CLT and Other Limit Theorems for Functionals of Gaussian Processes

L. Giraitis and D. Surgailis
Institute of Mathematics and Cybernetics, 232600 Vilnius, Poželos 54, USSR

Abstract

Summary. Conditions for the CLT for non-linear functionals of stationary Gaussian sequences are discussed, with special references to the borderline between the CLT and the non-CLT. Examples of the non-CLT for such functionals with the norming factor \sqrt{N} are given.

0. Introduction

In the study of limit theorems for sums of dependent random variables, a particular role has been played by the case when the summands are (non-linear) functionals of a stationary Gaussian process. It was this case which was considered by M. Rosenblatt in his famous example of a non-Gaussian limit law [18]. More recently, the non-central limit theorem (non-CLT) for functionals of Gaussian process was the object of studies by Dobrushin and Major [5], Gordeckii [8], Major [12], Rosenblatt [19, 20], Taqqu [24] and others. On the other hand the CLT for this kind of processes was discussed by Maruyama [15, 16], Breuer and Major [2], Sun [22] and Plikusas [17]. Among more general results on the CLT for dependent random variables which are applicable also in the present situation, we should mention Ibragimov [9], Brillinger [3] and Bentkus [1].

The aim of the present paper is to study the CLT for functionals of Gaussian processes 'in the vicinity of non-CLT'. In order to do that, we also prove some new non-CLT with the norming factor \sqrt{N}. To be more explicit, let

$$
\begin{equation*}
\xi_{t}=\sum_{n=1}^{\infty} \int_{I^{n}} \varphi_{n}(x) e_{n}(x ; t) d^{n} W \equiv \sum_{n=1}^{\infty} \xi_{t}^{(n)} \tag{0.1}
\end{equation*}
$$

be the Wiener-Ito expansion of a stationary second order process $\left(\xi_{t}\right)_{t \in \mathbb{Z}}$ subordinated to the i.i.d. Gaussian sequence $\left(X_{t}\right)_{t \in \mathbb{Z}}[13]$;

$$
\begin{gathered}
e_{n}(x ; t)=\exp \left(i\left(x_{1}+\ldots+x_{n}\right) t\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \\
\Pi^{n}=[-\pi, \pi]^{n}, \quad d^{n} W=W\left(d x_{1}\right) \ldots W\left(d x_{n}\right)
\end{gathered}
$$

$W(d x)$ is the random spectral measure of $\left(X_{t}\right)_{t \in \mathbb{Z}} ; \varphi_{n} \in L^{2}\left(\Pi^{n}\right) . \mathrm{If}^{1}$

$$
\begin{equation*}
A_{N}^{2} \equiv \operatorname{Var}\left(\sum_{t=1}^{N} \xi_{t}^{(n)}\right) \asymp N \tag{0.2}
\end{equation*}
$$

and for any $\varepsilon>0$

$$
\begin{equation*}
\int_{I^{n}}\left|\varphi_{n}\right|^{2} 1\left(x:\left|x_{1}+\ldots+x_{n}\right|<1 / N,\left|\varphi_{n}\right|>\varepsilon N^{1 / 2}\right) d^{n} x=o(1 / N) \tag{0.3}
\end{equation*}
$$

(1 (A) is the indicator function of the set A), then $\sum_{t=1}^{N} \xi_{t}^{(n)} / A_{n}$ is asymptotically normal (Theorem 1). Of course, conditions (0.2) and (0.3) are not necessary for the CLT, still, condition (0.2) alone (or even a stronger one with ' \sim ' instead of ' \asymp ') is not sufficient. This follows in fact from the existence of subordinated self-similar processes with stationary increments which variance is linear in t; see Major [12], also this paper. As for condition (0.3), if $\varepsilon N^{1 / 2}$ in it is replaced by $\varepsilon g(N)$, where $g(N) / N^{1 / 2} \rightarrow \infty(N \rightarrow \infty)$, then $\sum_{t=1}^{N} \xi_{t}^{(n)} / \sqrt{N}$ can be asymptotically non-Gaussian (Theorem 7). Theorem 1 (for continuous time processes $\xi_{t}^{(n)}$ rather than discrete time processes) with $\varepsilon N^{1 / 6}$ instead of $\varepsilon N^{1 / 2}$ was obtained earlier by Maruyama [16]. In the case of infinite sum $\xi_{t}(0.1)$, conditions (0.2) and (0.3) for all $n=1,2, \ldots$ do not ensure the CLT in general. The corresponding counterexample as well as a sufficient condition for the CLT in the case of infinite sum (0.1) can be found in Theorems 8 and 2, respectively. Theorems 1 . and 2 can be compared with Ibragimov's condition for the CLT ([10], Theorem 18.6.1):

$$
\begin{equation*}
\sum_{k=1}^{\infty} E^{1 / 2}\left(\xi_{0}-E\left(\xi_{0}\left|X_{t},|t| \leqq k\right)\right)^{2}<\infty\right. \tag{0.4}
\end{equation*}
$$

which is stronger than (0.3) (Theorem 4).
However, condition (0.3) is too restrictive in some cases. In particular, the case

$$
\begin{equation*}
\xi_{t}=H\left(X_{t}\right), \tag{0.5}
\end{equation*}
$$

where $H: \mathbb{R} \rightarrow \mathbb{R}$ is a given function and $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a stationary Gaussian process, deserves a separate treatment. (We call below functionals (0.5) local.) Denote $r(t), r_{H}(t)$ the covariance functions of $\left(X_{t}\right),\left(H\left(X_{t}\right)\right)$ respectively. According to Theorem 5, if $r(t) \rightarrow 0(t \rightarrow \infty)$, then conditions

$$
\begin{equation*}
\sum_{t}\left|r_{H}(t)\right|<\infty \tag{0.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t} r_{H}(t) \neq 0 \tag{0.7}
\end{equation*}
$$

imply the CLT for $H\left(X_{t}\right)$. In Theorem 6, the case $r_{H}(t)=L(|t|) /|t|$, where L is a slowly varying function, is considered. Finally, Theorem 9 discusses a situation

