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Abstract. It is proved here that, as n -~ 0% almost all convex (1/n)2~2-1attice 
polygons lying in the square [ - 1, 1] 2 are very close to a fixed convex set. 

1. Introduct ion  and Results  

This paper  partially answers a beautiful and inspiring question of Vershik. Following 
a result of Arnold  [A], he asked about 10 years ago whether  a "limit shape" to some 
set of  convex lattice polygons exists. We prove here that the answer is yes for ~ , ,  
the set of all convex lattice polygons lying in the square I - n ,  n] 2. Here a convex 
lattice (or 2~2-1attice) polygon is a convex lattice polygon whose vertices belong to 7/2. 

Fo r  the precise statement a normalization is needed. Define 

,~o = {(1/n)P: P ~,~,,} 

so that  ~ o  is the set of  all (1/n)7/2-1attice polygons lying in the square [ -  1, 1] 2. Set, 
further, 

L = { ( x , y )  ~ ~2:~/1 - I x l  + ~/1 - l y ]  > 1}. 

This is a convex set in [ - 1, 1] 2. It is bounded by four parabola-arcs,  each of  them 
touching consecutive edges of  the square at their  midpoints. When P ~ ~ o  we write 
Xe(x) for the characteristic function of  P, i.e., Xe(x) = 1 if x ~ P and 0 if x ~ P.  

*This research was partially supported by Hungarian Science Foundation Grants 1907 and 1909. 
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The limit-shape theorem says that "almost all" polygons in ~ o  are very close to 
L. One way of formulating this is: 

Theorem 1. The average o f  Xe(X) over all P ~ ~ o  tends to 1 if x ~ int L and to 0 i f  
x q ~ L .  

Another way of stating this result is to work with convex lattice curves (instead of 
polygons). A convex lattice curve is a convex polygonal path with vertices from Z 2. 
Write ~n for the set of all convex lattice curves connecting (0, n) to (n, O) within the 
triangle with vertices (0, n), (0, 0), (n, O) and let ~o be what you get from ~n after 
normalization: ~o = {(1/n)C: C ~ ~n}- Define further 

r = {(x,y) R2:v  + v7 : 1} 

F is an arc of the parabola that touches the axes at (1, 0) and (0, 1). Let U~(F) denote 
the e-neighborhood of F. The limit-shape theorem for convex lattice curves is as 
follows. 

Theorem 2. For every e > 0 there is an no(e)  such that for  n > no(e)  the number o f  
C ~ ~o  not lying in U~(F) is less than e l~~  

The proof will show that it can be taken that no(e)  = ce  -1/3 log 1 /e .  
It is perhaps worth mentioning here that there are other limit-shape theorems in 

the literature. For instance, Vershik and Kerov [VK1], [VK2] and Logan and Schepp 
[LS] proved that there is a limit shape to the Young tableaux on n elements 
equipped with the Plancherel measure. Further, Vershik [VK1], [VK2] showed that 
the same holds when the uniform measure is used. In fact, this latter result is 
implicit in the work of Turfin and Szalay [TS] but the formulation there lacks the 
natural appeal and beauty of the limit-shape phenomenon. 

I thank A. M. Vershik for posing the question, for the many discussions and 
correspondence we had on the topic of this paper, and also for his contribution to 
the proof of Theorem A below. In fact, shortly after I found Theorem 2 he also 
proved the limit-shape theorem. His arguments appear in [V]. I also thank G. Halfisz 
and I. Z. Ruzsa for useful and illuminating discussions and explanations. 

After the results of this paper had been obtained, Ya. G. Sinai found a different 
way of proving the limit-shape theorem. His approach which is based on probability 
theory gives more than the methods presented here, for instance, the average 
number of edges in ~o ,  speed of convergence to F, central limit theorems, etc. His 
arguments appear in [S]. 

2. Auxiliary Results 

We need to know the size of ~o or, what is the same, of ~ , .  In fact we need a little 
more. Write p ( m ,  n) for the number of convex lattice polygons connecting (0, 0) to 
(m, n) ~ 7/2 within the rectangle conv{(0, 0), (0, n), (m, n), (m, 0)}. 
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Theorem A. A s  m , n  --, oo so that c < m / n  < 1 / c  where c ~ (O, 1) /s any fixed 
constant, 

' (3) 
p ( m ,  n) = exp 3 ~ (rim)l~3(1 + o(1))  ) . 

