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Abstract. Relative to a given convex body C, a j-simplex S in C is largest if it has 
maximum volume (j-measure) among all j-simplices contained in C, and S is 
stable (resp. r/g/d) if vol(S) > vol(S') (resp. vol(S) > vol(S')) for each j-simplex S' 
that is obtained from S by moving a single vertex of S to a new position in C. This 
paper contains a variety of qualitative results that are related to the problems of 
finding a largest, a stable, or a rigid j-simplex in a given n-dimensional convex body 
or convex polytope. In particular, the computational complexity of these problems 
is studied both for T-polytopes (presented as the convex hull of a finite set of 
points) and for Y-polytopes (presented as an intersection of finitely many half- 
spaces). 

Introduction 

The setting for everything in this paper is a finite-dimensional Euclidean space ~n. 
As the terms are used here, a body in R n is a compact convex set with nonempty 
interior and a polytope is a body that has only finitely many extreme points. Prefixes 
are often used to indicate dimension. For 1 < j < n, a j-simplex is the convex hull of 
a set of j + 1 affinely independent  points. Relative to a given body C, a j-simplex S 
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in C is largest if S has maximum volume (]-measure) among all j-simplices 
contained in C, and S is stable (resp. rig/d)if vol(S) >_>_ vol(S')(resp, vol(S) > vol(S')) 
for each j-simplex S' that is obtained from S by moving a single vertex of S to a 
new position in C. The simplex S is bound to C if each vertex of S is an extreme 
point of C. These notions, or variants of them, occur throughout this paper. 

The paper was motivated by a desire to gain a better understanding of the 
algorithmic difficulty of finding a largest j-simplex in a given high-dimensional 
polytope P. There is always a largest j-simplex that is bound, and hence when P has 
m vertices the number of volume computations needed to find a largest j-simplex in 

( m ) 
P does not exceed j + 1 " However, that may be a very large number in cases of 

interest, and many challenges are provided even by the special case in which j = n 
and P is the unit n-cube. (That case is discussed in detail in a companion paper 
[HKL], and some applications are described in [GK4].) Also, since polytopes are 
among the most familiar of geometric objects and simplices are the simplest sort of 
polytope, it seems fair to claim that the problem of finding a largest ]-simplex in a 
given n-polytope is a basic and prototypical problem in computational convexity. See 
[GK4] for a survey of related containment problems. 

Here are our section headings: 1. Determinantal Tools; 2. Largest and Stable 
Simplices in Convex Bodies; 3. Moving a Bound Simplex in a Convex Polytope; 
4. Computational Preliminaries, Tractability Results; 5. Hardness Results for 
~-Polytopes; 6. Hardness Results for ~.-Polytopes; and 7. Additional Comments 
and Problems. 

1. Determinantal Tools 

Throughout this paper there are close interactions between volumes and determi- 
nants. This section assembles some results involving determinants that are used in 
later sections. In Section 2 the following two results play an essential role in 
establishing relationships between the vertices of largest simplices and the facial 
structure of the containing body. 

Theorem 1.1. Suppose that A and B are n • n matrices, that A is invertible, and that 

the matrix A + diag(% . . . . .  r , ) B  has the same determinant for  all real r I . . . . .  r~. Then 

at least one row o f  B is zero. 

Proof. If satisfied by (A ,B) ,  the hypotheses are also satisfied by the pair 
(AA -1, B A - 1 ) .  Since the conclusion for the latter pair implies that for the former, 
we may assume without loss of generality that A = I and, with 

f ( %  . . . . .  r , )  = de t ( I  + diag(% . . . . .  rn)B) ,  

that f - 1. Note that this assumption is hereditary in the sense that it is still satisfied 
when the ith row and ith column are deleted from each of I, diag(% . . . . .  rn), and 
B; this corresponds to the choice r i = O. 

When n = 1, it is obvious that B has a zero row. We now consider a "smallest 
counterexample" in order to derive a contradiction. So suppose that the assertion 



Largest j-Simplices in n-Polytopes 479 

fails for some n > 2 and  n • n matrix B, bu t  holds for each smaller n and  
corresponding matrix. 

The funct ion f is a polynomial  in r 1 . . . . .  ~,,  and for each set of indices 
N c {1 . . . . .  n} the coefficient of the product  FIkE N ~'k in f is equal  to det(BN), 
where B N is obta ined  from the matrix B = (~ i j )  by delet ing each row and co lumn 
of B whose index does not  belong to N (and agreeing that the product  over the 
empty set and  the de te rminan t  of the empty  matrix are bo th  equal  to 1). Now 
consider  an i ~ {1 . . . . .  n} and  let N i = {1 . . . . .  n} \ {i}. It follows from the minimali ty  
of n that BN, has a zero row with index (say) rr(i), bu t  this row is not  zero in B and 
hence 13,r(i)i -~ O. Also, if j E {1 . . . . .  n} and j 4~ i, then ~'( i)  ~ rr(j), for otherwise 
both  /3,~(i)i and  ~Tr(i)j a r e  nonzero  in row 7r(i) of  B, contradict ing the fact that the 
7r(i) row of BN, is zero. We may now conclude that the matrix B has exactly one 
nonzero  entry in each row and each column, whence de t (B)  ~ 0. However,  de t (B)  is 
the coefficient of the product  T 1 " "  T n in the equa t ion  

d e t ( l  + diag(~- a . . . . .  ~-,)B) = 1, 

and  if de t (B)  ~ 0, then  for T 1 = 7" 2 . . . . .  T n = r > 0 the lef t-hand side is domi- 
na ted  by the positive term r "  for large ~-. F rom this contradict ion it follows that at 
least one row of B is zero. []  

Corol lary  1.2. With hypotheses as in Theorem 1.1, suppose that B has a nonzero row. 
Then at least one such row is a linear combination o f  the rows o f  A that correspond to 
zero rows o f  B. 

Proof. Suppose,  with 1 < r < n, that the first r rows of B are nonzero  and the last 
n - r rows of B are zero. Then ,  starting with the matrix I + diag(r 1 . . . . .  rn)B, we 
can subtract  suitable mult iples  of the last n - r rows from the first r rows to obta in  
a new matrix in which all entr ies  beyond the r th  co lumn are zero in each of the first 
r rows. The de t e rminan t  of the new matrix is still i ndependen t  of the choice of  the 
~'i, and from this it follows that  i f / ~  is the upper  left r • r submatr ix of B, then  

d e t ( I  + diag(~- 1 . . . . .  ~-r)/~) -- 1. 

By the result  already proved, this implies that  at least one row of /~ is zero and 
hence one  of the first r rows of B is l inearly dependen t  on  the last n - r rows 
of A. []  

The  following facts about  simplex volumes  are very well known (see [$3]). They 
are used here without  specific reference,  or  are referred to as "s tandard  formulas":  

�9 If u is a vertex of a j -s implex S, F is the facet ( ( j  - 1)-face) of S that misses u, 
and  6 is the distance from u to the affine hull a f f (F)  of S, then  v o l ( S ) =  
6 vo l (F) / j .  

�9 I f  S is an n-simplex in R n and  A is the (n  + 1) • n matrix whose rows list the 
coordinates  of the vertices of S, then  (n ! )vo l (S )  = Idet(M)l, where  M is the 
(n  + 1) x (n  + 1) matrix formed from A by append ing  a co lumn of l ' s .  If the 
origin is a vertex of S, then  (n ! )vo l (S)  = Idet(A0)l where  A 0 is formed from A 
by discarding A ' s  zero row. 
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�9 The  circumradius and the volume of a regular j-simplex of edge-length A are 
respectively equal to 

( , 
A 2(j  + 1) j!  ~ -  ' 

Hence the volume of a regular j-simplex of circumradius p is equal to 

( j  + 1)0+ 1)/2 
pJ. 

j! jj/2 

We also use the fact, proved by Fejes T6th [F, p. 313] and Slepian [$2], that among 
the j-simplices contained in a given ball, only the regular ones are largest. 

In addition to the above standard formulas for simplex volumes, we need some 
other formulas that may not be quite so widely known. The following formula 
expresses the volume of a simplex in terms of its edge-lengths. 

Theorem 1.3. Suppose that S is a j-simplex in ~ with vertices v l , . . . , ~ ) .+ j .  Let 
B = ([3i~) denote the ( j  + 1) X (j  + 1) matrixgiven by [3ik = Ilv i - vk[I 2. Then 

U(j ! )2vo l2 (S)  = Idet(/~)l, 

where 13 is the ( j + 2) x ( j  + 2) matrix obtained from B by bordering B with a top row 
(0, 1 . . . . .  1) and a left column (0, 1 . . . . .  1) T. 

The determinant in Theorem 1.3 has become known as the Cayley-Menger 
determinant. Proofs of Theorem 1.3 can be found on pp. 124-125 of [$3] and p. 98 of 
[B]. For  most of  our purposes, the following closely related formula is more useful. It 
expresses the volume in terms of the Gram matrix formed from the inner products of 
the vertices. 

Theorem 1.4. Suppose that S is a j-simplex in R n with 0 ~ aff(S), and A is the 
( j  + 1) • n matrix whose rows list the coordinates o f  the vertices of  S. Then 

( j ! )2vol2(S)  = d e t ( J  + AAr ) ,  

where J is the ( j + 1) • ( j  • 1) matrix whose entries are all 1. I f  the origin is a vertex o f  
S, then 

( j ! )2vol2(S)  = det(AoA0r),  

where A o is formed from A by discarding A '  s zero row. 

Proof. Suppose first that the origin is a vertex of S. If j = n, then A 0 is a square 
matrix, a standard formula tells us that ( n ! ) v o l ( S ) =  Idet(A0)l, and the stated 
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conclusion follows from the fact that det(AoA ~) = det2(Ao). If  j < n, then, since 
the entries of  Ao.4~o are inner products and these are invariant under rotation about 
the origin, we may assume without loss of generality that all the vertices of S lie in 
the subspace of ~n consisting of points whose last n - j  coordinates are all zero. 
Form B o from .4 o by dropping the last n - j  columns of .40. Then B o is a square 
matrix and BoB ~ = AoATo . This reduces the problem of proving the formula involv- 
ing A 0 to the just-treated case in which S is full-dimensional. 

Now suppose that the origin is not a vertex of S but does belong to the affine hull 
of S. Let B denote the (j  + 1) • (n + 1) matrix formed from A by appending a 
column of 1%. Then B's rows are the vertices of a j-simplex S' in ~n+l  that 
is congruent to S and whose affine hull is at distance 1 from the origin. Let T 
denote the ( j  + D-simplex conv(S' u {0}). Then vol(T) = 1 �9 vo i (S ' ) / ( j  + 1) by a 
standard formula, and ((j + 1)!) 2 vol2(T) = det(BB r)  by the result of the preced- 
ing paragraph. Since vol(S) = vol(S') and BB r = J + A,4 r, the desired conclusion 
follows. []  

For any two subsets X and Y of  I1~ n, we define the distance 

dis t (X,Y)  = inf{[Ix - y l l :  x ~ X ,  y E Y}. 

When both sets are flats (affine subspaces), we say that they are skew-orthogonal 
provided that dist(X, Y) > 0, there is a unique pair of points x 0 E X, and Y0 ~ Y 
such that Ilxo -Yoll = dist(X, Y), and the subspaces X -  x 0 and Y -  Y0 are mutu- 
ally orthogonal. 

Lemma 1.5. I f  L and M are orthogonal linear subspaces of  ~ ,  X and Y are affine 
subspaces of  L and M,  respectively, and 0 f~ X • Y, then X and Y are skew-orthogonal 
with 

dis t2(X,Y)  = dist2(O, X )  + dist2(O,Y). 

Proof. Let x 0 and Yo be the unique points of X and Y, respectively, that are 
closest to the origin. Then x 04=y0, and for each x ~ X  and y ~ Y  we have 
x - x  o E L  a n d y - y 0 c M ,  s o ( x - x 0 , y - - y 0 )  = 0 .  S ince (x ,Y)  = 0 ,  wehave  

[Ix - y l l  2 = Ilxll 2 + Ilyll z >--IIx011 z + IlY0tl 2, 

with equality on the right if and only if x = x o and y = Y0. The stated conclusion 
follows. []  

Theorem 1.6. Suppose that F is a j-simplex in Rn, G is a k-simplex in ~n, and the flats 
aff(F) and aff(G) are skew-orthogonal. Then the convex hull conv(F tA G) tk a 
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( j  + k + 1)-simplex whose volume is equal to 

i l  kI 

( j  + k + 1)! 
d i s t ( a f f (F) ,  a f t (G) )  v o l ( F )  vol (G) .  