[^0]when the non-CLT for local functionals is valid with any norming factor N^{γ}, $0<\gamma<1$ and either (0.6) or (0.7) fails.

Theorems 5 and 6 are related to Theorems 1 and 1^{\prime} of Breuer and Major [2], although they were obtained independently of [2]. In Theorem 1 [2], condition (0.6) is replaced by the following one

$$
\begin{equation*}
\sum_{i}|r(t)|^{m}<\infty, \tag{0.8}
\end{equation*}
$$

where m is the Hermite rank of H. It is easy to show that conditions (0.6) and (0.8) are equivalent (see Lemma 5 below). Still, in our opinion, the proof of Theorem 5 is simpler than that of Theorem 1 [2]. In particular, Lemma 6 (based on Hölder's inequality) permits us to control effectively the semi-invariants of sums of Hermite polynomials of X_{i}. The proofs of Theorem 1 and 6 are also based on the semi-invariant method, for which estimation the so-called 'diagram formalism' of the multiple integral's calculus [4, 13, 17] is extensively used.

The results of this paper can be extended to continuous time, multivariate time, Fourier coefficients etc. In [6], Theorem 1 was generalized to the case of 2nd order processes, subordinated to non-Gaussian i.i.d. sequence (see Remark 1 below). The CLT for functionals of the form (0.5), where $\left(X_{t}\right)$ is a stationary linear process, not necessarily Gaussian, was considered in [7].

Acknowledgment. The authors are grateful to the referee for the careful reading and many helpful criticisms of the first version of this paper.

1. CLT for Non-local Functionals

Let $\left(X_{i}\right)_{t \in \mathbb{Z}}$ be a real stationary mean zero Gaussian sequence with covariance $r(t), r(0)=1$ and spectral measure $F(d x),|x|<\pi$, defined on a probability space (Ω, \mathscr{F}, P), where $\mathscr{F}=\sigma\left(X_{t}, t \in \mathbb{Z}\right)$. Denote $Z(d x)$ the corresponding Gaussian complex random spectral measure with variance $E|Z(d x)|^{2}=F(d x)$. Any element $\xi \in L^{2}(\Omega)=L^{2}(\Omega, \mathscr{F}, P)$ can be represented uniquely in the form $\xi=\sum_{n=0}^{\infty}$ $I_{n}\left(\varphi_{n}\right)$, where $I_{n}(\varphi)=\int_{\Pi^{n}} \varphi(x) d^{n} Z, n \geqq 1$ is the n-fold Ito-Wiener integral, $d^{n} Z$ $=Z\left(d x_{1}\right) \ldots Z\left(d x_{n}\right), \varphi \in L^{2}\left(\Pi^{n}, F^{n}\right)=L^{2}\left(F^{n}\right)$ is symmetric:

$$
\varphi=\operatorname{sym} \varphi, \quad \Pi^{n}=[-\pi, \pi]^{n}, \quad \sum\left\|\varphi_{n}\right\|_{n}^{2} n!<\infty,
$$

and

$$
\|\varphi\|_{n}=\left(\int_{\Pi^{n}}|\varphi|^{2} d^{n} F\right)^{1 / 2} ; \quad I_{0}(\varphi)=\varphi, \quad \varphi \in \mathbb{C}=L^{2}\left(\Pi^{0}\right) .
$$

Moreover, $I_{n}(\varphi)$ is real if φ is even, i.e. $\overline{\varphi(x)}=\varphi(-x), x \in \Pi^{n}$, where \bar{a} denotes the complex conjugate of $a \in \mathbb{C}$. The unitary group $\left(T_{t}\right)_{t \in \mathbb{Z}}$ of shift operators $T_{t} X_{s}$ $=X_{t+s}, s \in \mathbb{Z}$ extends to $L^{2}(\Omega)$ in a natural way. Random process $\left(\xi_{t}\right)_{t \in \mathbb{Z}}$ defined on (Ω, \mathscr{F}, P) is called subordinated to $\left(X_{t}\right)$ if $T_{t} \xi_{s}=\xi_{t+s} \forall t, s \in \mathbb{Z}$ [13]. Denote
by $\mathscr{L}^{2}(X)$ the vector space of all real subordinated processes $\left(\xi_{t}\right)$ such that $E \xi_{t}^{2}<\infty$. Any $\left(\xi_{t}\right) \in \mathscr{L}^{2}(X)$ can be represented uniquely as

$$
\begin{equation*}
\xi_{t}=\sum_{n=0}^{\infty} \int_{\Pi^{n}} \varphi_{n}(x) e_{n}(x ; t) d^{n} Z=\sum_{n=0}^{\infty} \xi_{t}^{(n)}, \tag{1.1}
\end{equation*}
$$

