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Abstract. William Thurston conjectured that the Riemann mapping function f from 
a simply connected region f~ onto the unit disk D can be approximated as follows. 
Almost fill f~ with circles of radius e packed in the regular hexagonal pattern. There 
is a combinatorially isomorphic packing of circles in D. The correspondence f~ of 
e-circles in ~q with circles of varying radii in D should converge to f after suitable 
normalization. This was proved in [RS], and in [H] an estimate was obtained which 
led to an approximation of If'L in terms off~; namely, If ' l  is the limit of the ratio 
of the radii of a target circle of f, to its source circle. In the present paper we show 
how to approximate f '  and f "  in terms of f~. Explicit rates for the convergence to 
f, f ' ,  and f "  are obtained. In the special case of convergence to I f ' [ ,  the estimate in 
this paper improves the previously known estimate. 

Introduction 

In [T]  Thurs ton conjectured that the Riemann mapping function from a region 
onto  the unit disk ~) can be approximated as follows. Almost fill f~ with circles 

of radius e packed in the regular hexagonal pattern. There is a combinatorially 
isomorphic packing of circles in D. This correspondence f~ of e-circles in f~ with 
circles of varying radii in D should converge, with suitable normalizations, to the 
Riemann map f :  ~ --* ID. 

This conjecture was proved in [RS].  There the question was raised of whether 
the ratio of the radius of a target circle to the radius of  its source circle under f~ 
converges to I f ' ] .  In [ H I  an estimate was obtained which gave an affirmative 
answer to this question. The estimate also provided, in conjunction with [R2],  an 
explicit estimate for the rate of convergence f,  ~ f .  
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In this paper we approach the problem of approximating f '  and f "  in terms 
of f ,  as follows. A triple of mutually tangent e-circles in the packing of f~ 
corresponds under f,  to a triple of mutually tangent circles in the packing of 9. 
There is a unique M6bius transformation which maps the first triple onto the 
second. The first and second derivatives of f~ in the neighborhood of the three 
source circles are defined to be the derivatives of this Mrbius transformation. 

With this definition we show that f', ~ f '  and f~' ~ f "  (this method does not 
work for higher-order derivatives since the Schwarzian derivative of f need not 
vanish). The method gives explicit estimates for the rates of convergence of f ,  --* f ,  
f'~ --* f " ;  see Theorem 2.4. The rate which is obtained for f~ -o f is an improvement 
over the previously known estimate. 

In this paper we treat only circle packings having the hexagonal pattern. Similar 
results but with weaker estimates can be obtained for other classes of circle 
packings by combining the techniques of this paper with those in [HR]. 

1. Local Theory 

In this section we present results from I-H] and derive consequences which are 
needed later. We consider a base circle and let H, denote the regular hexagonal 
circle packing of n generations around Co; by "regular" we mean that all circles 
have the same radius. Let H'. denote a circle packing which has the same tangency 
combinatorics as H.; the circles of H'. need not have equal radii. Let c --* c' denote 
the correspondence of circles under the combinatorial isomorphism H. ~ H'.. 

A circle g (resp. g') which passes through the three points of tangency of three 
mutually tangent circles of H~ (resp. H'~) is called a dual circle of H~ (resp. H'n), 
and the disk/9 (resp./)') which it bounds is called a dual disk of H. (resp. H'~); see 
Fig. 1. 

Notation. Let ci, c~, ck be three mutually tangent circles of H n, and le t / )  be the 
dual disk determined by the three tangency points cl n cj, cj n Ck, Ck n c~. The 
Mrbius transformation which sends ci n c~, c~ n ck, Ck n ci to the corresponding 
tangency points c'i n c), c) n c~,, c~, n c'i in H'n is denoted by M~. 

Throughout this paper C, C1, C2 . . . .  denote absolute positive constants which 
may change with the context. 

q 

q ~ c ~  b 

Fig. 1. el, c2, c3 are mutually tangent circles of H~, and ~ is the circle dual to cl, c2, c3. The shaded 
disk/J is a dual disk of H. .  
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Fig. 2. 