Proof. With X = af f (F)  and Y =  aff(G), let the points x 0 and Y0 be those 
associated with the definition of  skew-orthogonali ty and let 6 = [Ix o - yoll. Since the 
hypotheses are invariant under rigid motions, we may assume without loss of 
generality that Nn = N1 X R j x ~k with x o = {0} • {0} j X {0} k (the origin), Yo = 
{6} x {0} j • {0} k, X =  {0} x NJ • {0} k, and Y =  {6} • {0} j x [~k. Let  {vj . . . . .  Uj+I} 
and {w I . . . . .  w~+ 1} be the vertex sets of F and G taken in NJ and N~, respectively. 
Then 

( j  + k + t ) !  vo l (conv(F  U G) )  = Ide t (M) [ ,  

where 

M = 

'1 0 v~ 0 

1 0 V?+ 1 0 

1 6 0 w~ 

1 ~ 0 T Wk+l 

With the aid of  row operations,  we see that 

d e t ( M )  = det  

'1 0 Vl r 0 

o o v ~ -  ,~1 ~ o 

0 0 vT+~-v~" 0 ./ 

0 6 - ~ 1  ~ Wl ~ 

0 6 - v  r w r 
k + t  

= det  

o v ~ - v ~  o 

o v L 1 - / 1  o 

6 - ~  w~ 

o o w'; - wf 

0 0 r - w ~  Wk+ 1 

= ( - 1)J6 det " de t [  ! ] 

UT+I- vT ] [W~+x -- wT] 

= ( -  1)J j!  6 vo l (S)k!  vo l (T) .  [ ]  
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2. Largest and Stable Simplices in Convex Bodies 

Suppose that S is a j-simplex in a body C, and W is a (possibly empty) subset of the 
set of vertices of S. Then we say that S is W-largest in C if vol(S) > vol(S') for each 
j-simplex S' in C whose vertex set contains W. If vol(S) > vol(S') (resp. vol(S) > 
vol(S')) whenever S' is a j-simplex in C such that each point of W is a vertex of S' 
and S' is obtained from S by moving a single vertex to a new position in C, then we 
say that S is W-stable (resp. W-rigid) in C; and S is W-bound to C if each vertex of S 
that is not in W is an extreme point of C. (When W is a singleton {w}, we write 
w-largest, w-stable, etc.) 

Note that when the set W is empty, the above notions become the notions of 
largest, stable, rigid, and bound defined earlier. Note also that W-rigid implies 
W-stable, and W-largest implies W-stable. However, easy two-dimensional examples 
show that in general rigid does not imply largest and largest does not imply rigid (see 
Theorem 3.4 and the examples following its proof). Also, it is shown in [HKL] that 
for bound n-simplices in an n-cube, rigid implies largest if and only if n < 4, largest 
implies rigid if n ~ {3, 4, 5} and also if an (n + 1) x (n + 1) Hadamard matrix 
exists, and largest does not imply rigid when n E {2, 6, 10}. (It is conjectured in 
[HKL] that, for each n ~- 2 (mod 4), the n-cube contains bound largest n-simplices 
that are not rigid.) 

As the term is used here, a face of a convex set C is a set that is either empty or 
is the union, for some point p ~ C, of all segments in C that have p as an inner 
point. The extreme points of C are just the faces of  dimension zero. When a body C 
is a polytope, its faces (other than Q and C itself) are precisely the sets that are 
formed by intersecting C with one of its supporting hyperplanes. 

Lemma 2.1. Suppose that S is a W-stab&j-simplex in a body C, and v is a vertex o f  S 
that does not belong to W. I f  v is an extreme point o f  the intersection aff(S) n C, then v 
is an extreme point o f  C. More generally, i f  v lies in the relative interior o f  a face G o f  the 
set aff(S) n C, then G is a face o f  C. 

Proof. Let  F denote the facet of S that misses v, let A denote the affine hull 
aff(F), and for each point x of the containing space let 

q~(x) = min{llx - all: a ~ A}. 

Suppose that v lies in the relative interior of a face G of aff(S) n C, but G is not a 
face of C. Then v is an inner point of a segment [p, q] that is contained in C but 
intersects aff(S) only at v. It is easy to see that [p,  q] is not parallel to A, so the 
restriction of ~0 to [p, q] is strictly convex and it follows that p or q is farther from 
A than v is. Replacing v by this farther point produces the vertex set of a j-simplex 
S' in C that has larger j-measure than S. Since W is contained in the vertex set of 
S', this contradicts the assumed W-stability of S. []  

Theorem 2.2. I f  S is a W-largest j-simplex in a body C, then the intersection 
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C (3 aff(S) contains a largest j-simplex that is W-bound. I f  C contains more than one 
W-largest j-simplex, then more than one such j-simplex is W-bound. 

Proof. In view of Lemma 2.1, it suffices for both assertions of the theorem to 
consider the case in which j = n = dim(C). 

Let  S be an arbitrary W-largest j-simplex in S, let v be an arbitrary vertex of S 
that does not belong to W, and let F and A be as in the preceding proof. Let  H 
denote  the translate of the hyperplane A that supports C and is on the same side of 
A as v is. The intersection H N C includes an extreme point of C, and replacing v 
by such an extreme point  yields another  largest simplex. A suitable repeti t ion of this 
replacement  process leads to the first conclusion. 

Now suppose that T is a W-largest W-bound j-simplex in C that is different from 
S. Since S and T are both largest, S is not contained in T and hence there is a 
vertex v of S that  does not belong to T. If v is an extreme point of  C, let v' = v. If 
v is not an extreme point  of C, note that the intersection H n C of the preceding 
paragraph must contain an extreme point  v' of C that does not belong to T. Now let 
S' denote the simplex obtained from S by replacing v with v', and apply the process 
of the preceding paragraph to the remaining vertices of S' that do not belong to W 
and are not extreme points of C. The result is a W-largest W-bound j-simplex that is 
different from T. []  

Theorem 2.3. Suppose that w is a point o f  a body C, and S is a w-stable j-simplex in C. 
Then at least one vertex o f  S other than w is an extreme point o f  C. 

Proof. We may again assume that j = n = dim(C), and assume also that w is the 
origin. Then (n! )vol (S)  = [det(A0)l, where A 0 is the n x n matrix whose rows list 
the coordinates of the remaining vertices V l , . . . ,  v n of S. If  none of these vertices is 
an extreme point  of C, then for 1 < i < n there is a nonzero vector b i such that the 
segment [v i - bi, U i -t- bi] is contained in C. Since S is w-stable, this segment must 
be parallel  to the facet of S that omits v i. From that fact, as applied successively to 
the various choices of  i, it follows that the volume of the simplex with vertex set 
{0, v 1 + r i b  1 . . . . .  v, + %b~} is independent  of the choice of ~'1 . . . . .  z~. However,  
then, with B r = (b 1 . . . . .  b~) and using the determinantal  formula for the volume of 
an n-simplex in R n having a vertex at the origin, we conclude that the value of the 
determinant  

d e t ( A  o + diag(~- 1 . . . . .  %)B)  

is independent  of the ~'i. It then follows from Theorem 1.1 that one of the b i is zero, 
and this contradiction completes the proof. 

Corollary 2.4. I f  S is a stable j-simplex in a body C, then at least two vertices o f  S are 

extreme points o f  C. 

Proof. By Theorem 2.3, at least one vertex (call it w) of S is an extreme point of C. 
If  the simplex S is stable, then of course it is w-stable, and hence (again by Theorem 
2.3) there is another  vertex of  S that is an extreme point  of C. [ ]  
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The number "two" in Corollary 2.4 cannot in general be increased, even when the 
containing n-body C is a high-dimensional polytope with many vertices and S is a 
largest n-simplex in C. That is shown by a construction at the end-of this section. 
However, the following result is often useful in restricting the locations of the 
vertices of stable simplices in a given body. 

Theorem 2.5. Let v o . . . . .  vj denote the vertices o f  a W-stable j-simplex S in a given 
body C. With r < j,  suppose that W c {v 0 . . . . .  Vr} , that each o f  the points v o . . . . .  v, 
which does not belong to W is an extreme point o f  C, and that none o f  the points 
v, + 1 , . . . ,  vj is an extreme point o f  C. Then, for some i with r < i <__ j ,  it is true that each 
segment in C that crosses v i is parallel to the affine hull o f  {v 0 . . . . .  v,}. 

Proof. Taking v o = 0, and using the same determinantal volume formula as in 
the proof of  Theorem 2.3, we see that Theorem 2.5 follows immediately from 
Theorem 1.2. []  

The next three results concern stable, rigid, and largest simplices in "typical" 
polytopes and convex bodies. For each integer n _> 2, let ~ denote the space of all 
bodies in N ' ,  metrized by the Hausdorff metric. For each integer m > n, let ~ '~(m) 
(resp. 9f~(m)) denote the collection of all polytopes P ~ ~'~ such that P has at 
most m vertices (resp. at most m facets). Then ~.~(m) and ~ 7 ( m )  are both closed 
subsets of ~n.  The space ~ is not complete, but it is a dense Ga subset of the 
space of all nonempty compact convex subsets of Nn. Hence it follows from Baire's 
theorem that in each of ~n, ~ ( m ) ,  and ~'7(m), the intersection of any sequence 
of dense G~ subsets is itself a dense G~ subset. 

Theorem 2.6. In each o f  ~ and ~ ( m ) ,  a dense G a subset is formed by the set o f  all 
members in which, for  1 < j < n, there is a unique largest j-simplex. 

Proof. In view of Theorem 2.2, attention may be restricted to bound simplices. We 
deal first with ~n. For each choice of positive integers j and h with 1 < j < n, let 
~ " ( j ,  h) denote the collection of all C ~ ~'" such that C contains two bound 
j-simplices S and T that satisfy the following three conditions: 

vol(S) = vol(T). 
The Hausdorff distance between S and T is at least 1/h .  

The distance between any two vertices of S is at least 1 / h  and the distance 
between any two vertices of T is at least 1/h .  

A routine argument shows that, for each j and h, the collection ~n(j ,  h) is a closed 
subset of ~'". The complement 

o0 

= 9'" \ U ~'"(J, h) 
j = l  h = l  
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is precisely the set of all members of ~n in which, for each j, there is a unique 
largest j-simplex. Hence it remains only to show that J~( is dense in ~'~. 

Let ~ denote the set of all strictly convex members of ~,n, whence (by an 
observation of Klee [K4] and Gruber [G1]) W~ is a dense G6 subset of ~'~. In view 
of Baire's theorem, to establish JT('s density in ~n  it suffices to prove for each fixed j 
that each member C of ~ c  can be closely approximated by a member of ~ .  

Let S be a largest j-simplex in C. Since C is strictly convex, the centroid of S is 
interior to C and may without loss of  generality be assumed to be the origin. Let L 
denote the j-dimensional linear hull of S, let M denote a complementary linear 
(n - j)-dimensional subspace of IR n, and let T denote an (n - j)-simplex such that, 
relative to M, 

0 ~ i n t ( T )  and T c i n t ( C A M ) .  

Let K = conv(S U T), let K denote the gauge-functional of K, and let 3' denote the 
gauge-functional of C. For 0 < A < 1, let 

/z~= ( 1 - A ) y + A K  and C a = { x ~  An:/~a(x) < 1}. 

Then S c C~ c C, and C a ~ C as A ~ O. Note also that if R is any ray that issues 
from the origin and passes through a point of  bd(C) that does not belong to bd(S), 
then R hits bd(Cx) before it hits bd(C). 

It is obvious that S is a largest j-simplex in Cx, and that any other largest 
j-simplex S' in C~ has at least one vertex v that does not belong to S. However, then 
r/v ~ C for some 7/> 1, and from this (since 0 ~ int(C)) it follows that v ~ int(C). 
Hence v can be moved to a point of C that is farther than v is from the 
complementary facet of S', thereby producing in C a j-simplex of greater volume 
than S'. This is a contradiction, and it completes the proof for the case of ~'n. 

