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Summary. Conditions for the CLT for non-linear functionals of stationary 
Gaussian sequences are discussed, with special references to the borderline 
between the CLT and the non-CLT. Examples of the non-CLT for such 

functionals with the norming factor t / N  are given. 

O. Introduction 

In the study of limit theorems for sums of dependent random variables, a par- 
ticular role has been played by the case when the summands are (non-linear) 
functionals of a stationary Gaussian process. It was this case which was consid- 
ered by M. Rosenblatt in his famous example of a non-Gaussian limit law 
[18]. More recently, the non-central limit theorem (non-CLT) for functionals of 
Gaussian process was the object of studies by Dobrushin and Major [5], Gor- 
deckii [8], Major [12], Rosenblatt [19, 20], Taqqu [24] and others. On the 
other hand the CLT for this kind of processes was discussed by Maruyama 
[15, 16], Breuer and Major [2], Sun [22] and Plikusas [17]. Among more 
general results on the CLT for dependent random variables which are applica- 
ble also in the present situation, we should mention Ibragimov [9], Brillinger 
[3] and Bentkus [1]. 

The aim of the present paper is to study the CLT for functionals of Gauss- 
ian processes 'in the vicinity of non-CLT'.  In order to do that, we also prove 

some new non-CLT with the norming factor I /N.  To be more explicit, let 

~t= ~ ~ (p,(x)e.(x;t)d"W= ~ ~I"' (0.1) 
n = l  H n n = l  

be the Wiener-Ito expansion of a stationary second order process (~t)t~2, sub- 
ordinated to the i.i.d. Gaussian sequence (Xt)t~z[13]; 

e,(x;t)=exp(i(xl + ... +x,)t), x=(x 1 ..... x,)e 

H " =  [ - n ,  n]' ,  d"W=W(dXl)... W(dx,), 
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W(dx) is the random spectral measure of (X,)~e; ~o,~LZ(H"). If 1 

A 2 - V a r  (~= ~("~XNt ] (0.2) 

and for any ~ > 0 

~[(o,~[21(x:lxl +. . .+x, l<l /N, l (o , , l>r (0.3) 
/ / -  

N 

(I(A) is the indicator function of the set A), then ~ ~ (n)/At , ,, is asymptotically 
t = l  

normal (Theorem 1). Of course, conditions (0.2) and (0.3) are not necessary for 
the CLT, still, condition (0.2) alone (or even a stronger one with ' ~ '  instead of 
' x ' )  is not sufficient. This follows in fact from the existence of subordinated 
self-similar processes with stationary increments which variance is linear in t; 
see Major [12], also this paper. As for condition (0.3), if ~N 1/2 in it is replaced 

N 

by ~g(N), where g(N)/N1/2-->~(N~oo), then ~ t / ] f N  can be asymptoti- 
t = l  

cally non-Gaussian (Theorem 7). Theorem 1 (for continuous time processes ~t ~ 
rather than discrete time processes) with eN 1/6 instead of eN ~/2 was obtained 
earlier by Maruyama [16]. In the case of infinite sum ~ (0.1), conditions (0.2) 
and (0.3) for all n=  1,2,.. .  do not ensure the CLT in general. The correspond- 
ing counterexample as well as a sufficient condition for the CLT in the case of 
infinite sum (0.1) can be found in Theorems 8 and 2, respectively. Theorems 1 
and 2 can be compared with ibragimov's condition for the CLT ([10], Theo- 
rem 18.6.1): 

~ EI/2(~ 0 -g(~olX, ,  Itl ~ k ) )  2 < o0,  (0.4) 
k = l  

which is stronger than (0.3) (Theorem 4). 
However, condition (0.3) is too restrictive in some cases. In particular, the 

case 
~t=H(Xt), (0.5) 

where H: IR~IR is a given function and (Xt),~ ~ is a stationary Gaussian pro- 
cess, deserves a separate treatment. (We call below functionals (0.5) local.) De- 
note r(t), Q(t) the covariance functions of (X 3, (H(Xt)) respectively. According 
to Theorem 5, if r ( t ) ~ 0  ( t ~  oo), then conditions 

and 

~[r~(t)l < oo (0.6) 

1;(0 # o (0.7) 
l 

imply the CLT for H(X,). In Theorem 6, the case rn(t)=L(ttl)/lth, where L is a 
slowly varying function, is considered. Finally, Theorem 9 discusses a situation 

1 A N ~ B N ~  l im A N / B  N = 1 ; 

A N ~ BN-*~ 0 < lira A N / B  N < l im A N / B  N 
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when the n o n - C L T  for local functionals is valid with any norming  factor  N ~, 
0 < 7 < 1  and either (0.6) or (0.7) fails. 

Theo rems  5 and 6 are related to Theo rems  1 and 1' of  Breuer and Majo r  
[2], a l though they were ob ta ined  independent ly  of [2]. In  T h e o r e m  1 [2], con- 
dition (0.6) is replaced by the following one 

~lr(t)l m < o0, (0,8) 
t 

where m is the Hermi te  r ank  of H. It  is easy to show that  condit ions (0.6) and 
(0.8) are equivalent  (see L e m m a  5 below). Still, in our  opinion, the p roof  of 
T h e o r e m  5 is s impler  than  that  of  T h e o r e m  1 [2]. In part icular ,  L e m m a  6 
(based on Hdlder ' s  inequality) permits  us to control  effectively the semi-in- 
variants  of sums of Hermi te  polynomials  of  X~. The  proofs  of T h e o r e m  1 and  6 
are also based on the semi- invar iant  method,  for which est imat ion the so-called 
' d i a g r am fo rmal i sm '  of the mult iple  integral 's  calculus [4, 13, 17] is extensively 
used. 

The results of this paper  can be extended to cont inuous  time, mul t ivar ia te  
time, Four ie r  coefficients etc. In  [6], T h e o r e m  1 was general ized to the case of  
2nd order  processes, subord ina ted  to non-Gauss ian  i.i.d, sequence (see Re- 
m a r k  1 below). The  C L T  for functionals of the form (0.5), where (X,) is a sta- 
t ionary  linear process, not  necessarily Gaussian,  was considered in [7]. 

Acknowledgment. The authors are grateful to the referee for the careful reading and many helpful 
criticisms of the first version of this paper. 

1. CLT for Non-local  Functionals 

Let (X,),~ z be a real s ta t ionary  mean  zero Gauss ian  sequence with covar iance 
r(t), r (0)=  1 and spectral  measure  F(dx), Ixl <7:, defined on a probabi l i ty  space 
(f2, ~,~, P), where ~ - = a ( X , ,  tG7Z.). Deno te  Z(dx)  the cor responding  Gauss ian  
complex  r a n d o m  spectral  measure  with var iance E[Z(dx)12=F(dx). Any ele- 

ment  {GL2(f2)=L2(~2, J~, P) can be represented uniquely in the form { =  
O 7 )  

n = O  

I,(~o,), where I,(qo)= 5 (p(x)d"Z, n > l  is the n-fold I to -Wiener  integral, d"Z 

= Z(dx  ~)... Z(dx,) ,  q~ e L 2 (II", F") = L 2 (F") is symmetr ic :  