Lemma 1.1. Given H.  and H'., where n > 2, there is a C-quasi-conformal 
homeomorphism g: C --* C with the followin 9 properties: 

(i) g maps Co and its six neighbors ci (1 < i < 6) onto the corresponding circles 
c~ (0 < i < 6) of H',, and maps the center of Co to the center of C'o. 

(ii) Let D be a dual disk of H,  which intersects c o. Then 01o is equal to the 
restriction to D of the M6bius transformation Mt~ (see Fig. 2). 

(iii) Let D o be the disk bounded by c o. Then the gJD0 is conformal except on a 
"bad" subset of area < (C/n 2) Area(Do). 

Proof. A detailed proof is given in [H]. Briefly, g: C ~ C can be constructed as 
follows. First define g on each triangular interstice of H. to be the unique MObius 
transformation which maps that interstice onto the corresponding interstice of H'.. 
This defines g on each circle of H.. The Ring Lemma of [RS] shows that the 
radial extension to the inside of each circle will be quasi-conformal. Redefine 
g outside the circles and interstices of Htn/2 ] to obtain a C-quasi-conformal 
homeomorphism of the entire plane. Finally, modify this map on the inside of the 
circles so that it becomes equivariant with respect to inversions in the circles of 
H,. Since inversions of interstices pave the dual circles, conditions (ii) will be 
satisfied. The proof of condition (iii) requires delicate estimates of the area of the 
images of dual circles under inversions. []  

Lemma 1.2. Given H.  and H'., where n > 2, let P._ 1 (resp. P'~_ 1) be the polygon 
whose boundary consists of line segments joining the centers of pairs of tangent circles 
of generation n - 1 of  H.  (resp. H'.); see Fig. 3. Then there is a C-quasi-conformal 
homeomorphism g.: P._ 1 ~ P' .- l  with the following properties: 

(i) g. maps circles or arcs of circles of  H._ 1 onto the corresponding circles or 
arcs of  circles of H'~_ 1. 

(ii) For each dual disk D of H._ 1, g.l~ = Mt~lt~, where M~ is the Mbbius 
transformation defined above. 

(iii) For any disk D in Hk\Hk_ x, where 0 < k < n - 2 (convention: H_ 1 = ~) ,  
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Fig. 3. P2 = the shaded polygon. 

the area o f  the subset o f  D where g. fails to be conformal is bounded from 
above by 

C 
- -  Area(D). 
(n - k) 2 

Proof. First define gn in each dual disk/~ of H.  by g~l~ = Mt3Jo. Conditions (i) 
and (ii) will then be satisfied. 

Consider a circle c ~ H k \ H  k_ 1 (0 ~_ k <_ n -- 2) and let D be the disk it bounds. 
By Lemma 1.1 there is a C-quasi-conformal mapping g from D to the correspond- 
ing disk D' in H'. such that: 

(a) on each dual d i sk / )  of H.,  g l o ~  = g.[o~6, and 
(b) the area of the subset of D on which g fails to be conformal is less than 

(C/(n - k) 2) Area(D). 

By defining g.lo = g we obtain a C-quasi-conformal map g. defined on the union 
of disks and dual disks of H ._  1 which satisfies properties (i)-(iii). The complement 
in P._  1 of this union consists of regions such as those shown in Fig. 4. 

It remains to extend g. uniformly quasi-conformally to these regions so the 
images are the corresponding regions in P'._ 1. All the circles c, cl, Cz . . . .  in 
Fig. 4 are in H._ 1. By the Ring Lemma of [RS-], the radii of the corresponding 
circles in H'. have uniformly bounded ratios. Thus it is elementary to extend g. 
suitably. []  

Lemma 1.3. The map g.: P ._  1 --" P'.- 1 o f  Lemma 1.2 is conformal except for  a 
subset whose area is bounded from above by (C/n) Area(P._ 1). 