3 
It is convenient to introduce the notation ~" = ~/~'(3)/~(2) for the constant in 

the exponent. 
Next, let a, b ~ 2~ 2 be primitive vectors with a ~ +b .  Assume a ,  13 > 0 (we think 

of a, b as fixed and a ,  13 large) and consider the parallelogram 

T = conv{0, a a ,  f ib ,  aa  + fib}.  

Write p ( T )  for the number of convex lattice curves connecting 0 to t~a + f b  within 
T. Here  edges parallel  with a or b are allowed, and aa + fib E 272. 

We denote the area of paral lelogram T by the same letter T. This should not 
cause any confusion. Theorem A says that when T is the square [0, n] 2, then 
p ( T )  = exp{3,~Tl/3(1 + 0(1))}. The proof  of the limit-shape theorem woula be 
simpler if the following estimate were true for every parallelogram T: as T ~ ~, 

p ( T )  < exp{3~'T1/3(1 + o(1))}. (2.1) 

This estimate is valid for a large class of parallelograms but an argument of 
Halfisz [H] shows that it does not hold in general. A sketch of Halfisz's proof, with 
his kind permission, is given in a remark following the proof  of Theorem A. 

The failure of  this general estimate forces one to look for "condit ional" bounds. 
Define 

d e t T =  ]det(a ,b)] ,  and 7/(T) = max ~-~, = d e t T m a x  a2  , /3 2 , 

since T = a f  det  T. Notice that both parameters  are invariant under lattice- 
preserving affine transformations. The conditional estimate is as follows. 

Theorem B. There is a constant c I such that 

p ( T )  <_ T exp{3~T1/3(1 + Cl det TTll /4(T)}.  

The important  thing here is that the constant s r is the same as in Theorem A. We 
also need the following "uncondi t ional"  bound which was proved in [BP] and in 
[BY]. 

Theorem C. There is a constant c 2 such that 

p ( T )  < exp{c2T1/3}.  
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Remark 1. Quite often we are interested in the set of convex lattice curves in the 
triangle conv{0, e~a, aa + fib}. Notice that their number is just ( p ( T )  + 1)/2, For 
our purposes, this is the same as p(T) .  

We also need some simple facts from elementary geometry. Assume 0 _< x, y < 1 
and 0 < a , b <  1 with x / a + y / b =  1. Let T1 ,T  2 be the parallelograms with 
vertices (x, y), (a, 0), (1,0), (x + 1 - a, y)  and (x, y), (0, b), (0, 1), (x, 1 + y - b). (See 
Fig. 1.) 

Theorem D. 

Z 1/3 -~- T 1/3 _~< 1 - ~ ( 1  - a - b )  2. 

Moreover, equality holds here if and only if a + b = 1 and ~-x + f f  = 1. 

The proof of Theorem D is simple and is therefore omitted. It is worth mention- 
ing, however, that the inequality T~/3 + T~/3 <_ 1 was proved some 150 years ago 
(see [B]). 

3. Further Results 

The following theorem is due to Vershik [V]. Given a convex curve K in the plane 
and e > 0, write ~ ~  e)  for the set of all convex (1/n)7/Z-lattice polygons that lie 
in the e-neighborhood of K. 

Theorem[V]. A s s u m e K i s a  ~2 convexcurvewhosecurvature K satisfiesc < x < 1 / c  
everywhere on K (for some fixed c > 0). Then 

3v~ f r 1/3 ds. lim lim n -2/3 l og [~~  e)l = 3~" K 
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This theorem may provide an alternative way of proving the limit-shape theorem. 

It says that there are essentially exp{const n2/3fKK 1/3 ds} convex lattice curves in 

the vicinity of K. Observe that f K  a/3 ds is a constant multiple of the affine length 

(see [B]) of the curve K. Note that, among all convex curves connecting (0, 1) to (1, 0) 
within the triangle conv{0,(0, 1),(1,0)}, F has the largest affine length. This is in 
accordance with Theorem 2. Vershik's theorem is useful when one wants to find, in a 
set of convex curves, the curve with the maximal number of lattice polygons in its 
vicinity, since it leads to variational problems and differential equations. 

Theorem 1 raises the following question. Given a convex compact set S c N2, is 
there a limit shape to the set of all convex (1/n)2~2-1attice polygons contained in S? 
It is not difficult to see that if there is a limit shape, it must be affinely invariant, and 
the previous theorem suggests that the answer must be that convex subset of S that 
has the maximal affine perimeter. This is indeed so; details will appear elsewhere. 

