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Abstract. It is shown that for every k and every p > q > d +  1 there is a 
c = c(k ,p ,  q, d ) <  w such that the following holds. For  every family ~ whose 
members are unions of at most k compact convex sets in R d in which any set of p 
members of the family contains a subset of  cardinality q with a nonempty 
intersection there is a set of at most c points in R a that intersects each member  of 
~ .  It is also shown that for every p ___ q > d + 1 there is a C = C ( p , q , d )  < oo 
such that, for every family ~' of compact, convex sets in R a so that among and p of  
them some q have a common hyperplane transversal, there is a set of at most C 
hyperplanes that together meet  all the members of ft. 

1. Introduction 

In this paper  we study geomet r ic  problems of  the type in t roduced in [16] and 

cons idered  in var ious  subsequent  papers.  It is convenient ,  however ,  to make  the 

r equ i red  definit ions in the more  genera l  f ramework  of  abstract  families of  sets. Le t  

be a (finite o r  infinite) family of  (finite or  infinite) sets, and let o a- be ano the r  

family o f  sets. F o r  two integers  p > q we say that ,,~ satisfies the ( p ,  q)  property 

(with respect  to ,9 r) if for  any p member s  of  ~ (  there  is an F ~ ~ that  intersects  (at 

least)  q of  them. The piercing n u m b e r  of,,YC'(with respect  to o~-), deno ted  by p ( ~ ,  ~r), 

is the min imum n u m b e r  o f  member s  of  ,9 r that toge ther  mee t  all member s  of  X.  O u r  
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Basic Research administered by the Israel Academy of Sciences. 
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objective is to show that for certain geometrically defined infinite families ~,~ and J,, 
and for various values of p > q, there is a finite constant c = cG~,~, p, q) so that, 
for every ~ K c ~  that satisfies the (p,  q) property with respect to J ,  the piercing 
number P(~ ,  ~ )  does not exceed c. 

The best-known example of this form is the classical theorem of Helly [18]. In the 
notation above it can be formulated as follows. Let ~ be the family of all compact 
convex sets in the d-dimensional Euclidean space R a, and let 3 -  be the family of  all 
one-point subsets of R a. Then, if ~ c 2 2 ~  satisfies the (d + 1, d + 1) property (with 
respect to ~ ,  that is, if every d + 1 of the convex sets in ~?' have a common 
intersection), then P (~ ,9 - )  = 1 (i.e., all the sets have a common intersection). An 
extension of  this statement has been considered by Hadwiger and Debrunner [16]. 
They conjectured that for every p > q >_ d + 1 there is a c = c(p,  q, d) < ~ so that, 
f o r X a n d  ~gras above, if Y:~/~sat isf ies  the (p, q) property, then P(~ ,  J )  < c. This 
question became known as the (p,  q) problem and has been considered in various 
papers, including the survey articles and books [17], [7], [14], and [10]. Special cases 
have been proved in [16], [8], [12], [13], [24], and [26], and the general conjecture has 
recently been proved by Alon and Kleitman in [3]. 

Another  result that can be stated in the above notation is the main result of 
Eckhoff [11]. Here ~g~ is the family of all compact convex sets in the plane and .~r is 
the family of  all lines in the plane. It is shown in [11] that if ~,T(:~;~ satisfies the (3, 3) 
property with respect to o ar (that if, if every three members of ~ admit a common 
line transversal), then P(~,-J-)  < 4, i.e., there are four lines that together meet all 
the members of X. 

In this paper we extend the Alon-Klei tman piercing theorem to families of 
unions of convex sets and also prove a piercing theorem for hyperplane transversals, 
which extends Eckhoffs  theorem. Let .Tgk d denote the family of all sets in R d which 
are the union of at most k convex sets. 

Theorem 1.1. For every k and every p >_ q > d + 1 there is a c = c(k, p, q, d) < 
such that the following holds. For every family X c ~ d  that satisfies the ( p , q) property 
with respect to the faro@ J of  aU points o f  R ~, P ( ~ , 5  r) < c. 