(a) 

1 

(b) 

Fig. 4. (a) c 1, c, c~ �9 H . _  l \ H n _  2, c2, c3 �9 H . _  2, and c l ,  c2, c3 are dual  circles. (b) c l ,  c3 �9 H . _  I \ H . _  z, 
c 2 E H . _  z, and  cl ,  c2 are dual  circles. 



Second Der iva t ives  of  Circle P a c k i n g s  a n d  C o n f o r m a l  M a p p i n g s  39 

Proof The bad subset of g, is contained in the union of  disks bounded by the 
circles of H ._  1. Let r be the radius of the circles of H, .  The number  of circles in 
Hk\Hk-  1 is 6k (or 1 if k = 0). For  0 < k < n - 2, Lemma 1.2 implies that the bad 
area inside the circles of H k \ H  k_l is bounded above by (6kC/(n - k)Z)rcr z (or 
(C/n2)rcr z if k = 0). This bound also applies for k = n - 1 if we let C _> 1. Thus 
the total bad area is bounded by 

CTzr 2 n -  1 6k Crcr 2 . i 6(n - j) 
n ~ + k Z ,  (n k) ~ Cnr2 - n z + ~ )2  Crtr2 

= - -  j = l  

Crtr 2 . -  1 1 
< n2 +6Cnnr2  ~1J2 

j =  

<_ Clnr z ~ "  --C2 Area(P._ 1). []  
n 

If a quasi-conformal self-map ~o of the unit disk satisfies cp(0) = 0, ~o(1) = 1, and 

is conformal except for a set of measure e, then I~0(z) - zl < Cx/~; this fact is 
referred to as the Gr6tsch argument for conformal moduli  and was proved in [HI  
as an essential step in the C/n-estimate for s.. Together with the proof  of Lemma 
1.2 it gives 

Lemma 1.4. Let g.: P ._  1 ~ P',- 1 be as in Lemma 1.2. Then there is a euclidean 
similitude S (that is, a map of  the form z ~ S(z) = Z'o + rei~ - Zo) where z o and Z'o 
are the centers o f  c o and C'o) o f  the inside o f  c o onto the inside o f  C'o such that, for 
all z inside Co, 

I g . ( z ) -  S(z)l < ( C )  Radius(c'o). (1.1) 

The following variation of Lemma 1.4 allows a better approximation for g. in 
some circumstances. 

Lemma 1.5. Let g,: P . _ I ~ P ' . _ a  be as in Lemma 1.2. Let D be a disk of  
H k (k <_ n - 2) and let D be a dual disk o f  H._  1 which meets D. Then 

g.(D) = M A D )  = D', 

where M~ is the Mfb ius  transformation which was defined above Lemma 1.1 and D' 
is the disk o f  H'._ x which corresponds to D, and 

C 
[g.(z) - M~z)[  <_ (n - k) - - - - - ~  Radius(D'), Vz ~ c~D. (1.2) 



40 P, Doyle, Zheng-Xu He, and B. Rodin 

Fig. 5. 

2 
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C 
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6 

D n D~ (1 < i < 6) are the shaded regions. 

Proof  The fact that 9 . ( D ) =  Mrs(D)= D' follows from Lemma 1.2(i). We may 
assume that Radius(D) = Radius(D') = 1. Now Mt~ maps 13 to /3 '  and carries the 
three circles of H ._  i which de te rmine /3 - - say  c~, c~, ok--to three circles c'~, c~, c~, 
of H'._ 1. One of these three circles from H ,_  1 is OD. By the Ring Lemma [RS] 
and the normalizat ion Radius(D) = Radius(D') = 1, we conclude that the radii of 
c~, c~, c}, are all uniformly bounded from below. Hence t(d/dz)Mol is uniformly 
bounded above in D and therefore ]g.(z) - M~(z)[ _< C I I M ~ o  g.(z) - z]. Hence it 
suffices to prove 

[M~ 1 o g.(z) - z[ <_ C(n - k ) -  2, Vz ~ 3D. (1.3) 