Another question of interest is this. Which convex set S c N2 of area 1 contains 
the largest number of convex (1/n)7/2-1attice polygons? Vershik's theorem and the 
affine isoperimetric inequality suggest that the answer must be an ellipsoid. It is, 
however, not clear which one. It may happen that this ellipsoid is not well deter- 
mined and, as n tends to infinity, its diameter will tend to infinity as well. 

The proof of the limit-shape theorem is based on the following simple but 
important observation. The convex lattice curves connecting (0, 0) to (m, n) within 
the triangle conv{(O,O),(m,O),(m,n)} are in one-to-one correspondence with the 
multipartitions of (m, n) into nonparallel, nonnegative, and integral summands. This 
is easy to see: the summands of any such multipartition can be ordered by slope, and 
in this order they define a unique convex lattice curve from (0, 0) to (m, n) and vice 
versa. Alternatively, writing u l , . . .  , v k for the summands in the multipartition, the 
zonotope defined as the Minkowski sum of the segments [0, ui] may be considered, 
this zonotope contains (0, 0) and (m, n) and is contained in [0, m] • [0, n]. With this 
formulation a limit-shape theorem is obtained for multipartitions with the property 
that "parallel summands are not allowed". This leads to two different generaliza- 
tions. 

First, other properties of multipartitions may be considered such as (1) only 
primitive vectors are allowed, (2) the summands are different, (3) anything is 
allowed, etc. As it turns out from the proof of Theorem 2, if the multipartitions with 
the property in question satisfy Theorems A and B with the same constant in the 
exponent, and Theorem C with some other (larger) constant, then they have a limit 
shape. In fact, the limit shape is the same as the one with nonparallel summands. 
The second generalization is probably more interesting, it is higher dimensions. The 
methods presented here do extend to the statistics of multipartitions of (na , . . . ,  n a) 
E Na, the geometry part (Theorem D) gets more involved. The outcome is that 
there is a limit shape to multipartitions (with nonparallel summands, say). This will 
be the topic of a subsequent paper. 

However, the question whether there is a limit shape to all convex (1/n)Za-lattice 
polytopes contained in the unit cube [0, 1] a remains open for d > 2. It seems likely 
that the answer for this question will require a completely different approach. 
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4.  P r o o f  o f  T h e o r e m  2 

The proof which uses Theorems A - D  is based on first partitioning the curves 
C ~ ~o  not lying in U,(F) into "few" classes, and, second, showing that each such 
class contains "few" elements. 

Define P to be the set of primitive vectors from 7/2. Let N be a large integer 
satisfying 

3 4 
< N < -~ - .  (4.1) 

Write 

W ( N )  = {(u ,v)  ~ IP:0 < u , v  _< N}. 

Consider a line I of  the form 

x y 
- + = 1,  ( 4 . 2 )  
a 

where 0 < a, b. Notice that l is tangent to F if and only if a + b = 1. Using this it is 
a simple matter to prove: 

Claim 1. I f  C ~ ~ ~  does not lie between ( 1 -  e)F and (1 + e ) F ,  then it has a 
tangent o f  the form (4.2) with (a, b) parallel to some (u, v) E W ( N )  such that 

l1 - a - bl > e / 2 .  

Now fix (u, v) ~ W ( N )  and a point z 0 ~ (l /n)7/2 from the unit square. Let l be 
the line of the form (4.2) with (a, b) parallel to (u, v) and passing through z o. Write 
~,(u,  v, z 0) for the set of convex lattice curves from ~o  that touch l at the point z 0 . 
(This is the empty set if l separates (0, 1) from (1, 0), so assume this is not the case.) 

Claim 2. Assume l1 - a - b[ >_ e / 2 .  Then, i f  n is large enough, 

[~'n(u, v, z0)[ _< exp 3~n 2/3 1 - - ~  . 

Let us see first how Claim 2 implies Theorem 2. Notice that both (1 - e)F and 
(1 + e)F lie in U,(F). Then, by Claim 1, every C ~ ~,o not lying in U,(F) is in one 
of  the classes ~n(u, v, z0). The number of  such classes is at most n2N 2. So the 
number of convex lattice curves not lying in U,(F) is at most 

n2N 2 exp{3~nZ/3(1 - e2 /30)}  

which is, by Theorem A, much less than I~~ 
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Proof of Claim 2. Observe  that,  using the no ta t ion  of Fig. 1, 

[~n(u,  v, z0)] = p(nT1)p(nTz), 

where  nT/ are blown up copies of  T i with ver tex (x0,  Y0) p laced  at  the origin. W e  
es t imate  p(nT i) using T h e o r e m s  B and C. The  p a r a m e t e r s  of  the para l le logram nT 1 
are 

