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Abstract. The contacts graph, or nerve, of a packing, is a combinatorial graph 
that describes the combinatorics of the packing. Let G be the 1-skeleton of a 
triangulation of an open disk. G is said to be CP parabolic (resp. CP hyperbolic) if 
there is a locally finite disk packing P in the plane (resp. the unit disk) with 
contacts graph G. Several criteria for deciding whether G is CP parabolic or CP 
hyperbolic are given, including a necessary and sufficient combinatorial criterion, A 
criterion in terms of the random walk says that if the random walk on G is 
recurrent, then G is CP parabolic. Conversely, if G has bounded valence and the 
random walk on G is transient, then G is CP hyperbolic. 

We also give a new proof that G is either CP parabolic or CP hyperbolic, but 
not both. The new proof has the advantage of being applicable to packings of more 
general shapes. Another new result is that if G is CP hyperbolic and D is any 
simply connected proper subdomain of the plane, then there is a disk packing P 
with contacts graph G such that P is contained and locally finite in D. 

1. Introduction 

We consider packings of compact connected sets in the plane C = ~2 or in the 
Riemann sphere (~ = S 2. 

Given an indexed packing P = (Pv: v ~ V), its contact  graph, or nerve G = G ( P ) ,  

is defined as follows. The set of vertices of G is V, the indexing set for P,  and an 

* Both authors acknowledge support by NSF grants. The first author was also supported by the 
A. Sloan Research Fellowship. 
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edge [v, u] appears in G precisely when the sets Pv and Pu intersect. Thus G 
encodes some of  the combinatorics of P. If  all the sets Pv are smooth disks I in C, 
then it is easy to see that the contacts graph is planar. 

The circle-packing theorem [16] says that for any finite planar graph G there is 
some packing of  (geometric) disks in the plane whose contacts graph is G. This 
fantastic theorem has received much attention since Thurston conjectured that the 
Riemann map from a simply connected domain to the unit disk can be approximated 
using circle packings with prescribed nerves. The conjecture was later proved by 
Rodin and Sullivan [20]. Some proofs of the circle-packing theorem appear in [1], [2], 
[28, Chapter 13], [18], [10], [4], [13], [6], [7], [21], [24], and [23]. 

Here, we are concerned with infinite packings. Suppose, for example, that G is a 
disk triangulation graph; that is, the 1-skeleton of a triangulation of an open 
topological disk. By taking a Hausdorff limit of packings corresponding to finite 
subgraphs of  G, an infinite packing P of disks in C whose contacts graph is G can 
be obtained. A few questions then naturally arise about the properties of P. Can P 
be bounded? Can P be locally finite in the plane? (This means that every compact 
subset of the plane intersects finitely many of  the sets in the packing.) To what 
extent is P unique? 

It is not hard to see that (still assuming G to be a disk triangulation graph) there 
is a unique open topological disk D c (~ such that P is contained in D and is locally 
finite in D. The boundary of  D is just the set of accumulation points of p.2 This D 
is called the carrier of P,  and is denoted carr(P).  

It was proved in [15] that P can be chosen such that carr(P)  is the plane or the 
unit disk U = {z ~ C: Izl < 1}. Beardon and Stephenson [3] have obtained this 
result under the additional assumption that G has bounded valence. 3 There is a 
strong uniqueness statement valid when carr(P)  = C: any other disk packing P'  c 
with nerve G is the image of  P under a Mrbius transformation [22], [15]. (The 
MSbius group is the group generated by inversions in circles. It is six dimensional.) 
In particular, it follows that there cannot be two disk packings P, P '  with carr(P)  = 
C, car r (P ' )  = U, and G = G ( P )  = G(P' ) .  If  carr(P) = U, then there is a weaker 
form of uniqueness: any disk packing P '  with car r (P ' )  = U that has nerve G is the 
image of P under a Mrbius transformation. 

All this parallels neatly with the analytic theory. The existence of a locally finite 
packing in U or C is a discrete analog of the uniformization theorem, which says that 
any simply connected noncompact Riemann surface is conformally equivalent to C 
or U. The parallels of  the uniqueness statements are that any conformal map from 
the plane into the sphere or from U onto U is a M~Sbius transformation. 

Let us say that a disk triangulation graph G is CPparabolic (resp. CP hyperbolic) 

1 The term disk means a geometric disk, a topological disk means a set homeomorphic to a 
compact disk, and a smooth disk is a topological disk with C t boundary. 

2 A point z is an accumulation point of P if every neighborhood of z intersects infinitely many 
sets in P. 

3 The valence or degree of a vertex is the number of neighbors it has. "G has bounded valence" 
means that there is some C < 0o such that every vertex has valence less than C. 
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if there is a disk packing P with contacts graph G and carrier ca r r (P)  = C (resp. 
car r (P)  = U). 

We introduce the notion of a VEL parabolic graph. VEL parabolicity is a 
combinatorial  property,  which is defined using Cannon's  vertex extremal length [8]. 
The precise definitions appear  later. A graph which is not  VEL parabolic is called 
VEL hyperbolic. We  prove that a disk triangulation graph is CP parabolic iff it is 
VEL parabolic. This gives a complete combinatorial characterization of the "CP 
type" of any disk triangulation graph. 

Using this equivalence of CP parabolic and VEL parabolic, we prove: 

1.1. Theorem. Let G be a disk triangulation graph. I f  the random walk on G is 
recurrent, then G is CP parabolic. Conversely, if the degrees of  the vertices in G are 
bounded and the random walk on G is transient, then G is CP hyperbolic. 

It will be shown that there are CP parabolic disk triangulation graphs on which 
the random walk is transient. 

We also give new proofs to the above-quoted results that every disk triangulation 
graph is either CP parabolic, or CP hyperbolic, but  not both. The results here 
actually generalize these theorems, since the proofs apply not only to packings by 
geometric disks, but  to more general sets. In order  to state some of our results, we 
introduce the notion of fat sets. Heuristically, a set is fat if its area is roughly 
proport ional  to the square of its diameter,  and this property also holds locally. The 
precise definition is: 

Definitions [26]. The open disk with center x and radius r is denoted D(x ,  r). Let 
~" > 0. A measurable set X c C is r-fat if, for every x ~ X, x ~ o% and for every 
r > 0 such that D(x,  r) does not contain X, the inequality 

a r e a ( X  n D ( x ,  r)) >_ r a r e a ( D ( x ,  r ) )  

holds. A packing P = (P~: v ~ V) is fat if there is some r > 0 such that each P~ is 
~--fat. 

For  example, any smooth disk is T-fat for some ~" > 0, and it is not hard to see 
that K-quasi-disks are r (K) - fa t  [26]. 

We can now state: 

1.2. Theorem. Let G = (V, E)  be a disk triangulation graph, and for each v E V let 
Q~ c C be a smooth compact topological disk. Suppose that there is some T > 0 such 
that each Q~ is T-fat. Let D c C be a simply connected domain, and suppose that 
D ~ C (resp. D = C) i f  G is VEL hyperbolic (resp. I/EL parabolic). Then there is a 
packing P = (Po: v ~ V)  in D, which is locally finite in D, whose contacts graph is G, 
and such that Pv is homothetic to Qv for each v ~ V. 4 

Conversely, suppose that P = (Pv: v ~ V)  is a fat packing in C of  smooth disks 
whose nerve is G. Then G is FEL parabolic if  and only if  C-carr (P)  consists o f  a single 
point. 

4 "Pv is homotbetic to Qv" means that there are av > 0 and b v ~ C such that Pv = aoQv + bo. 
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From [24] we know that given a finite planar graph G* = (V*, E*) and a smooth 
disk Q* c C for each v ~ V*, there is a packing P* = (P*:  v ~ V*), with G(P*) 
= G* and P* homothetic to Q* for each v ~ V*. This constitutes the "finite case" 
for the existence part in Theorem 1.2. The basic innovation here is the control one 
gets on cart(P).  The situation where the Qv are disks, G is VEL hyperbolic, and D 
is an arbitrary simply connected proper subdomain of  C seems interesting in itself. 

Although the equivalence of CP parabolicity to VEL parabolicity gives a com- 
plete characterization for disk triangulation graphs, it is quite natural to ask for 
other criteria. It has been shown by Beardon and Stephenson [5] that if every vertex 
in G has degree greater than 7, then G is CP hyperbolic, while if every vertex has 
degree at most 6, G is CP parabolic. We show that if finitely many vertices in G have 
valence greater than 6, then G is CP parabolic, while if the lower average valence 
(see Section 10 for the definition) in G is greater than 6, G is CP hyperbolic. 

