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Abstract. We prove that every pair of dual oriented matroids can be represented 
in complementary subspheres of an arrangement of pseudospheres. 

Among the many ways to view oriented matroids as geometrical objects, we 
consider two that have special properties: 

�9 Bland's analysis of complementary subspaces in R n [2] has the special feature 
that it simultaneously and symmetrically represents a realizable oriented 
matroid and its dual. 

�9 Lawrence's topological representation of oriented matroids by arrangements 
of pseudospheres I4] has the advantage of yielding a faithful picture also in 
the general case of nonrealizable oriented matroids. 

In this note we prove a "Topological Representation Theorem for Dual Pairs," 
which combines these two points of view. 

We refer to Chapter 1 of i-1] for an exposition of the theory of oriented matroids. 
Here we only review some notation and fix terminology. 

Bland's [2, Section 3], [1, Section 1.2(d)] set-up is as follows. Let ~B be 
a subspace of R n of dimension r. The intersections of the coordinate hyper- 
planes Hi = {x ~ R~: xi = 0} with ~ determine an arrangement of hyperplanes 
{~ c~ Hi: 1 < i < n} in ~, and with it a (realizable) oriented matroid ~ of rank 
r on {1 . . . . .  n}. In the same way, the orthogonal complement r177 of dimension 
n - r determines an arrangement in ~• that represents ~/r 
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n + r  t 2 n  Now write 4 and 4 • as intersections 4 • = ~ j = , + t  Hj and 4 = ~ i= ,+ ,+1  H) of 
hyperplanes H) ~_ R ~. This construction encodes the realizable oriented matroid 
~r and its dual ~t'* into an arrangement of 2n hyperplanes Hi, H) in R" for 
1 < i < n and n + 1 < j < 2n. In view of this, the Topological Representation 
Theorem of Lawrence suggests a generalization that encodes a general pair of dual 
oriented matroids into an arrangement of 2n pseudospheres in S "-  1, stated below 
as Theorem 1. 

For  this, recall that a pseudosphere is the image of a coordinate sphere 
Si = { x r S " - l :  xi = 0} (for 1 < i < n) under a homeomorphism h: S "-1 ~ S n-1. 
The complement of a pseudosphere S in S"-1 has two components S + and S- ,  
called the sides of S. 

A pseudosphere arrangement (or pseudoarranoement) is a family ~r = (Se)eEE of 
pseudospheres in S"- x such that, for A ___ E, the intersection SA = ~eEg Se is a 
sphere of some dimension, S F = ~ ,  and, for ~ # SA ~ Se, the intersection S a c~ S~ 
is a pseudosphere in S A with sides SA c~ S + and SA C~ S~-. A pseudoarrangement 
is signed if, for every S~ e d ,  a positive side S + is chosen. 

The intersections SA are called subspheres of o~r Two subspheres S a and SB are 
complementary if, for some r, Sa is an (r - 1)-sphere and SB is an (n - r - 1)-sphere, 
with SA c~ S s = ~ .  

The Topological Representation Theorem [4, Chapter IV], [1, Section 1.4 and 
Chapter 5] states that there is a bijection between oriented matroids of rank r on 
n elements and equivalence classes of signed arrangements of n pseudospheres in 
S ' -  1. Under this bijection, the k-subspheres of an arrangement of pseudospheres 
correspond to contractions of the oriented matroid of rank k + 1; in particular, 
the cocircuits of the oriented matroid can be identified with the vertices of the 
pseudoarrangement. 

Theorem 1 (Topological Representation of Dual Pairs). Let  Jr  be an oriented 
matroid o f  rank r on {1 . . . . .  n}. There is a signed arrangement o f  2n pseudospheres 
~1 = (Si)l~i<2, in S "-1 so that: 

�9 Si = {x e S"- 1: xl = O} for  1 <_ i <_ n (that is, d contains the "frame" of  linear 
coordinate spheres). 

�9 The (r -- 1)-subsphere Sa:= S,+,+l  r~...  n S2, and the (n - r - 1)-subsphere 
SA := S, + 1 c~ ...  n S,  +, form a pair o f  complementary subspheres in S"-  i 

�9 The arrangement ( S i n  SB)I<i<. is a topological representation of  Jr  in SB. 
�9 The arrangement (Si c~ SA)I ~i<_, is a topological representation of  Jg* in SA. 

In view of the Topological Representation Theorem, Theorem 1 can be reduced 
to the following construction of an oriented matroid that has Jr '  and ~r as 
complementary minors. 