where $e_{n}(x ; t)=\exp \left(i t\left(x_{1}+\ldots+x_{n}\right)\right), n \geqq 1, e_{0}=1, \varphi_{n} \in L^{2}\left(\Pi^{n}\right), \varphi_{n}$ are even and symmetric, and $\sum\left\|\varphi_{n}\right\|_{n}^{2} n!<\infty$. All these preliminary facts as well as other properties of multiple Ito-Wiener integrals can be found e.g. in Ito [11] or Major [13]. In the sequel we'll use the notations

$$
\begin{gather*}
S_{N, t}=\sum_{s=1}^{[N t]} \xi_{s}, \quad S_{N, t}^{(n)}=\sum_{s=1}^{[N t]} \xi_{s}^{(n)}, \tag{1.2}\\
S_{N}=S_{N, 1}, \quad S_{N}^{(n)}=S_{N, 1}^{(n)}, \quad A_{n}^{2}=\operatorname{Var} S_{N},
\end{gather*}
$$

where [a] is the entire part of $a \in \mathbb{R}$ and $\stackrel{d}{=} \xrightarrow{d}$ denote the equality and the weak convergence of (finite dimensional) distributions, respectively. Also, introduce the Dirichlet kernel

$$
\begin{equation*}
D_{N}(x)=\sin (N x / 2) / \sin (x / 2)=\left(\sum_{j=1}^{N} e^{i j x}\right) e^{-i(N+1) x / 2} \tag{1.3}
\end{equation*}
$$

Theorem 1. Assume that the spectral measure F is absolutely continuous, $F(d x)$ $=f(x) d x$ and the series (1.1) are finite (i.e. $\varphi_{n}=0$ for $n>n_{\max } \geqq 1$), $\varphi_{0}=0$. If, moreover, f is bounded and
(i) $A_{N}^{2} \asymp N$,
(ii) for any $\varepsilon>0$ and $n=1, \ldots, n_{\max }, \varphi_{n}$ satisfies (0.3), then

$$
\begin{equation*}
A_{N}^{-1} S_{N, t} \stackrel{d}{\Rightarrow} W(t), \tag{1.4}
\end{equation*}
$$

where $(W(t))_{t \geqq 0}$ is the standard Wiener process.
Proof. It suffices to show that for any $r \geqq 1,0 \leqq t_{1}<\ldots<t_{r}, a_{1}, \ldots, a_{r} \in \mathbb{R}$ the semi-invariants of order $k \geqq 3$ of $A_{N}^{-1} \sum_{j=1}^{r} S_{N, t_{j}} \cdot a_{j}$ vanish as $N \rightarrow \infty$. The proof of this fact below is restricted to the case $r=1, t=1$ as the general case can be treated analogously ${ }^{2}$.

To evaluate the semi-invariants of multiple Ito-Wiener integrals, we shall use the diagram method $[4,13,14,17]$, which we briefly describe below. Denote by $\left\langle\eta_{1}, \ldots, \eta_{k}\right\rangle$ the semi-invariant of random variables $\eta_{1}, \ldots, \eta_{k}$. Let $\varphi_{i} \in L^{2}\left(\Pi^{n_{i}}\right), i=1, \ldots, k$ be symmetric and even. Then

$$
\begin{equation*}
\left\langle I_{n_{1}}\left(\varphi_{1}\right), \ldots, I_{n_{k}}\left(\varphi_{k}\right)\right\rangle=\sum_{\gamma} \int_{\Pi^{m / 2}} \phi_{\gamma} d^{m / 2} F, \tag{1.5}
\end{equation*}
$$

if $n_{1}+\ldots+n_{k}=m$ is even, $=0$ if m is odd, and the sum (1.5) is taken over all partitions (diagrams) γ of the table

[^1]\[

G=\left($$
\begin{array}{l}
(1,1), \ldots,\left(1, n_{1}\right) \tag{1.6}\\
\cdots \\
(k, 1), \ldots,\left(k, n_{k}\right)
\end{array}
$$\right)
\]

by pairs $\left[(i, j),\left(i^{\prime}, j^{\prime}\right)\right](\in \gamma)$ which we call the edges of γ such that $(a) i \neq i^{\prime}$ and (b) the rows $G_{i}, i=1, \ldots, k$ of the table $G(1.6)$ cannot make up two tables each of which is partitioned by the diagram separately. If the set $\{\gamma\}$ of diagrams which satisfy (a) and (b) is empty, the corresponding semi-invariant is zero. (The diagrams γ which satisfy (b) are called connected [14].) The function ϕ_{γ} in (1.5), dependending on $m / 2$ variables, is obtained from the tensor product

$$
\phi=\bigotimes_{i=1}^{k} \varphi_{i}, \quad \phi=\phi\left(x_{i j}, i=1, \ldots, k, j=1, \ldots, n_{i}\right)
$$

according to the rule

$$
\begin{equation*}
x_{i j}=-x_{i^{\prime} j^{\prime}} \quad \forall\left[(i, j),\left(i^{\prime}, j^{\prime}\right)\right] \in \gamma \tag{1.7}
\end{equation*}
$$

Lemma 1. (c.f. [17], Lemma 1).