From Rodin and Sullivan's proof of the length-area lemma [20], it follows that if 
Yl, ')t2,. �9 �9 is a sequence of  nested simple closed paths in G and E i 1/17jl = o:, then 
G is not CP hyperbolic. This can be seen as a criterion for CP parabolicity. In 
Section 9 we present a criterion of CP hyperbolicity based on a perimetric inequality 
in G. There will also be a somewhat restricted converse to this criterion, which is in 
the spirit of  Rodin and Sullivan's length-area lemma. 

The interested reader may wish to consult Soardi's paper [27], which studies 
problems related to those discussed here. 

2. Discrete Extremal Length 

In this section, we define discrete extremal length. Later, a brief discussion of the 
history of  these definitions appears. We have chosen to start with an abstract notion, 
and then specialize to more geometric situations. 

Combinatorial Extremal Length. Let F be a nonempty collection of  nonempty 
subsets of  some set X. A (discrete) metric on X is a function m: X --> [0, o0). The 
area of m is just the square of  the L 2 norm of m: 

area(m) = Ilmll 2 = ~ re(x)  2. 
x ~ X  

The collection of  all metrics m on X with 0 < area(m) < oo is denoted .~'(X). 
Given a set A c X, we define the length of A in the metric m to be 

Lm(A) = ~ m(x).  
x ~ A  

This is also called the m-length of A. If F is a collection of subsets of X, we define 
its m-length to be the least m-length of a set in F: 

Lm([') = inf Lm(A). 
A~F 
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Finally, the extremal length of F is defined as 

{ Lm(r)2 } 
E L ( F )  = sup a rea (m)  : m  ~ / ( X )  . 

This is a number in [0, oo]. Note that the ratio Lm(F)Z/area(m) does not change if 
we multiply m by a positive constant. Also note that EL(F)  does not depend on X; 
that is, the value of E L ( F )  does not change if we replace X with any other  set that 
contains every A ~ F. 

The verification of the following simple monotonicity property of extremal length 
is left to the reader. 

2.1. Monotonicity Property. I f  each y ~ F contains some Y' ~ F', then EL(F)  _> 
EL(F  9. 

At  least when X is finite, a geometric interpretat ion can be given to EL(F).  
Consider the Euclidean space R x of all functions f :  X ---, R. For  each subset y of 
X, let Xv ~ R x  be defined by X~(x) = 1 for x ~ y and Xr(x) = 0 otherwise. Now 
let F be, as before,  a collection of subsets of X. 

2.2. Theorem (Geometr ic  Description of Extremal Length). Let m o be the point of 
least norm in the convex hull of { Xv: 3' ~ F}. Then 

Lm0(F) 2 
E L ( F )  [[moJl 2. 

a r ea (m o) 

We do not use this theorem. The simple proof  is left to the reader. 

Extremal Length in Graphs. In the following, G = (V, E)  is a locally finite con- 
nected graph. It will always be a simple graph; that is, each edge has two distinct 
vertices, and there is at most one edge joining any two vertices. 

A path y in G is a finite or infinite sequence (v 0, v 1 . . . .  ) of vertices such that 
[Ui, Ui+l] E E for every i = 0,1 . . . . .  The edges and vertices of y are denoted by 
E(y)  = {[vi, vi+ 1]: i = 0, 1 . . . .  } and V(~/) = {v o, v 1 . . . .  }, respectively. Likewise, for F 
a set of  paths in G, we set V(F) = {V(y): y ~ F} and E ( F )  = {E(y):  y ~ F}. A set 
A c V of  vertices is said to be connected if, for every v, w ~ A,  there is a path y in 
G from v to w with V(T) c A .  (We allow trivial paths, paths that contain only one 
vertex.) 

Given subsets A,  B c V, we let F ( A ,  B) = F r ( A ,  B) denote the set of  all paths 
in G with initial point in A and terminal point  in B. We let F v ( A ,  B) (resp. 
FE(A, B)) denote the sets of vertices (resp. edges) of such paths: 

F v ( A ,  B) = {V(~/): y ~ F ( A ,  B)}, 

FE(A , B)  = { E ( y ) :  "y ~ F ( A ,  B)}. 
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A function m: V ~ [0, oo) is called a v-metric on G, and a function m: E ~ [0, oo) is 
called an e-metric. When m is a v-metric (resp. an e-metric) we use Lm(3') as a 
shorthand for Lm(V(3')) (resp. Lm(E(3'))). 

The vertex extremal length VEL and edge extremal length EEL between A and B 
are defined by 

VEL = V E L ~ ( A ,  B) = E L ( F v ( A  , B)) ,  

EEL = E E L c ( A ,  B) = EL(FE(A , B)) .  

To make the definition of VEL(A,  B) more explicit, we have 

V E L ( A ,  B) = sup inf Lm(3')2 
,~ ~ area(m) 

sup inf ( E v  ~ v~,, r e ( v ) )  2 

m , E , ~ v m ( v )  2 

Here m runs over ag(V) and 3' runs over F~(A, B). 
These definitions give two discrete analogs for the classical notion of  extremal 

length. (Reference [17] is a good introduction to continuous extremal length.) As we 
will see below, both are useful. The edge extremal length was introduced by Duffin, 
who showed in [12] that EEL(A,  B) is equal to the electrical resistance between A 
and B, if each edge in G is considered to be a resistor with unit resistance. The 
vertex extremal length was introduced by Cannon [8]. Cannon's motivation was to 
obtain criteria for deciding when a group can be made to act conformally on the 
Riemann sphere C. Later it was discovered [9], [25] that extremal metrics of vertex 
extremal length (that is, metrics realizing the supremum in the definition of the 
extremal length) give square tilings of rectangles with prescribed contacts. 

An infinite path 3' in G is transient if it contains infinitely many distinct vertices. 
The set of transient paths in G that have an initial point in A is denoted by F(A,  o0). 
The edge and vertex extremal length from A to oo. are defined as 

EEL(A,oo)  = EL({E(3"): 3' ~ F ( A , ~ ) } ) ,  

VEL(A,or  = EL({V(3'):  3' ~ F ( A , ~ ) } ) .  

Of course, this makes sense only for infinite G. 
For a v-metric or e-metric m, we let din(A, B) (resp. dm(A,~))  denote the 

distance from A to B (resp. to oo) in the metric m; that is, 

d.,(A, B )  = L . , ( F ( A ,  B ) )  = inf{L. , (3 ' ) :  3' ~ F ( A ,  B ) } ,  

dm(A,oo) = Lm(r (A,oo) )  = inf{Lm(3'): 3' ~ F(A,oo)}. 

An  infinite graph G is VEL parabolic if VEL({v},oo)= oo for some v ~ V. 
Otherwise, G is VEL hyperbolic. Similarly, G is EEL parabolic if EEL({v}, co) = oo for 
some v ~ V, and is EEL hyperbolic, otherwise. 
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2.3. Remark.  If VEL({v}, oo) = ~, then a finite area v-metric m ~ ~tr(V) exists such 
that dm({V}, oo) = oo. To see this, just take re(v) = E ~  l mr(V), where the metrics mj 
satisfy A ( m j )  < 2 -j  and Lmj(F({v}, o0)) = 1. 

2.4. Exercise. Try to determine VEL(A,  B), EEL(A,  B), and whether G is EEL or 
VEL parabolic for examples of your choice. 

2.5. Exercise. Let G be an infinite connected graph, and let A c V be finite and 
nonempty. Show that EEL(A,  oo) = oo iff G is EEL parabolic, and that VEL(A,  oo) 
= oo iff G is VEL parabolic. 

While the VEL type (whether parabolic or hyperbolic) is more relevant to 
packings, the EEL type is closely related to random walks and electricity. We do not 
introduce the terminology of electrical networks here, but remark that a graph G is 
electrically parabolic if the electric resistance to infinity in the graph is infinite. (See 
[11].) 

The following theorem is known. 

2.6. Theorem. Let G = (I,7, E)  be a locally finite connected graph. The following are 
equivalent: 

(1) G is EEL  parabolic. 
(2) G is electrically parabolic. 
(3) The simple random walk on G is recurrent. 

The equivalence of (1) and (2) is essentially contained in [12], while the equiva- 
lence of (2) and (3) is given in [11]. Also see Section 4 of [29] regarding Theorem 2.6 
and further equivalent properties. 

In Section 8 we see that VEL and EEL parabolicity are closely related. 

3. The Packing Type and Vertex Extremal Length 

3.1. Type Characterization Theorem. Let P = (P~: v ~ V)  be a fat  packing o f  
(compact connected) sets in the Riemann sphere C, and let G = (V, E)  be the contacts 
graph o f  P. Assume that G is locally finite and connected. 

(1) I f  P is locally finite in C - {p}, where p is some point in C, then G is VEL 
parabolic. 

(2) Conversely, suppose that each Po is a smooth disk and that G is a disk 
triangulation graph, which is VEL parabolic. Then P is locally finite in C - {p} 
for some point p E C. 