The argument for 3 '~(m) is similar but simpler. Suppose that P ~ 9 ~ ( r n )  with 
0 ~ int(P), and let S be a bound largest j-simplex in P. Let v 0 . . . . .  vj he the 
vertices of S, and let vj+ 1 , . . . ,  Vm- 1 be the remaining vertices of P. For 0 < r / <  1, 
let 

P,~ = conv{v o . . . . .  vj, 7~uj+ 1 . . . . .  ~Um_l}, 

Then S c Pn c P, P~ ~ P as r / ~  1, and an argument like the one above shows that 
S is the unique largest j-simplex in each Pn" [] 

For .~fl(m), a considerably stronger theorem can be proved. For each finite 
subset X of  A n, let zar x denote the collection of all affinely independent sets 
consisting of two or more points of  X, and let 

r = {vol(conv(A)): A c ~r 

The set X is called generic if ]~r = ]agxl--in other words, no two simplices with 
vertices in X have the same volume (even when they differ in dimension). A 
polytope P is called generic if its vertex set is generic. 
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Theorem 2.7. I f  P is generic, then each stable simplex (o f  whatever dimension) in P is 
bound and rigid, and for each j with 1 < j < dim(P)  there is a unique largest j-simplex 
in P. 

Proof. Once we have proved that  each stable simplex is bound, the other assertions 
will follow directly from the assumption that P is generic. Suppose, then, that 
v 0 . . . . .  vj are the vertices of a stable j-simplex S in P,  where each of the points 
Vo, . . . ,  v r is a vertex of P but none of the points vr+ 1 , . - . ,  vj is a vertex of P. Then 
r >_ 1 by Corollary 2.4, and we want to show that r = j.  

Suppose that r < j. Then by Theorem 2.5 there is an index i with r < i _< j such 
that each segment in P that crosses v i is parallel  to the flat H = aff({v 0 . . . . .  v~}). 
Let F denote the smallest face of P that contains the point v i. Then the affine hull 
af f (F)  is at least one-dimensional,  and since each line in a f f (F)  is parallel to a 
segment in P that crosses vi, it follows that each line L in a f f (F)  admits a translate 
that is contained in H. However, some such L contains two vertices u and w of  F,  
and these are also vertices of P. Since the two points u and w are at the same 
distance from the flat H, the two (r  + 1)-simplices 

conv{u,v 0 . . . . .  v,} and cony{w, V 0 . . . . .  U r }  

are of the same (r  + 1)-measure. This contradicts the hypothesis that P is 
generic. []  

The following result justifies our use of the term "generic." 

Theorem 2.8. The generic members of  ~ n ( m )  form a dense G 8 subset o f  ~ n ( m ) .  

Proof. Let N denote the set of all members of ~ ( m )  that have precisely m 
vertices. By a routine argument involving the distance of a vertex from the convex 
hull of the remaining vertices, ~' is a dense G~ subset of . ~ ( m ) .  It suffices, 
therefore, to deal  with the subcollection N. This has the advantage that a sequence 
Q1, Q2 . . . .  of members of ~' converges to a limit Q0 ~ N if and only if the vertex 
sets of the Qi converge (in the Hausdorff  metric) to Q0's vertex set. 

Consider an arbitrary member  Q0 and ~ and an arbitrary e > 0. As is well 
known (see [G2]), there is an m-vertex polytope Q such that the Hausdorff  distance 
between Q and Q0 is less than e / 2  and Q's  vertex s e t  {v 1 . . . . .  urn} is in general 
position (i.e., no hyperplane contains more than n of the vi). Further,  there is 
7 ~]0,  e /2[  for which the following is true: 

cony(W) ~ fo reach  set W =  {w I . . . . .  Win} 

such that Ilw i - -  Vii [ < "1" for all i. 

We now perturb each point  v i by less than r/ so as to produce a set W that is 
generic. Since the resulting polytope is still within e of Q0, that will yield the 
desired conclusion. 
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Let wx = v  I and w 2 = v  2. For  3 < i < m ,  proceed as follows after having 
produced the generic set {w 1 . . . . .  wi_l}. For  each finite set Y ~ ,  ...... ,_,~ of 
cardinality IYI -< n, and each "O ~'~twx . . . . . . . .  }, let 

Z(Y ,  7/) = {p ~ N": rtlY[ = d i s t (p ,  a f t (Y))vo l (conv(Y))} .  

Then the set Z(Y, rl) consists of all points p ~ N n such that the IY[-simplex with 
vertex set Y u {p} has volume r/. When IYI < n, this set is an (n - 1)-manifold 
(more precisely, a cylinder) in R n, and when tYI = n it is the union of two parallel 
hyperplanes. In each case, Z(Y,  rl) is a closed nowhere-dense subset of Nn, and 
hence (since there are only finitely many possibilities for the pair  (Y, ~/)) the same is 
true of the union Ucr,~ ) Z(Y,  rl). Thus the set 

{w ~ R": IIw - viii < ~'} xx U z ( Y ,  ~/) 
Y e ~  . . . . . . . . . .  },lYl<_n 

r/~'~{w 1 ,...,w~ I} 

is nonempty, and choosing w i from this set results in the generic set {w 1 . . . . .  wi}. 
Hence the process can be continued to produce the desired set W. []  

It seems clear that a result similar to Theorem 2.8 holds for ~ ( m ) ,  but as the 
formal argument for this appears  to be quite ponderous,  we do not include it. 

To end this section we show how to construct an n-body C,  that contains largest 
n-simplices for which only two vertices are extreme points of  C, .  For  an arbitrary 
(n - 1)-body B (and a sufficiently small e), C~ consists of a cylinder of height 26 
over B, capped on each end by a cone of height 1 - e. Note that when B is a 
polytope, so is Q .  

Example 2.9. With n >_ 2, suppose that H is a hyperplane through the origin in 
Euclidean n-space, u is a unit vector orthogonal  to H, and B is an (n - D-body in 
H that contains the origin. Let  /3 denote the volume ((n - 1)-measure) of B, tr the 
volume of a largest (n - 1)-simplex in B, and cr 0 the volume of a 0-largest 
(n - 1)-simplex in B. Our  construction requires that tr/~r 0 < 2, a condition that is 
certainly satisfied if the point  0 is sufficiently close to a vertex of a largest simplex in 
B. (See Section 7 for an open problem concerning the range of tr0/cr when 0 is B's  
center of symmetry.) 

F o r 0 <  e <  1, let 

B , = B + [ - e u ,  cu] and C ~ = c o n v ( B , u [ - u , u ] ) .  

Then B, is a cylinder of volume (n-measure)  2 e/3 and C, is the result of adding a 
conical cap of height 1 - ~ over each end of B, .  We prove that if 2tr  0 > tr, then, 
for all sufficiently small E > 0, C~ contains a largest n-simplex whose vertices other  
than - u  and u all belong to the set B and hence are not extreme points of Q .  



Largest j-Simplices in n-Polytopes 489 

Let V denote the vertex set of a bound largest n-simplex T in C~. We claim the 
following: 

(i) If V omits both - u  and u, then vol(T) < /3e. 
(ii) If V includes only one of - u  and u, then 

( 1  + e l a o ' _  
vol(T)_< k l -  e ]  n 

(iii) If V includes both - u  and u, then vol(T) >_ 2O'o/n. 

Assert ion (i) is obvious, for then T c B~. To justify (iii), let S be a 0-largest 
(n - 1)-simplex in B and note that the set conv(S W [ - u ,  u]) is an n-simplex in C~. 
To justify (ii), assume without loss of generality that 

u e T c conv(B~ W {u}) 

and note that the set B + eu  is intersected by each of the n rays that issue from u 
along an edge of T. The n points of intersection are the vertices of an (n - 1)-simplex 
S in B + e, and of course the volume of S is at most tr. The n vertices of T other 
than u all lie in the intersections of these rays with the strip H + [ -  eu ,  6u]. Hence 
the simplex T is contained in the result of dilating the simplex conv(S W {u}) by a 
factor of (1 + 6 ) / ( 1  - 6) about its vertex u, and that yields the volume bound in 
assertion (ii). 

Now note that as 6 --* 0, the upper  bounds in (i) and (ii) and the lower bound in 
(iii) converge respectively to 0, to o / n ,  and to 2tro /n .  Hence if 2tr  0 > tr, the third 
bound eventually dominates. It follows that, for all sufficiently small 6 > 0, each 
bound largest simplex in C~ contains the segment [ - u ,  u]. 

Now assume that H is the canonically embedded  R n-  1 in R n and that u is the 
last of the standard basis vectors. Let T be a bound largest n-simplex in Q ,  with 
vertices 

V o = - U  , v n = u ,  and v 1 . . . . .  v n _ l ~ B + { - 6 u , 6 u } .  

For  0 < i < n, let v i = (vii . . . . .  ui , ._ 1, ui.)  r. Then v o l ( r )  = Ide t (A) l /n ! ,  where (i00 1 1 , ' 11  " ' "  / " l , n -  1 l ' ~ l n  

�9 , �9 

A =  

i~,n _ 1 ,  1 " ' "  1.~n_l,n_ 1 l~n-l,n 

0 "" 0 1 

Replacing each later row of A by itself minus the first row, we see that 

(.  -n / 
d e t ( A )  = 2de t  " " . 

v._l ,  1 .-. v~_l,n_ 1 
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In other words, the last coordinates of  the vertices U l , . . . ,  V n _ 1 are immaterial; only 
their projections onto ~n 1 are relevant to vol(T). Hence we may replace all of 
these last coordinates by O's without changing the volume of the simplex. This shows 
that 2 Cro/n is indeed the volume of the largest n-simplices in Q ,  and also that there 
is a largest n-simplex in C~ that contains only two extreme points of C~. 

3. Moving a Bound Simplex in a Convex Polytope 

It is assumed in this section that the containing body is an n-polytope P. When S is 
a bound j-simplex in P, we define a move for S as the operation of producing a new 
bound j-simplex S' by moving a single vertex u of S to a new position v'. The move 
is fair if vol(S') > vol(S) and good if vol(S') > vol(S). For 1 < k < n, the move is a 
k-move if v' lies on some k-face of P that contains v. When the simplex S is 
full-dimensional (i.e., when dim(S) = dim(P)), a move of S is called an R-move if 
the vertices v and v' are on opposite sides of the hyperplane that contains the 
remaining vertices of S. (Think of R as standing for "reflection.") 

For 1 < k _< n, a bound j-simplex S in P is k-stable (resp. k-rigid) if it does not 
admit a good (resp. fair) k-move. Thus n-stability and n-rigidity are precisely the 
stability and rigidity defined in the Introduction, while for 1 < k < n the k-stability 
and k-rigidity are less restrictive notions. The notions of k-stability and k-rigidity 
can be combined with the notions of W-stability and W-rigidity used in Section 2, 
leading to extensions of  the results of  the present section, but to keep matters simple 
we refrain from making that combination. 

The following conditions on a polytope P are satisfied by some polytopes and fail 
for others. They are all relevant to the attempt to find largest j-simplices in P by 
starting with some j-simplex, attempting to improve it by successively moving one 
vertex at a time, then if necessary trying another starting j-simplex, etc. 

Ml(k, j): I f  a bound j-simplex S in P is not largest, then S admits a sequence of 
successive fair k-moves leading to a largest j-simplex. 

M2(k, j): If  a bound j-simplex S in P admits a fair k-move, then it admits a 
sequence of  successive fair k-moves ending in a good k-move. 

M3(k, j): If  a bound j-simplex S in P is largest, it is k-rigid. 
B(j):  Each largest j-simplex in P is bound. 

Property Ml(k, j) guarantees that, however far an initial bound j-simplex S may 
be from maximizing the volume, a largest j-simplex can be reached from S by 
following a sufficiently long sequence of fair k-moves. Hence there is no need (at 
least in theory) to try more than one j-simplex as the starting point of the search. 
Unfortunately, this seems to be a rare property in cases of interest. The existence of 
convex polygons lacking property MI(1, 2) was relevant to the design of an algorithm 
by Dobkin and Snyder [DS] for finding a largest triangle in a given convex polygon. 
Each of the basic steps in their algorithm moves a single vertex of the maximum- 
seeking triangle along an edge, but when M1(1,2) is lacking they are forced 
to employ moves that in our terminology are not fair. Also, it is proved in [HKL] 
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that when the polytope in question is an n-cube, the properties M1(1, n) . . . . .  
Ml(n - 1, n) are all present when n _< 4 but all absent when n > 5. 