The case k = 1 of  the above is the main result of  [3], conjectured in [16]. Note 
that the assumption p > q > d + 1 cannot be improved, as shown by any infinite 
family whose members are the intersections of hyperplanes in general position with 
an appropriate box. Such a family satisfies the (p, q) property for all p 2 q, q < d 
and yet has an infinite piercing number. 

For k > 1 Theorem 1.1 is interesting even for p = q > d + 1. It is well known 
(and quite easy, see [7]) that there is not finite "Helly number" for unions of convex 
sets, i.e., for every n and k > 1 there are examples of families of n sets in ~g(a, such 
that every n - 1 of them have a nonempty intersection but all of them have an 
empty intersection. 

An easy consequence of Theorem 1.1 is that ~k a has a finite "Helly order." A 
family of sets ~r has Helly order t if the following property holds. Let ~ be a 
subfamily of  ~ .  If every intersection of members of Y is in ~r and if every t 



Bounding the Piercing Number 247 

members of X have a nonempty intersection, then all members of Y have a 
nonempty intersection. 

Corollary 1.2. Put h(d, k)  = (d + 1)- c(k, d + 1, d + 1, d). The Helly order of  the 
family 32~k d is finite and bounded above by h(d, k). 

For the special case in which every intersection as above is a union of at most k 
pairwise disjoint convex sets, Morris [21] proved in his Ph.D. thesis that the Helly 
order is k(d  + 1). (The cases k = 2, 3 were already proved by Grfibaum and 
Motzkin [15].) The proofs in [15] and [21] apply in a more general context and use 
only Helly's theorem and purely combinatorial arguments. (However, Morris's proof 
is complicated and not fully understood and a simple proof is desirable. See the 
discussion on p. 399 of [10].) 

Another result we prove in this paper is the following. 

Theorem 1.3. For every p >_ q >_ d + 1 there is a C = C( p, q, d) < ~ such that, for 
every family ~ o f  compact convex sets in R a that satisfies the (p,  q) property with 
respect to the family ~ -o f  all hyperplanes in R a, P(  ~ ' , Y )  < C. 

Here, too, the assumption p > q >_ d + 1 is best possible, as shown by any infinite 
family 3 - o f  points in general position. 

It is known (and easy) that there is no finite Helly number for hyperplane 
transversals. Thus the case p = q = d + 1 of Theorem 1.3 is nontrivial and of 
particular interest. For d = 2 this special case is a weak form of Eckhoff's theorem 
on line transversals in the plane. 

Our proofs follow the basic approach of [3], but contain several additional ideas. 
The proofs of both theorems are based on the same general technique, which can be 
used for proving several additional results of the same type. 

The rest of the paper is organized as follows. In Section 2 we describe the general 
technique applied for proving both theorems above, and present the proofs of a few 
lemmas that are relevant in both cases. Section 3 contains the proofs of Theorem 1.1 
and Corollary 1.2. Theorem 1.3 is proved in Section 4. The final section contains 
some concluding remarks and open problems. 

2. The General Technique 

Let ~ and g be two families of sets, where ~ is infinite. Our objective is to show 
that under suitable assumptions, for every p >_ q > r there is a finite constant c 
(depending only on ~ ,  ~,, p ,  and q) such that, for every X c ~  that satisfies the 
(p,  q) property (with respect to ~r), p ( ~ ,  g )  _< c. Since we are not interested here in 
finding the best possible estimate for c, we may assume that q = r. This is because 
for q > r a n y ~  that satisfies the (p, q) property clearly satisfies the (p, r) property 
as well. In the cases considered here there is always a simple compactness argument 
that shows it suffices to (uniformly) bound the piercing numbers P(~ ,  ~r) for finite 
subfamilies ,U of ~ .  
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The desired bound for the piercing numbers P ( ~ , ~ )  is derived in three steps, 
described in the following three subsections. 