The following results about fat sets prove useful. 
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3.2. Observation.  Let F be a z-fat set, z > O. Then 

area(D(z ,3r)  n F) > r d i a m e t e r ( D ( z ,  r )  N F )  2 

holds for every z ~ C, r > O. 

Proof. Let x, y ~ D(z, r) n F. It is clear that  D(x, lY ~ xl) c D(z,  3r). By the 
r-fatness of  F,  we then have 

area(D(z ,3r)  n F)  > a r e a ( D ( x ,  [y - x[) N F )  > 7rz[y - x[ 2. 

The observation follows. []  

The following lemma appears  in [26]. 

3.3. Lemma. There is a positive function r*: (0, ~)  -~ (0, ~)  such that for every z > 0, 
for every r-fat set A c C, and for every MObius transformation ~: C ---} C the set q~(A) 
is z*(z)-fat. 

A central ingredient in the proof  of  3.1 is the following lemma, which will also be 
useful later. 

3.4. Lemma. Let P = (Pv: v ~ V) be a fatpackingin C. Let G = ( V , E )  denotethe 
contacts graph of P, and assume that G is locally finite. Suppose that z is an 
accumulation point of the packing P that does not belong to U v ~ v Pv . Let K be a 
compact set in C that does not contain z. For every A c C let V(A)  denote the set of 
vertices v ~ V such that Pv intersects A.  Then 

sup{VEL( ; (V(K) ,  V ( W ) ) :  W is open and z ~ WI  = o~. 

In the following, C(z, r) = OD(z, r) denotes  the circle with center z and radius r. 

Proof. Let z > 0 be such that  all the sets Po are  r-fat. Suppose first that z #: oo. 
We now establish that a neighborhood of z is disjoint from 13 v~v(x~ Pv. Let 
R > 0 be smaller than the distance from z to K, and let V'  be the set of v ~ V 
such that  Po intersects both circles C(z, R) and C(z, R/2) .  Since the distance from 
C(z, R) to C(z, R / 2 )  is R/2 ,  for each v ~ V(C(z,  R)) o V(C(z, R/2) ) ,  we have 
d i a m e t e r ( D ( z ,  R)  n Po) > R / 2 .  There fo re ,  Obse rva t ion  3.2 shows tha t  
area(D(z, 3R) n Pv) > 7rzR2/4. In part icular ,  we see that V(C(z,  R)) n 
V(C(z, R / 2 ) )  is finite. This implies that there is an r I ~ (0, R / 2 )  such that  
V(D(z,  r l ))  is disjoint from V(C(z, R)) O V(C(z, R/2) ) .  Then it follows that D(z, r 1) 
is disjoint from U v ~ v(r) Pv. 

We define inductively a sequence r 1 > r 2 > --. of positive numbers.  The first 
number  in this sequence, r I , has been defined already. Suppose that n > 1, and that 
r I . . . .  , rn_ 1 have been  defined. Let  rn E (0, r~_1/2)  be sufficiently small so that 
V(C(z, r~))n V(C(z,  rn_ l /2 ) )=  O. The  argument above shows that such an r~ 
exists. 
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For  each n let A n be the closed annulus bounded by C(z, r n) and C(z, r J 2 ) .  
Define a v-metric m on G by setting 

diameter(Pv n A n) 
r e ( v )  = 

n= 1 nrn 

for each v ~ V. By the construction of the sequence rn, at most one term in this 
sum is nonzero. Using this and Observation 3.2, we get an estimate for the area of 
m, as follows: 

aroa, m,   ameter'   

diameter(P~ 0 An) 2 
E E  

n= 1 ve z  n r;~ 

oo 

E E  22 
n= 1 vEV /1 rn 

diameter(P~ r D(z ,  rn)) 2 

o0 

E E  22 n r ~  n= 1 v~V  

r r - l z  -1 area(P~ A D(z,3rn))  

7/ ' -  
area(D( z, 3rn) ) 

 r-l E 2 2 
n = l  /1 r n 

=9~'-1n--~=1 ~-~ < ~ "  

Fix a positive integer N, and consider some path y from V(K)  to V(D(z,  rN)). 
For each integer n ~ [1, N )  the union U v~v Po is a connected set that intersects 
the two circles C(z, r n) and C(z, r J 2 )  forming the boundary of A n . Therefore,  for 

1 N - 1  such n, E v e y  diameter(P~ ~ A n) >_ rn/2. This then implies L,,(T) >_ -~ En=l l / n ,  
which tends to infinity as N ~ oo. Since area(m)  < o% we get VEL(V(K) ,  
V(D(z,  rN))) --~ ~, as N ~ ~,  which proves the lemma in case z 4~ oo. 

It is easy to modify the above argument to deal with the case z = ~. The numbers 
r l , r 2 , . . ,  must satisfy in this case D(O,r 1) ~ U {P~: v ~ V(K)}, Fn+ 1 > 2Fn, and 
V(C(O,  2 r n )  ) (") V(C(O,  r n + l ) )  = ~ .  T h e  annulus A n is defined as the annulus whose 
boundary is C(0, r n) to C(0,2rn). The rest of the proof  remains essentially the 
same. Alternatively, using Lemma 3.3, the case z = oo can be reduced to the case 
z = 0 .  [ ]  

With this lemma, the proof  of the first part  of 3.1 is easy. 

Proof of 3.1(1). Suppose that P is locally finite in ~: - {p}. Pick some v 0 ~ V. 
Applying Lemma 3.4 with K = Pro, z = p, we see khat G is VEL parabolic. [ ]  
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4. Some Topological Lemmas 

In this section we gather a few elementary topological lemmas, which will be needed 
below. The reader is advised to skip the proofs, and perhaps return to them later. 

The following two lemmas will enable us to infer topological information of a 
packing from the combinatorics of the contacts graph. 

4.1. Neighbors Separation Lemma.  Let P =- (P.: v ~ V )  be a packing of  smooth 
disks in C, and suppose that the contacts graph G = (V, E)  of  P is a disk triangulation 
graph. Let v o ~ V be some vertex, and let N c V - {v o} be the set o f  neighbors o f  v o . 
Then there is a Jordan curve Y c U . ~ N  P . -  P.o that separates Pvo from 
U .~V-(lVu{.o}) P. in (..5 

The same conclusion holds if G is the (finite) 1-skeleton o f  a triangulation o f  a closed 
disk that has v o and all its neighbors as interior vertices. 

Proof. Note that the assumptions that each Pv is smooth imply that the intersec- 
tion of any three sets in P is empty. Let f be an embedding of G in (~ such that the 
image of any edge [v 1 , v 2] is contained in Pv~ u Po2 and is disjoint from all the other 
sets in the packing. (To make an explicit construction of such an embedding, for 
each v ~ V let hv: 0 ~ Pv be a homeomorphism from the closed unit disk U c C 
onto Pv, and for every edge [v I , v 2] ~ E let Po~,o2 be some point in the intersection 
P~ N Pv2" We may then take f ( [ v l ,  V2]) = {hvl(th~l(p .... 2)): 0 _< t < 1} U 

{hv2(th~l(po,,v2)): 0 < t <_ 1}.) 
In the following we think of G as the 1-skeleton of a triangulation T of an (open 

or closed) disk. Let [v l ,  vz, v3] be any triangle in the interior of  T. For j = 1, 2, 3, let 
be the neighbors of vj in G. Clearly, for each j = 1, 2, 3 thc set V / =  Vj - 

{vl, v2, v 3} is connected as a set of vertices. Since any two of the sets V~, V~, V~ 
intersect, the union V' = V~ tO V~ tO V~ is connected. Since G is connected and any 
path from a vertex v ~ V - {vl, v 2, v 3} to a vertex in {Vl, vz, v 3} must intersect V', 
it follows that any two vertices in G - {vl,  v z, v 3} can be connected by a path in 
G - {v 1, v 2, v3}. If  (u l ,  uz,  u 3 . . . . .  u , )  is a path in G - {Vl, v2, v3}, then the path 

n - 1  U j = I  f ([uj ,uj+l])  is disjoint from Pvl tO P~2 tO P~3' and intersects both P,~ and P , .  
We therefore conclude that every P~, v ~ V -  {va, v2, v3}, is contained in the same 
connected component  of  C - ( f ( [ v l ,  vz]) tO f([v2,  v3]) u f([v3,  vl])). The set 
f([Vl,  v2]) tJ f([v2, v3]) tO f([v3,  vl]) is a simple closed curve; we let Dv~,o 2'v3 denote 
the component  of  C -  ( f ([va,V2]) tOf([v  2, v3]) tOf(v  3, vl])) that is disjoint from 
U ~ e v-{o~,v2, v31 Po" Now consider two distinct triangles [Vl, v2, v3], [Wl, wz, w 3] in T. 
The intersection of the two Jordan curves aDv~,o2,o3, aDw~,w2,~3 is either empty, or 
consists of  a single point, or  a single arc. Therefore,  the sets Do,,v2,v3, Dwl,W2,~3 are 
either disjoint, or one is contained in the other. Suppose, without loss of  generality, 
that w I ~ {Vl, v2, v3}. Then aD~,~2,w3 intersects P ~ ,  which is disjoint from the 
closure of  Do~.,,~,v3. We conclude that D,,~,.,2,., 3 is not contained in Dv~.~2,v. 
Similarly, Do~,~2,~3 is not contained in D~,,w~,w . Hence Dwl,~,w~ N Do~,o~,o~ = O. 