RY 0 
a l = (1 ,0 ) ,  b 1 = (u ,  - v ) ,  cq = n(1 - c~), ~1  = - - ,  d e t ( n T  I) = v, 

U 

area(nT1)  = n2(1 - a ) y o ,  
l ( ( 1 -  a)v3 yo ) 

~ ( n T  1) = --  max 
n y2 (1 - - -a)  2 " 

Similarly,  the pa r a me te r s  of nT 2 are 

HX o 
a 2 = (0, l ) ,  b 2 = ( - u ,  v), a 2 = n(1 - b ) ,  /3 2 = - - ,  d e t ( n T  2) = v, 

U 

a rea (nT2)  = n2(1 - b)xo, 
l ( ( 1 -  b)u3 xo ) 

71(nT 2) = -- max n x~ ~ - b )  2 (1 

W e  have to cons ider  a few cases now so define the following two condi t ions  where  
A is a small  posi t ive number ,  for  instance A = e 7 or ce 6 will do if c is small  
enough:  

Yo > A  and 1 - a  > A ,  (C1) 

x o > A  and 1 - b  > A. (C2) 

Not ice  that  if (C i )  holds,  then r / (nT i) < N3A-2n - 1. 
If both  (C1) and (C2) hold,  then,  by T h e o r e m s  B and D, 

I~n(u,  v, zo)l = p(nT1)p(nT 2) 

< n4T1Z2exp{3~'(T11/3 + T1/3)n2/3(] + ClN2A 1/2n-1/4)} 

< nn exp(3  (1 (1 - a - b ) 2 )  ) 
n2/3(1 + ClN2A-1/2n -1/4) 

< exp 3 ( n  2/3 1 - - ~  , 

if n is large enough  (depend ing  only on e).  
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If  both (C1) and (C2) fail, then, by Theorem C, 

[~, (u ,  v, zo)l = p ( n T  1 )p(nT2)  

< exp{c2(Z 1/3 + z l / 3 ) n  2/3} 

_< exp{2c 2 A1/3n2/3}, 

proving the claim in this case. Finally, when (C1) fails and (C2) holds (say) 

I~'n(u, v, Zo)l = p ( n T l ) p ( n T  2) 

< n2T2 exp{czT~/3rt ~/3 + 3~'T~/3(1 + c l N 2 A  l/Zn-1/4)n2/3 } 

< nZexp{(c2 •/3 + 3~'(T11/3 + 7"21/3)(1 + c l N Z A - 1 / Z n - 1 / 4 ) ) n  2/3} 

( (  ;)} < exp 3~n 2/3 1 -  

if n is large enough (depending only on e, again). [] 

Remark  2. We proved that most convex lattice curves lie between (1 - e )F  and 
(1 + e)F. Since the region between these two curves is much thinner around the 
endpoints o f  F than U~(F), what we have is a stronger statement than Theorem 2. 
Actually, every convex lattice curve in ~o  contains (0, 1) and (1,0), so one can even 
shorten (1 + 6)F at its endpoints. 

Remark  3. In this proof  we do not use the full strength of Theorem B, we only need 
the case when a , /3  go to infinity with their ratio bounded. 

Remark  4. Notice that the proof is based on Theorems A - D ,  and so it works for any 
set of  multipartitions that satisfy these theorems with the same constant in the 
exponent for Theorems A and B. 

We mention further that the same method gives the following result which is 
needed for Theorem 1. Assume 0 < s, t, and write ~'n(s, t) for the set of all convex 
(1 /n)ZLta t t ice  curves connecting (0, t) to (s, 0)within the triangle cony{(0, t), (0, 0), 
(s, 0)}. Let F(s, t) denote the curve with equation Vfxv~ + ~/y~/t = 1. 

Theorem 3. Assume c < s / t  < 1 / c  for some small positive constant c. Then, for 
every ~ > O, there is no(e, c) such that for n > n o the number of  convex curves from 
~n(S, t) not lying in U,(F(s, t )) is less than ~l~,(s ,  t)l. 

5. Proof of Theorem 1 

This is quite simple. For a convex lattice polygon P in p o ,  there is a smallest 
rectangle of  the form Ix1, x 2] X [Y3, Y4] containing it. P has a vertex on each side of 
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this rectangle, we call it (x i, Yi), i = 1, 2,3, 4. These points belong to (1/n)2~ 2. 
Collect all convex lattice polygons from ~n with the same set of points 
(Xl, Yl) . . . . .  (X4, Y4) to form a class. The number of classes is bounded by n s. Using 
Theorems B and C it can easily be seen that such a class contains "many" elements 
if the four points are near the midpoints of the edges of the square, and "few" 
elements otherwise. According to Theorem 2 (or rather  3), almost all polygons in the 
large classes are very close to L. 

