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Abstract. A closed convex surface S in E d with d odd, is an ellipsoid if and only if 
it has the following property: for any pair of points x, y in S there is an affine 
transformation which maps x onto y and a suitable neighborhood of x in S onto a 
neighborhood of y in S. 

1. Introduction and Statement of Result 

1.1. Results of He lmhol tz -Lie  type are characterizations of special quadrics or  
classical spaces and geometries  by the property that there are local or global 
self-mappings of the surface or space which preserve the local geometric structure. 
In general "many" such affinities, isometries, or homeomorphisms are required. A 
survey of the li terature up to 1956 is due to Freudenthal  [10]. It covers in particular 
the contributions of Helmholtz,  Lie, Weyl, Kolmogorov, Birkhoff, and Tits. 

To convey the spirit of such results we cite a theorem of Laugwitz [15] which he 
proved in the context of affine differential geometry. Let S be a hypersurface of 
class 9,3 in Euclidean d-space E a with the following property: for any x, y ~ S and 
tangent directions s , t  of S at x and y, respectively, there is a unique linear 
transformation of IF a which maps x onto y, a suitable neighborhood of x in S onto 
a neighborhood of y in S and, finally, s onto t. Then S is a special quadric. 

1.2. If instead of general hypersurfaces, closed convex surfaces are considered it 
seems plausible that the conclusion of the above result of Laugwitz or of its 
predecessors due to Helmholtz,  Lie, and Weyl holds but with less assumptions. 
Before stating our result we review some pert inent  results from convex geometry. 

Let S be a closed convex surface in ~d, that is the boundary of a compact convex 
set in ~a with nonempty interior. If  the group of projectivities which map S onto 



518 P.M. Gruber 

itself is transitive on S, then S is an ellipsoid. This result of Auerbach [2] and 
Busemann [8] generalizes the following classical characterization of ellipsoids of 
Brunn [5]: if S admits affine reflections in all directions, then it is an ellipsoid. For  a 
different generalization of Brunn's result see [12]. 

Assume now that S is of class ~3 and with positive Gaussian curvature. S is an 
ellipsoid if for any x, y ~ S there  is a volume-preserving affinity which maps x onto 
y and a suitable neighborhood of  x in S onto a neighborhood of y in S. This is a 
consequence of a result of Blaschke [4, p. 35], saying that S is an ellipsoid if its affine 
curvature is constant and positive. A more refined result of this type was given in a 
preliminary version of an article by Berger [3] in the context of the problem of the 
existence of  caustics of convex surfaces. 

1.3. The aim of this article is to prove the following convexity result. 

Theorem. Let S be a closed convex surface in E a, d odd, with the following property: 
for any pair o f  points x, y in S there is an affine transformation of  E a which maps x onto 
y and a suitable neighborhood o f x  in S onto a neighborhood o f y  in S. Then S is an 
ellipsoid. 

Our proof  makes use of the differentiability results of Alexandrov for convex 
surfaces, of a characterization of ellipsoids due to Burton by the proper ty  that their 
planar  sections are centrally symmetric, and of a topological result of Mani  on 
continuous fields of congruent planar  convex curves tangent to the unit sphere S d- 1. 
In addition, Baire 's category theorem and a result on invariant subspaces of 
symmetric matrices are used. Unfortunately Mani 's  result holds only for odd d. 
While this prevents the extension of our proof  to all dimensions, we conjecture that 
the theorem holds for all d. 

2. Tools and Preliminaries 

In the following when we speak of a convex curve, a circle, or an ellipse, we actually 
mean a convex surface, a sphere, or an ellipsoid in (d  - 1)-dimensional space. By 
area the (d  - 1)-dimensional measure is meant. A general reference on convexity is 
[20]. 

Let  S be a closed convex surface in ~:a which is smooth and strictly convex, that 
is, it is of class ~1 and contains no line segment. 

2.1. For  x ~ S let H ( x )  be the supporting hyperplane and let n(x)  be the interior 
normal  unit vector of  S at x. For  x ~ S and 6 > 0 we consider the convex curve 

If  

S(x ,  3)  = ( H ( x )  + 6 n ( x ) )  A S. 

1 
2v/~ ~ ( S ( x ,  6)  - ( x  + 6 n ( x ) ) )  
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tends to a limit as 6 ~ + 0 in the sense of the closed Hausdorff limit, the limit is 
called the indicatrix I ( x )  of S at x. The following proposition is well known. 