2 I (p = s y m  (p, H" = I - r : ,  ?z]", ~ [l(p,ll, n. < oo, 

and 

ILq, t l .=(S [q, led"v)l/2; Io(~0)=~0, q , c r 1 7 6  
/ / -  

Moreover ,  I,(qo) is real if go is even, i.e. (p (x) = (p ( - x), xeH",  where a denotes  
the complex conjugate  of as(12. The uni tary  group  (T,),~ z of shift opera tors  T,X S 
= X , + s ,  s~TZ. extends to L2(f2) in a na tura l  way. R a n d o m  process (~t)t~z defined 
on (f2, Y ,  P) is called subord ina ted  to (X,) if T~{s= ~t+s gt,  s tag [13]. Deno te  
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b y  , , ~ 2 ( X )  the vector  space of all real subord ina ted  processes (i,) such that  
E i  2 < oe. Any (~t)eAf2(X) can be represented uniquely as 

it = ~ S ~p,(x)e,(x;t)d"Z= ~ ~}"), (1.1) 
n = O  H" n = 0  

where e,(x;t)=exp(it(xl+.. .+x,)),  n > l ,  % = 1 ,  ~o,~L2(H"), ~o, are even and 
symmetr ic ,  and ~ J j ~ p , l l 2 n ! < ~ .  All these pre l iminary  facts as well as other  
proper t ies  of mult iple  I to -Wiener  integrals can be found e.g. in I to  [11] or 
Majo r  [13]. In the sequel we'll use the nota t ions  

[Nt] [Nt] 

SN , =  Z is, S ( " ) -  Z y(") (1.2) , N , I - -  '~s , 
s = l  s = l  

SN = SN, 1, ~(n) __ ~(n) 2 ~U -- ~U, 1, A, = Va t  SN, 

where [a]  is the entire par t  of  a 6 N  and - ,  A~ denote  the equali ty and the 
weak convergence of (finite dimensional)  distributions,  respectively. Also, in- 
t roduce  the Dirichlet  kernel  

N 

DN(x)=sin(Nx/2)/sin(x/2)= (j~--1 eiJx) e-"N+ 1)x/2. (1.3) 

Theorem 1. Assume that the spectral measure F is absolutely continuous, F(dx) 
=f (x )dx  and the series (1.1) are finite (i.e. q) ,=0  for n > n m , x > l ) ,  q)o=0. If, 
moreover, f is bounded and 

(i) A ~ x N ,  
(ii) for any e > 0  and n = l  . . . . .  n . . . .  cp, satisfies (0.3), then 

A~ ~ SN, t A~W(t), (1.4) 

where (W(t)),>o is the standard Wiener process. 

Proof. I t  suffices to show tha t  for any  r > l ,  0 < t a <  ... <t~, a~ . . . . .  a ~ e ~  the 

semi- invariants  of order  k > 3  of A~l ~ Su, t / aj vanish as N ~  oQ. The  p roof  
j= l  

of this fact below is restricted to the case r =  1, t = 1 as the general  case can be 
t reated analogously  2. 

To  evaluate  the semi- invariants  of  mult iple  I to -Wiener  integrals, we shall 
use the d iagram me thod  [-4, 13, 14, 17], which we briefly describe below. 
Deno te  by ( q l  . . . .  ' / ~ k )  the semi- invar iant  of  r a n d o m  variables t/1 . . . . .  11 k. Let  
(Pi~L2(H"9, i= 1 .... , k be symmetr ic  and even. Then 

(I,~((p~) ... . .  I,~(cpk))= ~ ~cb, d"/2 F, (1.5) 
7 H"l/2 

if nl+ . . .  + n k = m  is even, = 0  if m is odd, and the sum (1.5) is t aken  over  all 
par t i t ions  (diagrams) 7 of the table 

2 This remark applies also to the proofs of Theorems 5 and 6 below 
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G=(!!~ 1) . . . . .  (1, nl)t,  (1.6) 

\(k, 1), .., (k, rig) ] 

by pairs [(i,j), (i',J')](eT) which we call the edges of ~ such that (a) i=t=i' and (b) 
the rows Gi, i= 1 .... , k of the table G (1.6) cannot make up two tables each of 
which is partitioned by the diagram separately�9 If the set {7} of diagrams which 
satisfy (a) and (b) is empty, the corresponding semi-invariant is zero. (The dia- 
grams ~ which satisfy (b) are called connected [14]�9 The function ~b~ in (1.5), 
dependending on m/2 variables, is obtained from the tensor product 

k 

4 = @  q)i, ~)=~)(Xij, i = l  . . . .  ,k,j=l . . . .  ,ni) 
i = 1  

according to the rule 
xlj= -x i ,  j, V[(i,j),(i',j')]e 7 . (1.7) 

Lemma 1. (c.f. [17], Lemma 1). 
k 

I I~)~] I d m / 2 F ~  ]~I ]l~Oillni ' (1 .8 )  
H m/2 i = 1 

Proof. Let feLZ(IP), geL2(H"'), f =f (x ,y ) ,  g=g(x,y'), xeII ,  y e l P  -I ,  y'eFP "-1 
Then 

S ]f(x, y) g(x, y')] dV(x) <(~ ]f(x, y)[2 dF)i/2 
17[ 17; 

�9 (~ [g(x, y,)[2 dg)~/2 _ f ( y )  ~,(y,), 
H 

where feL2(II"-l),  ~eL2(H"'-I). Now, (1.8) follows easily by repeated appli- 
cation of this inequality. [] 

Let n~ ....  ,nkeZ+, l<n~<n . . . .  ha+ ... +nk=m be even. By (1.5), 

�9 IN--[(S~ ') . . . . .  S~k))l 

~ Z  I j=fi 1 ~N'nj(Xjl '  " ' "Xjn j )  d"/ZF 
y n rnl2 

--=~ JN(7), (1.9) 
7 

where IpN,,(X 1 .... ,X,)=~0,(X 1 ....  , x , ) D u ( x l + . . . + x , )  and xij m (1.9) satisfy 
(1.7). Let 

VN=VN, K = { X e H m / Z : ] X j l  + ... + x j , j l < K / N , j = l , . . . , k } ,  V[v=-Hm/2\VN, 

JN(T)= ~ ... + ~ . . . .  J~(y)+J'~(7). (1.10) 
VN V~q 

By (1.8), k 

J~(7)< c Z I-[ tl~N,,,ll,,( ~ M"'xl4'N,,~(X)I 2 
i= 1 j# i  Hni 

�9 l(xeH"':lx~ + ... +Xn, [ >K/N)) */2 (1.11) 
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as f ( x ) = d F / d x  is bounded. Here and below we denote by C, C(-) possibly 
different constants which may depend on variables in brackets but do not de- 
pend on N. Next we need 

Lemma 2. Let O < g ~ LI ( FI ; dx) satisfy the condition 

S D 2 ( x ) g ( x ) d x < C N ,  N > I .  (1.12) 
n 

Then Ve>0 ~ K > 0  such that 

i(N)=_ ~ g (x )D2(x )dx<~N,  m > m a x ( 1 , K / N ) .  (1.13) 
> Ixl > K / N  

Proof. Set G(x)= i g(y)dy. Then G is non-decreasing and bounded in (0, n) 
x 

and GO~N) <2 ~ g(x) D2(x) d x / N  2 < C/N, which implies G(x) < Cx, 0 < x  < 7~. 
Therefore n 

i(N) <= C ~ x -2 dG(x)= C[G(x) X-2[~/N 
K / N  < x  <7~ 

+ ~ x-2dx]<-<_CN/K. [] 
K / N  < x  < rt 

By (1.3), [DN(x 1 + ... +x,)l is periodic in IR" with the period H". Therefore 
VarS~)=n!  IIr can be written as n! j g,(y)DZu(y)dy, where 

H 

g,(y)= j (0,(xl  . . . . .  x,_~,y-xl-...-x,_OI2d" Ix 
Fin  1 

and 
0,(x 1 . . . .  , x,_ 1, x,) = r 1 . . . . .  x ,  1, x',), x ,elR,  x',eH, 

x ,=x ' ,  (rood 2~) is the periodic extension of r As the integral on the right 
hand side of (1.11) does not exceed 

g,,(y) D~(y) dy and Var S~r ~ < CN, i = 1 . . . .  , k 
K/N<Irl <~ 

by (i), Lemma 2 implies that Ve>0 3 K > 0  such that 

J~(7) =< eNk/2. (1.14) 

Now, J~(?) = Ju  (7) + J+ (Y), where 
k 

S~(Y)= J [ I  ]~,,,fl dm/2F 
V N  j = l  

and 
~%,. = ~N,. 1( x ~ H ' :  I~.1 <~Nl / : )  - 

We claim that V6>0  V K > 0  3~>0 such that 

JN (7) < cSNk/2. (1.15) 

To prove this, we'll need two auxiliary lemmas. 