5 A Jordan curve is a simple closed curve. 
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Let no, n2 , . . .  , n k_ 1 be the neighbors of v o in circular order around v 0, and let y 
k - 1  be the Jordan curve y = U j= 0 f ([nj ,  n j+l]), where we take n k = n O . The curve Y is 

contained in O o e u Po and is disjoint from Poo" We say that two distinct triangles 
[U1,U2,Ua],[WI,WE,W3] in T neighbor if they share an edge. If [U1,UE,U3] is a 
triangle of T that does not contain v o but neighbors with a triangle containing v o, 

and D o n n lie on opposite sides of the arc say with [Vo, n:, nj+a], then D . . . . . . .  3 0, j, ~+~ 
f ( [n j ,n j+ l ] ) .  Consequently, D ... .  2,~3 is not in the same connected component of 

(~ - y as Po0" If [vl ,  v2, v 3] and [wl, we, w3] are two neighboring triangles that do 
not contain Vo, then it is clear that Do~,oz,o3 and D~,w2,,, 3 are in the same connected 
component of C - Y. Hence it easily follows that for every triangle [vl ,  v2, v3] that 
does not contain v 0 the set Dol,O2,o3 is disjoint from the connected component of 
(~ - y that contains Poo" This implies that 3' separates Poo from U o~v-(uul~o))P~, 
and the lemma follows since y c O o ~ N Po - Pv0" [] 

4.2. Corollary. Let G be a disk triangulation graph, and let P be a packing of  smooth 
disks in C with G( P ) = G. Let Z be the set o f  accumulation points o f  P. Then there is a 
connected component D o f  C - Z that contains P, P is locally finite in D, and D is a 
topological disk. 

This D is called the carrier of P, D = carr(P). 
The verification of Corollary 4.2 is left to the reader. 

4.3. Lemina. Let P = (Po: v ~ V )  and G = (V, E)  be as in Lemma 4.1, and let 
v ~ V, C c V - {u}. Suppose that C is finite and u is contained in a finite component of  
G - C. Then O o ~c Po separates Pu from the set ofaccumulationpoints o f  P. 

Proof. Let  V o be the set of vertices that are contained in the same connected 
component of G - C as u is, and let K c C - U o~C Po be a connected set that 
intersects Pu- For w ~ V, let N ( w )  c V -  {w} denote the neighbors of w in G. 
From Lemma 4.1 we know that for each w ~ V 0 there is a Jordan curve Yw c 
O o~u(w) P o - P , ~  that separates P", from U o~v-(N(,~)u(~})Po. Let Qw denote the 
component of C - Yw that contains P~, and let Q = U o ~ Vo Qo. Suppose that 
p ~ K n aQw , where w ~ V 0. Then p ~ K n Yw- Since K is disjoint from U oEC Po 
and 3'., ~ U oEN(w) Pv, we conclude that p ~ Q~, with w' ~ V 0. Thus aQw N K c 
Q, for every w E V 0. Since V 0 is finite, we have oQ c U o E vo aQo. The above 
implies that oQ n K c Q, and because Q is open, oQ n K = 0 .  Hence Q o K is a 
relatively open and relatively closed subset of K. As Q G K 4= 0 and K is con- 
nected, we conclude that K c Q. Because each Qv intersects finitely many of the 
sets in the packing P, the lemma follows. [] 

4.4. C o n n e c t e d  C u t  L e m m a .  Let G = (V, E)  be the 1-skeleton o f  a triangulation T of  
a simply connected surface S. Let A ,  B c V be two disjoint connected sets o f  vertices. 
Suppose that X c V intersects every path joining A and B. Then there is a connected 
subset o f  X that intersects every such path. 
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The lemma is surely known, though we have not been able to locate a reference. 
Since the proof  of Alexander's lemma in [19] can be modified to establish 4.4, we do 
not include a proof here. 

5. Duality 

The following theorem appears in [25]. 

5.1. Duality Theorem. Let G = (V, E)  be a finite connected graph, and let A,  B be 
two nonempty subsets of  V. Let F = F(A,  B) denote the set of  all paths from A to B in 
G. Let F* denote the collection of  all sets C c V with the property that each Y E F 
intersects C. Then 

EL(F*)  = E L ( F )  -1 

A related duality theorem can be found in [9]. 
We need only the inequality EL(F*) < EL(F)  -1, but in the following slightly 

more general setting, where the graph is infinite. 

5.2. Proposition. Let G = ( V, E) be a connected graph, possibly infinite, let A,  B c V 
be two nonempty subsets. Let F be either V(F(A, B)) or V(F(A, w)). Denote by F* the 
collection of  all subsets 7" c V such that T* intersects every Y ~ F. Then 

EL(F*)  EL(F)  _< 1. 

Proof. If  EL(F)  = 0, there is nothing to prove. So assume that m ~ at ' (V) satisfies 
Lm(y)  ~ L > 0, for some L and every T ~ F. For v ~ V let the height of v be 
defined as 

h(v)  = inf{L. , (y) :  3' is a path from A to v}. 

For t ~ R, let V t denote the set of vertices v E V such that h(v) - m(v)  < t <_ h(v). 
Since the m-length of  every path in F is at least L, it is easy to see that V t ~ F* for 
t ~ [0, L). 

Now let m* ~.~tv(V), and set L * =  L m . ( F * ) =  inf{Lm.(T*): 3 ' * E  F*}. Since 
V t ~ F* for t e [0, L), we have 

L ' L <  fo L Lm.(Vt) d t =  fo L ~ m*(v)dr .  
v E V  t 

For any v ~ V ,  the set of  t such that v ~ V  t is an interval of length m(v). 
Therefore, the above inequality yields 

L*L < ~ m * ( v ) m ( v )  < IIm*llllmll. 
v E V  
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This gives 

L* 2 L 2 

area(m*) area(m) 
_<1, 

which proves the proposition. []  

Suppose now that F is some finite nonempty collection of finite nonempty subsets 
of some set X. Let F* denote the collection of all subsets of X that intersect each 
3' ~ F. It is not difficult to see that EL(F)EL(F*)  > 1. (Consider the geometric 
interpretation, Theorem 2.2, of  combinatorial extremal length.) The example F = 
{{1, 2}, {2, 3}, {3,1}}, F* = F, shows that the inequality may be strict. Hence duality 
fails in the purely combinatorial setting. 

6. CP Hyperbolic Implies VEL Hyperbolic 

Proof of 3.1 (continued). It remains to prove the second part of the theorem. We 
now adopt the assumptions of 3.1(2). Let Z be the set of accumulation points of P. 
Our immediate goal is to verify that Z is connected. Let V 1 c V 2 c ... be a 
sequence of finite subsets of V such that V = U n V~. For each n, let ~Qn be the set 
of vertices in the infinite connected component of G - V~, and let Qn denote the 

closure of  U ~ Q ,  P~. Clearly, we have 01 ~ Q2 D -.., and each set Qn is compact 
and connected. Note that Z = n n Qn. Since a nested intersection of compact 
connected sets is connected, it follows that Z is connected. 

Let u E V be some vertex. Normalizing with a MSbius transformation, we 
assume that {z ~ C: [zl > 1} u {~} is contained in Pu. Lemma 3.3 shows that this 
does not involve any loss of generality. 

Let m be the v-metric on G defined by 

m(v)=(~ iameter(Pv) for for v=u.V#U' 

Let ~- > 0 be such that each P~ is T-fat. Since Po c D(0,1) for v 4, u, we have 

area(m) = ~ diameter(Pv)2 
v~V-{u) 

_< ~r-lz -1 ~ area(P~) 
vEV-{u} 

< 7r-lz-larea(D(O, 1)) < oo. 
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Let C be any finite subset of  V -  {u} such that u is disjoint from the infinite 
component  of G - C. F rom Lemma 4.3 it follows that the union U ~ ~ c P~ sepa- 
rates P~ from Z. This clearly implies that 

m ( v )  > diameter(Z). (6.1) 
v ~ C  

Since G is VEL parabolic and A(m)  < 0% Proposition 5.2 implies that 

inf Y'~ m(v )  = O, 
S v ~ S  

where the infirnum runs over all sets S c V such that  u is not in an infinite 
component  of G - S. However,  every such S contains a finite C c S such that u is 
not in the' infinite component  of G - C (for example, the neighbors of the compo- 
nent of  G -  S containing u). Therefore,  (6.1) shows that d i a m e t e r ( Z ) =  0, as 
required. []  

We easily get  the following generalization of  3.1(2). 

