consequence we do not need to state explicitly whether the half-planes are open 
or closed in the following discussion. 

To prove that the algorithm is linear we have to show that the size of ~ is 
reduced by at least a fraction in each pruning step. We know by construction that 
each of the sets ~Lv,  ~vR, and ~LO contains M~, points. We have to show that 
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Fig. 10. Intersection of three half-planes. 

~RD also contains at least M~ points in order to prune at least this many 
triangles/quadruples from ~ .  For this we have to consider all the possible relative 
positions of the half-planes L, U, R, and D. Several cases arise. A few of these can 
be discarded straight away by using the following lemmas. 

Lemma 5.1. Let F, G, and H be three half-planes. Then F c~ G n iq is a bounded 
triangle if  and only if  F n G ~ H. 

Proof  Straightforward (Fig. 10). [] 

Corollary 5.1. F n d n H is a bounded triangle if and only if F n G c H if  and 
only if F n ~q c 6. 

The sets U, L, R, and D satisfy some additional constraints also on account of 
their specific methods of construction. 

Let us denote by PGn the intersection point of the boundaries of any two 
half-planes G and H. For the sake of simplicity, we assume without any loss of 
generality that no three boundaries of the above half-planes intersect at a point. 
If they do, then we can treat the said configuration in one of the cases discussed 
later. 

Lemma 5.2. The intersection of  the half-planes U and D is contained in L 
if  and only if Ptw is contained in L, i.e., U n D c L ~ c ,  p v o ~ L .  Similarly, 
L n R  c U ~ p L R e U .  

Proof  We prove only the first equivalence. The proof of the second is similar. 
(=~) Easy. 
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Fig. ll. Either Uc~DcLor  U~Dc/S,. 

( ~ )  Let PvD be in L. Then four cases arise, depending on the orientation of the 
half-planes U and D. 

Case 1: U c~ D c L and Case 2: U n D ~ L. These cases are not possible. For, by 
construction, the half-planes U and D contain the "opposite ends" of the boundary 
of L. 

Case 3." U c~ ~ ~ L. This case is also impossible since it implies that the center is 
empty. 

Case 4: U n D c L. This is the only permissible case (Fig. 11). 

Hence proved. [] 

We have the following similar lemma when P w  lies in L. 

[ ,emma 5.3. The intersection o f  the half-planes U and D is contained in L 
i f  and only i f  PvD is contained in f_,, i.e., U n D  c L c ~ p v o e E .  Similarly, 
L n R  c U ~ p L R e G .  

Proo f  Here too we prove only the first equivalence. 
( ~ )  Easy. 
(~=) Let Pro be in L. Then four different cases arise. 

Case 1: U c~ D ~ L and Case 2: tJ c~ D ~ L. These cases are not allowed by 
construction. 

Case 3: U n b ~ L. To see that this case also is not permissible, let us count the 
number of points in ~L- First we prove that ~L = ~Lv u ~Lo: 

~r. = ~LVO U ~LUO U ~Lt3O ~ ~LO0 

= ~LUO W ~LUO U ~LO0, since ~LG/~ = 

= ~ L u  u ~LI~, 
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since ~LUD Y ~LaD = ~LD and ~LUD U ~LUIJ = ~LU" Hence, 

I~LI : ]~LU U ~LDI 

= I~LU I + I~LDI-  I~LUDI 

= M ~  + M ~  - I~L~l 
_< 2M~. 

This contradicts the fact that ~L contains at least N~  points. Thus this case also 
is not  possible. 

Case 4." U n D c /Z.  This is the only permissible case. 

Hence proved (Fig. 11). [ ]  

The above lemmas have the consequence that either U n D c L or U c~ D c L, 
and similarly either L n R c U or L n R c U. Now we can prove the following 
theorem. 

T h e o r e m  5.4. There are at least M ~  points in ~ 9 .  

Proof For  the proof, we again consider all the possible relative positions of the 
half-planes L, U, R, and D. The following cases arise, depending on which of the 
four quadrants  formed by the boundaries of U and L contains PRD" 

Case 1: p R D e U n L  (Fig. 12). In this case D n U c ~ L  and R n U n L  are 
nonempty.  Therefore, from Lemma 5.2, 

U n D c L  and L n R c U .  

.!i~,: . . . .  L 

R 

Fig. 12. P ~ D e U n L .  
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Using Corol lary 5.1 these respectively imply that 

[ T h R e E  and E n D c [ 7 .  

Let x be a point  of  R ~ D. Then x lies in exactly one of  the sets, U n L, U n L, 
[7 n L, or U n L. Since [7 c~ R c L, therefore x r [7 n L. Similarly, x r U n [,. N o w  
R c~ D is convex and there is a point  PRD that lies in U n L, therefore x does not 
lie in [7 n [, either, because a convex region cannot  intersect only the opposite 
quadrants  of  a pair of  lines. Thus 

R n D c U n L ,  

and hence, by Corol lary 5.1, 

U n R c D  and L n D c R .  