$$
\begin{equation*}
\int_{\Pi^{m / 2}}\left|\phi_{\gamma}\right| d^{m / 2} F \leqq \prod_{i=1}^{k}\left\|\varphi_{i}\right\|_{n_{i}} \tag{1.8}
\end{equation*}
$$

Proof. Let $f \in L^{2}\left(\Pi^{n}\right), g \in L^{2}\left(\Pi^{n^{\prime}}\right), f=f(x, y), g=g\left(x, y^{\prime}\right), x \in \Pi, y \in \Pi^{n-1}, y^{\prime} \in \Pi^{n^{\prime}-1}$. Then

$$
\begin{gathered}
\int_{\Pi}\left|f(x, y) g\left(x, y^{\prime}\right)\right| d F(x) \leqq\left(\int_{\Pi}|f(x, y)|^{2} d F\right)^{1 / 2} \\
\cdot\left(\int_{\Pi}\left|g\left(x, y^{\prime}\right)\right|^{2} d F\right)^{1 / 2} \equiv \tilde{f}(y) \tilde{g}\left(y^{\prime}\right),
\end{gathered}
$$

where $\tilde{f} \in L^{2}\left(\Pi^{n-1}\right), \tilde{g} \in L^{2}\left(\Pi^{n^{\prime}-1}\right)$. Now, (1.8) follows easily by repeated application of this inequality.

Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}_{+}, 1 \leqq n_{i} \leqq n_{\max }, n_{1}+\ldots+n_{k}=m$ be even. By (1.5),

$$
\begin{align*}
J_{N} & \equiv\left|\left\langle S_{N}^{\left(n_{1}\right)}, \ldots, S_{N}^{\left(n_{k}\right)}\right\rangle\right| \\
& \leqq \sum_{\gamma} \int_{\Pi^{m / 2}}\left|\prod_{j=1}^{k} \psi_{N, n_{j}}\left(x_{j 1}, \ldots, x_{j n_{j}}\right)\right| d^{m / 2} F \\
& \equiv \sum_{\gamma} J_{N}(\gamma) \tag{1.9}
\end{align*}
$$

where $\psi_{N, n}\left(x_{1}, \ldots, x_{n}\right)=\varphi_{n}\left(x_{1}, \ldots, x_{n}\right) D_{N}\left(x_{1}+\ldots+x_{n}\right)$ and $x_{i j}$ in (1.9) satisfy (1.7). Let

$$
\begin{align*}
V_{N} & =V_{N, K}=\left\{x \in \Pi^{m / 2}:\left|x_{j 1}+\ldots+x_{j n_{j}}\right|<K / N, j=1, \ldots, k\right\}, \quad V_{N}^{\mathrm{c}}=\Pi^{m / 2} \backslash V_{N}, \\
J_{N}(\gamma) & =\int_{V_{N}} \ldots+\int_{V_{N}^{c}} \ldots=J_{N}^{\prime}(\gamma)+J_{N}^{\prime \prime}(\gamma) . \tag{1.10}
\end{align*}
$$

By (1.8),

$$
\begin{array}{r}
J_{N}^{\prime \prime}(\gamma) \leqq C \sum_{i=1}^{k} \prod_{j \neq i}\left\|\psi_{N, n_{j}}\right\|_{n_{j}}\left(\int_{I^{n_{i}}} d^{n_{i}} x\left|\psi_{N, n_{i}}(x)\right|^{2}\right. \\
\cdot \tag{1.11}\\
\left.1\left(x \in \Pi^{n_{i}}:\left|x_{1}+\ldots+x_{n_{i}}\right|>K / N\right)\right)^{1 / 2}
\end{array}
$$

as $f(x)=d F / d x$ is bounded. Here and below we denote by $C, C(\cdot)$ possibly different constants which may depend on variables in brackets but do not depend on N. Next we need
Lemma 2. Let $0 \leqq g \in L^{1}(\Pi ; d x)$ satisfy the condition

$$
\begin{equation*}
\int_{\Pi} D_{N}^{2}(x) g(x) d x \leqq C N, \quad N \geqq 1 \tag{1.12}
\end{equation*}
$$

Then $\forall \varepsilon>0 \exists K>0$ such that

$$
\begin{equation*}
i(N) \equiv \int_{\pi>|x|>K / N} g(x) D_{N}^{2}(x) d x<\varepsilon N, \quad N \geqq \max (1, K / N) . \tag{1.13}
\end{equation*}
$$

Proof. Set $G(x)=\int_{-x}^{x} g(y) d y$. Then G is non-decreasing and bounded in $(0, \pi)$ and $G(1 / N) \leqq 2 \int_{I} g(x) D_{N}^{2}(x) d x / N^{2} \leqq C / N$, which implies $G(x) \leqq C x, 0<x<\pi$
Therefore

$$
\begin{aligned}
i(N) \leqq & C \int_{K / N<x<\pi} x^{-2} d G(x)=C\left[\left.G(x) x^{-2}\right|_{K / N} ^{\pi}\right. \\
& \left.+\int_{K / N<x<\pi} x^{-2} d x\right] \leqq C N / K . \quad \square
\end{aligned}
$$