6.1. Theorem. Let r > 0, /et P = (Pv: v ~ V) be a packing of r-fat sets in the 
Riemann sphere C, and let G = (V, E)  be the contacts graph of P. Assume that G is 
connected, locally finite, and VEL parabolic. Also suppose that for each u ~ V there is 
a Jordan curve 3'  c U v~N(,) P~ - Pu that separates Pu from U v~v-(N(u)u(u)) P~ in 
C. Here N(u) denotes the set of  neighbors of u. Then the set of accumulation points of P 
has zero length. I f  G has one end this set consists of a single point. 

We recall that  a graph G = (V, E )  has one end iff G -  K hag one infinite 
component  for every finite K c V. 

For  example, if P is a locally finite tiling of  a domain ~ c C by compact squares, 
and if the contacts graph is connected, then al~ has zero length. In this case the 
contacts graph does not  have to be planar,  since four squares may meet  at a point. 

Proof. The proof  is essentially the same as for 3.1(2). Note that the assumptions 
that the sets Po are smooth and that G is a disk triangulation graph were used only 
in the proof  of  Lemma 4.1. Since we are assuming the conclusion of  this lemma 
here, these assumptions are not needed. If G has one end, then i t  is easy to see that 
the set of  accumulation points of P is connected. The proof  of 3.1(2) shows that in 
our present  case for every e > 0 the set of accumulation points of P is covered by a 
finite collection of sets such that the sum of  their diameters  is less than e. This 
clearly implies Theorem 6.1. [] 

7. Uniformizations of Packings 

7.1. Uniformization Theorem. Let G = (V, E)  be a disk triangulation graph, for 
each v ~ V let Q, c C be a smooth disk, and let D c C be a simply connected domain. 
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Assume that there is a z > 0 such that Qo is z-fat for each v ~ V. Also suppose that 
D ~ C (resp. D = C) i f G  is VEL hyperbolic (resp. parabolic). Then there is apacking 
P = (Po: v ~ V)  with carr(P) = D whose contacts graph is G, and such that Pv is 
homothetic to Qv for each v E V. 

We note that the continuous analogue of this theorem appears in [26]. The proof 
is also similar. 

Proof. Let T be the triangulation of a disk that has G as its 1-skeleton. Let 
T 1 c T 2 c T 3 c ..- be an exhaustion of T. By this we mean that T = U j T j, and 
each T j is a finite triangulation of a disk (with boundary). It is easy to see that 
such an exhaustion exists. We also require, without loss of  generality, that T 1 has 
some interior vertex, say v 0. For each j = 1, 2 , . . . ,  let G j = (V j, E j) denote the 
1-skeleton of T j. 

Suppose, without loss of generality, that 0 ~ D and 0 is in the interior of Qvo" Let 
D j be a sequence of smooth Jordan domains 6 in C such that 0 ~ D 1 C D E c . . -  

a n d  D = U j D  j. From the packing theorems of [24] we know that for each 
j = 1, 2 . . . .  there is a packing PJ = (P  J: v ~ V j) in the closure of  D j, such that 
each PJ is homothetic to Q~, the sets P / a r e  tangent to c~DJ when v is a boundary 
vertex of T j, and P J0 has the form tjQvo for some tj > 0. Let {j(k)} be a 
subsequence of {1, 2 . . . .  } such that the Hausdorff limit 

1 
/5~ = lim pfk)  (7.1) 

k-.= diameter( PJ(k)~ ~, Vo ) 

exists for every v ~ V. The Hausdorff limit is taken in C; that is, a priori we must 
allow for the possibility that oo is contained in some/5  v . 

We show now that the sets /5 v do not degenerate to single points and do not 
contain oo. The set /5o certainly is OK, since it contains 0, has diameter 1, and is 
homothetic to Qvo, by construction. Let u be any neighbor of v 0. Since /5, is a 
Hausdorff limit of sets homothetic to Qu, which is smooth,/5u is either homothetic 
to Qu, or is a single point, or a half-plane, or /5 = ~. The last case is clearly 
impossible, since the interior of /5, does not intersect /5~0. It is also clear that P, 
intersects /5~0 but does not intersect its interior. 

Let ul ,  u 2 . . . . .  u ,  be the neighbors of v 0, in circular order. For every j such that 
v o and all its neighbors are in the interior of T j, the set Pj, U -.. U P~, contains a 
Jordan curve that separates Pjo from oo. (This follows from Lemma 4.1.) Therefore, 
for at least two neighbors u of v 0 the sets /5, contain more than a single point. 
Suppose, for example, that /5-1 is a single point p,  and that/su, is not a single point. 
Let m be the largest number in {1, 2 . . . . .  n} such that /5,. = {p} for each r < m in 
{1, 2 . . . . .  n}. Since at least two /5,, do not degenerate to points, m < n. It is clear 
that each 1 5  intersects /~u,§ and that /5-1 intersects P , .  Therefore, the three 
smooth sets P o 0 ' / 5 , / 5 , ,  contain the point p. This implies that the interiors of two 

6 A  smooth Jordan domain is the interior of a smooth disk. 
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of these sets must intersect, which is clearly impossible. Thus we conclude that none 
of the sets /~, consists of  a single point, and that the ratios diameter(P~o)/ 
diameter(P~i) are bounded from above. (The reader may wish to compare the above 
argument with the Ring Lemma of [20].) 

Is it possible that / 5  is a half-plane? To see that it is not, consider a Hausdorff  
limit of the packings (hj(P~): v E vJ), where hj is the homothety that takes P~ to 
Q,I" The same argument as above, but with the roles of  u 1 and v 0 switched, shows 
then that the ratios diameter(P~,)/diameter(P~o) are bounded from above. Similarly, 
for every edge [u, w] the ratio diameter(PJu)/diameter(P~) is bounded independently 
of j. Since G is connected, this also holds when u, w ~ V are not neighbors. 
Therefore, each s e t / 5  is not a half-plane, nor a point, and thus is homothetic to Q~. 

I f  G is VEL parabolic, then part  (2) of  3.1 implies that /5 is locally finite in 
(~ - {p} for some p ~ C. It is easy to see that p = ~, and thus /5  is locally finite in 
C. This completes the proof  in the case that G is VEL parabolic. 

Now suppose that G is VEL hyperbolic. The set PJ0 is contained in D ~ C and 
has the form tjQ~o, tj > 0. Since 0 is an interior point of Qoo, this implies that the 
sequence tj is bounded from above, and hence diameter(P~0) is bounded from 
above. By passing to a subsequence of j(k), if necessary, assume that t = 
lim k . = diameter(PJ0) ~ [0, oo) exists. We have established above that for any v, w 
V the ratios diameter(P~)/diameter(P~) remain bounded as j ~ oo. Consider the 
Hausdorff  limits 

P~ = lim P~J(k). (7 .2)  
k- - .  oo 

If t = 0, then, because G is connected, it follows that P~ = {0} for each v, and in 
particular the limits (7.2) exist. If  t > 0, then comparing with (7.1), we conclude 
again that these limits exist, and that each P~ is homothetic to Q~. 

We now prove that each Po is contained in D. Consider some vertex v ~ V, and 
let N(v)  denote the neighbors of v. By Lemma 4.1, for each j sufficiently large (so 
that N(v) is contained in the interior of T j) there is a Jordan curve in U ,~  ~v(o) PJ 
- P[  that separates P[  from aD j. Assuming that t > 0, since for any fixed u the 
sets P~ vary within a compact  collection of homotheties of Q , ,  the above implies 
that the distance from P[  to OD j is bounded from below independently of j. 
Therefore,  Po c D. The same conclusion is true, of  course, if t = 0, because then 
P~ = {0}. So we have established that the packing P is contained in D. 

Clearly, the interiors of the sets P~ are disjoint, and P o n  P ,  ~ O whenever 
[v,w] ~ E. Therefore,  the proof  will be complete once we show that the packing 
P = (Pv: v ~ V) is locally finite in D. (This will also rule out the possibility t = 0, 
Po = {0}.) That  is actually the most significant part  of  the proof. It turns out that the 
packing/6  is useful to proving this property of P. 

Let F be some compact  connected subset of D that contains 0. We prove that F 
intersects finitely many  sets in P, and this shows that P is locally finite in D. Let F '  
be any compact  connected subset of  D that contains F in its interior. Let z be some 
accumulation point of  /5. From Lemma  4.3 we know that /5 is disjoint from its 
accumulation points. By Theorem 3.1, z is not the only accumulation point of /5. 