2.1. A Fractional Piercing Theorem 

Let ,,~ and 5 ~- be families of sets. If ~ '  c , , ~  satisfies P ( X ' ,  5 0  = 1, that is, there is 
an F E 3 - t h a t  intersects all members of ~ ' ,  we say that X(' is pierceable. We say 
that XT"satisfies the fractional piercing property o f  order r (with respect to 3-) if there is 
a function 6: (0, 1] ~ (0, 1] with the following property.  For  every c~, 0 < a _< 1, and 

every finite,,~c,g~, so that at least a { ~ r }  subfamilies ~- ~' 
~ k 

of cardinality r of X(are  
\ - - /  

pierceable, there is an F ~ ~ - t h a t  intersects at least 6(c~)~,s members  of Y. In this 
case we call 6 the fractional piercing function of  order r o f  ~ .  

In Sections 2 and 3 it is shown that various interesting infinite families ~ satisfy 
the above property. For  our  purposes we need the following consequence of this 
property. 

Proposition 2.1. Suppose ~ satisfies the fractional piercing property o f  order r with 
respect to Jr  and let 6 be the corresponding fractional piercing function. Then, for every 
p > r, there is a /3 =/3(6 ,  p,  r) > 0 with the following property. Suppose ~i ~= 
{H 1 . . . . .  H n} c f  -~ satisfies the (p,  r) property (with respect to o~-). Assume, further, 
that each H i ~ X intersects some member o f  J .  Let a 1 , . . . ,  a n be nonnegatiue integers, 
define m = Y'~ ~= lai, and let ~ be the family o f  cardinality m consisting of  a i copies o f  
H i for 1 < i < n. Then there is an F ~ 9-  that intersects at least t im members o f  ~.  

Proof. We prove the proposit ion with 

{+ /3 = rain , 6  

This estimate can be easily improved, but  we make no at tempt  to optimize the 
constant here and in what follows. If an i with a i > m / 2 p  exists, then, since there is 
an F ~ ~r  which intersects H i, the desired result follows, as fl <_ 1 /2p .  We thus 
assume that a i < m / 2 p  for all i. Denote  the members of W by Gi,j, i <_ i < n, 
1 < j  < ai ,  where, for each fixed i, the sets Gi, j are the a i copies of H i. Let Y be 
the family of all subsets 

{Gil , Jl . . . . .  Gip, Jp} 

of cardinality p of .~ in which i u ~ i v for all 1 < u < v < p. Since a i <_ m / ( 2 p )  for 
all i we conclude that 

1(  m )( 2m ) ( ,p l,m) t" 
_> ~-Tm m (2p )  m -  ( -~p)  .-. m -  (2p )  > p ! l  2 } " 
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Since ~ has the (p ,  r)  property,  for each member  T = {G i . . . . . .  G~ . } of J - t h e r e  
1 ,J1 P , J p  . 

is a pierceable subset S c T of cardinality r. Moreover,  the same subset S is (mr) 
contained in at most p - r members  of ~ .  It thus follows that the number of 

pierceable subsets of cardinality r of ~ is at least 

~Y~ > ( p  r)!  m '  > 
( m - r )  - 2 p p ' p - r  - r " 

By the definition of 8 this implies that there is an F ~ 5~-that intersects at least 

6 m > [ 3 m  

members of ~', completing the proof. 

2.2. Linear Programming Duality and Weighted Piercing 

In this subsection we combine Proposition 2.1 with Linear Programming duality to 
prove the following. 

Proposit ion 2.2. Suppose ~ satisfies the fractional piercing property o f  order r with 
respect to 9-  and suppose p > r. Assume, further, that each H ~, ,~ intersects some 
F ~ ~.  Let [3 be any rationalpositive real satisfying the conclusion o f  Proposition 2.1. 
Then the following holds. For every ~e ~= {H i . . . . .  Hn} c ~ r  that satisfies the (p, r) 

property, there is a finite (multi)-set y o f  members of  3 - such  that every H i ~ Y  
intersects at least [3 lYl members o f  y .  

For the proof  we need the following lemma, proved in [3], which follows easily 
from the min-max Theorem (see, e.g., [22]). 