An equivalent statement of property M2(k, j) is that each bound j-simplex in P is 
either k-rigid or admits a sequence of successive fair k-moves leading to a k-rigid 
j-simplex. That is useful (when it occurs), for it means that the "dead end" 
j-simplices (those from which no further volume increase can be obtained by a 
sequence of fair k-moves) are precisely the ones that are k-rigid and hence can be 
recognized fairly easily by the use of local tests. 

Property M3(k, j) makes it easier, when a largest bound j-simplex is reached, to 
recognize that this is the case. Even though P always contains a largest j-simplex 
that is bound (Theorem 2.2), P may also contain largest j-simplices that are not 
bound. Hence if we are seeking all largest j-simplices in P, it is important to know 
whether P has the property B(j). 

Properties Ml(k,j)-M3(k, j) are naturally interpreted in terms of the node- 
labeled digraph ~tv(p, k, j ) w h o s e  nodes are the bound j-simplices in P, with each 
node labeled by the volume of the corresponding simplex and with an arc (S, S')  
directed from S to S' if and only if S' is obtained from S by a fair k-move. The 
k-rigid j-simplices are precisely the sinks in this digraph, so M3(k, j) asserts that all 
largest nodes are sinks. Property M2(k, j) says that each node of A ' (P ,  k, j)  is a sink 
or is the start of a path that ends at a sink; this implies that all largest nodes are 
sinks (hence implies M3(k, j)). Property Mi(k, j) says that starting from any node, 
there is a path that leads to a largest node; this implies that each sink is a largest 
node. 

Theorem 3.1. Suppose that 1 < k <_ n a n d  1 <_ j <_ n. For each n-polytope P, prop- 
erty M2(k , j) implies property M3(k, j), and M3(k , j) implies B(j). 

Proof. The first implication is obvious, as was noted above. To establish the second 
implication, we show that if an n-polytope P admits a largest j-simplex S that is not 
bound, then there is a largest j-simplex S' that is bound and admits a fair 1-move. 
That is also a fair k-move for each k, thus contradicting property M3(k, j) and 
completing the proof. 

Since largest j-simplices are stable, we see from Theorem 2.1 that it suffices to 
consider the case j = n. Now note that when stated in the language introduced in 
this section, the proof of Theorem 2.2 constructs from a largest j-simplex S that is 
not bound a sequence of fair moves that ends with a largest bound j-simplex S'. The 
final move replaces a vertex v of the next-to-last simplex by a vertex v' of P such 
that v and v' lie together on a supporting hyperplane H of P. Since all simplices of 
the sequence are largest, the entire face F '  = H C~ P is parallel to the facet of S' 
that does not contain v'. Hence every edge of F '  can be used for a fair 1-move. []  

Now suppose that F is a facet of  a bound j-simplex S in an n-polytope P, v is 
the vertex of S not on F, and v' is a different vertex of  P. Then moving from v to v' 
constitutes a fair move for S if and only if 

dist(v' ,  a f t (F))  > dist(v, af t (F)) ,  
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and a good move if and only if this inequality is strict. Hence the problem of finding 
good moves is closely connected to the problem of maximizing the convex quadratic 
function 

q~(x) = distZ(x, af t (F))  

for x constrained to lie in the polytope P. This connection is related to the practical 
difficulty, when j < n and an n-polytope P is presented as an intersection of 
half-spaces, of finding a largest j-simplex in P or even recognizing when a given 
bound j-simplex is stable, or rigid, or largest. However, the next result and Theorem 
4.3 show that the situation changes, at least for stability and rigidity, when j = n. 
Then the function ~ = ~01/2 is the absolute value of an affine function and the 
methods of linear programming are available. 

Proposition 3.2. Suppose that v is a vertex o f  an n-simplex S in an n-polytope P. I f  S 
admits a fair or good move that involves v, then it admits such a 1-move or such an 
R-move. 

Proof. Let  F denote the facet of S that misses v, define ~(x) = dist(x, aff(F)), and 
let v' denote the vertex of P to which v is taken by the assumed move. Suppose that 
the move is not an R-move. Then v' belongs to the half-space Q that contains v and 
is bounded by the hyperplane aff(F). As restricted to Q, the function ~ is affine. 
With 

/~ = max{~:(x): x ~ P N Q}, 

note that ~:(v) < / z  and let 

G = { p ~ P n Q : s C ( p )  =p,}.  

Then G is a face of  P. If ~(v) < tz (which must be the case if the move from v to v' 
was good), it follows from a basic theorem of linear programming that P admits an 
edge-path from v to G along which ~ is steadily increasing. Moving v along the first 
edge of this path constitutes a good 1-move for S. In the remaining case, v and v' 
both lie in G, G contains an edge-path from v to v', and moving v along the first 
edge in this path constitutes a fair move for S. [ ]  

The following result sets out an additional relationship between properties B and 

M3. 

Proposition 3.3. The following is true for n = 2 but false for n >_ 3: 

Whenever P is an n-polytope such that each largest n-simplex in P is bound, then each 
largest n-simplex in P is rigid. 

Proof. Let  P be an n-polytope in which each largest n-simplex is bound, and 
suppose that some largest n-simplex S in P fails to be rigid. Then a vertex v of  S 
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and a vertex v' of P but not S exist such that if F is the facet of  S that misses v and 
S' = conv(F u {v'}), then vol(S')  = vol(S). Since we are concerned only with volume 
ratios, and since these are invariant under  nonsingular affine transformations, we 
may assume without loss of generality that v = 0 and that the remaining vertices of 
S are the standard basis vectors e l , . . . ,  e n . 

For  each point x = (sol . . . . .  ~cn)r ~ R n, let 

r = ~ ~i, 
i=1 

and for each a ~ R let 

Ha= (x: r = ~}. 

Then the vertex v' belongs to the hyperplane H 0 or to the hyperplane H 2. In the 
former case, the segment [v,v'] also belongs to H 0, and moving v to the point 
l (v  + v') produces a largest n-simplex in P that is not  bound. Hence v' ~ H z and 
we have 

U' = ( 7 1  . . . . .  7n )T w i t h  ~ ~qi = 2 .  
i=1 

For l _< i _< n, let 

S i = conv({v,v'} U {ek:i ~ k}). 

Trivially, vol(Si)/vol(S) = 17il. 
Now suppose that n > 3, let r/i = 2/n  for each i, and set P = S U S'. Then for 

each i the volume of S i is less than that of S and S',  so S and S' are both largest 
n-simplices in P and being largest does not imply being rigid, However, it is not hard 
to verify that S and S' are the only largest n-simplices in P, and hence all largest 
n-simplices are bound. 

The case n = 2 remains. There, from the facts that S is largest, that 
vol(Si)/vol(S) = ['qi[, and that r/l + 72 = 2, it follows that r h = 72 = 1. Hence P 
contains the unit square Q2 = [0,1] 2. If  P = Q2, a contradiction results from the 
fact that some largest triangles in Q2 are not bound, and if P ~: Q2 a contradiction 
results from the fact that P then contains triangles larger than S. []  

We end this section with some additional examples, focusing on the case in which 
k = 1 and j = n = 2 (the case of  triangles in convex polygons). Of the 16 possible 
combinations of  truth-values for propert ies  Ml(1,2)-M3(1,2)  and B(2), 11 are 
excluded by Theorem 3.1, Proposition 3.3, and the obvious fact that when property 
Ml(k, j) is present,  M2(k, j) and M3(k, j)  are equivalent. However, the remaining 
five possibilities do occur for suitably constructed polygons, as is shown by the 
following theorem and the examples that follow its proof.  (Since the occurrence or  
non-occurrence of property M3(1, 2) is a consequence of the occurrence or non- 
occurrence of  the other  properties,  it suffices to consider only MI(1, 2), M2(1, 2), 
and B(2).) 
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Theorem 3.4. I f  P m is a regular m-gon in ~2, then each bound triangle in Pm that is 
not largest admits a sequence o f  successive good 1-moves leading to a largest triangle. 
Hence, Pm has property MI(1 , 2) for all m. Now suppose that Vo, v 1 . . . . .  lJ m ( = v 0) are 
the vertices o f  Pro, arranged in an order o f  boundary traversal. 

�9 I f  m = 3k, the largest triangles in Pm are the triangle conv{v0, Vk, V2k} and the 
other triangles in Pm that are equivalent to this one under the rotations o f  P m about 
its centroid. Each largest triangle in Pm is bound and rigid, and Pm has each o f  the 
properties Me(I,  2), 3/3(1, 2), and B(2). 

�9 I f  m = 3k + r with r ~ {1, 2}, the largest triangles in Pm are those o f  the form 
conv{v0, vk- l+r,  w} with w ~ [vzk_ 1 + r ,  V2k +r] and the other triangles in Pm that 
are equivalent to one o f  these under the rotations o f  Pm about its centroid. No 
triangle in Pm is rigid, and there are largest triangles that are not bound, so Pm 
lacks each o f  the properties Me(i,  2), M3(1, 2), and B(2). 

Proof. We begin by considering an arbitrary pair u, v of vertices of Pm and 
describing the largest bound triangles in I'm that have the segment [u, v] as a base. 
Let u, x I . . . .  , x t, v be a list of  the vertices of I'm that appear  in the given order  of 
traversal from u to v. Assume that t > 1 and set h = [ t /2]  + 1. For  1 < i < t let of i 
denote the area of the triangle conv{u, v, xi}. Using the facts that  Pm is inscribed in 
a circle C, and that the perpendicular  bisector of the segment [u, v] is an axis of 
symmetry of both Pm and C, it follows easily that  one of  the two following 
statements is correct: 

�9 t is odd; c~ i is strictly monotone increasing for i = 1 , . . . , h  and strictly 
monotone decreasing for i = h , . . . ,  t. 

�9 t is even and a h = C~h+l; ai is strictly monotone  increasing for i = 1 , . . . , h  
and strictly monotone decreasing for i = h + 1 , . . . ,  t. 

Now consider any three vertices u, v, and w of Pro, and let T denote the triangle 
conv{u, v, w}. Let a, b, and c denote the numbers of  vertices of Pm that appear  
(relative to the given order of  traversal) respectively on the arc from u to v, on the 
arc from v to w, and on the arc from w to u. Let  q = max{la - b[, Ib - cl, Ic - a[}. 
Using the observation in the preceding paragraph,  it is easy to verify the following 
statements: 

(i) The triangle T admits a good 1-move if and only if q > 2. 
(ii) If q = 1, T admits a fair 1-move that is not good. 

(iii) If  q = 0, T is 1-rigid. 

Finally, consider an arbitrary bound triangle T in Pro, let (a,  b, c) be the triple 
associated as indicated with T, and verify the following statements: 

(iv) a + b + c = m - 3 .  
(v) I f  b > 0, then T admits  a 1-move resulting in a triangle whose triple is 

(a  + 1, b - 1, c) and also admits a 1-move resulting in a triangle whose triple 
is ( a , b  - 1, c + 1). 

I t  follows from (v) that  for any bound triangle a sequence of  good 1-moves exists 
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leading to a triangle with triple (a, b, c) for which q < 1. It then follows from (iv) 
that q = 0 if and only if m is a multiple of 3. The proof can now be completed by a 
straightforward application of observations (i)-(iii). []  

We now complete the collection of examples promised before the statement of 
Theorem 3.4. 

Examples 3.5. Let T be a triangle whose centroid is the origin, and let P = 
conv(T U - AT) with 1 < A < 2. Then P has properties M2(1 , 2), M3(1, 2), and 
B(2) but not M1(1, 2). (Also T is a triangle in P that is rigid but not largest.) Next, 
form P '  by slightly truncating the previous P at a vertex of  the smaller triangle T. 
Then P '  has properties B(2) and M3(1, 2) but neither MI(1, 2) nor M2(1, 2). Finally, 
form P" by slightly truncating P at a vertex of the larger triangle AT with a "cut" 
parallel to the opposite edge. Then properties MI(1, 2)-M3(1, 2) and B(2) all fail 
for P". 

4. Computational Preliminaries, Tractability Results 

In Sections 4-6  we consider the computational complexity of various forms of the 
following problems that involve a function 7: NI --, NI with 1 < 7(n)  < n for each 
n E t ~ :  

II1: Given n ~ [~ and an n-polytope P c I~ n, determine (the volume of) a 
largest 7(n)-simplex S in P. 

1/2: Given n ~ t~ and an n-polytope P c 1~ ", is the largest y(n)-simplex in P 
unique? 