By (1.3), $\left|D_{N}\left(x_{1}+\ldots+x_{n}\right)\right|$ is periodic in \mathbb{R}^{n} with the period Π^{n}. Therefore $\operatorname{Var} S_{N}^{(n)}=n!\left\|\psi_{N, n}\right\|_{n}^{2}$ can be written as $n!\int_{\Pi} g_{n}(y) D_{N}^{2}(y) d y$, where

$$
g_{n}(y)=\int_{\Pi^{n-1}}\left(\left.\tilde{\varphi}_{n}\left(x_{1}, \ldots, x_{n-1}, y-x_{1}-\ldots-x_{n-1}\right)\right|^{2} d^{n-1} x\right.
$$

and

$$
\tilde{\varphi}_{n}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\varphi_{n}\left(x_{1}, \ldots, x_{n-1}, x_{n}^{\prime}\right), \quad x_{n} \in \mathbb{R}, \quad x_{n}^{\prime} \in \Pi
$$

$x_{n}=x_{n}^{\prime}(\bmod 2 \pi)$ is the periodic extension of φ_{n}. As the integral on the right hand side of (1.11) does not exceed

$$
\int_{K / N<|y|<\pi} g_{n_{i}}(y) D_{N}^{2}(y) d y \quad \text { and } \quad \operatorname{Var} S_{N}^{\left(n_{i}\right)} \leqq C N, \quad i=1, \ldots, k
$$

by (i), Lemma 2 implies that $\forall \varepsilon>0 \exists K>0$ such that

$$
\begin{equation*}
J_{N}^{\prime \prime}(\gamma) \leqq \varepsilon N^{k / 2} \tag{1.14}
\end{equation*}
$$

Now, $J_{N}^{\prime}(\gamma)=J_{N}^{-}(\gamma)+J_{N}^{+}(\gamma)$, where

$$
J_{N}^{-}(\gamma)=\int_{V_{N}} \prod_{j=1}^{k}\left|\psi_{N, n_{j}}^{-}\right| d^{m / 2} F
$$

and

$$
\psi_{N, n}=\psi_{N, n} 1\left(x \in \Pi^{n}:\left|\varphi_{n}\right| \leqq \varepsilon N^{1 / 2}\right)
$$

We claim that $\forall \delta>0 \forall K>0 \exists \varepsilon>0$ such that

$$
\begin{equation*}
J_{N}^{-}(\gamma) \leqq \delta N^{k / 2} \tag{1.15}
\end{equation*}
$$

To prove this, we'll need two auxiliary lemmas.

Definition 1. Let γ be a connected diagram of the table G (1.6), and $x_{i j} \in \mathbb{R}$, (i, $j) \in G$ be related by (1.7). We'll say that a row $G_{p}(1 \leqq p \leqq k)$ is proper if there exist $q \in\{1, \ldots, k\}, q \neq p$ such that $n_{p}+k-2$ variables $x_{p j}, j=1, \ldots, n_{p}, x_{i 1}+\ldots$ $+x_{i n_{i}}, i=1, \ldots, k, i \neq p, q$ are linearly independent; in other words, if the relation

$$
\begin{equation*}
\sum_{j=1}^{n_{p}} c_{j} x_{p j}+\sum_{i=1, \ldots, k, i \neq p, q} d_{i}\left(x_{i 1}+\ldots+x_{i n_{i}}\right) \equiv 0 \tag{1.16}
\end{equation*}
$$

(plus (1.7)) implies $c_{j}=d_{i}=0, j=1, \ldots, n_{p}, i=1, \ldots, k, i \neq p, q$.
Lemma 3. Let G_{p} be proper, and V_{N} be given by (1.10). Then

$$
\int_{V_{N}}\left|\psi_{N, n_{p}}\right|^{2} d^{m / 2} F \leqq C(K / N)^{k-2}\left\|\psi_{N, n_{p}}\right\|_{n_{p}}^{2}
$$

Proof. For simplicity of notation, assume that $p=k$ and $q=k-1$. Identify $\mathbb{R}^{\boldsymbol{m} / 2}$ with the $m / 2$-dimensional hyperplane in $\mathbb{R}^{m}=\left\{x=\left(x_{i j},(i, j) \in G\right\}\right.$, determined by the Eq. (1.7). According to Definition 1, there exist a non-degenerate ${ }^{3}$ linear transform $T: \mathbb{R}^{m / 2} \rightarrow \mathbb{R}^{n_{k}+k-2}$ such that

$$
(T x)_{j}=x_{k j}, \quad j=1, \ldots, n_{k}, \quad(T x)_{n_{k}+i}=x_{i 1}+\ldots+x_{i n_{i}}, \quad i=1, \ldots, k-2
$$

This proves Lemma 3.
Lemma 4. Let γ and $x_{i j}$ satisfy the conditions of Definition 1. There exist at least two distinct proper rows $G_{p^{\prime}}$, and $G_{p^{\prime \prime}}$.
Proof. We say that G_{1}, \ldots, G_{k} are properly ordered, if for any $i=1, \ldots, k-1$ there exists an edge $V_{i}=\left[(i, j),\left(i^{\prime}, j^{\prime}\right)\right] \in \gamma$ such that $i^{\prime}>i$. In this case G_{1} is proper, with $q=k$. Indeed, let (1.16) hold, and set $i^{*}=\max \left(i=2, \ldots, k-1: d_{i} \neq 0\right)$. The available $x_{i^{*} j}$ connected by $V_{i^{*}}$ is linearly independent of $x_{i s}, i<i^{*}, s=1, \ldots, n_{i}$, which implies $d_{i^{*}}=0$, i.e. we have a contradiction.