Lemma 2.3. Let H = (V, E)  be a finite hypergraph and let 0 < y < 1 be a real. Then 
the following two conditions are equivalent: 

(i) A weight function f: V ~ R + satisfying ~ v f ( v )  = 1 and Y ' ,v~e f (v )  > Y 
for all e ~ E exists. 

(ii) For every function g : E ~, R + there is a vertex v ~ V such that ~ e ;  v ~ g (  e ) > 

TY'.~ ~ Eg(e). 

Proof o f  Proposition 2.2. For  each of the 2 n subsets 50 of ~ let F ~  be an arbitrarily 
chosen fixed element  F of ~9 r that intersects all members of 5 '~, in case there is such 
a set in ~ ,  and let F ~  be an arbitrary fixed element  of ~r  otherwise. We define a 
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hypergraph H = (V, E)  whose set of vertices V is the set of all those 2 n sets F~.  
The set of  edges of H consists of n edges e I . . . . .  e n defined as follows: 

e i = {F~ ~ V: H i ~ F~ -~ (~}. 

By Proposit ion 2.1, for every function g: E ~ R + for which g(e i) is rational for all i 
there is a vertex F ~ V such that 

~_~ g(ei)  >_ /3 ~ g(ei). 
l <i ~n; F~e~ i= 1 

By continuity, this holds without the rationality assumption as well. Therefore,  
by Lemma 2.3 there is a weight function f :  V ~ R + satisfying EF~ V f(F) = 1 and 

EF;F~e  f ( F )  ~ /3 for all e ~ E. Since such a function is a solution of a Linear 
Program with rational constraints there is such a function f for which f ( F )  is 
rational for all F. Let l be an integer so that l f (F)  is integral for all F,  and let ~/  
consist of l f (F)  copies of F for all F ~ V. The multiset ~ /  clearly satisfies the 
conclusion of the proposition. [] 

2.3. Weak e-Nets 

Let ~ a n d  9 -  be two families of sets. We say that 9-satisfies the weak e-netsproperty 
f o r ~ i f  for every e > 0 there is a finite integer b = b(e )  with the following property. 
For  every finite multisubset y of • there is a subset f of cardinality at most b of ,~- 
so that every H E, ,~  that intersects at least e l Y l  members of y intersects at least 
one member  of ~ .  

In the next two sections we describe some geometric examples of 9/~ and 3 - t h a t  
satisfy this property. The relevance of this proper ty  to the problems we consider here 
is clarified in the following theorem, which is the main result of this section. 

Theorem 2.4. Let ~e" and ~ be two families o f  sets. Suppose that: 

(i) Se~ satisfies the fractional piercing property o f  order r with respect to ~,, and euery 
H ~ ,~  intersects some F ~ ~.  

(ii) Jr  satisfies the weak e-nets property for ~ .  

Then, for very p > q > r, there is a constant c = c(~,, ~,, p,  q) so that for every finite 
,,~ c , ,~  that satisfies the ( p, q) property with respect to Y there is a set ~ o f  at most c 
members o f  Y that together meet all members o f  ~ .  

Proof. By (i) and Proposit ion 2.2 there is a /3 > 0 and a multiset ~" of elements of 
~r  so that every member  of gg intersects at least /3 k,~ members  of ~r By (ii) this 
implies that there is a subset ~ '  of at most c = b( /3)  elements of Y that together 
meet  all members  of ~ .  Since c is a uniform bound that depends only on X, J ,  p ,  
and q (and not on the actual subfamily,,~g) this completes the proof. []  
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The assertions of Theorems 1.1 and 1.3 can be deduced from the above result by 
showing that the corresponding ~ and ~r in both cases satisfy properties (i) and (ii). 
This is done in the next two sections. 

3. Unions of Convex Sets 

In this section we prove Theorem 1.1. This is done by combining Theorem 2.4 with 
two known results. 

The first known result is the following theorem of Katchalski and Liu [20] which 
can be viewed as a fractional version of Helly's theorem. 