Now, 

= ~ ,  u ~ L u  u ~ t o  

= ~ z  u ~Lu u ~Lt~R U ~LC~ 

since 

= ~L U .~Lu u .~'oR u .~LO~D U ~Lot~  

= ~L U .~'t:u u ~tTR u ~Lo u ~Lc~t~, 

O n R c E ,  

since E n D c U  and E n D c ~ .  

As these are disjoint sets 

I~1 ~ (N~) + (N~ -- M~) + (N~ - M~) + (N~ - M~) + I~'Lc~ol 

> i-1.~1/3-1 + 3r-1.~l/4q + I.~'Lc~l 

>1~1, 

which is a contradiction. Hence this case does not occur. 

Case 2: PRo ~ 0 n L (Fig. 13). In this case R n L n O # ~Z~, therefore R n L c /7 
(Lemma 5.3). We have to consider four subcases: 

1. R n D c L .  
2. R o n D e L .  

Since R n D c L, therefore R and D contain the "opposi te  ends" of  the 
boundary  of  L. Since R c~ L c 1.7, therefore, from Corol lary 5.1, 'R and U 
contain the "opposi te  ends" of  the boundary  of  L. This implies that D and 
U contain the "same ends" of  the boundary  of  L, which is not  possible by 
the construct ion of D. 
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. . . . . . . . .  L .  

:::::::::::::::::::::::: ::i R 

. . . . - . -  - . ,  
. . . . . . . .  
. . . . .  
. . .  

Fig. 13. PRDeOnL. 

3. R n D c L .  

By Lemma 5.1 this implies 

Therefore 

E n D c R .  

Thus 

~RD = ~RDL g ~RDE 

= ~ROL U ~DL. 

4. R n D c L .  

This implies 

> N ~  - M~.  

R n U c D .  

Otherwise consider a point  x ~ R n U n / 5 ,  

x e R n U n O  ~ x e R n D  ::* x ~  L. 
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Since 

Case 

Case 

1. 

Again,  

x ~ R  ~ x e R n L  

which is a contradic t ion.  Therefore 

Hence,  

~i~RD : ~ RDU k..) "~ RDO 

= ~ R V  U ~nO0" 

I~RDI ~ I~RUI 

> M ~ .  

x e O ,  

P~D ~ L, these four cases exhaust  all the possibilities. 

3: PRo E U c~ L. This case is s imilar  to the previous  one. 

4: PRo ~ t] n I_, (Fig. 14). Again  four different subcases are  possible:  

R c ~ L c  U a n d  U n D  c L. 
Cons ider  a po in t  x ~ R c~ D. If x ~ L, then x E U by R n L ~ U. If x ~ L, then 
x ~/.7 by U c~ D c L. Since R c~ D is convex, it cannot  intersect exactly two 
oppos i te  quad ran t s  of a pa i r  of lines. As there is a point  Pan in t7 c~/5, hence 
R c ~ D c  G c~E. 

Assume that  I~Ro[ = m. Then 

~tTL = ~or~n u ~6r~o u ~tTLR~ U ~or~t~ 

= ~ORO U ~r~o u ~aRt~ U ~ C r ~ ,  since 0 c~ R ~ E and E c~ D ~ U, 

= ~R/~ u ~ r ~ o  u ~cRt~ u ~cr~t~, since R ~ D ~ U. 

: : : :!:i:~ ~ii:!: ::: ::: :::: ::: ::::::::::::::::::::: ::~i~ 
:::::::::::~.,.::~ :::::::::::::::::::::::::::::::: ::!:i::::::~::::~i',,~'q::~:::.:::-:.i,:,:.'.:~,:D 

:iiiiiiii iii!iiiiiiiiii'iii:: i i i::i!iiii  ii iiiii ! !! i ii 

R L 

Fig. 14. PRo ~ [3 n L. 
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As the sets on  the left of the  last  equal i ty  are d is jo in t  sets, 

Subs t i t u t i ng  the values  of the different terms, we get 

I~l - 2 N ~  + M ~  > m + ( N ~  - M ~  - m) + ( N ~  - M ~  - m) + I~cc~l 
[ ~ c r ~ l  < m + I~1 - 4~ff~ + 3 M ~  

< m -- M ~  - 4F1~1/4"] + I~ l -  

Since the size of the set ~cct~o is nonnega t ive ,  

m >  M ~ .  

2. R ~ L c  U and U ~ D c  E. 

Since pR~ ~ U n [,, therefore P~o lies in O. There  are four  different possi-  
bili t ies: 
�9 R ~ D c t ~ .  

�9 R t " ~ D c  U, 

By a s imi lar  a r g u m e n t  as in Case 2 we can  show that  the above  two cases 
are no t  possible. 

�9 R c ~ / )  c /.7. 
Cons ide r  a po in t  x ~ R ~ L. 

R ~ L c U  =~ x E U ,  

R c ~ D c O  ~ x ~ D ,  

U n D c f f .  ~ x 6 L  

=> x ~ L n L, 

which is a con t rad ic t ion .  Hence  R n L = ~ .  Therefore  R c~ L c 0 a n d  
U n D c L - - a  subcase  we consider  later.  

�9 / ~ n D  c U. 