CLT and Other Limit Theorems for Functionals of Gaussian Processes 197 

Definition 1. Let 7 be a connected diagram of the table G (1.6), and x~FIR, (i, 
j ) s G  be related by (1.7). We'll  say that  a row Gp (1 < p < k )  is proper  if there 
exist q~{1 . . . .  ,k},  q # p  such that n p + k - 2  variables xpj, j = l  . . . . .  np, xia + . . .  
+x~,,, i = 1  . . . . .  k, i # p , q  are linearly independent;  in other  words, if the re- 
lation 

np 

c jxp i+  ~ di(xil + ... + xi,,)=-O (1.16) 
j=~ ~=~ ..... k,~*p,q 

(plus (1.7)) implies c j=di=O,  j =  1 . . . .  , np, i= 1 . . . . .  k, i#:p, q. 

L e m m a  3. Let  Gp be proper, and V N be given by (1.10). Then 

[ON,,~I 2 d,,/z F < C(K /N)  k - 2 [[ ON,,, ]l ~ .  
V~ 

Proof. For  simplicity of notat ion,  assume that  p = k and q = k -  1. Identify ~m/2 
with the m/2-dimensional hyperplane in ~ m =  {x=(x~j, (i,j)~G}, determined by 
the Eq, (1.7). According to Definition 1, there exist a non-degenerate  3 linear 
t ransform T: l R m / 2 ~  "~+k-2 such that  

(Tx) j=Xkj  , j = l , . . . , n  k, (Tx) ,k+i=xi l  + ... +xi , , ,  i = 1  . . . . .  k - 2 .  

This proves L e m m a  3. [ ]  

L e m m a  4. Let  y and xij satisfy the conditions o f  Definition 1. There exist at least 
two distinct proper rows Gp,, and Gp,,. 

Proof. We say that  G 1 , . . . , G  k are properly ordered, if for any i = 1  . . . . .  k - 1  
there exists an edge V/= [(i,j), (i ' , j ' )]~y such that  i '>i.  In this case G1 is proper,  
with q = k .  Indeed, let (1.16) hold, and set i * = m a x ( i = 2  . . . .  , k - l :  d i + 0  ). The 
available xi. j connected by Vii. is linearly independent  of Xis, i< i*, s = 1 . . . .  , ni, 
which implies d~.=0, i.e. we have a contradiction.  

It remains to show that  there exist two different ways to renumerate  the 
rows of G to get them properly ordered. As 7 is connected, there exist k - 1  
edges [(it,jr ), (i'~,j'r)] ~7, r =  1 . . . .  , k - 1 such that for any r = 1 . . . .  , k - 1, 

i ~ { i l , i '  1 . . . .  ,i~_~,i'~_~}, i'~(~{il,i' ~ . . . .  ,i~_~,i'~_~} (1.17) 

(the starting row G~, can be taken arbitrary). Then 

G'~ = Gi~ 1, G~ = G~_~ . . . . .  G~_ ~ = G~a, G~ = G~, 

are properly ordered. If one takes i~_ 1 as the starting point  in (1.17), one gets 
another  properly ordered sequence G'~,..., G' k' such that  G; # G~,' = G'~. [ ]  

Coming  back to the p roof  of (1.15), let Gp, Gp, be proper  rows for 7- By the 
definition of  Ou,, and the inequalities [DN(X)I<=CN, IxI<=K/N, lab l<l /2 (a  2 
+b2), 

JN(7)<C(~N1/2)  k 2 Nk -2  ~ (ION,.~I 2 
VN 

+ 1Ou,,~,l 2) d,,/2 F < C(eNa/2) k- 2 N k- 2(KIN)k-  2 N 

according to L e m m a  3. This proves (1.15). 

3 Le. the rank of the (m/2, n k + k-2)  matrix corresponding to T is n k + k-2.  
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With (1.14) and (1.15) in mind, it remains to verify that J+(7)=o(Nk/2), 
Ve > 0, VK > 0. Again, by using Lemma 1, 

where 

k 

J~(7)<= C ~ (FI IlON,.,ll.,) '~a/2 N,j '  
j = l  i:~j 

6N,j=N 2 ~ I~o,~l z l ( Ix l+  ... + x , j l < K / N ,  Irp,jl 
Hnj 

>eN1/2) d"Jx=o(N) 

according to (ii), which ends the proof. [] 

Set S(u--<")= ~ S~ ). By Fatou's lemma, 
k = l  

lira lim Var S~ --<')/Var S N < 1. (1.18) 

In Theorem 8 of Section 3 this limit is zero. It appears that the equality in 
(1.18) plus the CLT for each S(u --<") yields the CLT for S N. Namely, we have 

Theorem 2. Assume that 
A~ 1 S (<=n) =~,/V'(0, 0 -2) (1.19) 

for n>=l sufficiently big, where A2=VarSN and 0-2~1 (n--*oo). Then 
AN 1S u ~ JV'(0, 1). 

2 Proof. By (1.18), Var (S(u<=")/AN)~0-2, and therefore Var((SN--S(u<="))/AN)--* 1--0-,. 
Together with (1.18) this implies that for any a~N, 

lim [E exp(iaA~ 1 SN ) _ exp( -- a2/2)1 
N--* oo 

< [al (1 - 0-2)x/2 + [exp( - a  2 o-2/2) - exp( -aa/2)] ---, 0(n --, oo). [] 

In [9] (see also [10J, Theorem 18.6.1) Ibragimov obtained a result on the 
CLT for subordinated processes which we reproduce below in a somewhat less 
generality. 

Theorem 3 (Ibragimov). L e t  ( ~ t ) E ~ - ~  be stationary process subordinated to 
i.i.d, sequence 4 (Xt). Assume that (0.4) holds and Zrr where rr is the 

covariance of (it). Then SN/lf  N d=~#(0, a2). 

Theorem 4. Let conditions of Theorem 3 hold and (Xt)eX(0, 1) be Gaussian. 
Then (it) satisfies the conditions of Theorems 1 and 2. 

Proof. Apart from the 'frequency' representation (1.1), the process (~t) has also 
the 'moving average' representation 

3,= 2 E c , ( t - t l  .... , t - t , ) : x , l . . . x ,  : 
n=O t l ,  . . . , tn~Z 

-= ~, ~t y("), (1.20) 
n = 0  

4 Not necessary Gaussian 
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where c.(t)elR, teZ",  n > l  are the Fourier  coefficients of r q~,(x) 
=(2g)-n/2 2 exp(i(x,t))c,(t),  a n d : X t , . . . X t :  is the Wick product  (invariant 

t 

with respect to permutat ions of t 1 . . . . .  t,) of Gaussian variables Xtl, .... Xt,  
[13], i.e. 