Let /31 = /3 ,  / 32  . . . . .  / 3 6 ,  be the six dual disks of H ._  1 which meet D (see Fig. 
5). By Lemma 1.2(ii), the restriction of h - M~ 1 o 9, : /3 ~ / 3  to each region/3 n/3~, 
1 _< i _< 6, is a M6bius transformation.  In particular, the bad subset B c D where 
h (equivalently, 9.) fails to be conformal satisfies 

B~D\U{Dn/3,: 1 < i < 6 }  (1.4a) 

and 

Area(B) < C(n -- k ) -  2. (1.4b) 

Since the restriction of h to D n /31  is the identity, (1.3) will follow if we show 
that 

I h ( z ) - z l < C ( n - k )  -2, Y z e d D c ~ B i  for i = 2  . . . . .  6. (1.5) 

Since h is a M6bius transformation on D c~/31, it suffices to prove (1.5) only for 
three distinct points ~ on the interior of the arc 0D c~/3~ (for i = 2 . . . . .  6). 

Fix three points wl, w2, w3 on the interior of the arc aD n/31.  They will 
be left fixed by h. Consider ~ on the interior of the arc t3D n /3 i ( i  ~ 1). 
The quadrilaterial  (/3, wl, w2, w3, if) is mapped  by h onto the quadrilateral  
(s wl, w2, w3, h(~)). Since the bad set B is bounded  away from w 1, w 2, w 3, ~ (see 
(1.4a)), a Gr6tsch argument  similar to [H-] using (1.4b) yields an estimate on the 
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moduli of these quadrilaterals 

Imod(/3, wl, W2, W 3, () --  mod(/),  wl, W 2, W 3, h(O)l -< Cl(n - k) -2  

and consequently the desired estimate t h(() - (1 _< C 2 ( n  - -  k ) - 2 .  [] 

Lemma 1.6. Let 9.: P , -  I -* P',- ~ be as in Lemma 1.2, let k < n - 1, let c be a 
circle in H k, and let Co be the base circle in Ho. Then 

1 Radius(9.(c)) < < C k/(n-k). (1.6) 
C k/("-k) - Radius(g~(Co)) - 

Proof. The estimate sN < C~/N in [H-I implies that if c' and c" are tangent circles 
in H'._ 1 of generation < k, then 

1 C1 Radius(c') C 1 
< < 1 + - - ~  (1.7) 

(n - k) - Radius(c ')  - (n - k)" 

Let Co, c~ . . . . .  c be a chain of tangent circles in H._  1 of generations 0, 1 . . . .  up to 
the generation ( <  k) of c. Apply (1.7) to adjacent pairs in g.(Co), g.(cl) . . . . .  gn(c) and 
multiply to get 

1 ( C 1 )  k Radius(g . (c) )  ( C 1 ~  k 
- - <  1 < < 1 + < ck/(n-k). [] 
C k/(n-k) -- (n ~ k) - Radius(g.(co) ) - ( n - ~ k ) J  - 

It will be convenient to normalize the scale factor so that  P .  is a regular hexagon 
of side length L, where L remains within prescribed bounds K- 1 < L < •. OK(x) 
and O~.t(x) denote functions such that  IO~(x)/xl is bounded by a constant  
depending only on K, and I O~,,(x)/xl is  bounded  by a constant  which depends on 
x and t. The bounds  may  change from one occurrence to the next. Constants  
denoted C~ (or C~.t) depend on x (or x and t). 

The following corollary follows from Lemmas  1.4-1.6 by taking Co and c~ to 
have radii O~(1/n). Part  (iv) is an immediate  consequence of part  (ii). 

Corollary 1.7. Let  x be a f i xed  positive constant. Normalize the radii o f  the circles 
in H .  and H'~ so that x/2n < Radius(co) < (2Kn)-1 and 

K/2n < Radius(c~) < (2xn)-1. 