113 : Given n ~ ~, an n-polytope P c ~ ,  and a bound 7(n)-simplex S in P, is S 
a largest 7(n)-simplex in P?  

114: Given n ~ l~, an n-polytope P c ~n, and a bound y(n)-simplex S in P, is S 
stable in P?  

II 5 : Given n ~ ~, an n-polytope P c [~n, and a bound y(n)-simplex S in P, is S 
rigid in P?  

In the special case 3' =- 1, problem 131 asks for the diameter of P, and when 
7(n)  = n we are interested in a largest full-dimensional simplex in P. Since the 
latter case is of fundamental importance here, we occasionally refer to it as 
MAXSIMP. 

Note that in each case, the dimension n is part of the input. Thus we are 
concerned primarily with the case of variable dimension n and in a sense with the 
asymptotic behavior of the problems as n ~ oo. References to a few results for fixed 
dimension n are given at the end of this section. 

We employ the standard binary or Turing machine model of computation (see 
[G J]), in which the size o f  the input is defined as the length (number of bits) of the 
binary encoding needed to present the input data to a Turing machine, and the 
time-complexity of an algorithm is also defined in terms of the operation of a Turing 
machine. An ~-polytope is one that is given as an intersection of finitely many closed 
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half-spaces, where each half-space is defined by means of a linear inequality in 
which all coefficients are rational numbers. A ~--polytope is one that is given as the 
convex hull of  a finite set of points, where all the points have rational coordinates. It 
is assumed also that each of the relevant rational numbers is in its lowest terms, and 
that each presentation is irredundant. For more details on these matters, and for 
formulas for the sizes of rational presentations of polytopes, see, e.g., [GK3]. (Minor 
variations in the formulas for size do not affect our concerns here, which are with 
the contrast between polynomial-time computability and ~[P-hardness.) 

From a rational presentation of a polytope P it is possible in polynomial time to 
produce an integral presentation of P or of a dilated version of P, and from this it 
follows that for our purposes the distinction between integral and rational presenta- 
tions is unimportant. That fact is used here without further comment. 

Our complexity results are qualitative in the sense that they classify certain 
problems as being solvable in polynomial time, or (more often) they show that 
certain problems are NP-hard. Since we focus on the case of variable dimension, it is 
necessary to distinguish between ~--polytopes and ~K-polytopes. That is because for 

~-presented n-polytopes with m facets, the maximum possible number of vertices is 

(see [M3]), and this is also the maximum possible number of facets for a ~presen ted  
n-polytope with m vertices. When n is fixed, the number of vertices is bounded by a 
polynomial in the number of facets, and vice versa, and it is possible to pass from 
either sort of presentation to the other in polynomial time. However, the degree of 
the polynomial goes to infinity with n. A consequence of this is that when the 
dimension n is permitted to vary in a problem concerning polytopes, then the 
manner of presentation is often influential in determining whether the problem can 
be solved in polynomial time. For a variable dimension, even determining the 
number of vertices of a given g/-polytope--or  the number of facets of a given 
T--polytope--is a problem that is #P-ha rd  [L]. 

When S is a j-simplex in ~n whose vertices have exclusively rational coordinates, 
it follows from Theorems 1.3 and 1.4 that the number volZ(S) is rational; however, 
only when j = n can we be sure (by a standard formula) that the number vol(S) is 
itself rational. This accounts for the fact that, in making specifications to fit the 
general problems 111-115 easily into a decision-theoretic binary framework, we often 
work in terms of  squares of volumes rather than the volumes themselves. 

In this section we give the necessary specifications for dealing with the "easy" 
cases of problems 111-115 , and we state and prove the associated "tractability 
results." Sections 5 and 6 contain the specifications for proving that certain versions 
of 111 and II z are NP-complete or at least NP-hard. (Also, see the conjecture in this 
section after the proof of Theorem 4.3.) 

Note first that when j is fixed but n is variable, the number of bound j-simplices 
in a ~-polytope is bounded by a polynomial in n. This leads to the following simple 
results for problems I I l - I I  5 . 
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Theorem 4.1. For each fixed j, the squares of  the volumes of  all bound j-simplices in a 
given n-dimensional ~--po(ytope can be computed in polynomial time (even for varying 
n ). Hence it can be decided in polynomial time exactly which of  the bound j-simplices are 
stable, which are rigid, which are largest, and which volumes occur uniquely. 

(m) 
Proof. If P has m vertices, there are only j + 1 sets of j + 1 vertices for which 

the square of the volume (j-measure) of the convex hull must be computed. This 
number is (for fixed j)  polynomial in m, and each individual volume computation 
can be made in polynomial time using Theorem 1.3 or Theorem 1.4. [] 

A similar result holds when n - j  is fixed and the excess of the number of 
vertices over n is bounded. 

Theorem 4.2. For each fixed j and k, the squares of  the volumes o f  all bound 
(n - j)-simplices in a given n-dimensional g/--polytope P with at most n + k vertices can 
be computed in polynomial time (even for varying n). Hence it can be decided in 
polynomial time exactly which of  the bound (n - j)-simplices are stable, which are rigid, 
which are largest, and which volumes occur uniquely. 

After the at most ~(m,  n) vertices of an n-dimensional ~-polytope with m facets 
have been found, 

( ~(m,  n) ) = O(mt~/2jO+ :) ) < O(mt,/21(n+ l~) 
j + l  

volume computations suffice to carry out the tasks described in Theorems 4.1 and 
4.2. This bound is not reassuring, but at least for each fucedj and n it is of polynomial 
growth as a function of m. The situation changes drastically when P 's  dimension n 
is permitted to vary, and that is reflected in the hardness results of Section 6. 
However, "polynomiality" does persist for the following variable-dimension decision 
problems of type 114 and II 5 concerning full-dimensional simplices in ~-polytopes. 

Theorem 4.3. There are polynomial-time algorithms for the following problems: 

Instance: 

Questions: 

n ~ N, an n-dimensional X-polytope (or ~--polytope) P in R ~, and a 
bound n-simplex S in P. 
Is S stable in P? Is S rigid in P? 

Proof. For each vertex v of S, let ~0 v denote the affine functional on I~ # that has 
~%(v) = 1 and vanishes on the facet of S that misses v. Using a polynomial-time 
algorithm for linear programming [K3], [K1] when P is an ~-polytope, and using 
direct evaluation at all vertices when P is a ~--polytope, compute the minimum a v 
and the maximum /3~ of ~0~ on P. Then S is stable in P if and only if, for all v, 
a~ = 1 and/3~ _> - 1; and S is rigid if and only if for each v it is true that /3~ > - 1 
and also that v is the unique vertex of P for which a v = 1. This uniqueness can also 
be tested in polynomial time. []  



498 P. Gritzmann, V. Klee, and D. Larman 

We conjecture that unless P = NP, Theorem 4.3 gives a full description of the 
situations in which, for a general bound j-simplex S in a general n-dimensonal 
X-polytope P, it can be decided in polynomial time whether S is stable in P, or rigid 
in P, or largest in P. It would not surprise us if, except for the situation covered by 
Theorem 4.3, these problems turn out to be NP-hard even for X-polytopes P that 
are considerably simpler than the relatively simple ones that appear in the hardness 
proofs of Section 6. It should be noted in this connection that, with the exception of 
some small fixed values of j, even the problem of finding largest j-simplices in 
n-dimensional cubes offers many difficulties. For the full-dimensional case (j  = n) of 
that problem, the easiest subcase is that in which n - 3 (mod 4). This easiest 
subcase subsumes the famous problem on the existence of Hadamard matrices. (See 
[HKL] for a discussion of the relationship of largest simplices to the Hadamard 
matrix problem and the Hadamard determinant problem; see also [GK4].) 

For a few fixed small values of n and j, simplex-maximizing algorithms of very 
low complexity have been found. Here are some references: 

For n = 3, Clarkson and Shor [CS] have an O(m log m) randomized algorithm 
that finds a largest 1-simplex in a 3-polytope with m vertices. By "derandomizing" 
this algorithm, Chazelle et al. [CEGS] produced an O(m :+~) deterministic proce- 
dure for the same purpose. That was improved to O(m log 3 m) by Br6nniman et al. 
[BCM]. 

For n = 2, the complexity of finding a largest 1-simplex or a largest 2-simplex in a 
convex polygon with m vertices was shown by Dobkin and Snyder [DS] to be O(m), 
assuming that P ' s  m vertices are presented in an order corresponding to traversal of 
P 's  boundary. (Finding such an order is an O(m log m) computation.) 

5. Hardness Results for ~--Polytopes 

The complexity results of this and the following section all establish the hardness of 
certain specifications of problems 1-I1-1-I 3 . In each case the dimension n is permit- 
ted to vary. This section treats ~--polytopes, and ~-polytopes appear in Section 6. 

The hardness proofs of the present section are based, by way of a sequence of 
transformations, on the known hardness of detecting the presence of a Hamilton 
cycle (hereafter, H-cycle) in a directed graph (hereafter, digraph). This problem is 
strongly NP-complete (see, e.g., [GJ]), and it appears in Karp's original list of 
NP-complete problems [K2]. One of the transformations uses a "graph gadget" of 
Papadimitriou and Steiglitz [PS], and the most crucial transformation (to a problem 
involving determinants) is due to Papadimitriou and Yannakakis [PY]. 

The main result of this section asserts that (the decision problem related to) 
finding a largest n-simplex in an n-dimensional T--polytope is NP-hard. Other 
hardness results are obtained from this by means of suitable geometric transforma- 
tions. We could begin the proof by starting directly from the H-cycle problem for an 
arbitrary digraph. However, we start instead from a restriction of the H-cycle 
problem due to Plesnik, because that leads to a sharper form of the main result. 
Plesnik's result [P] implies that the hardness of the H-cycle problem persists even 
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when the input is restricted to planar digraphs in which, at each node, the indegree 
is at most 2 and the outdegree is at most 2. We use the term P-digraph to refer to 
(not necessarily planar) digraphs satisfying this condition on degrees. (An alternative 
would be to add, to the requirement  defining a P-digraph, the condition that each 
node has indegree 1 or outdegree 1. The construction of J '  from J in the proof  of 
Lemma 5.1, or of G from G O in the proof  of Theorem 5.2, makes it clear that 
hardness of the H-cycle problem and the hardness results of Lemma 5.1 persist 
under this additional requirement.)  

Recall that when ~O and ~ are positive-valued functions with domain N, the 
function qJ is said to be of order l)(~),  and we write qJ(n) = Ft(~'(n)), provided a 
positive constant /x exists such that ~0(n) > /xs for all n ~ N. 

Lemma 5.1. 

HAM,p : 
Instance: 

Question: 

UNIHAM ~, : 
Instance: 

Question: 

For each function 0:  N ~ N, consider the following two problems: 

A planar P-digraph D = (V, A)  in which Igl is prime and tAI <- IVI + 
0(Igl) .  
Does D admit an H-cycle? 

A P-digraph D = (V, A) in which Igl is prime and IAI - Igl + 0(Igl); 
the arc-set of an H-cycle H in D. 
Does D admit an H-cycle other than H? 

I f  the function ~O is bounded, then both problems are solvable in polynomial time. 
However, if O(n) = l)(n l/k) for some k ~ N, then both problems are NP-complete. 

Proof. Let n = [V]. To prove the first assertion, note that if a digraph D has n 
nodes and at most n + c arcs, then the number of ways of choosing a sequence of n 
arcs of D is O(nC). Each such choice can be tested in polynomial time to determine 
whether it corresponds to an H-cycle. 

To establish the NiP-hardness of HAMr when 0 ( n )  = ~)(nl/k), we produce a 
polynomial transformation of the H-cycle problem for P-digraphs to HAMq,. Starting 
from an arbitrary P-digraph G with r nodes and s arcs, choose a node v of G, add a 
new node v', replace each arc (v ,w)  by an arc (v' ,w), and add a new arc (v,v').  
Denote  the new digraph by D~. Since (v, v ' )  is the only arc that starts at v and the 
only arc that ends at v', it is clear that each H-cycle in D~ uses the arc (v, v ')  and 
also that G admits an H-cycle if and only if D 1 admits one. Now, for each t > 2, 
produce a digraph D t from D 1 by replacing the arc (v, v ')  of D 1 by a path Pt of 
length t from v to v'. Clearly, G admits an H-cycle if and only if D t admits one. 
Note that the digraph D t has r + t nodes and s + t arcs, and that D t is itself a 
planar  P-digraph for each t. 