6. Proof of  Theorem A 

Write ~ ( m ,  n) for the set of convex lattice curves connecting (0, 0) to (m, n) within 
the triangle conv{(0, 0), (m, 0), (m, n)} where horizontal are vertical edges are not 
allowed. Set q(m, n) = I~(rn, n)l. Denote  by P+ the set of primitive vectors with 
positive components.  It is easy to find the generating function of q(m, n): 

o ~  

f ( X , Y )  = 1 + ~ q(m, n)Xmy n 
m , n = l  

= VI (1 4- x i y  j + s 2 i y  2j 4- x 3 i y  3j + .." ) 
( i , j ) ~ p +  

= 1-I (1 - x i w )  -1. (6.1) 
( i , j )~  P+ 

Now define X = e-X and Y = e -y and set 

g(x, y)  = log f ( X ,  Y).  (6.2) 

We use a Tauberian theorem, Satz 1 of [M]. It says, in this particular case, that if 
q(m, n) is monotone nondecreasing and 

A 
logg(x,y)  = - - ( 1  + o(1)) ,  

xy 

where o(1) is understood as x, y ~ 0 so that x/y and y/x  are bounded and A > 0 
is a constant, then 

log q(m, n) = 3 ~ ( 1  + o(1)) ,  

where o(1) is understood as m, n ~ oo so that m/n  and n /m are bounded.  
Let us see first that  q is monotone.  

Claim 3. q ( m , n ) < q ( m +  1, n) a n d q ( m , n ) < q ( m , n +  1). 

Proof. We prove the first inequality. We exhibit a map ~ ' (m,  n) ~ ~ ( m  + 1, n) 
that maps distinct curves to distinct curves. Any C ~ ~ ( m ,  n) can be given by the 
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sequence of consecutive vertices 

z o = (0,0) ,  z l ,  z 2 . . . . .  z k = ( re ,n ) .  

This curve is mapped to the one in ~ ( m  + 1, n) with vertices 

z 0 = (0,0), z I + (1 ,0 ) , z  2 + ( 1 , 0 ) , . . . , z  k + (1,0) = (m + 1,n) .  []  

We need to know the behavior of g near (0, 0). This is given in: 

L e m m a l .  Let 0 < c  < 1 and assumex,  y ~ O s o t h a t c  < x / y <  1/c.  then 

~'(3) 
g ( x ,  y )  - -  (1 + o(1)).  

~'(2)xy 

We prove'this lemma at the end of the section. 
Meinardus's theorem applies now giving 

q ( m , n )  = e x p ( 3 ?  mv/-m-n-(1 + o(1))} 

as m, n ~ ~ with m / n  and n / m  bounded. 
For the proof of Theorem A we have to consider p(m,  n), the number of all 

convex lattice polygons connecting (0, n) to (m, 0) within the triangle, horizontal and 
vertical edges are allowed. Clearly, 

m , n  

q ( m , n )  < p ( m , n )  = ~_, q ( m  1 ,n  1) < (m + 1)(n + 1 ) q ( m , n ) ,  
m 1 , n l = 0  

since q is monotone. [] 

Proof o f  Lemma 1. This is a special case of Lemma 2 from the next section, but 
parts of this proof are used there. Assuming x, y > 0 we have 

1 
g ( x , y )  = log ~ (1 - e -ix-jy)  = ~_, ~ - e  -(ix+jy> 

( i , j ) E p  + P +  r = l  r 

1 1 
= E -- E e-(ix+jy)r = ~ -- E E t "s 

r = l  r D+ r = l  r Z ~  d =  = 1  

~ ( d )  1 1 
= ~ Y'. era. erdy (6.3) 

r = l  d = l  r - -  1 - 1 ' 

where /x(d) is the M/Sbius function (see, e.g., [HW]). Notice that 

/.t(d) 1 /x(d) if(3) 
E E d2r----'T = E ~~Ed=I d2 ' (6.4) 

r = l  d = l  r=l  = if(2) 

I. Bfir~ny 
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see also [HW]. Then 

1 ~'(3) 
g ( x , y )  

xy ~'(2) d,r r (e rdx -- l)(e rdy -- 1) d2r2xy 

tx(d) I~(d) 
[ " - ]  + Y'. [ . ' . ] = : S ( < M ) + S ( > M ) .  