For z e P . - I  let M z denote the M f b i u s  transformation M~ (see the definition 
preceding Lemma 1.2), where D is a dual disk o f  H .  closest to z. Let  t > 0 and let 
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P(t) = {z ~ P ._  1: Dist(z, OP,_ 1) >- t}. Let g.: P ,_  1 ~ P'.- 1 be as in Lemma 1.2: 

(i) For any disk D in H ,_  2 which meets P(t) there is a euclidean similitude S o f  
D onto D' such that 

o(,) o . ( z )  - S ( z )  = ~,, ~ , V z  e f t .  

(ii) For any disk D in H ._  2 which meets P(t) and for  any zo ~ D we have 

0 ( ' )  O,(z) - Mzo(Z) = ~,, n3 , Vz  e dD. (1.8) 

(ii') For any disk D in H ._  z which meets P(t) and for  any Zo ~ D we have 

o(1) 9.(z) - Mzo(z) = ~., ~ , Vz e D. (1.9) 

(iii) For any disk D in H ._  1 which meets P(t) we have 

Radius(o.(D)) = 0~,, . (1.10) 

(iv) For any disk I) in H ,_  2 which meets P(t) and any two dual disks D1, D2, 
which meet D, we have 

M~,(z)--  M~2(z)= O , ( ~ ) ,  Vz~/~. (1.11) 

Lemma 1.8. Let t > O, and normalize the packings H.  and H', as in Corollary 1.7. 
There is a 6 = 6(K, t) > 0 such that, for any z o ~ P(t), 

C~., Vtz Zo[ < 6. (1.12) [O.(Z) - Mzo(Z)l < C~a[z - Zol 3 + nZ , 

l f  z is in the union o f  dual disks o f  H .  and also satisfies [z - Zo[ < 6, then 

C~, (1.13) [g.(z) - Mz0(z)] _< C~,,]z - Zol 3 + n~-. 

Proof  Le t / )  be a dual disk of Hn-2 which intersects P(t) and let D be a disk of 
H._ 2 which intersects/). On 0D, Mt~ is O..,(1/n3)-close to g., and g. is O.,,(1/nZ) - 
close to a similitude S of D onto D' (Corollary 1.7). Therefore the center of D is 
moved by Mo a distance O..,(1/nZ). By symmetry in OD, which has radius O.(1/n), 
it follows that the pole of Mo is at a minimum distance C.a > 0 from the center 
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of D. Consequently there is a 6 = 6(x, t) > 0 such that, for I z - t/I -< 26, Mn(z)  is 
bounded away from oo and (d/dz)Mn(z) is bounded away from 0 and oo. Choose 
6 < t/3. (We remark for later reference that  the second and third derivatives of  
Ma are also bounded away from oo in this ne ighborhood of t/.) 

One consequence is that  (1.12) holds trivially if n is bounded.  We may  therefore 
assume n is large ( >  6t) and z o is the center of some disk D O of H ._  2. 

Given z with Iz - Zol < 6, construct  an alternating sequence D o,/3 o, D 1 . . . . .  D,., 
/)~. of disks and dual disks such that  adjacent disks intersect, each disk is at a 
distance < 26 from z o and hence in P, /3 ,  z E Drn U IDrn, and 

m < CKnlz  - Zol. (1.14) 

Since z e/~,. u D., and 9. = M0m in / ) , . ,  it follows from (1.9) that  

0 (  1 ) g,(z) --  M~m(z ) = K,, n5 " (1.15) 

Thus the proof  will be complete if we show that  

Im~.(z) - Moo(z)[ _< C J z  - zol 3. (1.16) 

By (1.11), for 0_< k _< m - 1, 

O~,,( 1 ) Mt~k(~) -- M0k+,(~) = ~ , V~ e/)k.  (1.17) 

By the remark  at the beginning of the proof  concerning the boundedness  of the 
derivatives, (1.17) implies 

- '  O ( ' )  

Now T k - 1 = M0k+, ~ M ~  is a M6bius  t ransformat ion which leaves DR invariant and 
is small on ODk; we wish to estimate its magni tude at z, a distance 

< C~(m - k + 1)/n 

from the center of D R . For  that  purpose we make  the following observation,  the 
verification of which is left until the end of this proof. 