(1) Let x ~ S then, if I ( x )  is bounded, 

x/2-8 (S (x ,  8)  - (x  + 8n (x ) ) )  , l ( x ) .  

Here 8 H is the Hausdorffmetric; that is, for nonempty compact subsets C, D of I zd 
their Hausdorff distance 6 H(C, D) is the maximum distance which a point of one of 
the sets C, D can have from the other set. 

A result of Alexandrov [1] says that in the sense of the ordinary surface area 
measure on S, 

(2) the indicatrix I ( x )  exists and is a quadric at almost all x ~ S. 

See [19]. 

2.2. An immediate consequence of a result of Burton [6] is the following character- 
ization of ellipsoids: 

(3) Assume that for each x ~ S the convex curve S(x,  8) is centrally symmetric 
for all sufficiently small 8 > 0. Then S is an ellipsoid. 

2.3. A topological space is Baire if any countable union of nowhere dense subsets 
has dense complement. By Baire's category theorem a complete metric space is 
Baire. Let S be endowed with the metric and topology induced by that of Ed. Since 
S is a closed subset of Ir :d, it is complete metric. Hence, 

(4) if S is a countable union of closed subsets, then at least one of these has 
nonempty interior in S. 

2.4. A continuous fieM o f  affine-equivalent convex curves tangent to S d- 1 is a family 
of affine-equivalent convex curves S(u): u ~ S d- ~ with the following properties: 

(i) Each S(u)  is contained in the supporting hyperplane of  S a- i at u. 

(ii) u is the center of the (unique) ellipse E(u)  of minimum area containing 
S(u). 

(iii) The mapping u -~ S(u)  is continuous with respect to 8 H. 

For properties of E(u)  see [9]. Note that E(u)  depends continuously on S(u). 

If in the above definition E(u)  is replaced by the circle C(u)  of minimum radius 
containing S(u)  and affine-equivalence by congruence, we speak of a continuous field 
o f  congruent convex curves tangent to S d- 1 instead. 

Using topological tools, Mani [17] proved the following result: 

(5) Let d be odd. Then any continuous field of congruent convex curves tangent 
t o  S d-  1 consists of circles. 
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In our proof of the theorem we need a slightly different version of (5): 

(6) Let d be odd. Then any continuous field of affine-equivalent convex curves 
tangent to S a -  1 consists of ellipses. 

Burton [7, p. 315] made a very short remark on the (natural) proof of (6). Since it 
does not seem to be trivial, we indicate how (6) may be deduced from (5). For each 
u ~ S a -  ~ let E u be the symmetric d • d matrix corresponding to the ellipsoid with 
"poles" _+u and "equator" E ( u )  - u .  The first step is to prove that the mapping 

u ~ E , :  u ~ S d -  1 is continuous. 

Next consider the eigenvalues and the corresponding invariant subspaces of E , ,  say 

1, h I < A  2 <  ..- <Zk  and I0 ,11 , . . . , l k ,  

and define a linear transformation L u of E d by 

1 1 
L u ( x )  = x o + - - x  I "+" "'" Jr" - - X  k for x = x o + ""  + x  k E F d, x i E I i. 

h I hi, 

Then we have to show that the mapping 

u -~  L u: u ~ S a i is continuous. 

This may be done using a result of Stewart [21] on the sensitivity of invariant 
subspaces of symmetric matrices; see also p. 413 of [11]. The final step is to prove 
that 

L , ( S ( u ) ) : u  ~ S a - 1  

is a continuous field of congruent convex curves tangent to S d- 1. Applying (5) we 
obtain (6), as required. 

3. Proof of the Theorem 

Clearly, if S is an ellipsoid it satisfies the assumptions of the theorem. 
Conversely, let S be a closed convex surface in Ed for which the assumptions of 

the theorem hold. In particular, d is odd. 

3.1. We begin the proof by introducing some further notation. Note that S is 
endowed with the metric induced by the Euclidean metric of E a. For x ~ S and 
e > 0  let N ( x ,  8 )  be the (open) e-neighborhood of x (in S). For x , y ~ S  let 

A x e  , B x y  . . . . .  denote affine transformations of E a which map suitable neighbor- 
hoods of x onto neighborhoods of y. If  we write A x y ( N ( x ,  e)) it is to be understood, 
particularly, that N ( x ,  e )  is contained in the neighborhood of x which by A x y  is 
mapped onto a neighborhood of y. The absolute value of the determinant of the 
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linear part of Axy is denoted ]Axyl. For 6 > 0 let C(x, 6) be the cap of S with 
center x and height 6, that is the part of S between H(x) and H(x) + 6n(x). 
Obviously, its boundary (in S) is S(x, 6), see 2.1. Let [C(x, 6)1 be the volume of  the 
convex hull of C(x, 6). ]C(x, 6)1 is called the volume of C(x, 6). If ~ = IC(x, 6)1 we 
also write C(x, t~) instead of C(x, 6); similarly, S(x, Ix) stands for S(x, 6). 