rd<M r rd~M r 

(6.5) 

Here  M is chosen to be [(x 2 + y2) ~/2]. Using the inequality e t - 1 > t we infer 

IS(>_ M)I _< ~ (drx ) (dry )  + 
dr2M 1) 

: --~\ r=l d=[~M/r] = d = l  
d2r------~ + r~=M E -d~r 3 

<-- "-'~ ~ r=, r3 fM/r~ + r=ME 7~(2) 

<-~ XY \ r=l r-~-M + - - -M,= -~ " - ~ r =  -~ 

4( (2 )  

Mxy 
(6.6) 

To estimate the other term we use the Taylor expansion 

ett2 
e t =  1 + t +  - -  (6.7) 

2 ' 

where 0 _< t < t. When t = drx or dry, t = dr$ or dry: with $, y: depending on rd 
but we suppress this dependence in the notation. We get 

1 1 
(e rdx - 1)(e  ̀ dy - 1) xyd2r 2 

1 1 

(drx  + ed '~ (drx )2 /2 ) (dry  + ed~Y(dry)2/2) xy d2r 2 

1 (  1 ) 
xyd2r 2 (1 + ear~ drx /2 ) (1  + ee'Y d r y / 2 )  - 1 

1 - ( e d ' ~ d r x  + ea~Ydry) /2  - e dri+dry d2r2xy/4  

xyd2r 2 (1 + ed'X drx /2 ) (1  + edrY d r y / 2 )  
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Since dr < M we have 

1 1 1 ~ (edr~x e d~('+y~ drxy ) 
e rdx  --  1 e rdy  --  1 x y d 2 r  2 < 2xydr ~ + e d r y y  "4- 2 

~ d r (  - - ~ )  3~/7g+ Y2 (6.8) 
< 2 x + y +  < xydr 

Consequently, 

3 V / ~ + y  2 1 3 1 / ~ + y  2 ~ 1  ~ 1 
- -  _ E  1 - IS(< M)I < P~" dr2 < d r  r2 

x y  dr<M x y  d = l  = 

3 v f ~  + y 2 
< (1 + log M ) ( ( 2 ) .  (6.9) 

xy 

This, together with (4.7) proves Lemma 1 in a stronger form, namely, 

g(x, y) st(3) ~ + y2 
< const log(x 2 + y2) -1/2. 

sr(2)xy, xy 
[] (6.10) 

Remark  5. Ruzsa showed [R], using th__properties of the M6bius function, that the 
error term in the last statement is o(~/x 2 + y2 )/xy. 

Remark  6. Theorem A can be proved with the saddle-point method as well (see 
[W]) for a similar application). However, the technical difficulties arising here are 
lengthy and tiresome due to the presence of the M6bius function. When using this 

3 
method, g(x, y) should be computed or estimated when x = "i/~(3)n/~(2)m 2 and 

3 
y = V!~(3)m/~(2)n 2 . Equation (6.10) shows, then, that (2.1) cannot fail as long as 
m / n  2 and n / m  2 tend to zero. It is not difficult to see, using the properties of 
ordinary partitions, that (2.1) holds, again, if m > crt 2 or if n > c m  2 for some large 
enough c. Thus (2.1) can fail only in the range n = const m 2. 

Here is a sketch of Hal~sz's argument  showing that (2.1) cannot hold in general. 
It works for rectangles conv{0, (0, n), (m, n),(m, 0)} when n = ern 2 for some small 
but fixed e > 0. It is based on an application of the saddle-point method that is 

3 
unusual as one of the circles of integration has radius = ~ - ,  i.e., does not tend to 

zero. Again, g(x, y) has to be estimated when x -- ~/Te and y --+ 0, and the point in 
the argument is to show that l imy~ 0 xyg(x, y) is larger than ~'(3)/~'(2) for some 
small but fixed positive x. To see this first replace, in the last line of (6.3), 
(e dry - 1) -1 by (dry) -1, the change in g(x, y) is small. The remaining function is 

p.(d) 1 
h(x)  = Y'. dr 2 e a~ - 1 Y'~ e-kx E t*(d) 

d , r>  l k = l  rdlk d r 2  
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The function G(k )  = Y'. ~dlk ( I~(d) /dr2)  is multiplicative. It follows that 

G ( k )  ( ( s ) ~ ( s  + 2) 

k> 1 ~'(S + 1)  