Saying that 0 ( n ) =  l~(n l/k) means that a constant /x > 0 exists such that 
O(n) > tzn 1/k for all n ~ N. To complete the transformation, choose t o ~ N such 
that t o > ( r 2 / ~ )  k. With Ix known, this can be done in polynomial time. Then choose 
t > t o such that r + t is prime. This too can be done in polynomial time, for there is 
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a prime between t o + r and 2(t 0 + r), and each integer in this interval can be tested 
for primality in time that is polynomial in terms of the original input data. Now, with 
n = r + t , m  = s + t ,  

( m  - n )  ~ < r 2k < tzkt < izkn <_ ~9(n) k, 

whence 

m < n +  ql(n). 

Since the digraph D t has n nodes and m arcs, D t does provide an instance of the 
problem HAM,. Hence that problem is ~P-hard.  

The [~P-hardness of UNIHAM~ is proved with the aid of a "graph gadget" used by 
Papadimitrious and Steiglitz in [PS]. This gadget is the digraph G = (W, B), where 

W =  { w , x , p , q , y , z }  

and 

B = { ( w , y ) , ( w , z ) , ( x , q ) , ( p , w ) , ( p , q ) , ( q , p ) , ( q , z ) , ( y , x ) , ( y , p ) , ( z , x ) } .  

As was noted in [PS], G has the following property: If H is an H-cycle in a digraph 
F, and G is embedded as a subdigraph of F in such a way that 

each arc of F \ G that ends in G ends at w or y, and 

each arc of F \ G that starts in G starts at x or z, 

then the path W = (w, y, p, q, z, x) or the path Y = (y, x, q, p,  w, z) is part of H. 
Now let J be a P-digraph that is given as input to the H-cycle problem for 

P-digraphs, and let u l , . . . ,  u k denote the nodes of J. For 1 _< i < k, add a new node 
v i and a new arc ( u  i ,  vi),  and replace each original arc (u  i,  u j )  by a new arc ( v  i ,  u j ) .  

There is a natural one-to-one correspondence between H-cycles in J and those in J ' .  
Note that in J ' ,  each node u i has outdegree 1 and indegree at most 2, and each 
node v i has indegree 1 and outdegree at most 2. 

Let G 1 . . . . .  G k be copies of G that are vertex-disjoint from J '  and from each 
other. In each of these copies, use the obvious subscript notation for the nodes and 
for the paths IV/ and Yi that correspond to W and Y, respectively. Then form a 
digraph J"  by identifying (for 1 < i < k )  w i with u i and x i with v i,  and add arcs 
(za ,Y2) . . . . .  ( Z k - 1 ,  Yk) ,  ( Z k ,  Yl). Then the digraph J"  has the H-cycle given by 

Y l  , ]I1, Z1,  Y2 , Y2 , z2 , Y3 . . . . .  Yk , Yk , Y l  , 

and this is the only H-cycle in J"  that uses any of the a r c s  (zi,Yi+1). It is easy to 
verify that the remaining H-cycles of J" (if there are any) are in one-to-one 
correspondence with the H-cycles of  J. For example, if u 1 . . . . .  uk, u 1 happens to 
describe an H-cycle of  J, then the corresponding H-cycle of J"  is given by 

Ul = w l ,  1+'1, x ,  = V l ,  u2 = w 2 ,  r y e ,  x~ = v ~ , . . . ,  w k ,  xk = v ~ ,  u l .  

It follows that the number of H-cycles of J "  is just one more than the number of  
H-cycles of J. 

Note that the above digraph J"  is still a P-digraph, though it may not be planar. 
That completes the proof, except for the final technicality of  replacing one of the 
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arcs (z i, Yi+ 1 ) by a path in such a way that the desired sparseness is obtained and the 
final number of  nodes is prime. []  

The proof  of the following result is essentially contained in an argument used by 
Papadimitriou and Yannakakis [PY] to establish the co-NP-completeness of the 
problem of deciding whether a given set of linear inequalities describes an integer 
polyhedron. Their main construction is a transformation from the general problem 
of detecting an H-cycle in a digraph, under the special assumption that the digraph 
has a prime number of nodes. We repeat  part of their proof, because our proof  of 
Theorem 5.3 uses their construction. 

Theorem 5.2. Suppose that the function ~0: N ~ N is monotone and that q~(n) = 

f~(n 1/~) for some k ~ N. Then the following problem MAXDETq~ is strongly NP-com-  
plete: 

Instance: n, lz ~ N, an n X m matrix Q with n < m <_ n + ~ ( n )  and with all 
entries in { -  1, 0, 1}. 

Question: Does Q have an n • n submatrix B such that [det(B)l >_ /x? 

Proof. Let G O = (Vo, A o) be a P-digraph regarded as input for the problem HAM,. 
A directed bipart i te P-digraph G = (V, A)  is then constructed as follows: 

�9 For  each v ~ Vo, add a new node w = w(v )  and set 

v = Vo u Wo = (v:  v ~ v o} u ( w ( v ) :  v ~ vo). 

�9 Let A'  = {(v, w): v ~ Vo, w = w(v)}, let A" = {(w(vl) , e2): (U1, V2) E Ao} , and 
set A = A'  U A". 

It is clear that G admits an H-cycle if and only if G O admits one. Set, as an 
abbreviation, p = [Vol, n = IVI = 2p,  and m = IA[ = IAol + p. Let the points of V 0 
be denoted by v 1 . . . . .  Vp and let those of W 0 be denoted by w I . . . . .  wp with 
W i = w(vi)  for 1 < i <_p. Set A'  = {a 1 . . . . .  ap} and A" = ( a p +  1 . . . . .  am}. 

Now let Q denote the n • m matrix that is obtained from G's  node -a rc  
incidence matrix by replacing the last row (the one that corresponds to wp) by a row 
(1 . . . . .  1, 0 . . . . .  0) where the 1-entries correspond precisely to the arcs in A'. Thus, if 
-4c denotes the matrix that is obtained from G's  n o d e - a r c  incidence matrix by 
deleting the last row, Q is of  the following form: 

a I ". .  ap  a p +  1 "-" a m  

V 1 

W 

W 1 

A ~  

1 - . .  1 0 . . .  0 wp_l 
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Papadimitr iou and Yannakakis  [PY] show that Q contains an n x n submatrix B 0 
with [det(B0)[ > p if and only if G admits an H-cycle. Since, except for the last row, 
the matrix Q is totally unimodular,  it is easy to see that [det(B)l < p for all n x n 
submatrices B. Hence it follows that MAXDET, the problem of deciding whether a 
given { -  1, 0, + 1}-matrix contains a maximum square submatrix whose determinant  
exceeds in absolute value a given bound, is strongly t~P-complete. 

To complete  the proof, refer  to Theorem 5.1 and note that if, in the input digraph 

(V  o, Ao), [Aol <_ IV0[ + ~b(lVo[), then 

m = lAol + lVol <_ 2lVoi § ~O(lVol) = n + q ~ ( 2 ) ~ < n + q s ( n ) .  [ ]  

F rom the way in which Q was formed from the n o d e - a r c  incidence matrix of a 
digraph, it follows that no column or row of Q has more than three nonzero entries. 
This sparseness, in addit ion to the fact that Q is in a sense "almost square," is 
reflected in the structure of  the polytope constructed from Q in the proof  of 
Theorem 5.3. 

As a complement  to Theorem 5.2, we note that [DGH] establishes the NIP- 
completeness (but not  strong ~P-comple teness )  of  the problem whose instance 
consists of an n x m integer matrix A along with an integer h, and whose question 
is whether there is an n x n submatrix of A whose determinant  has the value h. 

Theorem 5.3. The followingproblem, ~--MAXSIMP~, (a variant o f  I l l )  , is ~P-complete 
whenever the monotone function ~: ~ -~ ~ is o f  order ~ ( n  l /k)  for some k �9 ~: 

Instance: n �9 ~J, an n-dimensional ~--polytope with vertex set V such that IV[ _< 
n + ~p(n); a positive rational h. 

Question: Is there an n-simplex S with vertices in V such that vol(S) >_ h? 

In fact the problem is ~P-complete under the additional restriction that V c { - 1, 0, 1} n. 

Proof. Using a standard formula for simplex volume, it is easy to see (without 
any restrictions on IVD that the  problem belongs to the class NP. To establish ~ P -  
hardness, we extend the argument and construction of  the preceding proof  so as to 
provide a transformation of HAM4, to ~/s 

Let  Q denote  the matrix of  the preceding proof, and note first that all column 
vectors of Q lie in a hyperplane.  In fact, it follows from the construction of G that 
Q's  submatrix consisting of the entries in the first p rows and columns is the p x p 
identity matrix, while the submatrix of  Q that consists of the entries of the first p 
rows and the last m - p columns has exactly one nonzero entry in each column, and 
this entry is - 1. Hence,  when z = ( -  1 . . . . .  - 1, 0 . . . . .  0, 2) r e R n with entries - 1 
as the first p coordinates,  and Q = (ql  . . . . .  q,,), then 

( z , q l )  . . . . .  (Z,  qm) = 1. 
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Now suppose that B = (qil, . . . .  qi,) is an n x n submatrix of Q. Then 

] de t (B)  ] = n ! vol.(conv{O, qi~ . . . . .  qi. }) 
(n - 1)! 
- -  vol ._  l(conv{qh . . . . .  q i}) .  

Let 

M = 

1 .- .  0 0 . . -  0 O' 

0 ... 1 0 ... 0 0 
0 ... 0 1 ... 0 0 

0 ..- 0 0 ... 1 0 
1 1 -~- . . . .  ~- 0 ... 0 1 

and let q'l = Mql  . . . . .  q',, = M q m ,  Then the points q~ all lie in the affine subspace 
N n - l •  {�89 Note further that d e t ( M ) =  1, and this implies that, with B ' =  

(q~ . . . . .  q~~ 

I de t (B) l  = [det(B' ) [  = n! vol,(conv{0, qi,, . . . .  q~.}) 

(n - 1)! 
- -  vo l ._  l(conv{q~ . . . . .  qi.}). 

Hence, if P '  = conv{q~ . . . . .  q '} ,  then Q has an n x n submatrix B with ]det(B)[ _> /x 
if and only if the (n - D-dimensional ~--polytope P '  contains an (n - D-simplex 
whose volume is at least 

2Ix 

(n - 1)!" 

Since the polytope P '  is contained in the affine subspace [j~n-1 X {1}, it can be 
identified with a polytope P in II~'-1 which is given as the convex hull of those 
vectors that are obtained from the vectors q ~ , . . . ,  q" by deleting the last coordinate. 
Hence, a polynomial-t ime algorithm for ~--MAXSIMe~ would lead to a polynomial- 
time algorithm for the corresponding problem MAXDET~0 and would eventually yield 
a polynomial-t ime algorithm for the problem HAMe,. Finally, note that - 1, 0, and 1 
are the only numbers that appear  among the coordinates of  the vertices of the 
constructed polytope P. [ ]  

We now turn to the problem of finding a largest j-simplex in an n-dimensional 
T-polytope when j is permit ted to be less than n. It is clear from Theorems 4.1 and 
4.2 that in o rder  to establish hardness, both j and the excess of the number of 
vertices over n must tend  to oo with n. To extend the hardness result of Theorem 5.3, 
we need two lemmas. 
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Lemma 5.4. With R n = R j • Nk, suppose that P is a j-dimensional polytope in NJ 
and B is an orthonormal basis for Nk Let p and R be respectively a lower bound on P'  s 
inradius and an upper bound on P's  circumradius, with 0 < p < 1 < R < oo. Suppose 
further that the origin 0 is an incenter of  P, and that 0 is not an affine combination of  
fewer than n + 1 vertices of  P. For each e > 0 ,  /et P ~ = c o n v ( P t 0  ~B). I f  e <  
( p /R )J / j ,  then each largest bound j-simplex S in P~ is already contained in P. 

Proof. Let S denote a largest j-simplex bound to P~. (Recall that by Theorem 2.2 
there is always a bound simplex among the largest.) Suppose that, for some 
r ~ {1 , . . . ,  j + 1}, the simplex S contains precisely r vertices that belong to the set 
eB, while the remaining vertices belong to P. 