:X,1... Xt,:  = Hk,(X,I) ... Hkm(Xsm) (1.21) 

if t l = . . . = t k  = S l , . . . ,  tkl+...+km_l+l = . . . = t , = s  m, k l + . . . + k m = n ,  s l < . . . < s m  
and Hk, k--0,  1 . . . .  are Hermite polynomials. Now, (1.20) follows from the 
well-known relationship between multiple Ito-Wiener integrals and Hermite 
polynomials [-11, 13]. Note that 

~ : X t l . . . X t  : if q , . . . , t , ~ T ,  
E(:X, , . . .  X t ,  :[Xt, t E T) = (0 if otherwise (1.22) 

and 
cov(:Xt,  ... Xt.:,  :X,,, ... X,,  :)= a(n, n') 

�9 f i  6(ta, tS) f l  k,,,  (1.23) 
j = l  j = l  

where t , < . . .  < t , ,  t ' l<  ... <t',, and : X , . . . X t :  is equal to (1.21). By (1.22) and 
(1.23), 

p(k) =_ E(~ o - E( go I X ,  I tl -_< k)) 2 

= E E ..... t.) 
n = l  ( t l  . . . . .  tn)r n 

> • (c2(tl . . . .  , t , _ l , k + l ) + c z ( t l  . . . .  , t , _ l , - k - l ) ) .  (1.24) 
t h . . . , t n - l ~  

To prove condition (ii) of Theorem 1, it suffices to show that  for each n>= 1 
there exists 0=<~,EL2(H "-  1) such that  

Iq) n(Xl . . . . .  Xn)l ~ C~ln(X1 . . . .  , X n -  1) ( 1 . 2 5 )  

a.e. in H". Now, set G(q  . . . . .  t , -1 , t , )  exp i ~ x j t j  . 
tn tl,.. . ,tn-1 \ j = l  

Clearly ~ ,  satisfies (1.25). By Minkowski 's  inequality and Parseval's identity, 

I ] ~ t n H n - l ~ C E (  Z 2 C,(t 1 . . . .  , t,)) 1/2 < oO 
tn t l , * * . , t n -  1 

according to (1.24) and (0.4). 
One can check easily (see also the proof of Theorem 18.6.1 [,10]) that  

Ire(t)l < Cpl/2(t/2), (1.26) 

i.e. ~[r~(t)[< oo by (0.4). Therefore Var S N ~ a 2 N  as 0-2+0. 
t 

Denote r~--<")(t) the covariance function of ~, il k). Using (1.22), similarly to 
k = l  

the proof of (1.26) it can be shown that  r~--<")(t) also satisfies (1.26) with C 
independent of n (and t). Therefore o.,2 =- ~ r~=<")(t) ~ o .2 (n ~ oo). Together with 

t 

Theorem 1, this concludes the verification of conditions of Theorem 2. [] 
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Remark 1. Let (Xt)t~ z be i.i.d, random variables, not necessary Gaussian, such 
that there exist orthogonal basis in L2(I(; #), ,u(dx)=P(Xtedx) ,  consisting of 

(n)  " polynomials P~(x)= ~ cj x J, n=0,  1 . . . .  such that E P~2(Xt)=n!. Let :Xtl ... X t "  
j<n 

be defined by (1.21), with H k replaced by Pk. It is easy to show that any 2nd 
order process (~t),~z subordinated to (Xt) has a unique representation (1.20), 
where GeL2(Z ~) and the series converge in L2(y2) ([6], see also [21]). 

Let q),,eL2(H n) denote the Fourier transform of G. Assuming that conditions 
(i) and (ii) of Theorem 1 hold and only a finite number of G's in the represen- 
tation (1.20) do not vanish, one can prove the CLT for (~t) which is a 
straightforward generalization of Theorem 1 [6]. 

2. CLT for Local Functionals 

Let (Xt) be a real stationary mean zero Gaussian sequence with covariance r(t) 
such that 1"(0)= 1 and 

r(t)--*0 ( t ~  oo). (2.1) 

Any (real) function HeL2(~,  e -x2/2 dx)=_Lz(X) can be represented in the series 
of Hermite polynomials 

0 o  

H(x)=  ~ CkHk(X), (2.2) 
k = 0  

where ~ 2 1 G k . < ~ .  The smallest keZ+ such that Ck4=O will be called the 
Hermite rank of H [24]. Given HeL2(X) such that co=E(Xo)=O , denote rH(t ) 

[Nt] 

the covariance of it = H(Xt) and set again SN, t = ~ H(Xs) , S N = SN, 1" 
s = l  

Theorem 5. Assume that 
~,lrn(t) l  < oo (2.3) 

t 

and 

Then 

a 2 = ~ ru(t) + O. (2.4) 
t 

N I / 2 S N ,  t ~ a W ( t ) .  

Theorem 6. Let rH(t)=L([tl)/lt], where L: [1, ~ ) - ~  is a slowly varying function, 
bounded on every finite interval, such that 

L I ( N  ) ~ oo (N ~ oo) (2.5) 
N 

where LI(N)=  ~ r~(t). Then 
t= --N 

(LI(N) N)-  1/2 Su, t ~L> W (t). 

Remark 2. Theorem 9 below shows that conditions on rH(t ) in Theorems 5 and 
6 are essential for the CLT. Namely, there exist stationary Gaussian (Xt) 

N 
with absolutely continuous spectral measure such that A ~ I ~  Hn(Xt) is asym- 

t = l  
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ptotical ly non-Gauss i an  and ei ther  ~lr lT, ,( t ) l<oo,  ~ r i % ( t ) = 0  (in this case the 
norming  factor  A N = N v, 0 < 7 < 1/2) or the series ~ IrHn(t)l diverge logar i thmical-  
ly but  rH.(t ). t fails to be slowly varying (and the norming  factor is the ' u sua l '  
N1/a); H ,  is any odd (n=3 ,  5 . . . .  ) He rmi t e  polynomial �9 

Proof  of  Theorem 5. Let rn=>l be the Hermi te  rank  of H. As EHk(Xo)Hj (X t )  
= (3(k,j) k! (r(t)) k, oo 

rH(t)=r,,(t ) ~, 2 T (2.6) c.  n. r"-m(t).  
n ~ m  

2 l By (2.1), Iru(t)l>lr(t)]mcmm./2 if t is sufficiently big, hence by (2.3), 

Zlr"(t)l  < oo. (2.7) 
t 

Conversely,  (2.7) implies (2.3) by (2.6). This discussion can be summar ized  in 

L e m m a  5. Conditions (2.3) and (2.7) are equivalent. By Lemma 5, 

By L e m m a  5, 
N N 

V a r ( N - ' / 2  Z E C k H k ( X t ) ) < E  E 2 . c k k Vlrk(t)l 
t =  1 k ~ n  k > - n  t =  1 

2 k! --* 0 (n --* oo). (2.8) �9 ( N - t ) / N < C  ~ c k 
k > n  

According to (2.3) and (2.4), Var  S u N  qZN. Together  with (2.8) this implies that  
it suffices to prove  T h e o r e m  5 for H whose Hermi te  series is finite. 