So we get 

1 f F ( s ) ~ ( s ) ~ ( s  + 2) 
h ( x )  ds, 

- ~ i  J(~) xS~(s + 1) 

where F(.)  is the gamma-function and the integral is taken along any vertical line 
with the real part  > 1 in the complex plane. The function under the integral sign 
has a simple pole at s = 1 with residue x-1~'(3)/~'(2). At  s = 0 the singularities 

1 cancel. Under  the Riemann hypothesis, the line ~ s  = - ~ contains the next set of 
singularities, but even without the Riemann hypothesis, this line contains infinitely 
many singularities. It follows then that the function h(x)  -x-1~'(3)/~ '(2)  oscillates 
as x --, 0, moreover,  it is infinitely often larger than x 1/2+~ and infinitely often 
smaller than - x  1/2+~ as x ~ 0 for any fixed positive 6. This shows that, for a 
suitable positive x, h (x )  > x-1~'(3)/((2)  + x 1/2+ ~, proving that (2.1) does not hold in 
general. We omit the details. 

7. Proof of  Theorem B 

Write qa, b( m, n) = q(m,  n) for the number of convex lattice curves connecting (0, 0) 
to (m, n) within the triangle conv{0, aa, aa + fib} where edges parallel  with a, b are 
not allowed and ( r a n ) =  a a  + /3b E ~2. We drop the suffix referring to a ,b  
whenever possible. The generating function for q is, just as in (6.1), 

f ( X , Y )  = 1 + q ( m , n ) X m Y  n 
(m,n)EP•pos(a,b) 

l--I (1 + x i y  j + ( x i Y J )  2 + ... ) 
(i,j)EO•pos(a,b) 

VI (1 - x i Y  j) 1, 
P Apos (a ,b )  

where pos(a, b) = {x = sa + tb: s, t > 0}. 
Observe that any (i, j )  ~ P c~ pos(a, b) can be written uniquely as 

( i , j ) = s a  + t b + c ,  where s , t = 0 , 1  . . . . .  

and c E Q where 

Q = g2 ~ {x = ya + 6b:O < y , 6  <_ 1}. 
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It is c lear  that  IQI = Idet(a, b)l. Fur the r ,  every c ~ Q can be  wri t ten  uniquely  as 

c = 7 ( c )a  + 6(c)b ,  

where  {y(c):  c ~ Q} = {6(c):  c ~ Q} = {1/IQ], 2/[Q[ . . . . .  1}. This is well  known and 
easy to see as well.  

Now set Z = ( X ,  Y). Wi th  the new no ta t ion  

x i y j  = Z(i,J) = ZSa+tb+c = ( z a ) S ( z b ) t z  c. 

Then,  as in (6.3), 

l o g f ( X , Y )  = log Y'~ (1 -- x i y j )  -1 
P n pos(a, b) 

E E - - ( x i y j ) r  
~npos(a ,b )  r = l  r 

or 
E -1 E E I z(d)(Xivj)d~ 

r = l  F ~2npos(a,b)  d = l  

Iz(d) ~ dr 
= E T s ~ = O ~ = O  E [ ( z a ) s ( z b ) t z c ]  

d,r = c~Q 

~(d) E c ~ Q Z  cdr 
= ~ - -  

d,r r (1 - zadr)(1  -- Z bar) " 

Now set  Z a = e -x, Z b = e -y, and g(x,  y)  = log f ( X ,  Y) .  Wri t ing  z(c)  = y (c )x  + 
6(c)y we have 

g ( x , y )  = ~.~ Ix(d) Y'~c~Qe -z(c)d" 

d,r r (1 -- e - d r x ) ( 1  -- e -dry ) " 

L e m m a  2. For all x, y > 0 sufficiently small, 

IQI ~(3) 
I g ( x ' Y )  xy~(2) I 

< - -  501QI2 v r ~  + y2 log(x  2 + y2)  -1/2.  
xy 

Proof. Set M = t (x  2 + y 2 ) - 1 / 2 ] .  I n  view of  (6.5), 

g (x ,  y )  [Q[ ~'(3) y , / z ( d )  

xy~'(2) d,r r 

Y" c E Q e-z(c)dr Ia l  

(1 - e-d 'x)(1  - e - d r y )  x y d 2 r  2 

= ~ + Y'~ = ; S ( < M ) + S ( > M ) .  
dr<M dr>_M 
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Observe that 

e-r(c)kx 1 e v(c)kx 

1 - e kx 1 -  e -x  l + e -x  + . . .  + e  - (k  1)x 

< r 
x 1 1 2 

< h 
1 - e x x e v(c)kx + e (r(c)k- J)x + ... +e(~(c)k D(c)kJ)x -- y (c )kx"  