Observation. Let T be a M6bius  t ransformat ion which leaves invariant  a disk of 
radius r centered at ;7. Suppose l i T ( z ) -  zlll~-,l=~ < ~o where e o < r/2. Then 
liT(z) - zlflz-,l=R < 12eoR2/r2 where r < R < r2/2eo . 

In order  to apply this observat ion to Tk=M/~kl+ oMok set r = O . ( 1 / n ) ,  
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eo = O,,.t(1/n3), R <_ C~(m --  k + 1)/n, and obtain 

(!)(~ I Mnk+, ~ Mn~(z) -- z[ < C~,t 

or, by using the boundedness of the derivative again, 

[Mo~(z) - Mo~+,(z)[ < C~,, n 

Summing (1.18) from k = 0 to m - 1 gives 

[mo,(z) - Moo(z)[ <_ CK,, (22 + 32 + "" + (m + 1) 2) < C~., ~ , (1.19) 

since 12 + 22 + ... + j 2  = j ( j  + 1X2j + 1)/6. Since m/n  < C~lz  - Zo] (see (1.14)), 
(1.19) implies (1.16) which completes the p roof  of (1.12). 

If z is also in the union of dual disks of  H, ,  then the right-hand side of (1.15) 
can be replaced by OK.t(1/n3), and we obtain  (1.13). 

To verify the observation, assume q = 0 and write T in the form 

r2 ei~ -- a) 

T(z )  - r 2 --  ~z 

Note  that [ T(0) - 0[ = [~1 < Co. F rom ] T(r)  - r] < eo obtain 

[r3(e i~ - 1) - rZ(ei~ - ~)[ < ~olr - ~lr < 2Co r2, 

and therefore [r3(e i~ - 1)[ < 2~o rz + r2[ei~ - ~] < 4Co r2. This shows that  

4Co 
[e i ~  1[ < - - .  (1.20) 

P 

Similarly, T(z)  - z = (rez(e i~ - 1) - r2ei~ - ~z2)/(r 2 - ~z). Now 

1.2 
Ir 2 -- ~z[ ~ r 2 - - l a i R  > ~-, 

since [a]R _< eoR  <_ r2/2. Using this and (1.20) we obtain 

[T(z)  --  z[ < ( ~ ) l r Z z ( e  ~~ - l)  --  r2ei~ - ~zZ[ 

= 8~o + 2~o + 2~o 

_< 12e o . [ ]  
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2. Global Theory 

We now consider the situation in [RS-] of circle packing approximations to the 
Riemann mapping function. Let ~ be a bounded simply connected region in the 
plane, let a and b be given points of f~, and let f be the Riemann map of f~ onto 
the unit disk D normalized by the two conditions: f ( a )  = 0, and f (b )  lies on the 
positive real axis. 

The circle packing approximations to f are constructed as follows (see ERS] 
for complete details). Almost fill f~ with circles of radius e > 0 packed in the regular 
hexagonal circle packing pattern. Consider an isomorphic circle packing of D such 
that two circles of ~,  one nearest a and the other nearest b, are centered at the 
origin and on the positive real axis. 

This correspondence of circles may be considered an approximate mapping f~ 
of G onto  D. We define the f i rs t  derivative and second derivatives o f  f~ at z as 
follows. Pick a dual circle closest to z, let M Z be the Mrb ius  transformation which 
maps it and the three distinguished points on it to the corresponding dual circle 
and three distinguished points in the packing of •. Set f'~(z) = M'z(z ), f'~(z) = M~(z). 

We shall see that f'~, f~' converge to f ' ,  f " .  We also obtain improved estimates 
of the rate of  convergence of f~ to f .  

In order to make convenient use of the local theory in Section 1, let us redefine 
f~ so it will be an actual homeomorph ism of an approximating subdomain f~ = f~ 
onto an approximating domain D~ = ~. For  a nonboundary  disk D in the packing 
of f2, there is a maximal H m configuration of disks surrounding it. There is a 
corresponding H"  configuration in ~. If m _> 2, define f~ in D and the six dual 
disks intersecting D to be the mapping g of Lemma 1.1. 