Hyperbolic and Parabolic Packings 139 

Therefore, there is a compact connected set K that intersects /50, contains an 
accumulation point of /5,  and is disjoint from z. In the following, for a set X c ~,  let 
IV(X) denote the set of v ~ V such that /5~ intersects X. Since K is connected and 
contains an accumulation point of /5, it is clear that each component  of IV(K) is 
infinite. (This follows from Lemma 4.3.) 

We let 6 be a small positive number whose value is determined below. By 
Lemma 3.4, there is some open set W = W(z, K, E) containing z such that 

1 
VELc( IV(K)  , IV(W)) > - .  

E 

Without loss of generality, we assume that W is connected. Then every component  
of IV(W) is infinite. 

Assume for the moment  that D has finite area. We show that if E is chosen 
sufficiently small, then Pv is disjoint from F for every v ~ IV(W). Let C be some 
component of  IV(W). Let j be sufficiently large so that C intersects V j, and let C / 
be any component  of C n V j. Since every component  of I2(W) is infinite, C is 
infinite, and therefore C / must contain boundary vertices of T j. Let H j be the 
component of  V(K)  n V j that contains v 0. The above argument tells us that H j 
contains boundary vertices of T j. Let F *j denote the family of all subsets of  V / that 
intersect every path in F6j(HJ, C J). Proposition 5.2 now implies that 

EL(I '*J)  < VEL6j (HJ ,  C~) -1 < VELc( IV(K) ,  IV(W)) -x < E. (7.3) 

Consider the v-metric m = mj that assigns to each v ~ V j the diameter  of Pv j. 
By the r-fatness of the sets Qv, we have 

a rea (P] )  > r z rm(v)  2. 

This implies 

a rea (m)  < r- lar  -1 a rea (D)  < o0. 

Inequality (7.3) now implies that there is some y* ~ F *j such that 

L,~(y*) < ~ / 8  area(D)Tar 

We now choose e to be sufficiently small so that the right-hand side of the above 
inequality is smaller than d(F' ,  aD) /2 ,  half the distance from F '  to dD. So we have 

d (F ' ,  aD) 
L'n(Y*) < 2 (7.4) 
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Since the sets C j and H j are connected, Lemma 4.4 implies that there is a 
y~' ~ F *j that is connected and is contained in y*. Let YJ = U ~ ~rr P / .  Because W 
is connected, we may estimate its diameter as follows: 

diameter(W) < Y'. diameter(P~) = Lm(T*) < 
vE~* 2 

d(F' ,  8D) 

Recall that C j and H j both contain boundary vertices of T j. Since y~ separates 
HJ from C j, it too must contain boundary vertices. This implies that YJ intersects 
8DJ. We now assume that j is sufficiently large so that d(F', OD j) > d(F', &D)/2. 
Since diameter(Y j) < d(F', OD)/2  < d(F', ODJ), and YJ intersects OD j, it is clear 
that YJ does not intersect F ' .  Since y~' separates H j from C j in G j, it is clear that 
YJ U 8D j separates O o~ci PJ from P~o" Since YJ u c~DJ does not intersect F ' ,  
which is connected and intersects P/0, it follows that U o ~ cJ P[  is disjoint from F ' .  
Recall that C j is any component of  C n V j, and C is any component of I?(W). 
Therefore, for any u E 1.7(W), if j is sufficiently large so that u ~ V / a n d  d(F', ODJ) 
> d(F', &D)/2, then Po j n F '  = O. Taking limits, it follows that Pv is disjoint from 
the interior of  F ' ,  which contains F, and so P~ n F = O. 

We summarize our conclusions as follows. For every accumulation point z o f / 5  
there is a neighborhood W z of  z such that Pv A F = O for every u ~ I-~(I'V~). Let 
W* be the union of all Wz, over all accumulation points z of/5.  Then W* is an open 
set that contains the accumulation points of /5 .  Consequently, V -  I?(W*) is finite. 
Since F n Po = ~ for all v ~ 12(W*), only finitely many sets in the packing P 
intersect F. Hence P is locally finite in D. 

This concludes the proof in the case that D has finite area. When D has infinite 
area, the same proof is valid when the spherical metric of  (~ is used in place of the 
fiat metric of C. The only fact to note is that there is some ~'a, which depends only 
on z, such that the spherical area of P~ is at least T 1 times the square of the 
spherical diameter of P[ .  This follows easily from l_emma 3.3. Thus the proof is 
complete. [ ]  

We can now prove: 

7.2. Theorem. A disk triangulation graph is CP parabolic iff it is VEL parabolic. 
A disk triangulation graph is CP hyperbolic iff it is VEL hyperbolic. 

Proof of Theorems l.2 and 7.2. These follow immediately from 3.1 and 7.1. []  

8. VEL Parabolicity, EEL Parabolicity, and Recurrence 

We have seen that the VE L  type of  a disk triangulation graph is equal to its CP type, 
and now we establish the connection between V E L  and EEL  type. Through 
Theorem 2.6, this relates the CP type of  graph to well-studied notions. 
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8.1. Theorem. Let G = (V, E) be a localty finite graph. If G is EEL parabolic, then it 
is also VEL parabolic. Conversely, if G has bounded valence and is VEL parabolic, then 
it is EEL parabolic. 

Proof. Suppose that M is an e-metric on G. Define a v-metric m on G by 

m(v)  = max{M([v,u]): [v,u] ~ E}. 

If y is any transient path in G, then a simple diagonalization argument shows that 
there is a path 3" = (Vl, v2 , . . - )  with distinct vertices that are all in 3'. Thus 

o o  

Lm(Y) > > _ L m ( 3 ' ' )  = Y'. m(vy) > Y'~ M([vj,vj+l]) = Z M ( ' y ' ) .  
j = l  j= l  

(8.1) 

For each v ~ V let e(v) denote an edge e of G containing v that maximizes 
M(e) among such edges. Clearly, each e ~ E is equal to e(v) for at most two 
vertices v. Using this, we get 

area(m) = Y'. m(v)  2= ~ M(e(v) )  z 
v ~ V  v E V  

< 2 Y'~ M(e)  2 = 2 a rea(M).  (8.2) 
e ~ E  

Together with (8.1) this establishes that an EEL parabolic graph is VEL parabolic. 
To prove the opposite implication, assume that there is a global bound k on the 

valence of  any vertex v ~ V. l ~ t  m be some v-metric on G. Define an e-metric M 
by ~/([u, v]) = max(m(u), re(v)). It is easy to establish that for any path y we have 
LM(y) > Lm(Y). Moreover, since each vertex is incident with at most k edges, a 
calculation similar to (8.2) gives area(M) < k area(m). These inequalities show that 
a bounded valence VE L  parabolic graph is EEL parabolic, and the proof of the 
theorem is complete. [ ]  

8.2. Theorem. There is a disk triangulation graph which is CP and VEL parabolic, but 
EEL hyperbolic and transient. 

This shows that the bounded valence requirement in the second part of  Theorem 
8.1 is essential. 

Proof. Let T be a triangulation of an open disk. It is not hard to see that by adding 
vertices and edges inside the triangular faces of T a new triangulation T* whose 
1-skeleton G* is transient can be obtained. On the other hand, G* is VEL parabolic 
iff the 1-skeleton of  T is VE L  parabolic. The details are left to the reader. [ ]  

Proof (of 1.1). Follows immediately from Theorems 8.1 and 7.2. [ ]  



142 . Z h e n g - X u  H e  a n d  O.  S c h r a m m  

9. P e r i m e t r i c  I n e q u a l i t i e s  a n d  t h e  T y p e  

9.1. Theorem. Let G = (V, E)  be a locally finite, infinite, connected graph, let W o be 
a finite nonempty set o f  vertices o f  G, and let g: [0, oo) -~ (0, ~) be some nondecreasing 
function. 

(1) I f  G is VEL parabolic and satisfies the perimetric inequality 

laWI > g(lWI) (9.1) 

for every finite connected vertex set W D Wo, then 

| 1 
]~ - -  = oo ( 9 . 2 )  

n = 1 g ( n )  2 " 

Here a W  denotes the set o f  vertices that are not in W but neighbor with some 
vertex in IV, and [A[ denotes the cardinality o f  a set A .  

(2) I f  (9.2) holds, and 

lOWkl <_ g(IWkl) (9.3) 

is valid for every k = O, 1, 2 . . . . .  where W k is defined inductively by Wk + 1 = 
W k tA 0 Wk, then G is VEL parabolic. 

We remark that part (1) and its proof are analogous to a criterion of Grigor'yan 
for the hyperbolicity of  a Riemannian manifold [14]. Part (2) can be viewed as a 
generalization of  the Rodin-Sullivan length-area lemma [20]. 