Theorem 3.1 [20]. For every 0 < a <_ 1 and for every d there is a 6 =  6 ( a , d )  > 0 
such that, for every n >_ d + 1, every family o f  (not necessarily distinct) n convex sets in 

[ 

( n )intersecting subfamilies o f  cardinality R a which contains at least a d + 1 d + 1  

contains an intersecting subfamily o f  at least 6n of  the sets. 

Notice that Helly's theorem is equivalent to the statement that in the above theorem 
6(1, d) = 1. 

A sharp quantitative version of this theorem is proved in [19] and in [9], (see also 
[2] for a very short proof). All proofs of the sharp result rely on Wegner's theorem 
[25] that asserts that the nerve of a family of convex sets in R a is d-collapsible. Note 
that in our notation the above theorem means that the family of all convex sets in 
R a satisfies the fractional piercing property of order r = d + 1 with respect to the 
set of all one-point subsets of R a. 

Another known result we need is the following theorem proved in [1] by applying 
results from [4] and [23]. 

Theorem 3.2 [1]. For every real 0 < e < 1 and for every integer d a constant 
b = b(e, d) exists such that the following holds. For every m and for every multiset Y o f  
m points in R d, there is a subset X o f  at most b points in R d such that the convex hull o f  
any subset o f  e m  members o f  Y contains at least one point o f  X. 

In the language of Section 2 this is the assertion that the family of all one-point 
subsets of R d satisfies the weak e-nets property for convex sets in R d. 

Proof of Theorem 1.1. Let d and k be fixed positive integers. Let X'~=3Z'~ a be the 
family of all unions of k compact convex sets in R a. Let 5 r denote the set of all 
one-point subsets of  R a. 

Claim 1. X~ satisfies the fractional piercing property o f  order d + 1 with respect to Y.  

Proof. Let ,,W= {H 1 . . . . .  H n} be a finite subset of X, and suppose that at least 

( n ) s u b s e t s o f c a r d i n a l i t y d + l o f g ( a r e p i e r c e a b l e ,  i . e . , h a v e a n o n e m p t y  
a d + l  
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intersection. If n < d + 1 there is clearly a point  that lies in at least 1/n = 1 / (d  + 1) 
of  the members  of  ~ .  Otherwise, n > d + 1 and each member  H i of X is a union of 
k compact  convex sets Hi, i , . . . ,  Hi, k. Let ~" be the family of all kn convex sets 
Hi, i" By assumption, at least 

n > 1)a§ 1 d 1 a d + l  k2;~ ( d +  

(d  + 1) subsets of ,V are intersecting (where the last (d  + 1 ) ! / ( d  + 1) a+: term is 
required only for small values of n ( ~  d + 1)). By Theorem 3.1 this implies that 
there  is a point  that lies in at least 6kn members  of ff for some ~ = 6 ( a ,  d, k). This 
point  lies in at least 6n members  o f ~ ,  completing the proof  of the claim. [] 

Cla im 2. o~-satisfies the weak e-nets property for ~. 

Proof. Let y be a finite multisubset of ~ ,  let Y be the corresponding set of points 
in R a, and suppose e > 0. By Theorem 3.2 there is a set of  at most b = b(e /k ,  d) 
points X such that the convex hull of every set of at least e lYI / k  points of Y 
contains a point  of X. Let 2" be the subfamily of ~-consis t ing of all the sets {x} for 
x ~ X. Then r2"] = IXI -< b(e /k ,  d). If H ~Te ~ intersects at least e tYf  members of 
~,', then at least one of the k convex sets whose union is H contains at least e/k lYI  
members  of  Y and hence contains a point of  X. Since b(c /k ,  d) is only a function of 
k, d, and ~ this completes the proof  of Claim 2. []  

By Claims 1 and 2 and Theorem 2.4, for every p > q > d +  1 there is a 
c = c ( k , p , q , d ) <  ~ such that, for every finite , , ~ c ~  that satisfies the ( p , q )  
proper ty  with respect to ~ ,  P(Y, ~r) < c. This, together with a s tandard compactness 
argument,  completes  the proof  of Theorem 1.1. [] 