N 

Denote  J N = ( S ~  ') . . . . .  S~ k)) where S~)=  ~ H,(Xt )  and nl > m  .. . .  ,nk >m. We 
prove  that  t= 1 

J u = o ( N  k/2) (2.9) 

for k > 3. Here  Js = ~ JN(7), where 

N 

JN(7)-- ~ H rZ"(ti--tJ), (2.10) 
t l ,  . . . , t k =  1 l < = i < j < k  

the sum ~ is taken over  all connected d iagrams (i.e. part i t ions of the table G 
Y 

(1.6) which satisfy (a) and  (b)), and lij = lij(7 ) is the number  of edges between the 
i-th and j - th  row of the table G. The  formula  above  for JN is a par t icular  case 
of (1.5), see also [14], P ropos i t ion  1.1. By the definition, 

E lij=ni, i = 1  . . . . .  k. (2.11) 
j+i 

t ~ t~ Write  Js(y)=J'u(?)+Js(7),  where JN(7) is the sum (2.10) taken  over  t 1 . . . . .  t k 
= 1 . . . . .  N such that  It~-tfl  < K if li i > 0, i, j = 1 . . . . .  k. As 7 is connected,  wi thout  
loss of generali ty we can assume tha t  Gi , . . . ,  G k are proper ly  ordered (see Lem-  
m a  4), i.e. for each i = 1 ,  ... ,  k - 1  there exists an edge [(i,j), (i', j ' ) ]E 7 such that  
i' > i. Set s~ = t~ - t~,, i = 1, .. . ,  k - 1. Then  

J's(Y) < C ~" 1 < CN. 
[ s i l < - K , i = l  . . . . .  k 1 , [ t k [<- -N  

By L e m m a  6 below, this concludes the proof. [ ]  
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L e m m a  6. J~(?) < e(K) N k/2, where e(K) ~ 0 (K ~ oo). 

Proof. By definition, J~(7)= ~ Iij, where 
l<=i<j<k 

112--- Z H rliJ(ti--tj ) 
t l  . . . .  , t k =  1 , ~ ,  [ t l  - - t 2 l  >K 1 <=i <j<_k 

if 1 1 2 > 0  , = 0  if 112=0 and other lij a r e  defined analogously. Set r12(t,s)=r(t 
- s )  if l<=t, s<=N, [ t - s l > K ,  = 0  if otherwise; r~j(t,s)=r(t--s) if l=<t, s<=N, = 0  
if otherwise, and (i,j):#(1, 2), i, j =  1 . . . . .  k. Then 

112 = ~ [ I  "~'J l ij ( t i ,  t j). (2.12) 
tl . . . . .  tk l <i<j<=k 

For any rij(t,s)>=O , i, j = l , . . . , k ,  t, s e Z  and lij=lji>=O which satisfy (2.11), 
the following inequality holds: 

R=<min( I ]  Rij, H Rye), (2.13) 
1 <=i <j<=k 1 <=i <j<=k 

where 

R ij = (Z  (E ri] ~ (s, t))"J/"@ j/"j (2.14) 
t s 

and R denotes the right hand side of (2.12). In fact, by H61der's inequality: 

I~ h i . . .  hkl < [I(~ IhjlaO 1/aJ, 1/fl I + . . .  4- 1/fl k = 1, 
J 

we have 
R -< E iV ,,1 ~1,2/.1 . .  (E r~'~)"~/"' 1-[ 

- -  ~,/..~ " i  2 1  . . . .  

t2 . . . . .  tk tl tl 2 <=i < j <=k 

=< Z ( Z ( E  , .. 
t3 , . . . , t k  t2 tl t2 

�9 (~'~ rn2 ]12k/nzl~" ,.n, ]l13/nl ( ~  en, ]l ,k/n,  17 
'%{-a "2k]  \ / ' ~  ' 2 3 /  """ tlLa " l k ]  1 1  �9 "" 

t2 tl tl 3 < i < j < k  

<=...<= H g j; 
l<i<j<=k 

the other inequality of (2.13) can be proved analogously. 
By (2.12), (2.13) and (2.7), 

Ilz=< Cmax{( ~ Ir"'(t)l)~'~/"',( Z I""~(t)l) '~'/"~} N~, 
Itl >K Itl >K 

where 

7=rain(  ~, li~/n j, ~, liJn~)<k/2; 
1 <=i<j<=k 1 <--i<j<k 

the last inequality follows from (2.11). [] 

Proof  o f  Theorem 6. Let m > 1 denote again the Hermite rank of H. Similarly as 
in the previous theorem, IrH(t)[ > Clrm(t)l for t sufficiently big, which implies 

Jr(t)] < C[L(t)/t] aim. (2.15) 
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It follows from (2.15) that  Var cmHm(Xt) <CN. Together  with (2.5) 

this implies that  it suffices to prove Theorem 6 with H(x) replaced by % H,,(x). 
Let ? be any connected diagram of the table (1.6), where n l =  ... =nk=m 

and lij, i, j = 1 . . . . .  k be the same as in the proof  of Theorem 5. We'll  prove that 

N 

Jn(7) = 2 H (g([ti-tjl)/lti-tj[) l'j/~ 
t l , . . . ,  t k =  1 l ~ i < j < = k  

= o ((L, (N) N)k/2). (2.16) 

In fact, Ju(7) < C(NL(N)) k/2 I(7), where 

I(Y)= ~ 1-I [ti-t3] -(''j+~)/"dkt 
[ 0 , 1 ]  k l<=i<j<=k 

as L(tN)/L(N)<__ C(e)t -~, 1/N__<t< 1 uniformly in N for any 5>0.  By another  
proper ty  of slowly varying functions ([-25], Chap. 5.2) L(N)=o(LI(N)). It re- 
mains to apply L e m m a  7 below. [ ]  

L e m m a  7. For e > 0  sufficiently small, I(?)< oQ. 

Proof. Let us prove first that  

1 

i - S d t  1-I It-tj[ -(~+t*/"l 
0 2 < j < k  

<C(e) ~ [t~-t~l-~'<C(e) [I  [t,-t~l -~', 
2 <i < j < k  2 <i <j<_k 

where e ' = e ' ( e ) + O  (e +0) .  In fact, assume that O= t,  < t 2 < . . .  <tk+ 1 
k ty+l 

= Z I = E i j ,  where 
j =  i t j  

a s  

t j+ 1 

ij< [. dt/It-t~lu'lt - t j +  11"< C(e)lta+, - t j l  -~m 
t j  

j k 

flj-- ~ ( r  7~= ~ (te.-~-lli/m) <1, 
i = 1  i = j + l  

fir+ ? j <  1 + e m  and e > 0  is sufficiently small, j = 2  . . . . .  k - 1 ,  while 

t2 

il ~ I dt/lt - t 2 l~+l*2/"lt - t3l ~2 =< Clt 2 - t3l- 2me 
0 

(2.17) 

= 1. Then  i 

1 1 

I (y )~C(g)~  ~dtk_l At It --t I (~"+lk,k 1/m)~.- ~ k l ~ k  ~k-- 11 ~ GO 

0 0 

as Ik, k_ 1 < m and e " >  0 is sufficiently small. []  

due to [t3-t[~2>__[t3 2,,~ - t2 [  Itz-t[  ~2-2m~ and 72-2m~+~+112/m<1. Similarly, 
ik_--< C(e)[t k --tk_l[ -2m~. This proves (2.17). 

By successive applicat ion of (2.17), 
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3. Non-central Limit Theorems 

Theorems 7 9 below serve as counterexamples  to the central limit theorems of 
Section 1 2, when some of their conditions are violated. This applies to (a) the 
condi t ion (ii) of Theorem 1, (b) the condit ion of finiteness of the l to-Wiener  
expansion of (it) in Theorem 1 and (c) the condit ions (2.3) and (2.4) of Theorem 

N 

5. The variance A 2 of S u =  ~ it grows linearly in Theorem 7 and 8, while in 
t = l  

Theorem 9 it behaves like N 7, where 7 is any number  between 0 and 2. The 
limiting processes in Theorem 7-9 are expressed as multiple stochastic integrals 
(m.s.i.) with respect to different (or vector) Gaussian measures, which is a sim- 
ple generalization of m.s.i, of  Sect. 1 (see e.g. [20, 30]). Below we recall the 
basic properties of such integrals. 