3.2. Next we prove some simple properties of the affinities Axy and of S, starting 
with the following: 

(7) IAxvl > 0 for all x,y ~ S. 

Otherwise there are x, y ~ S with IAxyl = 0. Then a suitable neighborhood of x 
is mapped by Axy onto a- -p lanar - -ne ighborhood  of y. By the assumptions of the 
theorem this in turn implies that any point z ~ S has a planar neighborhood 
(consider the pair y, z). However, clearly, this is impossible if z is a point where a 
circumsphere of S touches S, concluding the proof of (7). 

(8) S is smooth and strictly convex. 

To see this choose for x first a point where an insphere of S and then a point 
where a circumsphere of S touches S and apply (7) together with the assumptions of 
the theorem. 

(9) I(x) exists and is an ellipse for each x ~ S. 

By (2) there is a point in S where the indicatrix exists and is a quadric. Then (7) 
and the assumptions of the theorem show that it exists and is a quadric at each point 
of S. Next, at a point where a circumsphere of S touches S the indicatrix of S is 
contained in a circle; this is an immediate consequence of the definition in 2.1. Thus 
by (7) and our assumptions it is bounded at each point of S. A similar argument, but 
using an insphere, shows that at each point of S the indicatrix contains a small 
circle. Taken together, these properties yield (9). 

The remaining part of the proof of the theorem is split into two cases. 

3.3. Case 1. Firstly, we assume that 

(10) there are points p, q ~ S and affine transformations Zpq, npq with IApql 
]Bpql. 

3.3.1. By (7) both Apq and Bpq are invertible. Define 

Cpp = AplBpq if [Apq[ > IBpql and Cpp = BpqlApq otherwise. 

Clearly, 

(11) 0 < Icppl < 1, 
(12) Cpp(p) = p, 
(13) Cpp maps a neighborhood of p,  say N, onto a neighborhood of p. 
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Since Cpp is affine (8), (12), and (13) show that 

Cpp(H(p)) = H(p). 

Using once more the fact that Cpp is affine, this implies the existence of an a c R 
such that 

(14) Cpp(H(p) + 6n(p)) = H(p) + o~6n(p) for all 6 ~ R. 

Next we prove 

(15) 0 <  c~< 1. 

Propositions (11)-(14) imply that the hyperplanes H(p) + 6n(p) and H(p) + 
o~6n(p) are in the same open half-space determined by H(p) for all sufficiently 
small 6 > 0 .  Hence a > 0 .  By (8) we may choose 6 > 0  so small that the cap 
C(p, 6) between H(p) and H(p) + 6n(p) is contained in the neighborhood N of p 
considered in (13). By (13) and (14), 

(16) Cpp(C(p, 6)) = C(p, or6) 

and thus 

]C(p, 66)[  = ICpp(C(p, 6))l  = ICppl IC(p, 6)] < ]C(p, 6)l 

by (11). Hence a < 1. The proof  of (15) is complete.  

3.3.2. We are now ready to prove that 

(17) there is an e > 0 such that S(p, 6) is an ellipse for 0 < 6 < e. 

In the proof  of  (15) we have seen that (16) holds for all sufficiently small 6 > 0, 
say for 0 < 6 < e with suitable e > 0. Since S(p, 6) and S(p, ~6) are the bound- 
aries of C(p, 6) and C(p, 66), respectively, we have 

(18) Cpp(S(p, 6)) = S(p, 66) for 0 < 6 < e. 

Applying (18) repeatedly and taking into account (15) and (7), it follows that S(p, 6) 
is affine to S(p, ak6) and thus to 

1 
t-----;-. (S(p, ak6) - p  - ak6n(p)) 

r 

for k = 1, 2 . . . . .  and 0 < 6 < e. This together  with (15), (9), and (1) yields the 
following: let 0 < 6 < e. Then S(p, 6) is a n n e  to each convex curve in a sequence 
of convex curves converging (with respect to 6 n)  to the ellipse I(p). Hence S(p, 6) 
is an ellipse itself, concluding the proof  of (17). 