Proof. Assume that G is VEL parabolic. Let m be some v-metric on G with 
area(m) < ~ and dm(W o, co) = oo. (See Remark 2.3.) We also assume, without loss of 
generality, that m(v )  > 0 for each v ~ V. For each v ~ V, let I v be the interval 

For h ~ [0, oo) set 

I v = [ d m ( W o , V  ) - m(v),dm(Wo,v)]. 

V h = { v E V : h ~ I v } ,  

w (h )  = ] ~ { m ( v ) :  v ~ Vh}, 

Yh = {V ~ V: I o c [0, hi}, 

n ( h )  = IYhl. 

It is easy to see that V h = OYh, and therefore 

IVhl > g ( n ( h ) ) .  (9.4) 
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It turns out that n(h) is not convenient to work with, since it is not smooth 
enough. We therefore define 

l eng th( I  v n [0, h])  
sv(h) = m(v )  for v ~ V, 

s(h) = ~ sv(h). 
v ~ V  

Note that sv(h) is equal to 0 for h < rain I v, sv(h) = 1 for h > max Iv, and s~ is 
linear in I v . Since d,,(Wo, oo) = 0% it follows that for every h ~ [0, o0) there are 
finitely many v such that I v intersects [0, hi. Therefore s(h) is a piecewise linear 
function. It should be thought of as a smoothed version of n(h). 

Now set 

x) 
f ( x )  = min g , -~ . (9.5) 

Let h ~ [0, ~). If Imhl >_ s(h)/2,  then 

rVhl >_ f (s (h)) .  (9.6) 

Suppose that PVhl < s(h)/2.  Then we have n(h) = rYhf >-- s(h) - Ighl > s(h)/2.  Con- 
sequently 

Ighl > g(n(h))  > g(  _ ---~--) > f ( s ( h ) ) ,  
s ( h )  

and we conclude that (9.6) holds in any case. 
We are now ready to do some real work. At  points h where s(h) is differentiable, 

we have 

ds 1 
--d-~(h) = E S'v(h)= 2~ m(v )"  

v ~ V h  v ~ V  h 

Therefore,  using the Cauchy-Schwarz inequality (or the inequality between the 
arithmetic and harmonic means) and (9.6), we get 

ds IVhl 2 f (  s( h ) ) 2 

dh - Y'. {m(v) :  v ~ V h} w(h)  

This gives 

ds dh 
- -  . 

f ( s )  2 >- w(h) 
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Integrating for h in some interval [a, b], 0 < a < b < oo, and using Cauchy-Schwarz 
again, we get 

fs 
s(O) ds [ b  d h  (b - a)  2 

(a) f ( $ )  2 ~ Ja ~ >- f?w-(~-dh"  

Note that 

f w ( h ) d h =  fo ~., m(v)  d h =  ~ fI m ( v ) d h =  
v~V h vEV v 

Therefore,  letting b --> oo in (9.7), we get 

ds 

E 
v E V  

Since 

( 4 / 4 
f ( s )  2 = max 2, ] g(s/2)2 s 2, g ( s / 2 )  ~ < - -  + - -  

(9.7) 

r e ( v )  2 = a r e a (m)  < m. 

dm(Wo,OO) >__dm(Wo,OW N) >__ 

N 
y" g(nk )-1. 

k=O 

Note that 

N l a W k l  N 
a r e a ( m )  < E < )--, -1 -- g(nk) �9 

k=O g(nk) 2 k=O 

Since the above are valid for each N, we get 

o o  

VEL(Wo,oO) > ~:~ g(nk) -1. 
k=O 

nk+l ----IWk+ll = IWk U ~WkI ~ IWkl + laWkl ~ n k + g ( n k ) .  

(9.8) 

On the other  hand, 

We have 

m ( v ) =  lg (nk )_  I t  for v ~ a W  k, k < N ,  
otherwise. 

we find that f o  g (s)-2 ds = 0% which implies (9.2). This proves part (1). 
To establish part  (2), now set n k = IWkl, and assume that (9.3) holds. Let  N be 

some positive integer, and define a v-metric m on G by 
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Fig. 9.1. A parabolic graph with exponential growth. 

Using this and the monotonicity of g, we obtain 

1 1 nk"l--I 1 n k + l - - 1  

- - >  s - - >  s 
g ( n k ) -  n k + l - - n k  n=nk g (n )  n~nk 

1 1 nk~l--1 1 
> E g(n  k) g (n )  - g ( n )  2" 

~ : g l  k 

This implies 

k=0 n=n0 g ( n )  z" 

Now part (2) follows from (9.8). []  

There  is a certain asymmetry in the two parts of Theorem 9.1. While the first part  
examines the relation between the size of the boundary of W and the size of W for 
every finite connected vertex set W ~ W 0, the second part  does this only for the sets 
W k. This difference is essential; that is, part  (1) fails if (9.1) is only assumed for the 
sets W k. Figure 9.1 gives a disk triangulation graph, which is essentially equivalent to 
a graph constructed by Soardi [27], with the following properties: 

(1) G is VEL parabolic. 
(2) The maximum degree in G is 8. 
(3) IOWkl > C[W kl for some C > 0 and all k = 0,1 . . . . .  The constant C does 

depend on the choice of W 0, but not on k. 

Property (3) clearly implies that G has exponential growth; i.e., ]Wk[ >_ (1 + C) k. 

10. Determining the Type from the Valences 

A natural question is, can the type of a graph be determined from the valences of its 
vertices. Suppose for a moment  that G is a disk triangulation graph. It is known [5] 
that if all the vertices of G have degree greater than 6, then G is not CP parabolic, 
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and if all the vertices of G have degree at most 6, then G is CP parabolic. The 
following two theorems generalize these results. 

10.1. Theorem. Let G be the 1-skeleton o f  an infinite triangulation of  a surface, and 
suppose that at most finitely many vertices in G have degree greater than 6. Then G is 
VEL parabolic, EEL parabolic, and recurrent. 

Due to Theorem 7.2 this implies that a disk triangulation graph with finitely many 
vertices of degree greater than 6 is CP parabolic. 

Proof. The method of proof is to show that the rate of growth of G is too slow for 
G to be hyperbolic. 

Given a set W c V, we let 0 W denote the set of v E V - W that neighbor with 
some vertex in W, and let c~W be the set of vertices in OW that neighbor with some 
vertex in V - (W u 0W). If K is finite, then OK is a finite set of vertices, and K is 
disjoint from the infinite components of V - OK. 

Let K 0 c V be a finite nonempty set of vertices that contains all the vertices in V 
of degree greater than 6. We define the sequence K 1 , K 2 . . . .  inductively by setting 

Kn+l =K~ U OK~. 

Note that each K .  is finite, and each vertex in 0K n has at least one neighbor in 
K n and at least one neighbor outside of Kn § 1. Let C. denote the set of vertices in 
OK. that have precisely one neighbor in K . ,  and let D~ = OK. - Cn. Consider 
some v ~ 5K. .  Let u I . . . . .  u m be its neighbors, in circular order, and set u 0 = u m . 
Since v has a neighbor in K . ,  we assume without loss of generality that it is 
u0 = urn. Let j ~ {1 . . . . .  m - 1} be such that uj q~ K.+ 1 . Since v ~ 5K. ,  such a j 
exists. Let a be the least index in {1, . . . ,  j} such that u a ~ K.+  1 , and let b be the 
maximal index in {j . . . . .  m - 1} such that u b ~ K~+ 1 . Since Ua_ 1 neighbors with v 
and with u a, and Ua_ I ~ K . +  1, it is clear that u a ~ D . +  1 and u~_ 1 ~ O K . .  
Similarly, Ub+ 1 ~ OK. and u b ~ D.+ 1 . By construction, {u . . . . . .  u b} contains all the 
neighbors of v in aK.  + 1. 

Suppose for a moment  that v ~ D. n 5K. .  We know that v has at most six 
neighbors. Of these, at least two are in K~, and at least two are in OK., namely, 
u~_ 1 and Ub§ 1. If a ~ b, then v has at least two neighbors in D.+ 1 , namely, u~, u b . 
As 2 + 2 + 2 --- 6, we see that when a :~ b, v has precisely two neighbors in D.+ 1 
and no neighbors in C.+ 1. If a = b, then u~ ---u b is the only neighbor of v in 
OKn +1, and this neighbor is in D. +1. We conclude that a vertex in D. neighbors 
with at most two vertices in /9. + 1 and with no vertices in C. § 1. 