Let  N(N)  denote  the Borel subsets of ~ with finite Lebesgue measure. By a 
II; m valued white noise W = ( W  1 . . . .  , Win) in N we mean a (complex) Gaussian 
family (WI(A), A ~ N ( ~ ) ,  i = t  . . . . .  m), defined on a probabil i ty space (O, ~-, P) 
such that  EW/(A)=0,  

EWi(A) W j (B)=rl j  (. dx  (3.1) 
and Ac~B 

W~(A) = W~(-A), 

i, j = l , . . . , m ,  A, B~N(IR). We assume below that the covariance (matrix) 
(r~j)~ ~= 1,,, of  W is strictly positive definite. Int roduce the Hilbert  spaces L:(P, n, 
( |  if;my) = L 2 (IR', .) (n = 1, 2 . . . .  ), consisting of all functions f :  IR ~ ~ ( |  (12m) n, f 
= (fl ...... i~)i ...... i,= 1,,~ with finite norm 

( ~ ~', ri~j, ... ';,,j.fi, ...i,(xl . . . . .  x,) fi,  . . . j . ( X  1 . . . .  ,Xn) dnx) 1/2. 
IR ~ i 1 , . . . ,  i , ,=  t , m  

j l  . . . . .  j , = l , m  

The symmetr izat ion opera tor  sym in L2(IR ",.) is given by 

(symf)i ,  ...i,(xl . . . . .  x,) = E fp(1) ...p(n)(Xp(1) . . . . .  Xp(n))/n ! 
(p( 1 ) . . . . .  p ( n ) ) e ~ n  

where ~ ,  is the set of all permutat ions  p=(p(1)  . . . .  , p(n)) of (1 . . . . .  n). 

Proposition (c.f. [23], Theorem 1.1). Let W = ( W  1 . . . . .  W,) and (rij) satisfy the 
conditions above. For any n>= 1 and f d J ( I ( ' , . )  there exists random variable 

I , ( f ) =  ~ ~ .fi .... i,(xl . . . . .  x,) Wi,(dxl). . .  W~,(dx ) 
~ n  i l , . . . , i n = ~ - m  

(the m.s.i, o f f  with respect to W), with the following properties: 

(wl) I , ( f ) = I , ( s y m f ) e L 2 ( O ) ; ( w 2 )  EI , (J ' )=O; 

(w3) E I , ( f ) I k ( g  ) = a , k n [ ( s y m  f ,  g)n 

for any k>= 1 and gEL2(Nk,'), where 3,k is Kroneker's 3 and (' , ') ,  is the scalar 
product in L2(IR ", -). 
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We  say tha t  feL2(R' ,  .) is even if fi~...i,(Xl . . . . .  X f l ) = f ~ l . . . i n ( - - X  1 . . . . .  - -Xl I ) ,  

i 1 . . . .  , i , = 1  . . . .  ,m, x I . . . .  ,x ,~IR.  If  f eLZ(Pc ,  .) is even, then l , ( f )  is real. 
G iven  a func t ion  f eL2(~  ", ~1) and  i I . . . . .  i ,~{1 . . . . .  m}, we define 

f (x, .... , x,) dWi ... dW~, = I ,( f) ,  
IR ~ 

where  fEL2(R" , ( |  f j , . . . ;  = f  if (/'1 . . . .  , J , ) = ( i l  . . . . .  i , ) , = 0  if otherwise.  In  
the case (@ = ((5~j), (w3) implies tha t  

E ~ f(xl, . . . ,x,)dW~,.. .dW~n. ~ g(x I . . . . .  x,)dWj...dVVin 
rR" N. ~ 

= z ( i l  . . . .  , i ,;j l  . . . . .  j,) ~ f~ d'x (3.2) 
~n 

where  z(i I . . . .  , i , ; j l  .... ,j,) is the n u m b e r  of  p e r m u t a t i o n s  p = ( p ( 1 )  . . . .  ,p(n))E~, 
such t h a t  (ip(1) . . . . .  i p ( n ) ) = ( ] l  . . . . .  Jn)" In  par t icular ,  

E I  5 f ( x  1 . . . .  , x n )  d W  1 ...dW, dWzlZ=(n--1)! ~ f ~ , d " x .  
Ny N. ~ 

If  AclR"  is Borel  and  f :  A + I E  is square  in tegrable  on  A, then  

j" f dW~ ... dW~, = ~ f .  1A dW~ ... dW~. by definit ion. Final ly ,  2 Re 
A ~-n 
~ f dWi ...dWi = ~ f 'dWi  ...dWi, , where  ~ _ = { x E F ,  f :  x i X 0 ,  i = 1  . . . . .  n} 

a nd  f ' ( x ) = f ( x )  if xeR~_ ,  = f ( - x )  if xelR"_. 

T h e o r e m  7. Let S (') be defined by (1.1), (1.2), where F(dx)=dx and N, t 

{ C n l I X I - } - . . . " ~ - X n 1 - 1 / 2  / f  X I (X2  -}- . .. -}- X,)  > 0 

q),(x 1 .... ,x , )= and Ixl +. . .  +x, l<n,  
0 if otherwise in II", (3.3) 

Then 

where 

c ,=((n-1)!  ~ l ( I x l+ . . .+x ,_a l<n)d ' -Zx ) l / 2 ,  n>2, c 2 = 1 .  
fin 2 

N-1/2 S~!, ~ S ~,(x,,x2) G(d:q) G(d~:)=_(,, 
n~ 2 

(3.4) 

(b,(xl ' x2 ) = (emX, +x2) _ 1)/[-i(x 1 + x2 ) ix I -t- x2l i/2] 

if x l ' x 2 > 0 ,  = 0  if otherwise in 11l 2, W = ( W  1, W2) is 11;2-valued white noise with 
covariance r/j = 1 (n = 2), r/j = (}ij(n > 2) respectively, i, j = 1, 2. 

Proof .  As before  we'll  p rove  the covergence  of one -d imens iona l  d is t r ibut ions  
only. Wr i te  ~1=~, S (") - S ~  ), q) l(xl,x2)=g)(xl,x2).  Set also N, 1 - -  

S} = ~, N 3/2 ~(j1/m, j2/m) ~ d"Z, (3.5) 
( j l , j 2 ) e A ;  j l  * j2 BN(jl ,j2) 

~'= ~ @(jl/m, jz/m) ~ dWldW2, (3.6) 
( j l  , j2)~ A, j l  ~- J2 ' B(j  l , j2) 
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w h e r e  
A --- {(]1 ,J2) 6292: ~il =< Kin, i = 1, 2 , j  I "J2 > 0}, 

Bw(ja ,J2) --- { x e l r '  :jl/rn <= N x  1 < (/'a + 1)/m, 

jz /m <= N(x  2 + . . .  + x,)  < (J2 + 1)/m}, 

B(J'I ,J2) -- [Jl/m, (/'a + 1)/m) x [jz/m, (J2 + 1)/m). 

L e m m a  8. For any e > 0 ,  there exist K > 0 ,  m__>l and No=No(e, re, K) such that 

EI(S~)-S 'N) / l fNI2+E[~-( ' [2<e,  V N > N  o. 