Note first that the volume of a largest j-simplex S O in P is at least as large as the 
volume of a regular j -s implex in a Euclidean j-ball  of radius p(C). Hence, by a 
standard formula, 

( j  + 1) (j+l)/2 
vol(S 0) > pJ. -- j ! j j / 2  

By the same formula, together  with the fact that regular simplices are the largest 
ones contained in a given ball, 

(k  + 1) (k+l)/2 

vol(Sk) < k! k k/2 Rk 

for each k-simplex S k in P with 1 < k < j - 1. 
Now suppose first that 2 < r < j ,  and let G denote the convex hull of those 

vertices of S that belong to P. The vertices of S in the set eB form a regular 
(r  - 1)-simplex F of edge-length ev~ ,  whence a s tandard formula yields 

v7 
v o l ( F )  _ _ e ~  1 

(r  -- 1)! 

Since 

,ff 
dist(0, a f t ( F ) )  = ~- r  and dist(0, a f t (G) )  < R,  

it follows with the aid of Lemma 1.5 and Theorem 1.6 that 

1 ( J - r + l )  j - r  
vol2(S) ~ - -  - - ( j  - r + 1 ) (e  2 + pR2)R2(i-r)~ ~ 

j!2 j -- r 

1 1 
<_ ~ .2e( j  - r + 1)R2(j-r+l)gZ(r-l) <__ j ( j  _ 1)vzeRZJe 2 .  

1 . e R 2 j l ( p ] 2 j  1 . 
< j ( j -  1)! ~ j ~ R /  <- j ( j !2 )  ep2J 



Largest j-Simplices in n-Polytopes 505 

( j  + 1)j+ 1 
< j !2 j i  p2j < vol2(So ). 

The case r = j + 1 is even easier; in fact, 

vol2(S ) < j + 1 6 2j < 
- j!2 

( j  + 1)J+l 

j !2j j  p2j < vol2(So ), 

since 6 < p. 
Let us, finally, deal with the case r = 1. Then G is a facet of S. Let H = aff(G), 

let H '  denote the supporting hyperplane of p~J in R j that does not separate G 
from 0, and let c denote the point of support. Then the set S' = conv({c} U G) is a 
j-simplex in P, and 

1 

vol (S ' )  = - : (dis t (0 ,  G)  + p ) v o l ( G ) .  
J 

Since 6 < p, and since precisely one of the vertices of S is in 6B, it follows with the 
aid of standard formulas that  

( j -  1)z 
vol2(S) 

j~ 
- -  (dist({0}, G)  2 + e Z ) v o l ( G )  < vol2(S') .  

That completes the proof  of Theorem 5.4. [] 

Lemma 5.5. With ~" = ~J • ~k, suppose that P is a j-dimensional ~-polytope in ~J 
and that rr is an integer polynomial such that k < rr(j). Let  B, 6, and P~ be as in 
Lemma 5.4. Then a rational ~-presentation of  P~ can be produced in time that is 
bounded by a polynomial in L, the size of  P's  Y/--presentation. 

Proof. Just observe that a positive lower bound on P ' s  inradius and a finite upper  
bound on P ' s  circumradius can be computed in polynomial time (see, e.g., [GK3]), 
that the vertices of P~ are either vertices of P or points of 6B, and that the increase 
in dimension from j to n in this construction, and hence also the increase in the 
number of  vertices, is bounded by a polynomial in j.  []  

Theorem 5.6. Suppose that the monotone function ~: ~ --+ ~ and the function 7: 
~ ~ are both o f  order f l (n  1/~) for some k ~ ~, and that 1 < y (n )  < n for each 

n ~ ~. Then the following version, A 1, ofproblem II 1 is UP-complete: 

Instance: n ~ N, an n-dimensional Y/Z-polytope with vertex set W such that IWI _< 
n + q*(n); a positive rational h. 

Question: Is there a y(n)-simplex S with vertices in Wsuch that vol2(S) > h? 

Proof. Membership in ~ P  is obvious. The [~P-hardness is established by means of 
a transformation from the problem ~--MAxSIMP~ of  Theorem 5.3. In describing the 
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transformation, we use Bf to denote the set consisting of the last r standard unit 
vectors of ~r+j. 

Let (j, P,  A) be an instance of the problem ~-MAxSIMP~,, and let V denote P ' s  
vertex set. By our conditions there is a constant K ~ N such that 

whence with n = Kj k, we have 

( n ) : / k <  y ( n ) < n ,  

0 < y(n)  - j  < K f ' .  

We now apply the construction of Lemmas 5.4 and 5.5 twice, using the notation of 
Lemma 5.4. First we replace the polytope P = conv(V) by the polytope 

P~ = conv(V u eB~ (~) J) : ~v( ') ,  

and note that, by Lemma 5.4, (j, P, A) is a "yes" instance of ~--MAXSIMP 0 if and only 
if (y(n), P,, A) is a "yes" instance of T--MAxS1MPo. Then we raise the dimension by 
n - y(n), replacing P, by the set 

Q~ = conv(P~ U eB~(-~ (~)) 

and noting that, by Lemma 5.4, (T(n), P~, A) is a "yes" instance of ~--MAXSIMP~, if 
and only if (n, Q~, ,~2) is a "yes" instance of A 1 . 

Observe that e is bounded by a polynomial in L, that the increase in dimension 
is bounded by Kj", and that the increase in the number of vertices is therefore also 
bounded by Kj m. From these facts, in conjunction with I.emma 5.5, it follows easily 
that the composite transformation from (7(n),  P~, ~) to (n, Q~, A) runs in polyno- 
mial time. Hence, by Theorem 5.3, problem A 1 is NP-hard. []  

Note that the conditions of Theorem 5.6 are satisfied when y(n) = max{l, n - /z} 
for a nonnegative integer constant /x, and also when 7(n)  = max{l, [ pro]} for a fixed 
rational Ix with 0 < / x  < 1. 

The following theorem (along with Theorem 6.3 for X-polytopes) is of interest in 
view of the uniqueness results concerning "typical" bodies and polytopes in Theo- 
rems 2.7-2.9. 

Theorem 5.7. If the functions 4J and ~/ satisfy the conditions of Theorem 5.6, then the 
following version A 3 ofproblem 1-I 2 /s NP-complete: 

Instance: n ~ N, an n-dimensional g/--polytope P with vertex set V such that I VI __< 
n + ~b(n); a largest 3,(n)-simplex S in P. 

Question: Is there more than one largest y(n)-simplex in P? 

Proof. To see that A 3 belongs to the class NP, use the fact (from Theorem 2.2) 
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that if there is more than one largest y(n)-simplex in P,  then there are at least two 
bound y(n)-simplices that are largest. To establish NiP-hardness, use the second part 
of Lemma 5.1 and review the earlier transformations in this section, noting that each 
transformation is parsimonious in the sense of [J, p. 107]. To be specific: 

�9 In Theorem 5.2's transformation from the digraph G o to a matrix Q, the 
number of H-cycles in G O is equal to the number of n • n submatrices B of Q 
for which Idet(B)t > p. 

�9 In Theorem 5.3's transformation from the matrix Q to a polytope P' ,  the 
number of Q's  submatrices of the ment ioned sort is equal to the number of 
bound (n - 1)-simplices S in the (n - 1)-polytope P '  for which vol(S) > 
2 /z / ( (n  - 1)!). 

�9 In Theorem 5.6's transformation from problem ~--MAxSIMPr to problem A 1 , 
the number  of full-dimensional simplices whose volume is at least as great as 
the specified threshold for ~-MAxSIMPq, is the same as the number of y(n)-  
dimensional simplices whose volume is at least as great as the specified 
threshhold for A 1. (This can be used to show that the number of largest 
simplices of the specified dimensions is the same in the two cases.) 

Hence the uniqueness question in Lemma 5.1 is t ransformed to the uniqueness 
question in Theorem 5.7, and since the former is Nip-hard so is the latter. (The 
parsimonious nature of these transformations can be used also to show that in each 
of Theorems 5.2, 5.3, 5.6, and 5.7, the associated counting problem is #ip-hard.)  [ ]  

Note that it follows from Theorem 5.7 that the corresponding version of IIE is 
also Nip-hard. 

If an n-polytope T is a simplex, the largest j-simplices in T are the same as the 
largest j-faces of T. When j or n - j  is bounded,  the number  of  such j-faces is 
bounded by a polynomial in n and hence a largest j-face can be found in polynomial 
time. However, for the case in which the dimension j is "suitably intermediate"  in 
terms of n, finding a largest j-face of an n-simplex becomes difficult. The next 
theorem makes this precise. Note that, for each fixed k ~ N and each fixed rational 
/x with 0 < /x < l,  the theorem's  conditions on 7 are satisfied if 7(n)  = [ Ixn z/k ] and 
also if 7 (n)  = [n - txnl/k]. In particular, they are satisfied if y (n )  = [ ~n]. How- 
ever, we do not have any complexity results for the cases in which y(n)  is [log n] or 
[n - log n]. 

Theorem 5.8. Suppose that the function y: ~ ~ N satisfies the following conditions: 

(i) For each n ~ N, 1 < T(n) -< n. 
(ii) 3'(n) = ~ ( n  l/m) for some m ~ N. 

(iii) A monotone function qs: N ~ N and a k ~ N exist such that 
(1) q , (n)  = ~(nl/k), 
(2) y(n  + ~b(n)) <_ n for all n ~ N. 

Then the following version of  problem II 1 is Nip-complete: 

Instance: n ~ N, an n-dimensional ~-- or X-simplex T in R n, a positive rational h. 
Question: Is there a 7(n)-face S o f  T such that vole(S) > A? 
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Proof. The proof of hardness is accomplished by a transformation of problem A 1 

of Theorem 5.6. Let  j ~ ~ ,  n ( j )  = j + ~ ( j ) ,  and define the function 3": ~ --+ ~ by 
y ' ( j )  = 7(n( j ) ) .  Now consider an arbitrary instance (j, P, A) of A 1 with parameter 
functions ~ and 3". Note that, by (i) and (iii(2)), 1 < y ' ( j )  < j for all j ~ I~, and this 
fact, in conjunction with properties (ii) and (iii(1)), assures that 6 and y '  are proper 
parameter functions for A~. 

Let V = {v0, . . . ,  vn} denote P ' s  vertex set, and let e l , . . . ,  e n be the standard unit 
vectors of ~ .  We may assume without loss of generality that P is an integer 
~--polytope, whence (by Theorem 1.4) the squares of the volumes of any two bound 
simplices in P are either the same or differ at least by (n!) -2. 

Now set 

v~ = v i for i = 0 . . . . .  j and v~ = l; i + e e  i for i = j + 1 . . . . .  n, 

where 0 < e < 1. Then the set 

T~= conv{v~ . . . . .  v~} 

is an n-simplex in R n. Note that there is a one-to-one correspondence between the 
bound simplices in P and the faces of T, of dimension at most j. (In our notation, 
the latter carries the subscript e, the former the subscript 0.) Let S~ denote a 
7 ' ( j ) - face  of T~. Suppose without loss of generality that 0 is a vertex of S,, and let 
U~I , , Uit denote the other vertices of S~. If A s is the matrix with rows v! ~ v! r 

� 9  t l  , � 9  11 ' 

then by Theorem 1.4, 

(T ' ( j ) [ )2vol2(Se)  = de t (A .A~) .  

Note that det(A~A~) is a polynomial in e of degree at most 2(n - j), with constant 
term (y,(j)])2 vol2(S0). The remaining terms are bounded from above by e times the 
sum of the absolute values of  all subdeterminants of A o A  ~ of arbitrary dimension, 
and this sum is bounded above by 2 2(j+L), a number whose size is polynomial in the 
size L of the presentation of T. Hence, when e = 2 -z(j+L) 1/(n!) ,  

vol(S~) < 3. if and only if vol(S 0) _< h. 

This shows that (j, P,  A) is a "yes" instance of A~ if and only if the simplex T~ 
contains a y ' ( j ) -face whose squared volume is at least h. Since y ( n )  = y ' ( j ) ,  that 
completes the proof of  Theorem 5.8. []  

6. Hardness Results for X-Polytopes 

It turns out that in ~-polytopes of  variable dimension, even finding largest j- 
simplices of f ixed low dimension j is ~P-hard.  This contrast to the ~-presented case 
(see Theorem 4.1) arises from the fact that for gC-polytopes the number of vertices 
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can increase exponentially in terms of the size of the presentation. Unfortunately, 
we have not succeeded in establishing hardness for the problem of finding largest 
full-dimensional simplices in ~-polytopes. (However, see the conjecture near the end 
of Section 4.) 