Using this we get, just as in (6.6), 

S(>_M)<_  E l [ y ,  2 2 
a~>_M r [ ' ~  y ( c ) d r x  a(c)dry 

] 
- -  + >v j 

1( 4 
=[QA E ~ 1 +  

xy dr>_M ~ 'y(C)~(C) 

16~" 2(2)1Q12 
< (7.1) 

xyM ' 

since ~ o ( y ( c ) 6 ( c ) )  -1 <_ ( E Q , y ( c ) - 2 E Q 6 ( C ) - 2 )  1/2 = EQ~'(C) -2 __< IQl2ff(2). 
For S(<  M)  we use Taylor expansion (6.7) and the same notation as there (with 

0 <_ ~(c) <_ z(c)).  

~ c  ~ Qe - ~(~) ar ]QI 

(1 - e dr*)(1 - e dry) xyd2r  2 

~ Q [ 1  -- z ( c )  dr + e-~(~)a~(z(c) dr)2~2] IQI 

[drx  - e - d r X ( d r x ) 2 / 2 ] [ d r y  - e - d r Y ( d r y ) 2 / 2 ]  d2r2xy 

IQI 
(d2r2xy)(1 - e -ar~ d r x / 2 ) ( 1  - e -dry dry~2)  

dr d2r 2 
- ~_,z(c) + Y'~e z'(c)drz2(c) 

5-o o 

dr dZr z ] 
+ - ~ ( e - d r ' ~ x  + e-dryy  ) --~---e-dr(yC + f:) xy . 

Here Y'~aZ(C) = (IQ] + 1)(x + y ) / 2 .  Moreover, Y'~aZ2(C) < 3JQ~(x 2 + y2)  follows 
from the Cauchy-Schwarz inequality. Then for the square bracket in the last 
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expression we have 

[(1 ,,,,+1) dr dr] 
I["" 11 < dr ~ + 21Q~--]-- (x + y )  + -~-(x 2 +y2)  + 7 x y  

v / ( x 2  + y 2 )  
<dr 3 2 + dr(x 2 + y2)] < 4 dr]l/~ + y2 

Consequently, we have 

IS(< M)f = r~<M Ix(d) ["" ] <--- 
d r 

41QIv/~ + y2 1 

dr 2 x y  dr < M 

4IQI~%--Y + y2 
< ~'(2)(1 + log M) ,  

xy 

as we saw in (6.9). This, together with (7.1) proves the lemma. [] 

The usual method now follows. Recall that c~a + /3b = (m, n). Set 

~ l O [  ff(3)/3 3/IQI ~'(3) ~ 
x = ~.(2)a 2 and y = W 

that give explicit values for X, Y. It is easy to see that, for (i, j)  ~ ~2 ("1 pos(a, b), 
x i w  is between 0 and 1 so that the generating function converges at (X, Y). Then 

l ogq (m ,n ) X mY"  <g(x,y) < alQ[~'(3----------~' (1 + 50IQIv/~5-+ y 2 log(x 2 +y2)-1/2). 
- xy((2) 

Further, XmY n = ( x a ) c ~ ( y b )  13 = e - ~ x - B y .  This gives, finally, 

IQI if(3) (1 + 501QIv~ + ye log(x 2 + y2) -1/2) log q(m, n) < ax + ~Sy + xy~'(2------3- 

33/IQI ~'(3) ~/3 
- < V if(2) (1 + 501QD71/a(T)) 

= 37v~(1 + 50det(T)rll/a(T)).  

Finally, we estimate p(m, n) where, when counting the convex lattice polygons, 
edges parallel to a or b are allowed. The proof method of Claim 3 shows that 
q(ml,  n 1) < q(m, n) whenever (m - m 1 , n - n 1) = sa + tb for some s = 0, 1 . . . . .  
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[ c~ ], t = O, 1 . . . . .  l / 3  ]. Consequently, 

p ( m , n )  = Y'~ q ( m  - m I , m  - n 1) 
( m - m  I ,n-nl)=sa +tb 

<_ et[3 r n a x { q ( r n l , n l ) : ( m  1 , n  I) ~ ~2  (.~ { ( r e , n )  -- Q}} 

_< T e x p { 3 ? V ~ ( 1  + l O O d e t ( T ) 7 1 1 / 4 ( T ) ) } .  
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