Proof. Set ccN(x ) = ei~(eiN~ - 1)/(e i~ - 1), ~N(Xl,. . . ,  X,) = eN(Xl + ... + X,). T h e n  S~ ) 
= ~ q~, ~, d"Z a n d  E[S~ ~ -S~v[ 2 __< C(i~ + i2) whe re  

H~ 

i 1 = ~ Iq),~N[ 2 1 (x~H": K I N  < Ix 1 + ... + x,] < ~) d"x, 

i 2 =  2 ~ d n x ] q ) n ~ N - g 3 / 2 q S ( / ' l / m ' j 2 / m ) l ( j l  +j2)12" 
(jl,jz)~A BN(jl,j2) 

As I d ~ - l l >  Clxl for  [xl<rc, we  h a v e  

i l ~ C ~  dy~dy2ly l+Y21-31( ly1+y21>K/N)  
0 0 

C i Y -  2 dy <= CN/K.  
K/N 

By t u r n i n g  to the  new c o o r d i n a t e s  Yl = N x l ,  Y2 =N(x2  + ... + x,), Y3 =x3 . . . .  ' Yn 
=X,,  Id"x/d"yl < C/N 2 one  has  

whe re  

h 2 i2<=CN ~ dZY[ N, ml , 
(0, K] 2 

hN, m(Yl, Y2) = ( ei(rl +y2) _ 1)/[(y 1 + y2)a/Z(ei(y, +y2)/u _ 1) N ]  

- 1 (/'1 =#J2)" q~(/'l/m, j2/m), (Yl, Yz)~B(Ja ,J2). 

N o t e  t ha t  hu,m~O ( N ~ o o ,  m ~ o c )  d2y - a.e. in (0, K] 2. M o r e o v e r ,  the  d o u b l e  
s equence  ]hN, m[ 2, N > 2 K ,  m > 1 is u n i f o r m l y  in t eg rab le  in (0, K ]  2. Th i s  p r o v e s  
the  s t a t e m e n t  of  L e m m a  8 a b o u t  the  d i f ference  S~")-S'u. T h e  di f ference  ( - ( '  
c an  be  d i scussed  a n a l o g o u s l y .  [ ]  

By  L e m m a  8, it r e m a i n s  to p r o v e  t ha t  

(U S d"Z, (/'1,J2) ~A) =f~>(C,, ~ d W  1 d W  2, (Ja,Jz)EA) �9 (3.7) 
B~v(jl , J2) B(jl , j2) 

I f  n = 2 then  (3.7) ho lds  wi th  -r i n s t ead  of  ~ for  N suff icient ly large,  as ] / ~  
Z(dx /N)  -r W(dx), I x l < ~ N .  Le t  n > 2  a n d  set  

~,,, 10)=I /NZ( j /mN,  (J + 1)~raN), 

/~u, 2(j)=t/N ~ l (x~H"- l , j /Nm<Xl  + ... + x,_ l <(/+ 1)/Nm)d "-1 Z, 

wi(j) = Wi([j/m , (] + 1)/m)), i = 1, 2. 
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As ~ dWldWz=wl(jOwzfjz) (W 1 and W 2 are independent)  and 
B(j l ,  J2)  

EIN ~ d"Z -fiN, ~(Jx) fiN, 2(J2)12 _-< C/N (3.8) 
BN 

(see below), (3.7) follows from 

(flN,~(J~),lJ~l <Kin, i= 1, 2) ~ (d~  w~0"~), [j~[ <=Kin, i =  1, 2), (3.9) 

where d l = l  , d2=c,,_ 2. To prove (3.8), use the mult ipl icat ion rule for I to-Wie- 
her integrals ([13], Proposi t ion 5.1), according to which 

flN, = N  S d"Z 
B N  

+ ( n - 1 ) n ~ _  ~ l(Y)gh(--Y'Xl ' '" 'x,  -2)dy d"-;Z, 

where f s=l /Nl ( j /Nm<x<( j+l ) /Nm) ,  g s = l / N l ( j / N m < x l + . . . + x ,  1<0 

+l)/Nm). It is easy to check that  ~ ,(y)gs~(-y,.)dy d"-Zx<=C/N, 
/ / n  2 _ 

which implies (3.8). 
No te  that  the covariances of the left hand side of (3.9) tend to the corre- 

sponding covariances of  the right hand side, as N--,  oo (In particular,  /~N,~(J~) 
and flu, 2(J2) are not  correlated for any J l ,  J2 as they are given by I to-Wiener  
integrals of different multiplicities.) It remains to show that  the limit distribu- 
t ion of any linear combinat ions  of /3u,[s is (complex) Gaussian. This can be 
done  by evaluating the semi-invariants of  order  k > 3  similarly as in Section 1- 
2. For  simplicity, let us consider Reflmg(j)=(flma(j)+fln,2(-j-1))/2. Let p 
= k ( n - 1 )  be even. By (1.5), the k-th semi-invariant of ReflN, z(j ) is equal 
to 

Y ~IP/2 7 Y 

where g=gj (see above) and the sum is taken over all connected diagrams of 
the table (1.6) with n 1 . . . . .  nk=n--1, Let xis, i = 1  . . . .  , k  j = l  . . . . .  n - 1  be re- 
lated by (1.7). Among variables Yi =x~, 1 + ... + x i , , - 1 ,  i =  1 . . . . .  k, there are k - 1  
linearly independent  ones; see L e m m a  4 and Definit ion 1. F r o m  here it follows 
easily that J~<CNk/2(Nrn)l-k~O, if k=>3. [ ]  

Theorem 8. Let 'S~) be defined as in Theorem 7 with the difference that qo, (3.3) is 
replaced by 

(~,(x) = q),(x) �9 1 (B,,,), (3.10) 

where B,,k= {XeIIk: b(n + 1) < Ix I + . . .  + Xk] < b(n)}, b(n)$O, 

b(n)N(n)-~oe, b(n+l)N(n)~O (n~oo), (3.11) 

and t < N ( n ) T ~  are integers increasing sufficiently fast with n; SN= ~ S~ ). Then 
n>~3 

where (t is given by (3.4), with independent W, and W z. 
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Proof. Let S~ ) be the same as in the previous theorem. As S~)/]/N ~ ( ~  
(N-~ oo) with (1 independent of n>3,  this implies that 

S ( ~ I , ) / ~  ~ 1  (n~ oo) (3.12) 

if N(n) increase sufficiently fast. With (3.12) in mind, it remains to show that 

Var(SN(,~ -~(") ~ Var(S~l,~ ON(,V = 0 (N(n)), -- S(~I,)) = o (N(n)). (3.13) 

Let us prove the first of the relations (3.13), as the second one can be proved 
analogously. Consider 

Here, 

Var ~(n) _ ,  T ~N . . . .  ~ (sym (~,)2 n~(x 1 +.. .  +x,)d 'x  
Hn 

= ( n - l ) !  ~ -2 2 qo, D,(x I + ... +x,)d'x+RN, ,. 
Ii n 

qo,~2D2(...)d"x=c;2 ~ ]yl+y2] aD2(yl+Y2) l(yl. Y2>O)dZy 
f i n  B n ,  2 

l (LY2-Xl - . . . - x , -2 t<7Od"  2x. 
H n - 2 

Denote the last integral by On(Y2). Then O,(y)'Fc2/(n-1)! 
sequently 

( n - I ) !  ~ -2 2 q%DN(...)d'x< ~ D2(u) du. 
f i  n B n ,  1 

On the other hand, 

(y$0) and con- 

(3.14) 

R s . = ( n - 1 ) ' ( n - 1 )  ~ -2 2 , . (p, D N ( . . . )  1 (A1 ~ A 2 ) d ' x ,  
H n 

where Aj={xe lR ' :  xj ~ x i>0  }. Clearly, 
i * j  

RN,,<n!c2 2 ~ ]Y~+Y21-1D2(yl+yz) I(yl"y2>O)d2y 
B n ,  2 

l ( x ~ H " - 2 : x l ( Y l  + Y 2 - - x 1 ) > O ) d  n 2 X 
H n - 2 

=<n!c22(2)z)" 2b(n) ~ DZ,(u)du. 
Bn, 1 

(3.15) 

If N(n-1)>n!  C n 2 ( 2 g )  n - 2 ,  n>2,  it follows from (3.11), (3.14) and (3.15) that 

Therefore 

~(k) = VarSN(,)<C S D2(,)(u)du, k>-- 3" 
Bk, 1 

~N(n)] - -  E V a r  ON(nt 
k>_3,k~-n 

< C D2(,)(y)dy+ D2(,)(y)dy = C(I'+I'). 
\ 0 b ( n )  
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Here, I ' <  CN2(n) b(n + 1) =o(N(n)), I"< C ~ y-2 dy = C/b(n)=o(N(n)) accord- 
ing to (3.11), [] b(.) 