It remains to show that there exist two different ways to renumerate the rows of G to get them properly ordered. As γ is connected, there exist $k-1$ edges $\left[\left(i_{r}, j_{r}\right),\left(i_{r}^{\prime}, j_{r}^{\prime}\right)\right] \in \gamma, r=1, \ldots, k-1$ such that for any $r=1, \ldots, k-1$,

$$
\begin{equation*}
i_{r} \in\left\{i_{1}, i_{1}^{\prime}, \ldots, i_{r-1}, i_{r-1}^{\prime}\right\}, \quad i_{r}^{\prime} \notin\left\{i_{1}, i_{1}^{\prime}, \ldots, i_{r-1}, i_{r-1}^{\prime}\right\} \tag{1.17}
\end{equation*}
$$

(the starting row $G_{i_{1}}$ can be taken arbitrary). Then

$$
G_{1}^{\prime}=G_{i_{k-1}^{\prime}}, G_{2}^{\prime}=G_{i_{k-2}^{\prime}-2}, \ldots, G_{k-1}^{\prime}=G_{i_{k}^{\prime}}, G_{k}^{\prime}=G_{i_{1}}
$$

are properly ordered. If one takes i_{k-1}^{\prime} as the starting point in (1.17), one gets another properly ordered sequence $G_{1}^{\prime \prime}, \ldots, G_{k}^{\prime \prime}$ such that $G_{1}^{\prime \prime} \neq G_{k}^{\prime \prime}=G_{1}^{\prime}$.

Coming back to the proof of (1.15), let $G_{p}, G_{p^{\prime}}$ be proper rows for γ. By the definition of $\psi_{N, n}$ and the inequalities $\left|D_{N}(x)\right| \leqq C N,|x| \leqq K / N,|a b| \leqq 1 / 2\left(a^{2}\right.$ $+b^{2}$),

$$
\begin{aligned}
J_{N}^{-}(\gamma) \leqq & C\left(\varepsilon N^{1 / 2}\right)^{k-2} N^{k-2} \int_{V_{N}}\left(\left|\psi_{N, n_{p}}\right|^{2}\right. \\
& \left.+\left|\psi_{N, n_{p}} \cdot\right|^{2}\right) d^{m / 2} F \leqq C\left(\varepsilon N^{1 / 2}\right)^{k-2} N^{k-2}(K / N)^{k-2} N
\end{aligned}
$$

according to Lemma 3 . This proves (1.15).

[^2]With (1.14) and (1.15) in mind, it remains to verify that $J_{N}^{+}(\gamma)=o\left(N^{k / 2}\right)$, $\forall \varepsilon>0, \forall K>0$. Again, by using Lemma 1 ,

$$
J_{N}^{+}(\gamma) \leqq C \sum_{j=1}^{k}\left(\prod_{i \neq j}\left\|\psi_{N, n_{i}}\right\|_{n_{i}}\right) \delta_{N, j}^{1 / 2},
$$

where

$$
\begin{aligned}
\delta_{N, j}= & N^{2} \int_{\Pi^{n_{j}}}\left|\varphi_{n_{j}}\right|^{2} 1\left(\left|x_{1}+\ldots+x_{n_{j}}\right|<K / N,\left|\varphi_{n_{j}}\right|\right. \\
& \left.>\varepsilon N^{1 / 2}\right) d^{n_{j}} x=o(N)
\end{aligned}
$$

according to (ii), which ends the proof.
Set $S_{N}^{(\leq n)}=\sum_{k=1}^{n} S_{N}^{(k)}$. By Fatou's lemma,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varlimsup_{N \rightarrow \infty} \operatorname{Var} S_{N}^{(\leq n)} / \operatorname{Var} S_{N} \leqq 1 \tag{1.18}
\end{equation*}
$$

In Theorem 8 of Section 3 this limit is zero. It appears that the equality in (1.18) plus the CLT for each $S_{N}^{(\leq n)}$ yields the CLT for S_{N}. Namely, we have

Theorem 2. Assume that

$$
\begin{equation*}
A_{N}^{-1} S_{N}^{(\underline{N} n)} \xlongequal{d} \mathcal{N}\left(0, \sigma_{n}^{2}\right) \tag{1.19}
\end{equation*}
$$

for $n \geqq 1$ sufficiently big, where $A_{N}^{2}=\operatorname{Var} S_{N}$ and $\sigma_{n}^{2} \rightarrow 1 \quad(n \rightarrow \infty)$. Then $A_{N}^{-1} S_{N} \xrightarrow{\boldsymbol{d}} \mathcal{N}(0,1)$.
Proof. By (1.18), Var $\left(S_{N}^{(S n)} / A_{N}\right) \rightarrow \sigma_{n}^{2}$ and therefore $\operatorname{Var}\left(\left(S_{N}-S_{N}^{(S n)} / A_{N}\right) \rightarrow 1-\sigma_{n}^{2}\right.$. Together with (1.18) this implies that for any $a \in \mathbb{R}$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left|E \exp \left(i a A_{N}^{-1} S_{N}\right)-\exp \left(-a^{2} / 2\right)\right| \\
& \leqq|a|\left(1-\sigma_{n}^{2}\right)^{1 / 2}+\left|\exp \left(-a^{2} \sigma_{n}^{2} / 2\right)-\exp \left(-a^{2} / 2\right)\right| \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