Lemma 2.1. Let  K = = f2. There are constants C K > 0 and 6 r > 0 such that, for  

any z o ~ K,  

]f~(z) -- [f~(zo) + f'~(Zo)(Z -- Zo) + �89 -- Zo)/]l < CKIz -- zol 3 + CKe 2 

for  [z -- Zo[ < fix. I f  in addition z is in the union o f  dual disks, then the right-hand 
side can be improved to Cr[z  - Zo[ 3 + Cre  3. 

Proof  If  z 0 e K and Do is an e-disk in the packing of f /neares t  to z o, then there 
is an H,  configuration centered at D o, where n > x/e for x = Dist(K, Off)/4. By 
Lemma 1.8 there is a 6 x > 0 such that [f~(z) - Mzo(Z)l < Cr( l z  -- Zot 3 + e 2) for 
[z -- Zo[ < 6x (or Cx(lz - Zo[ 3 + e3) if in addition z is in the union of dual disks) 
where we write CK instead of C,.  Thus we have 

I f~(z) - [f~(zo) + f'~(Zo)(Z - Zo) + �89 - Zo)2][ 

< [f~(z) - M,0(z)l + IMzo(Zo)-  f~(z0)l 

+ I M,0(z) - M~o(Zo) - M'-o(Zo)(Z - Zo) - x ,, ~ M , o ( Z o ) ( Z  - Zo)~l 
"< CK[Z -- 7.013 q- CK e2 -k CK E2 "[- CKIZ -- ZO[ 3, 

where the estimate on the last term rests on the remark on the boundedness of 
third derivatives in the proof  of  Lemma 1.8. [ ]  
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The next lemma is used to improve the estimate in [R2, Theorem 5] for the 
rate of convergence of f .  ~ f.  

Lemma 2.2.1 Let g(Z) = Z + a2 Z2 -q- " ' "  be a schlict function defined in the unit disk 
D and let e > O. Then there is a constant C depending only on e such that, for all 
measurable subsets A c D, meas(A)  < C(meas(g(A))tl/3~-~). 

Proof  Let  1/p = (�89 - e, 1/q = (~) + e so ( l /p )  + ( l / q )  = 1. T h e n  

g( '  
meas(A) = J J A  Ig'I2/PIg'I-2/P dx dy 

< ([g'12/P) p dx dy (Ig ' l -2/p)  q dx dy . 

N o w  2q/p = 1 - 3e/((~) + e) < 1. By the  K o e b e  D i s t o r t i o n  T h e o r e m ,  

C 
Ig'(z) l ~ - - - -  

(1 - [ z l )  

so 

f I A  lg'l-2q/p dx dy < C f f D  (1 - [ z l )  -2q/p dx dy < C. 

Therefore 

meas(A) < C (Ig'l  2 dx dy = C(meas(g(A))~l/3)-e). [] 

L e m m a  2.3. Let K c ~ ~.  Then there is a constant CK such that 

IIf~ - fllK ~ CK/~0"1428. 

Proof We make use of the proof of Theorem 5 in l-R2]. There we wrote W~ for 
the domain of f~, De for the image of f~, and we considered the Riemann mapping 
functions Gw,: W~ ~ D and Go,: D~ ~ D which are normalized by the conditions 

1 Christian Pommerenke (oral communication) has shown that the exponent ( ] ) -  e can be 
improved to 0.405... by applying the proof given here in conjunction with a result of his (On the integral 
means of the derivative of a univalent function, J. London Math. Soc. (2) 32 (1985), 254-258), and 
could be replaced by 0.5 if the Brannan conjecture (J. E. Brannan, The integrability of the derivative 
in conformal mapping, J. London Math. Soc. (2) lg (1978), 261-272) were true. 
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Gw,(Zo) = 0, Gw,(ZO > 0 and Go,(O ) = 0, GD,(f~(zo) ) > 0. We then estimated each 
term on the r ight-hand side of 

I f ( z )  - f~(z) l ~ I f ( z )  - Gw,(Z) l + I Gw~(z) - GD~~ f~~ Gw)(Gw~(z))l 

+ I Go,(L(z)) - L ( z )  l (2.1) 

(see (3.1) and (3.17) in [R2]). The first and last terms on the right were found to 
be bounded by Cre I/z and C x e " ,  respectively. We now obtain an improved 
estimate of the middle term. Now h - Go, o f~ o Gw~ is a quasi-conformal self-map 
of D; we estimate its bad area and then use the "Groetsch method"  to compare 
h with the identity map. 