Now apply Apx to transfer the proper ty  (17) from p to x for any x ~ S. Hence 
there is ex > 0 such that 

(19) S(x, 6) is an ellipse for 0 < 6 < 6x and x ~ S. 
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Combining (19), (8), and (3), we see that S is an ellipsoid This proves the theorem 
for Case 1. 

3.4. Case 2. Secondly, we assume that 

(20) for each pair  p,  x ~ S all affinities Apx have the same value of IApxl. 

Let p ~ S be chosen and define functions ~, v: S ~ R by 

(21) ~o(x) = log[Arx[ , v (x )  = e ~(x) for x E S. 

q~ and v are well defined, see (7) and (20). 

3.4.1. We now make some preparat ions for the final part  of the proof in 3.4.2 and 
3.4.3. Let e > 0 be chosen. For  i , j  = 1,2 . . . .  and k = - i ,  - i  + 1 . . . . .  i - 1, define 

(22) Sijl, = {u ~ S: 3Ap ,  satisfying (i)-(iii): 
(i) all components  of (the matrix) Apu are  in [ - i ,  i], 

(ii) Apu(N(p ,  1 / i ) )  D N(u,  2 / j ) ,  
(iii) ~p(u) ~ [ k e , ( k  + 1)e]}. 

The next step is to prove that 

(23) each set Sij k is closed. 

To see this let Ua,U 2 . . . .  ~ Sij ~ converge to u ~ S. We have to show that 
u ~ Sij k . By (i) all elements of the matrices Apu ~ are  in the interval [ - i ,  i]. Hence by 
considering a suitable subsequence and renumbering if necessary, we may assume 
that 

(24) Apu t --') Apu as l ~ oo (elementwise), 

where Apu is a suitable matrix. Clearly, 

(25) Apu satisfies (i) and (iii). 

In order  to show that 

(26) Apu satisfies (ii), 

let y E N(u ,  2 / j ) .  Since by assumption u I ---, u as l --* o% the inclusion y ~ N(u  t , 2 / j )  
holds for all sufficiently large I. Now, noting t ha t  Apu ~ satisfies (ii), we may choose 
for each such l a point x t ~ N ( p ,  1 / i )  with 

(27) Apu,(x l) = y. 

Then, by taking a suitable subsequence and renumbering again if necessary, we may 

assume that 

(28) x t --* x, say, where x E el N( p, 1/i) .  

Here el stands for closure in S. Combining (24), (28), and (27) it follows that 
Apu(X) = y. Since y ~ N(u ,  2 / j )  was arbitrary, we have proved that 

(29) Apu(Cl N ( p ,  1 / i ) )  D N(u,  2/ j ) .  
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By (25) Apu satisfies (iii). Hence [Ap,[ > 0. Therefore (29) yields that a fortiori 

Apu(N(p ,  1/ i ) )  D N(a, ,2/ j ) ,  

showing that Ap, satisfies (iii). This proves (26). Since Ap, satisfies (i)-(iii) (see (25), 
(26)), we conclude that u E Sqk. The proof of (23) is complete. 

Since S is the union of the countable system of the sets Sij k, each of which is 
closed by (23), at least one of them has nonempty interior (in) S; this being a 
consequence of (4). Denoting this set by Sij k and let q be an interior point of Sij ~. 

For each r ~ S there are an affinity Aqr and positive integers 

(30) l, >_ j 

and m, such that 

(31) N(q, 1/ l  r) c Sijk, 
(32) Aqr(N(q, 1/lr)) D N(r, 1/rn,). 

The open neighborhoods N(r, l/mr): r ~ S cover the compact surface S. Hence 
there is a finite number of these neighborhoods already covering S, say 

(33) S c N(rl ,  1 / m r )  U "" U N(rn, 1/mro). 

3.4.2. Next it is shown that 

(34) ~o (and thus v) is continuous. 

To see this we have to prove the following: 

(35) Let x ~ S and e > 0 be chosen .Then there is a neighborhood N of x such 
that 

I~o(x) - ~o(y)l < 26 foreach  y ~ N .  

Using the chosen value of ~ in 3.4.1, propositions (22) and (30)-(33) hold. By (33) 
there is an index s ( <  n) such that 

x ~ N = N(r  s , 1 / m , ) .  