The above reasoning also shows that a vertex in C. neighbors with at most three 
vertices in OK. + 1, of which at most one is in C~ + 1. One conclusion that we get is 

IC~+11_ ICnl. (10.1) 

Let mn+ 1 denote the number  of edges between gn+ 1 and Dn+ 1 . On the one hand, 
m~+ 1 > 2IDa+ 11, because every vertex in D#+ 1 has at least two neighbors in K.+  1- 
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On the other hand, the only vertices in Kn+ 1 that neighbor with Dn+ 1 are  in 
D n U C. ,  the vertices in Dn have at most two neighbors in D.  + 1, and the vertices in 
C.  have at most three neighbors in Dn + 1. Therefore, 

21D~+11-< r a n +  1 < 21D~l-4- 31C=1, 

which gives 

31Cnl 
ID~+ll _< ID,[ + T (10.2) 

Using induction and inequalities (10.1) and (10.2), we see that 

3nlC01 
IC,,I _< ICol, IO~l _< IDol + - -  

2 

Therefore, 

laK.I = IC,, u D~[ ~ IDol + (2n + 1)lCol. (10.3) 

Let m be the v-metric on G defined by re(v) = 1 / ( n  log n) for v ~ OK n , n > 1, 
and re(v) = 0 for v ~ U ,> 1 OKn. Since OK n intersects every transient path meet- 
ing K0, we see that dm(Ko, o~) >_ ~ > 1 1 / (n  log n) = ~. On the other hand, (10.3) 
implies that area(m) < ~. Hence G is VEL parabolic. From Theorems 8.1 and 2.6 it 
follows that G is EEL parabolic and recurrent. [ ]  

Let G be a disk triangulation graph. For v ~ V, let deg(v) denote the degree of 
v in G. The average valence of a finite nonempty set of vertices W is just 

1 
av(W) = ~-~ Y'~ deg(v).  

v ~ W  

The lower average valence of G is defined to be 

lav(G) = sup inf av(W);  
Wo W~Wo 

where W and W 0 are nonempty finite connected sets of  vertices. (The authors do not 
know if this notion appears in the literature.) 

10.2. Theorem. Let  G be a locally finite connected planar graph, and suppose that 
lay(G) > 6. Then G is VEL hyperbolic, and therefore EEL  hyperbolic and transient. 

Note that the lower average valence of the hexagonal grid is 6. 
Beardon and Stephenson [5] have shown that if every vertex of G has degree at 

least 7, then G is not CP parabolic. The above theorem is a generalization of  this 
result. 
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Proof. In any finite planar ~graph G* with vertex set V*, the average valence 
satisfies 

av(V*) < 6. (10.4) 

This is a well-known fact but for the convenience of the nonexpert readers, we give 
the proof here. Let n, e, f be the number of vertices, edges, and faces of  the graph 
(which is embedded in the plane). The Euler formula gives n + f = e + 2, and the 
inequality 3 f  < 2e holds if f > 1, since every face must have at least three edges on 
its boundary, and each edge is on the boundary of at most two faces. From these it 
follows that n > e / 3  (actually it is this inequality which we need later). However, 
av(V*) = 2e/n ,  since every edge is counted exactly twice in the sum Ev ~ v. deg(v). 
This establishes av(V*) < 6. 

We now return to the infinite graph G. Let W 0 be a finite connected nonempty 
set of vertices such that av(W) > C > 6 for some constant C and every finite 
connected set of  vertices W D W 0. Consider such a W, and let G* be the restriction 
of G to W U dW; that is, the vertices of G* are W u dW, and an edge of G appears 
in G* iff both its endpoints are in W U d W .  Denote by n and e the number of 
vertices and edges in G*, respectively. Then, dearly, 2e > IWI av(W), and therefore, 
by the previous paragraph, 

This gives 

I W I + I O W I = I W u a W t = n > - 3  >- 6 > IWI. 

10WI > g(IWI) 

with g(x)  = (C - 6)x/6.  Now, since L':~= 1 g(n)  -2 < 0% part (1) of Theorem 9.1 
shows that G must be VEL hyperbolic, and the proof is complete. [ ]  

It would be interesting to narrow the wide gap between Theorems 10.1 and 10.2. 
Suppose, for example, that G is a bounded valence disk triangulation graph and that 
v 0 is some vertex in G. Let k n = Ev (6 - deg(v)), where the sum extends over all 
vertices v at distance at most n from v 0. Can criteria for the type of G based on the 
sequence {k n} be given? For example, if k n is bounded, does it follow that G is VEL 
parabolic? 

Acknowledgments 

We thankfully acknowledge fruitful discussions with Peter Doyle and Burt Rodin. 
We also thank the anonymous referees for helpful comments, and especially for the 
improvement of  the statement and proof of Theorem 9.1. 

References 

1. E. M. Andreev, On convex polyhedra in Loba~evskii spaces, Mat. Sb. (N.S.) 81 (123) (1970), 
445-478; English transl. Math. USSR-Sb. 10 (1970), 413-440. 



Hyperbolic and Parabolic Packings 149 

2. E. M. Andreev, On convex polyhedra of finite volume in Loba~evskii space, Mat. Sb. (N.S.) 83 
(125) (1970), 256-260; English transl. Math. USSR-Sb. 12 (1970), 255-259. 

3. A. F. Beardon and K. Stephenson, The uniformization theorem for circle packings, lndiana 
Univ. Math. J. 39 (1990), 1383-1425. 

4. A. F. Beardon and K. Stephenson, The Schwarz-Pick lemma for circle packings, Illinois J. Math. 
141 (1991), 577-606. 

5. A. F. Beardon and K. Stephenson, Circle packings in different geometries, T~hoku Math. J. 43 
(1991), 27-36. 

6. P. L. Bowers, The upper Perron method for labeled complexes with applications to circle 
packings, Math. Proc. Cambridge Philos. Soc. 114 (1993), 321-345. 

7. G. R. Brightwell and E. R. Scheinerman, Representations of planar graphs, SIAM J. Discrete 
Math. 6 (1993), 214-229. 

8. J. W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. 
9. J. W. Cannon, W. J. Floyd, and W. R. Parry, Squaring rectangles: the finite Riemann mapping 

theorem, The Mathematical Heritage of Wilhelm Magnus--Groups, .Geometry and Special Func- 
t/ons, Contemporary Mathematics Series, American Mathematical Society, Providence, RI, 1994. 

10. Y. Colin De Verdi6re, Un principe variationnel pour les empilements de cercles, Invent. Math. 
104 (1991), 655-669. 

11. P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, The Carus Mathematical 
Monographs, Vol. 22, Mathematical Association of America, Washington, DC, 1984. 

12. R. J. Duffm, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215. 
13. B. T. Garrett, Circle packings and polyhedral surfaces, Discrete Comput. Geom. 8 (1992), 

429-440. 
14. A. A. Grigor'yan, On the existence of positive fundamental solutions of the laplace equation on 

Riemannian manifolds, Math. USSR-Sb. 56 (1987), 349-358. 
15. Z.-X. He and O. Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of  

Math. 137 (1993), 369-406. 
16. P. Koebe, Kontaktprobleme der konformen Abbildung, Ber. Ver. Siichs. Akad. Wiss. Leipzig 

Math.-Phys. Klasse 88 (1936), 141-164. 
17. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin, 

1973. 
18. A. Marden and B. Rodin, On Thurston's Formulation and Proof of Andreev's Theorem, Lecture 

Notes in Mathematics, Vol. 1435, Springer-Verlag, Berlin, 1989, pp. 103-115. 
19. M. H. A. Newman, Elements of  the Topology of Plane Sets of  Points, 2rid, edn., Cambridge 

University Press, Cambridge, 1939, Dover, New York, 1992. 
20. B. Rodin and D. Sullivan, The convergence of circle packings to the Riemann mapping, 

J. Differential Geom. 26 (1987), 349-360. 
21. O. Schramm, Existence and uniqueness of packings with specified combinatorics, lsraelJ. Math. 

73 (1991), 321-341. 
22. O. Schramm, Rigidity of infinite (circle) packings, J. Amer. Math. Soc. 4 (1991), 127-149. 
23. O. Schramm, How to cage an egg, Invent. Math. 107 (1992), 543-560. 
24. O. Schramm, Conformal uniformization and packings, lsrael J. Math. (to appear). 
25. O. Schramm, Square tilings with prescribed combinatories, IsraelJ. Math. 84 (1993), 97-118. 
26. O. Schramm, Transboundary extremal length, J. Analyse Math. (to appear). 
27. P. M. Soardi, Recurrence and transience of the edge graph of a tiling of the euclidean plane, 

Math. Ann. 287 (1990), 613-626. 
28. W. P. Thurston, The Geometry and Topology of  3-Manifolds, Princeton University Notes, 

Princeton University Press, Princeton, NJ, 1982. 
29. W. Woess, Random walks on infinite graphs and groups--a survey on selected topics, Bull. 

London Math. Soc. 26 (1994), 1-60. 

Received December 9, 1991, and in revised form July 19, 1994. 