Proof of Corollary 1.2. Let  X be a family of  sets such that each intersection of 
members  of  the family is the union of  at most  k convex sets, and assume that each 
h(d, k) = (d + 1). c(k, d + 1, d + 1, d) of the sets have a nonempty intersection. 
Consider  the family,,~'  of all intersections of c = c(k, d + 1, d + 1, d)  of the sets. 
Each d + 1 members of X '  have a nonempty intersection and therefore, by 
Theorem 1.1, Y '  can be pierced by c points. We claim that at least one of these c 
points  lies in all the sets in X. To see this observe that otherwise for each of the 
points  there  is a member  of X that  misses it and the intersection of all these c 
members  does  not contain any of the points, contradicting their choice. Thus ~ is 
intersecting, as needed. [] 

4. Piercing by Hyperplanes 

In this section we prove Theorem 1.3 using Theorem 2.4. Let ~ be the family of all 
compact  convex sets in R a and let J - d e n o t e  the set of all hyperplanes in R a. 
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Proposition 4.1. ~ satisfies the fractional piercing property of  order d + 1 with respect 
to ~ .  

Proof. We apply induction on the dimension d. The result for d = I is trivial. 
Assuming it holds for d - 1 we prove it for d. 

L e t ~ =  {H 1 . . . . .  H n} be a finite subset of~, ,  and suppose that at least a d + 1 

subsets of cardinality d + 1 of X are pierceable. 
Call a d-tuple of members of ~ bad if it has a (d - 2)-transversal, that is, a 

(d  - 2)-ttat intersecting all members of the d-tuple. Otherwise call the d-tuple good. 
A subfamilyYF c~,~ is good if all d-tuples of distinct elements of X '  are good. 

We need the following known lemma, proved in [5]: 

Lemma 4.2. Let K1, K2,..., K d be convex sets in R a and assume that there is no 
(d - 2)-flat intersecting all o f  them. Then there are hyperplanes which are common 
tangents to all the sets and their number is at most 2 a. 

We now proceed with the proof  of the proposit ion and consider two possible 
cases. 

Case l." There are at least l3( d ) bad d-tuples of  elements of  Y ,  where fl = a / 2 ( d  + 1). 

In this case choose an arbitrary hyperplane L, and let h i be the orthogonal 
projection of  H i on L. Then h a . . . . .  h ,  are convex compact sets in a ( d -  1)- 

dimensional Euclidean space and at least /3 (b )  subsets o fcard ina l i ty  d o f t h e m  

have a (d - 2)-transversal. By applying the induction hypothesis we conclude that 
there is a (d  - 2)-flat M in L that intersects at least y ( f l ) n  of the sets in the 
projection. The hyperplane containing M which is orthogonal to L intersects all the 
6n corresponding sets /4,.. 

Case 2: ~ contains less than fl( d ) bad d-tuples of  elements of  X.  In this case there are 

at least 

( a -  ( d +  1)f l )  d +  1 d +  1 

pierceable good subfamilies of cardinality d + 1 of Z .  
Let ~ denote  the set of all hyperplanes that are common tangents to all members  

of some good subset of cardinality d of X. By Lemma 4.2, 

We need the following lemma: 

Lemma 4.3. Let K 1 , K 2 , . . . ,  Ka+ 1 be convex sets in R a such that there is a 
hyperplane intersecting them all and there is no (d - 2)-flat intersecting at least d o f  
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them. Then there is a hyperplane which is tangent to d of the sets and intersects the 
remaining set. 

Proof. The lemma follows from the following two facts: 

(a) Every d members from these d + 1 sets have a common tangent hyperplane 
(by Lemma 4.2). 

(b) The set of common tangent hyperplanes to any subset of k of the sets, for 
k < d, is connected, as proved in [5]. [] 

We now return to the proof of the proposition. It follows from the last lemma 
that every good pierceable subfamily of d + 1 members of H is pierced by a member 
of ~.  Therefore, an averaging argument shows that some m e m b e r G  of ff  intersects 
at least 

a (  n ) /[~[ > y ( a , d ) n  
2 d + l  

subfamilies of cardinality d + 1, all containing the d sets used to define G (as one of 
their common tangents). Here y = y ( a ,  d) > 0 depends only on a and d. It follows 
that G is a hyperplane that intersects at least yn subsets o f ~ ,  as needed. [] 

Proposition 4.4. ~ satisfies the weak e-nets property for ~ (and in fact even for the 
family of all connected subsets of Ra). 