Take y ~ N. An application of (32) then shows 

(36) x -- Aqr(U), y = Aqr(V) for suitable u, v ~ N(q, l/Its). 

Clearly, 

(37) u = Apu(p), v = Apo(p). 
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Combining the defn i t ion  of ~ in (21), assumption (20) and propositions (36), (37), 
(31), and (22(iii)) we obtain the following: 

I v ( x )  - q~(y)l = IloglAqrApul- log[Aq, Ap~,ll 

= [ l o g l A p , t -  loglApvll = I~p(u) - ~0(v)l _< 2e .  

This concludes the proof  of (35) and thus of (34). 

3.4.3. Now we are ready to show that S is an ellipsoid. In the following the notation 
of caps involving their volume is used, compare 3.1. Further,  choosing e = 1 in 3.4.1, 
propositions (22) and (30)-(33) are valid. 

By (34) u: S ~ R + is continuous. Hence there is an a > 0 such that 

O< u( x ) < a for all x ~ S .  

Thus we may choose by (8) and (33) a /3 > 0 which is so small that the cap 

(38) C(x, ixu(x)) is contained in one of the neighborhoods N(rl, l / m , )  . . . . .  
N(r,,, 1 / m r )  for each x ~ S and 0 < /~ < /3. 

Statement (38) is used to prove the following proposition: 

(39) C(x, ixu(x)) = Apx(C( p,/z)) with suitable Apx for each x ~ S and 0 < /z < 

/3. 

Let x ~ S and 0 < /x < /3 be chosen. Then by (38) there is an index s ( <  n) such 
that 

(40) C(x, Izu(x)) c N(r~, 1~mrs). 

Hence (7), (32), and (31) imply that 

(41) Aqrl(C(x, txv(x))) is a cap with center u = Aqrl(x) in N(q, 1/l r ) c Sij k . 
s ~ s 

The inclusion u ~ N(q, 1/lr) together with (30) and (22(ii)) yields the following: 

N(q, 1/lr ) C N(u,2/l~ ) C N(u ,2 / j )  c Ap,,(N( p, 1 / i ) ) .  

Hence we obtain from (7) and (41) that 

(42) AplAq~l(C(x, txu(x))) is a cap with center p = Ap~Aqr~(X) in N(p, 1/i). 

The affine transformation 

Apx = AqrApu 

maps p onto x and a neighborhood of p onto a neighborhood of x (since Ap~, hqr" 
have the corresponding property). Clearly, we may rewrite (42) in the following form: 

A~,~a(C(x,/xu(x))) is a cap with center p in N(p ,  1/i). 
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Using (20), the definition of v, and our present  notat ion for caps, we see that its 
volume is 

[Apxl(C(x, /zv(x)))[  = I A p x l - ~ v ( x )  = v ( x ) - l / z v ( x )  =/z .  

Hence 

Apxl(C(x ,  t z v (x ) ) )  = C ( p ,  /z), 

concluding the proof  of (39). 
For  fixed /z, 0 < /z < /3, the caps 

C ( x , / z v ( x ) ) :  x ~ S 

are all affine-equivalent, see (39). Hence their boundary curves S(x,  i~v(x)) also are 
all affine-equivalent. It is not too difficult to show that 

S(x ,  ~ v ( x ) ) :  x ~ S 

depends continuously on x (with respect to 6H). The inverse image of the normal- 
mapping 

x ~ n ( s ) : S  --* S d-1 

is continuous by (8). Hence the convex curves 

S ( n -  l(u ), t z v ( n -  l (u)  ) ): u ~ S d-1 

are all affine-equivalent and depend continuously on u. Translating each of these 
curves such that its minimum circumscribed ellipse touches S d- i at u we obtain a 
continuous field of affine-equivalent planar  convex curves tangent to S d- 1. Applying 
(6) it follows that, in particular,  

S(x ,  i z v ( x ) )  is centrally symmetric for each x E S and 0 < /z _< /3. 

Since v(x )  > 0, this implies that we may choose e x > 0 such that 

S(x ,  6 ) i s cen t r a l l y symmet r i c fo r  O < 6 < e x and x ~ S. 

Burton's  result (3) now shows that S is an ellipsoid, concluding the proof  of the 

theorem for Case 2. 
The proof  is complete.  

Final Remark 

In the second part  of this article the solution will be given for d = 2 and for general  
d under  the addit ional  assumption that the affinities are volume-preserving. 
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