In [9] (see also [10], Theorem 18.6.1) Ibragimov obtained a result on the CLT for subordinated processes which we reproduce below in a somewhat less generality.
Theorem 3 (Ibragimov). Let $\left(\xi_{t}\right) \in \mathscr{L}^{2}(X)$ be stationary process subordinated to i.i.d. sequence ${ }^{4}\left(X_{+}\right)$. Assume that (0.4) holds and $\sum_{\xi}(t)=\sigma^{2} \neq 0$, where $r_{\xi}(t)$ is the covariance of $\left(\xi_{t}\right)$. Then $S_{N} / \sqrt{N} \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right)$.
Theorem 4. Let conditions of Theorem 3 hold and $\left(X_{t}\right) \in \mathcal{N}(0,1)$ be Gaussian. Then $\left(\xi_{t}\right)$ satisfies the conditions of Theorems 1 and 2.
Proof. Apart from the 'frequency' representation (1.1), the process $\left(\xi_{t}\right)$ has also the 'moving average' representation

$$
\begin{align*}
\xi_{t} & =\sum_{n=0}^{\infty} \sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} c_{n}\left(t-t_{1}, \ldots, t-t_{n}\right): X_{t_{1}} \ldots X_{t_{n}} \\
& \equiv \sum_{n=0}^{\infty} \xi_{t}^{(n)} \tag{1.20}
\end{align*}
$$

[^3]where $c_{n}(t) \in \mathbb{R}, t \in \mathbb{Z}^{n}, n \geqq 1$ are the Fourier coefficients of $\varphi_{n} \in L^{2}\left(\Pi^{n}\right), \varphi_{n}(x)$ $=(2 \pi)^{-n / 2} \sum_{t} \exp (i(x, t)) c_{n}(t)$, and $: X_{t_{1}} \ldots X_{t_{n}}:$ is the Wick product (invariant with respect to permutations of t_{1}, \ldots, t_{n}) of Gaussian variables $X_{t_{1}}, \ldots, X_{t_{n}}$ [13], i.e.
\[

$$
\begin{equation*}
: X_{t_{1}} \ldots X_{t_{n}}:=H_{k_{1}}\left(X_{s_{1}}\right) \ldots H_{k_{m}}\left(X_{s_{m}}\right) \tag{1.21}
\end{equation*}
$$

\]

if $t_{1}=\ldots=t_{k_{1}}=s_{1}, \ldots, t_{k_{1}+\ldots+k_{m-1}+1}=\ldots=t_{n}=s_{m}, k_{1}+\ldots+k_{m}=n, s_{1}<\ldots<s_{m}$ and $H_{k}, k=0,1, \ldots$ are Hermite polynomials. Now, (1.20) follows from the well-known relationship between multiple Ito-Wiener integrals and Hermite polynomials [11, 13]. Note that

$$
E\left(: X_{t_{1}} \ldots X_{t_{n}}: \mid X_{t}, t \in T\right)=\left\{\begin{array}{l}
: X_{t_{1}} \ldots X_{t_{n}}: \text { if } t_{1}, \ldots, t_{n} \in T \tag{1.22}\\
0 \quad \text { if otherwise }
\end{array}\right.
$$

and

$$
\begin{align*}
& \operatorname{cov}\left(: X_{t_{1}} \ldots X_{t_{n}}:,: X_{t_{1}^{\prime}} \ldots X_{t_{n^{\prime}}^{\prime}}\right)=\delta\left(n, n^{\prime}\right) \\
& \cdot \prod_{j=1}^{n} \delta\left(t_{j}, t_{j}^{\prime}\right) \prod_{j=1}^{m} k_{j}! \tag{1.23}
\end{align*}
$$

where $t_{1} \leqq \ldots \leqq t_{n}, t_{1}^{\prime} \leqq \ldots \leqq t_{n^{\prime}}^{\prime}$ and : $X_{t_{1}} \ldots X_{t_{n}}$: is equal to (1.21). By (1.22) and (1.23),

$$
\begin{align*}
\rho(k) & \equiv E\left(\xi_{0}-E\left(\xi_{0}\left|X_{t},|t| \leqq k\right)\right)^{2}\right. \\
& =\sum_{n=1}^{\infty} n!\sum_{\left.\left(t_{1}, \ldots, t_{n}\right) \notin-k, k\right]^{n}} c_{n}^{2}\left(t_{1}, \ldots, t_{n}\right) \\
& \geqq \sum_{t_{1}, \ldots, t_{n-1} \in \mathbb{Z}}\left(c_{n}^{2}\left(t_{1}, \ldots, t_{n-1}, k+1\right)+c_{n}^{2}\left(t_{1}, \ldots, t_{n-1},-k-1\right)\right) . \tag{1.24}
\end{align*}
$$