Theorem 9. Let (Xt)t~ z be stationary Gaussian process with zero mean, variance 1 
and the spectral density 

[ c l x - 2 1 1 - e  if Ixle(21,21+e ), 

f(x)=lClX--~2l-[J if" [X[e(22 --~, 22) , (3.16) 
/ 

tO if otherwise in H, 

where 
f i e (1 -2 /n ,  1), 0<21  <22 <Tr, 

2 2 = ( n - 1 ) 2 1  ; 

21=21(n ) and e=e(21,n)  are sufficiently small, 
[Nt] 

-fi)ee-*/4. Set S u t=S (") = ~ H,(Xs). Then , N , t  
s = l  

and 

n(>3)  

A 2 = V a r  Su, 1 ~ C 1  N2+(P- 1}n 

A~,  SN,, =r C2 Re j [(e,(x;t) - 1)/i(x I + . . .  + xn) ] 

n 

�9 ] 7  X 7  •/2 d " -  1 W1 d W 2 ,  
1 1  j 

1 

(3.17) 

is odd and c=(1  

(3.18) 

(3.19) 

n 
H~(Xt) _4_ S en(x; t )@J l/2d"Z, 

f I  n 1 

n 

SN,~ = SN__a S l-(G(x ' N) - 1)/(G(x, 1) - 1)] @ f , / 2  d"Z 
H n 1 

n 

AZ=n! ~ DZ(x,+ ... + x , ) @ f d " x .  
H n 1 

d ( a ) = { x E / 7 " : ~ x j ( m o d 2 ~ ) < 3 } ,  

A+(6)= xe  : 

Ve+,i = { x  ~ , ~ n :  x i f f (  __ 2 2  ' __ 2 2  -t- g), X j r ( 2 1 ,  ,~ 1-1- g)' J =t= i}, 
+ E,,=vFuES, ES={ xd~": -x~E,,}. 

(3.20) 

(3.21) 

Set 

and 

where W 1, W 2 are the same as in Theorem 8, and C1, C 2 are some constants. 

Proof. Let Z(dx) be the (complex) white noise in /7 with variance dx. Then 
Xt A_ ~ eitx f l/2 dZ, 

H 
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If 41 = 41(rt), 8 = 8 ( n , 4 1 )  and ( 0 < ) 6 =  a(n,41) are sufficiently small, 4 2  = ( g / -  1 ) 4 1 ,  

and n > 3 is odd, then the relations 

x =(x 1 . . . .  , x,)eA(a), 

imply 

Write 

a(6) 

Then i'N(6 ) <= C, while 

Ixil ~(21 , 4 x -4- ~)u (42 - ~ ,  4 2 )  , i = l , . . . , n  (3.22) 

xe 0 V~,i" (3.23) 
i = 1  

. . .+  ~ ...)=iN(6)+i}(6). 
H n \ A ( 6 )  

n 

iN(g)= C ~ D2(xl +. . .  + x , ) @ f d ' x  
V+ 1 n A (6) 1 

n 

= C  ~ D Z ( y l + . . . + y , ) [ I Y S d " y  
A + (6) 1 

according to (3.16, 3.17, 3.22-3.23) and the change of variables 

(3.24) 

n n 

yl = x l  +22, y j=xj - -21 ,  j = 2 , . . . ,  n; ~ y j = ~ x j .  
1 1 

Let 6(N)$0, 6(1)=a and a(N)N-- ,  oo. By (3.24), 

iN(6(N)) ~ C N 2  + n ( ~ - 1 )  ~ [sin(x 1 + . . .  _]_ X n ) / I X 1  _~_ . . .  _F X n l ] 2  

A + (6 N (6)) 

" ~I Xj -~ dnx~ cgZ+n(~-l)  
i 

(the last integral converges as N--,oQ). Similarly, iN(a)-iN(6(N))=o(N2+'(~-l)). 
This proves (3.18). 

Denote by S~ the stochastic integral in (3.20) with H" replaced by A(a(N)). 
By the argument above, Var(SN--S'N)=o(A2). Next, replace the factor e,(x, 1) 
- I  by i (x l+ ... +x,) in the integrand of S}; the resulting integral denote by 
SN. Again, it is easy to check that , ,, 2 " Var(S N - SN) = o (AN). By (3.22-3.23), 

- 

i= 1 V~ , inA(6(N) )  i= 1 

where S}, 1 = . . . = S ~ , ,  as the integrand of S;~ is symmetric. Now, S~,, can be 
rewritten as (c.f. (3.21)) 

n 

S/v,n = = 2 Re 5 [(en(x, U ) -  l)/i(x 1 + . . .  + xn)] I~ xj -~/2 
(0, e) n 1 

�9 dW  )(xO . . .  1) 
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where  d W ~ ) ( x ) = d Z ( x + 2 i ) ,  dW(a~)(x )=dZ(x- )c2) ,  0 < x < e  are  i n d e p e n d e n t ,  if 
e > 0  is suff icient ly small .  By the  change  of var iab les  in  I t o - W i e n e r  in tegra l s  
([13],  T h e o r e m  4.4), 

S '~ , ,A -N l+(p - i ) " /22  Re ~ [(e,(x, 1 ) - - l ) / i ( x  l +  ... + x , ) ]  
(o, eN) ~ 

n 
�9 ~ X f  ill2 d n-1 W1 d W  2, 

1 

where  W1, W 2 are  the  s a m e  as in  (3.19). T h e  last  in t eg ra l  converges  in L2(O) as 
N - ~  oo. The  c o n v e r g e n c e  of  gene ra l  f ini te  d i m e n s i o n a l  d i s t r i b u t i o n s  of SN,, can  
be cons ide red  ana logous ly .  [ ]  

R e m a r k  3. Let  r(t), r n , ( t ) = n !  (r(t))", f u , ( x )  be the  c o v a r i a n c e  f u n c t i o n  of  (X,), 
the  c o v a r i a n c e  f u n c t i o n  a n d  the  spect ra l  dens i ty  of (H, (Xt ) )  in  T h e o r e m  9, re- 

spectively.  I t  fol lows f rom (3.13) tha t  

r(t) ~ cons t  t ~ -  1 (sin(r~fi/2 - t2~) + s i n (n i l / 2  + t22)) (t ~ oo), 

f u , ( x ) ~ c o n s t l x l , , - ~ >  1 ( I x l - , O ) .  

C o n s e q u e n t l y ,  ~l,-u.(Ol=~ if / ~ e ( 1 - 1 / n ,  1) whi le  ~[rH.(t)l=~ a n d  ~ r n . ( t )  

=27 t  fn~(O)=O if /3 s ( 1 - 2 / n ,  1 - 1/n). 
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