Theorem 2 (Representation of Dual Pairs as Complementary Minors). For every 
oriented matroid ~r162 o f  rank r on the ground set E = {1 . . . . .  n}, there exists an 
oriented matroid ~r o f  rank n on the ground set /~ = {1 . . . . .  2n} = E w A ~ B with 
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A : =  {n + 1 . . . . .  n + r) and B:= {n + r  + 1 . . . . .  2n}, such that 

~ \ A / B  = ~[, 

~ / A \ B  = Jg*. 

Proof. For  the following, we relabel the ground set such that  {1 . . . . .  r} is a basis 
of ~ ' .  N o w  let J / 1  be the oriented mat ro id  on /~ that  is obta ined by extending 

by elements n + i that  are parallel to the elements i for 1 _< i <__ r, and that  are 
loops for r + 1 < i < n. Similarly, let ~r be the oriented mat ro id  on /~ that  is 
obtained by extending J [ *  by elements n + i that  are loops for 1 _< i < r and that  
are parallel to the elements i for r + 1 < i < n. 

J /~  and ~ ' 2  are matro ids  of ranks r and n - r on /~  that  have disjoint bases. 
Thus their union ~ := ~ '~  w Jr '  2 (see [5] and Section 7.6 of  [1]) is an oriented 
matroid  of rank n on/~. We claim that  i t '  has the required properties.  To  see this, 
we use an explicit description of oriented mat ro id  union by Lawrence and 
Weinberg [5], [1, Proposi t ion 7.6.4]: if A 1 and B~ are disjoint (ordered) bases of 
J /~  and of ~ ' 2 ,  so that  (At, B1) is the lexicographically smallest permuta t ion  of 
A~ w Bt for which the first r~ elements form a basis o f ~ ' ~  and the other r 2 elements 
form a basis of  Jr  then 

Z~ , ,~2 (AI  w B1) = Z~(A1) 'Z~2(BI) .  

In our situation, let AI be an r-subset of {1 . . . . .  n}. If A 1 is not a basis of ~//1, 
then A~ ~ B is not a basis of J / 1  u ~ ' 2 ,  since the elements of B are loops in Jt'~, 
and thus Z(~,~t2)\A/~(A1) = ;(~r = 0. If A 1 is a basis of Jr then A 1 .w B is a 
basis of ~ '~  w Jr and the Lawrence-Weinberg  formula yields 

XVCr u~12)\A/e( A 1) = Z(,x t ,~)(A 1 w B) = X~,(A 1)" Z ~ ( B )  = Z~t(A 1), 

which proves (Jr w dg2) \A/B -- J / .  Analogously, we get ( J / t  w JZ2)\B/A = J4*. 
[ ]  

Theorem 2 has a s traightforward analogue for ordinary matroids.  The main  
difference is that  in the unoriented case the construct ion of a union is unique, 
while the oriented construct ion involves a lot of choice. However ,  even in the 
unoriented case the conditions of Theorem 2 do not uniquely determine 5]t. 

In the case where ~g" is realizable, the oriented mat ro id  ~ constructed from it 
is again realizable. Namely,  if J / c a n  be represented by (I] C), where I denotes an 
identity matrix,  then ~ ' 1  is represented by (IIC[I[O) and ~ ' 2  is represented by 
( -  Ct[I[O[I). Now let ( -  Ctl I[011) ' be the matr ix  obtained by mult iplying the ith 
column by e z"- i  for all i~ {1 . . . . .  2n} and e > 0 sufficiently small. Then the 
combined matr ix  

( I  C I O )  

( - C '  I 0 I) ~ 
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is a representation of . ~ ,  see [5] and Proposition 8.2.7 of [1]. A similar statement 
holds for ordinary matroids when represented over a sufficiently large field, see 
Proposition 7.6.1 of [3]. 

The construction of Theorem 2 seems to be new. We expect that it should have 
other applications, facilitating the use and the interpretation of (oriented) matroid 
duality, to the analysis of linear programming algorithms on oriented matroids, etc. 

References 

1. A. Bjrrner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler: Oriented Matroids, 
Cambridge University Press, Cambridge, 1993. 

2. R. G. Bland: A combinatorial abstraction of linear programming, J. Combin. Theory Ser. B 23 
(1977), 33-57. 

3. T. Brylawski: Constructions, in: Theory ofMatroids (N. White, ed.), Cambridge University Press, 
Cambridge, 1986, pp. 127-223. 

4. J. Folkman and J. Lawrence: Oriented matroids, J. Combin. Theory Ser. B 25 (1978), 199-236. 
5. J. Lawrence and L. Weinberg: Unions of oriented matroids, Linear Algebra Appl. 41 (1981), 183-200. 

Received December 23, 1991, and in revised form February 18, 1993. 