Let I~'Rol = m. W e  c o m p u t e  I~o~cLI. Now,  

= ~ D  U ~OiJ R k.J ~t~U g ~OOL k..) g~lSl~OL, 

s ince  / ~ c ~ U c D ,  
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since L c~ t7 ~ /~ .  Substituting the values of different terms in the above 
equation we get 

I~] > Ne, + N ~  - m + N ~  -- M~  + N . ~ -  2 M ~  + [ ~ c ~ [ ,  

I ~ t ~ l  -< m -- 4N~ + 3M~ + 1~1 

< m - -  M ~  - -  4 [ - [ ~ [ / 4 ]  + [~[.  

Since the size of the set ~o~tTc is nonnegative, 

m >  M~.  

R c ~ L c  /.7 and U n D  ~ L. 
This case can be dealt with in a similar way to above. 
R n L ~  U a n d  U n D ~ L .  
Since PRO e U, here also we consider four different cases: 
�9 R r ~ D ~ O .  
�9 R t ~ l ~ O .  

These cases do not  occur for the same reasons as discussed above. 
�9 R n l ~  17. 

From Corol lary 5.1, 

R n U ~ R n D .  

Since R c~ U contains M ~  points of ~ ,  

I~RD[ ~ I~Rtsl 

__> M~.  

�9 /~ n D ~ t.7. 
We need only consider the case R n b ~ L since other cases, namely, 
R c~ D ~ L, R c~ D c/S,, and /~ n / )  c/S,, can be dealt symmetrically as 
above (actually they lead to a contradict ion when considered along with 
/~ n D ~ t.7). Let ~ o  contain m points. As before we compute  the number  
of points in ~n~tT~: 

= ~ o  w ~ R  W ~ORU U ~t~Rt7 

since /~ c~ U ~ / ) ,  
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since L c~ b c /~ .  Substituting the values of different terms in the above 
equation we get 

I~l  >-- N~ + N~ - m + N~ - M~ + N~ - 2Me~ + I~'o~oLI, 

l~t~Rocl < m - 4N~ + 3M~ + I~1 

_< m - M~ - 4[-1~1/4-] + I~1. 

Since the size of the set ~cr.ao is nonnegative, 

m > M ~ .  

Thus the theorem is proved for the last case PRD ~ U c~ L also. 

Hence proved. [] 

Combining the earlier theorems and temmas we get the following result. 

Theorem 5.5. A point in the center of a set can be computed in linear time. 

Proof. In each iteration at least 3M~ (~1~'1/4) points are deleted. If T(n) is the 
running time of the algorithm for an input set of size n (1~1 -- n), then it satisfies 
the following recurrence: 

T(n) < max T ( n -  3k) + O(n) ~ T(n) < T(n - 3M~) + O(n). 
k > M r  

Since T(n)= O(n) from the above recurrence, the claim of the theorem 
follows. [] 

6. Conclusions 

We have presented an optimal algorithm for computing a centerpoint of a finite 
set of points in the plane, thus providing one more example of the power and 
versatility of the prune-and-search paradigm. It would be worth exploring how 
this speeds up algorithms which use the centerpoint computation as a basic 
subroutine. 

Acknowledgments 

The comments made by Tamal K. Dey, Edgar Ramos, and Gunter R6te are 
gratefully acknowledged. We thank all of them for having pointed out several 
errors in the initial drafts of the paper. We also thank Herbert  Edelsbrunner for 



312 S. Jadhav and A. Mukhopadhyay 

his encouragement. We wish to thank the anonymous referees for their perceptive 
comments, which made us look at the paper very critically and incorporate changes 
that have vastly improved its quality. 

References 

i f ]  

[csY] 

[E] 
[JM] 

[Ma] 

[Mel]  

[Me2] 
IT] 

[YB] 

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput. 
Mach., 34(1):20~208, 1987. 
R. Cole, M. Sharir, and C. Yap. On k-hulls and related problems. SIAM J. Comput., 16:61 77, 
1987. 
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987. 
S. Jadhav and A. Mukhopadhyay. Designing optimal geometric algorithms using partial 
sorting networks. Technical Report TRCS-93-165, Indian Institute of Technology, Kanpur, 
1993. Accepted in the Third National Seminar on Theoretical Computer Science, 1993, 
Kharagpur, India. 
J. Matou~ek. Approximations and optimal geometric divide-and-conquer. Proc. 23rd Annual 
A CM Symposium on Theory o f  Computing, pages 505-511, 1991. 
N. Megiddo. Linear-time algorithms for linear programming in ~R 3 and related problems. 
S lAM J. Comput., 12(4):759-776, 1983. 
N. Megiddo. Partitioning with two lines in the plane. Z Algorithms, 3:430~33, 1985. 
Shang-Hua Teng. Center Points and Graph Separators. Ph.D. thesis, School of Computer 
Science, Carnegie-Mellon University, 1993. 
I. M. Yaglom and V. G. Boltyanskii. Convex Figures. Holt, Rinehart and Winston, New York, 
1961. 

Received July 30, 1992, and in revised form April 5, 1994. 