Let p be a positive number  which may  depend on e; we postpone an explicit 
choice of p until the end of the proof. The bad area of  f~ in f2 consists of two 
parts: the part  in Kp = { z ~ g ) : d i s t ( z , O ~ ) > p } ,  call it B 1, and the part  Bz in 
f~ - Kp. The bad area of B 1 lies inside disks of f2(e), and since each such disk is 
at a distance p or more from Of~, it is the center of at least [p/e] generations of 
such disks. Therefore, by Lemma 1.1, the bad area inside it is no greater than 
(C/[p/e]2)(rce2). Since the area of ~q is bounded, the total bad area B1 is no greater 
than Ce2/fl 2. 

The bad area of h - Go, o f~ o Gw~ inside D is contained in the union of Gw,(BO 
and the part  Gw,(B2). Lemma 2.2 gives meas(Gw,(BO) < C(meas(BO) tl/a~-t~ (fl > 0 
but arbitrary). Since we have meas(B0 < Ce2/p 2, we conclude that 

meas(Gw~(B1)) < \ p 2 ]  " (2.2) 

It is well known (see [W]  for references) that Gw,(B2) lies in {1 - pl/2 < iz t < 1}. 
Thus 

meas(Gw~(B2)) < Cp 1/z. (2.3) 

We now determine p by setting p = e4/7; this transforms (2.2) and (2.3) into 

bad area of h < Ce 217-0 ,~ Ce 0"2857, (2.4) 

where fl is an arbitrary preassigned positive number. 
By the Gr6tsch argument  for conformal moduli (see the proof  of Lemma 1.3 

above) we can conclude that Ih(w) - wl < C(e~ 1/2 = Ce ~ for all w e  D. 

We now return to (2.1) and obtain 

If(z) - f~(z)l <_ CK(e l/z + e x/4 + e ~ ~ CKe ~ 

which completes the proof  of Lemma 2.3. [ ]  
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Theorem 2.4. Le t  f~ be the circle packing approximat ion  to the R iemann  mapping 
func t ion  f :  t ) - - ,  D. Le t  f ' , ,  f ~  be the f i r s t  and second derivatives o f  f~ as in L e m m a  
2.1. L e t  K c c f~. There  ex is ts  a constant  C X such that, f o r  all z in K ,  

[ f~(z)-  f(z)t-< Cxe  ~ 

] f~ l ) (z ) -  f'(z)[ < Cre 0"142s[2, 

[ f ~ 2 ) ( z ) -  f"(z)[-< C r e  ~ 

Proof.  
all z, ~o in K, 

(2.5) 

(2.6) 

(2.7) 

The first inequality is Lemma 2.3. Since f is analytic in fl  we have, for 

If(z) - f((o) - f ' ( (o ) (  z - (o)1 < CxJz  - (ol 2. 

By Theorem 2.1, 

If,(z) - f~(~o) - f ' ,((oXZ - (o)l < CK(lz - (0[ 2 + e2) �9 

Combining these with (2.5) we obtain 

[f'~(~oXz - (o) - f ' ( ( o ) (  z - (o)1 < Cr(} z - (o12 +/3~ . 

/~0.1428 t 
: z ~ K  . 

I z  - (ol 

Hence 

[f',((o) - f'(r -< CK inf{lz - (ol + - -  

By choosing z e K  to satisfy I z -  (o1 = e0"1428/2 we obtain (2.6). Similarly, (2.7) 
follows from (2.5), (2.6), and Theorem 2.1. [] 
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