In dealing with ~-polytopes, our tool for proving NP-hardness is the fact that the 
following problem [0, 1]PARMAX and some of its close relatives are NP-hard. 

Instance: n ~ N, linearly independent rational vectors x : , . . . ,  x,, E R"; a posi- 
tive rational /3. 

Question: Is the maximum of ][ H 2 on the parallelotope ~ ' =  110, 1Ix i greater than 
or equal to /3 ? 

Although the parallelotope here is not explicitly ~-presented, the given presentation 
can be used to produce (in polynomial time) a rational X-presentation of size 7r(L), 
where ~- is a fixed polynomial and L is the size of the original presentation. It then 
follows from an observation of Khachiyan [K3] that max{[Icl]: c E C} < 4 '~(L). That 
fact is used below in the proof of Theorem 6.2. 

The ~P-hardness of [0, 1]PARMAx was established in [BGKV] by transformation 
from the problem NOT-ALL-EQUAL-3SAT of Schaefer [S1]. (See [GK1] for a different 
transformation serving the same purpose.) [0, 1]PARMAx was later used in [GK2] and 
[GK3] to establish the hardness of other problems involving parallelotopes, including 
the special cases of problems F 1 and F 2 of Theorem 6.2 in which y(n)  =- 1. ([GK3] is 
concerned with j-balls, but when j = 1 the j-balls and the j-simplices are the same.) 

Hardness results for certain problems are often used to produce hardness proofs 
for other problems. To facilitate such use in a polytopal setting, it is desirable to 
work with polytopes that are as simple as possible. The hardness proofs in this 
section use polytopes that are convex hulls of simplices and parallelotopes. We 
require a lemma to prepare for the hardness proofs. 

Lemma 6.1. With g~n = ~ j  • •k, suppose that B is an orthonormal basis for ~J 
and C is a body in ~ .  Let p = max{l[xll: x E C}, and for each tz > 0 let C~, = 
conv(/xB tO C). I f  I* > 3j p, then for each j-simplex S in C,, it is true that 

( j!)2vol2(S) __< (/,1,2 + j p 2 ) ~ 2 j - 2 ,  

with equality if and only if S =conv ( / xB  tO {c}) for some c e C with Ilcll = p .  

Proof. (The assumption that /~ > 3j p can be weakened, but it is adequate for our 
purposes.) 

For 0 < r < j, let us say that a j-simplex S in C~, is of type r if r + 1 vertices of S 
are those of an r-simplex G in C and the remaining j - r vertices of S belong to 
the set / ,B and hence are those of a regular (j  - r - D-simplex F of edge-length 
/xf2. (Use appropriate conventions for the special cases in which r ~ {0, j - 1, j}.) 
By Theorem 2.2, there is a largest j-simplex in C~, that is of type r for some r, and 
we want to estimate the volumes of the various types. Since (with appropriate 
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conventions in the mentioned special cases) the standard formulas yield 

and 

~/j - r . (r  + 1) (r+ 1)/2 
_ p r  voI(F)  ( j  - r - 1)! / ,1-~-1,  vol(G) < r! r r/2 

/.t 
dist(O, a f t (F) )  

- -  r ' 
dist(0, aft(G)) < p, 

qo(O) = ( IA 2 q- j p 2 ) l d , 2 j - 2  , 

q~(J)= T ( j +  1)p2j' 

when 1 _< r _< j - 1, while 

~p(r) = + 1) ( t12 jr_ ( j  _ r ) p 2 ) t z z j  2, 1 < r < j - 1. 

It follows also that when r = 0, the upper bound ~o(0) is attained if and only if 
S = c o n v (  p,B U {c}) for some c ~ C with ][cll = p. 

With 

~:(r) = 

we have ~:(r) < e for all r > 0. Hence if I~/p > 3j, then 

~p(O) 1 jz2 +jp2 l [ l a . ~  
_ _ 2 2 r - a j 2 1 " ~ l  ~ 1 

~( r )  = ~ ( r ) ( r  + 1) ~ + - ( 7 - 7 ) p  ~ > j e  ~ o J - e 

~(0) 1 
- -  > - - '  > 1 .  ~0(j) ( j  + 1)e )2j 

That completes the proof. []  

Note that conditions (i) and (ii) in the following theorem are satisfied when the 
function y is constant, and also when y ( n ) =  [ tzn] for a fixed rational Iz with 
0 < ~ < 1. (See the growth condit(ons in Theorems 5.6-5.8). 

and 

where 

it follows with the aid of Lemma 1.5 and Theorem 1.6 that 

( j ! )2vol2(S)  <_ qffr), 
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Theorem 6.2. Suppose that the function 3': N -~ N/ satisfies the following conditions: 

(i) For each n ~ N, 1 _< v(n)  < n. 
(ii) There is a function f: N --+ N/, computable in polynomial time, such that, for 

each k ~ IN, f ( k )  - y( f (k ) )  = k. 

Then the following version, FI, of  problem FI x is NP-complete and the following 
version, F2, of  problem FI e is N/P-hard: 

Instance for F 1 : n ~ N/, an n-dimensionalX-polytope P c R ~, a positive rational h. 
Question for F l : Does P contain a 3"(n)-simplex S such that vol2(S) >_ A? 

Instance for F2: n ~ N/, an n-dimensional X-polytope P c R ~. 
Question for F 2 : Is the largest 7(n)-simplex in P unique? 

Proof. It follows from Theorem 2.2 that attention may in both cases be confined to 
bound simplices. It is then evident that problem F 1 belongs to the class NIP. The 
proofs of N/P-hardness will involve transformations from the problem [0, 1]PARMAX. 

Let (k, fl; x 1 . . . . .  x k) be an instance of the problem [0, 1]PARMAX, let L denote 
the size of  this instance, and let the polynomial 7r be the one mentioned after the 
description of [0, 1]PARMAX earlier in this section. Let n = f ( k ) ,  j = f ( k )  - k, and 
/z = 3j4 =(L). Form the n-polytope C~, as in Lemma 6.1, with the k-parallelotope 
~7=1 [0, 1]x i playing the role of Lcmma 6.1's k-body C. 

It is not hard to verify that the facets of C~ are precisely the sets of the form 
conv(F to ~B)  where F is a facet of C, and the sets of the form conv(C U/xB' )  
where B' consists of all but one point of  the set B. Using this fact, it is easy in 
polynomial time to use the rational ,U-presentation of C in R k to produce a rational 
Y-presentation of C~ in the containing space ~n = lt~J x ~k. Now it is clear from 
Lemma 6.1 that the norm on//~k attains its maximum at a point w of C if and only if 
the set S = conv({w} to/zB) is a largest j-simplex in C~. Hence the hardness of F 1 
follows from that of [0, 1]PARMAX. 

To deal with F 2, we use the same construction but now consider the k-parallelo- 
tope C = Y'~i~l [0,1]xi c ~k as an instance of the problem UNIPARMAx from 
[GK2]. That problem's question is whether the maximum of the Euclidean norm is 
attained at more than one vertex of C. We do not expect either UNIPARMAX or F 2 
to belong to the class N/P. However, UNIPARMAX is N/P-hard, as was established in 
[GK2] by using the NP-hardness of [0, 1]PARMAx. From Lemma 6.1 it is clear that 
the norm on [~k attains its maximum at more than one point of  the parallelotope C 
if and only if the body C~ contains more than one largest j-simplex. Hence we have 
a polynomial-time transformation of problem UNlPARMAx to problem F2, and the 
N/P-hardness of  the latter problem follows from that of the former. [ ]  

A different way of stating Theorem 6.2 is to say that whenever a function 
K: N ~ N/ is bounded above by a polynomial in n, then it is N/P-hard, for a given 

X-polytope P in R n§ to find a largest K(n)-simplex in P and it is also NP-hard 
to decide whether the largest K(n)-simplex in P is unique. 
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7. Additional Comments and Problems 

A. Two Problems Concerning Largest and c-Largest Simplices 

For an arbitrary n-body B, let p(B) denote the ratio of B's volume to the volume of 
a largest n-simplex in B. When B has a center of symmetry c, let po(B) denote the 
ratio of B's volume to the volume of a c-largest n-simplex in B. I~ t  ~3 denote the 
n-dimensional Euclidean unit ball. It was proved by McKinney [M2] that po(B) >_ 
p0(~) for all centrally symmetric n-bodies B, with equality if and only if B is an 
ellipsoid. For n < 3 it had been proved earlier by Blaschke (see [BR]) that p(B) > 
p(B) for all n-bodies, with equality characterizing ellipses and ellipsoids at least in 
the case of smooth bodies. Macbeath [M1] extended the inequality to an arbitrary n, 
but as far as we know, the characterization result of Blaschke has not been extended 
beyond the three-dimensional case. 

For a centrally symmetric n-body C, let f(C) = p(C)/po(C). What is the range 
of f(C) as C ranges over centrally symmetric n-bodies, and for which n-bodies are 
the extreme values attained? The evaluation of f(Q) for an n-cube Q would also be 
of great interest. However, that is probably a very difficult problem, for as n ---) 
both p(Q) and po(Q) become very difficult to evaluate precisely (see [HKL]). 

B. Close-to-Largest Simplices 

Since determination of a largest n-simplex in a given n-polytope P seems to be 
difficult, the question of approximation becomes relevant. Some results can be easily 
derived by approximating the L6wner-John ellipsoid (the smallest ellipsoid contain- 
ing P)  and then using the facts that this ellipsoid is the affine image of the unit 
n-ball, that every largest simplex in the ball is regular, and that volume ratios are 
invariant under nonsingular affine transformations. This yields an approximation 
error that is similar to the error of volume approximation discussed in [GLS] (see 
[GK5]). 

Other authors pursue (at least implicitly) a "weak L6wner-John simplex" ap- 
proach, producing an n-simplex that is contained in a given polytope P such that an 
appropriately dilated simplex contains P or "almost contains" P. However, in terms 
of the volumes of the produced versus the largest simplices in P, the approximation 
error may again be exponential (see [AK], [DF], [FGK], and [W].) 

Finally, note that once a "large" n-simplex S in P is produced, it is natural to try 
to take a largest j-faces of S as an approximation of a largest j-simplex in P. 
Theorem 5.8 places, however, severe algorithmic limitations on such an approach. 

C. Possible Sharpening of Hardness Results 

The most significant gap in our hardness results is that they do not address the 
difficulty of finding a largest full-dimensional simplex in an X-polytope. However, as 
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is indicated in the conjecture following the proof of Theorem 4.3, we believe that 
this problem is also ~P-hard. 

Section 5's hardness results for ~--polytopes involve lower bounds on the growth 
of the number n + ~O(n) of vertices of the n-dimensional ~--polytope P under 
consideration, and also on the growth of the dimension ~,(n) of the simplices in P 
whose volume is to be maximized. It would be interesting to know how far these 
growth conditions can be weakened. In particular, can they be replaced by logarith- 
mic growth conditions? 

Although the polytopes used in the hardness proofs of Sections 5 and 6 are not 
very complicated, it would be interesting to know whether they can be further 
simplified. In particular, does the hardness of ~-MAXSIMP~0 in Theorem 5.3 persist 
for polytopes in which all vertex coordinates belong to {0, 1}? (In the theorem as it 
stands, the coordinates are restricted to { -  1, 0, 1}.) 

In problem F 1 of Section 6, does the hardness persist when the input polytope is 
required to be a parallelotope? (There is no chance of that for F 2, since when j > 1 
and S is a largest j-simplex in a given centrally symmetric body, the reflection of S 
in P 's  center is a largest j-simplex that is different from S.) 

D. Smallest Containing Simplices 

Much of this paper has been motivated by the difficult problem of finding a largest 
n-simplex contained in a given n-polytope P. Of equal interest, and perhaps of even 
greater algorithmic difficulty, is the problem of finding a smallest n-simplex S 
containing P. A theorem of [K5] asserts that, for each smallest S, the centroid of 
each facet of S belongs to P, but this information must be augmented by additional 
geometric conditions on S in order to obtain a reasonable algorithm for actually 
finding a smallest containing simplex. For finding a smallest containing triangle 
(when n = 2), the main algorithmic contributions are those of [KL], [OAMB], and 
[MC], [CM]. The last two papers establish a strong relationship between the smallest 
triangles containing a given convex polygon and the largest triangles contained in the 
polygon. The problem of finding a smallest tetrahedron containing a given 3-poly- 
tope has been studied in [VY]. 
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