This proposition is a simple consequence of the following result proved in [6]. 

Theorem 4.5 [6]. For any dimension d, a constant c(d) with the following property 
exists. For every r < n and every family y of n (not necessarily distinct) hyperplanes in 
R u, a collection of at most c(d)r d (possibly unbounded) simplices with pairwise disjoint 
interiors, whose union covers R u, exists such that the interior of any of them is intersected 
by at most n / r  of the given hyperplanes. 

Proof of Proposition 4.4. Let y be a finite multisubset of ~,, that is, a family of n 
hyperplanes in R a, and suppose e > 0. By Theorem 4,5 with, say, r = 2 / 6  there is a 
collection of  at most c(d)(2/e)  a simplices satisfying the assertion of the theorem. 
Let ~ be the set of all hyperplanes determined by a facet of at least one of these 
simplices. Then ] ~  < b(e,  d). Moreover, if H is a connected subset of  R a which 
does not intersect any member of ~ ,  then it must be contained in the interior of one 
of the simplices and hence can meet at most n / r  < en members of ~/. This 
completes the proof. []  

By Propositions 4.1 and 4.4 and Theorem 2.4, for every p > q > d + 1 there is a 
C = C(p, q, d) < ~ such that, for every finite g ( c ~  that satisfies the (p,  q) prop- 
erty with respect to 5 r, P ( ~ , 5  v) < C. This, together with a standard compactness 
argument, completes the proof of Theorem 1.3 [] 
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5. Concluding Remarks and Open Problems 

1. The arguments in Section 3 can be easily modified to supply a proof  of the 
following theorem. 

Theorem 5.1. Let ~ and ~ be two families of  sets, and let k > 1 be an integer. Let 
Y ( k  ) denote the family of  all unions of  k members of  ~ .  Then: 

(i) I f  ~ -~ satisfies the fractional piercing property of  order r with respect o f  ~,, then so 
does .~ (  k ). 

(ii) I f  9- satisfies the weak e-nets property for ~ ,  then it satisfies this property for 
~,~( k ) as well. 

This together with Propositions 4.1 and 4.4 imply the following. 

Theorem 5.2. For every p >_ q >_ d + 1 and every k there is a C = C(k,  p, q, d) < 
such that, for every family ~ whose members are unions of  k compact convex sets in R a 
that satisfies the (p ,  q) property with respect to the family o~-of all hyperplanes in R a, 
P ( ~ , y )  _< C. 

2. Theorem 1.1 with k = 1 and Theorem 1.3 deal with the problem of piercing 
compact  convex sets with flats of dimension 0 and d - 1, respectively. It would be 
interesting to prove an analog of these results for flats of intermediate dimensions i 
for 1 < i _ < d - 2 .  

The first open case is that of line transversals in space. At  the moment  we cannot 
prove a fractional Helly theorem in this case. In fact, we cannot even answer the 
following problem. 

Problem. Let r > 5 be an integer. Is it true that if n is sufficiently large, every 
family of n convex sets in space such that every r of them have a line transversal 
must contain r + I sets having a line transversal? 

3. The proofs of Theorems 1.1 and 1.3 are constructive. Under  suitable assump- 
tions which ensure that the structures described in the conclusions of Theorem 3.1 
and Lemma 4.2 for sets in the given families can be found efficiently, these proofs 
yield, for every fixed d, polynomial-t ime algorithms for finding the corresponding 
piercing sets. We omit  the details of these algorithmic procedures. 

4. It would be interesting to find additional natural families ~ and ~-  for which 
theorems of the type considered here can be proved. The techniques developed in 
[3] and in this paper  can certainly be applied in additional cases. 
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