To prove condition (ii) of Theorem 1 , it suffices to show that for each $n \geqq 1$ there exists $0 \leqq \psi_{n} \in L^{2}\left(\Pi^{n-1}\right)$ such that

$$
\begin{equation*}
\left|\varphi_{n}\left(x_{1}, \ldots, x_{n}\right)\right| \leqq C \psi_{n}\left(x_{1}, \ldots, x_{n-1}\right) \tag{1.25}
\end{equation*}
$$

a.e. in Π^{n}. Now, set $\psi_{n}(x)=\left.\sum_{t_{n}}\right|_{t_{1}, \ldots, t_{n-1}} c_{n}\left(t_{1}, \ldots, t_{n-1}, t_{n}\right) \cdot \exp \left(i \sum_{j=1}^{n-1} x_{j} t_{j}\right)$. Clearly ψ_{n} satisfies (1.25). By Minkowski's inequality and Parseval's identity,

$$
\left\|\psi_{n}\right\|_{n-1} \leqq C \sum_{t_{n}}\left(\sum_{t_{1}, \ldots, t_{n-1}} c_{n}^{2}\left(t_{1}, \ldots, t_{n}\right)\right)^{1 / 2}<\infty
$$

according to (1.24) and (0.4).
One can check easily (see also the proof of Theorem 18.6.1 [10]) that

$$
\begin{equation*}
\left|r_{\xi}(t)\right| \leqq C \rho^{1 / 2}(t / 2) \tag{1.26}
\end{equation*}
$$

i.e. $\sum_{t}\left|r_{\xi}(t)\right|<\infty$ by (0.4). Therefore Var $S_{N} \sim \sigma^{2} N$ as $\sigma^{2} \neq 0$.

Denote $r_{\tilde{\zeta}}^{(\leqq n)}(t)$ the covariance function of $\sum_{k=1}^{n} \xi_{t}^{(k)}$. Using (1.22), similarly to the proof of (1.26) it can be shown that $r_{\xi}^{(\underline{k}=n)}(t)$ also satisfies (1.26) with C independent of n (and t). Therefore $\sigma_{n}^{2} \equiv \sum_{t} r_{\xi}^{(\leqq n)}(t) \rightarrow \sigma^{2}(n \rightarrow \infty)$. Together with Theorem 1, this concludes the verification of conditions of Theorem 2.

Remark 1. Let $\left(X_{t}\right)_{t \in \mathbb{Z}}$ be i.i.d. random variables, not necessary Gaussian, such that there exist orthogonal basis in $L^{2}(\mathbb{R} ; \mu), \mu(d x)=P\left(X_{t} \in d x\right)$, consisting of polynomials $P_{n}(x)=\sum_{j \leq n} c_{j}^{(n)} x^{j}, n=0,1, \ldots$ such that $E P_{n}^{2}\left(X_{t}\right)=n!$. Let $: X_{t_{1}} \ldots X_{t_{n}}$: be defined by (1.21), with H_{k} replaced by P_{k}. It is easy to show that any 2 nd order process $\left(\xi_{t}\right)_{t \in \mathbb{Z}}$ subordinated to $\left(X_{t}\right)$ has a unique representation (1.20), where $c_{n} \in L^{2}\left(\mathbb{Z}^{n}\right)$ and the series converge in $L^{2}(\Omega)$ ([6], see also [21]).

Let $\varphi_{n} \in L^{2}\left(\Pi^{n}\right)$ denote the Fourier transform of c_{n}. Assuming that conditions (i) and (ii) of Theorem 1 hold and only a finite number of c_{n} 's in the representation (1.20) do not vanish, one can prove the CLT for $\left(\xi_{t}\right)$ which is a straightforward generalization of Theorem 1 [6].

2. CLT for Local Functionals

Let $\left(X_{t}\right)$ be a real stationary mean zero Gaussian sequence with covariance $r(t)$ such that $r(0)=1$ and

$$
\begin{equation*}
r(t) \rightarrow 0 \quad(t \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

Any (real) function $H \in L^{2}\left(\mathbb{R}, e^{-x^{2} / 2} d x\right) \equiv L^{2}(X)$ can be represented in the series of Hermite polynomials

$$
\begin{equation*}
H(x)=\sum_{k=0}^{\infty} c_{k} H_{k}(x) \tag{2.2}
\end{equation*}
$$

where $\sum c_{k}^{2} k!<\infty$. The smallest $k \in \mathbb{Z}_{+}$such that $c_{k} \neq 0$ will be called the Hermite rank of H [24]. Given $H \in L^{2}(X)$ such that $c_{0}=E\left(X_{0}\right)=0$, denote $r_{H}(t)$ the covariance of $\xi_{t}=H\left(X_{t}\right)$ and set again $S_{N, t}=\sum_{s=1}^{[N t]} H\left(X_{s}\right), S_{N}=S_{N, 1}$.
Theorem 5. Assume that

$$
\begin{equation*}
\sum_{t}\left|r_{H}(t)\right|<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=\sum_{t} r_{H}(t) \neq 0 \tag{2.4}
\end{equation*}
$$

Then

$$
N^{-1 / 2} S_{N, t} \xrightarrow{d} \sigma W(t) .
$$

Theorem 6. Let $r_{H}(t)=L(|t|) /|t|$, where $L:[1, \infty) \rightarrow \mathbb{R}$ is a slowly varying function, bounded on every finite interval, such that

$$
\begin{equation*}
L_{1}(N) \rightarrow \infty(N \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

where $L_{1}(N)=\sum_{t=-N}^{N} r_{H}(t)$. Then

$$
\left(L_{1}(N) N\right)^{-1 / 2} S_{N, t} \stackrel{d}{\Rightarrow} W(t) .
$$

Remark 2. Theorem 9 below shows that conditions on $r_{H}(t)$ in Theorems 5 and 6 are essential for the CLT. Namely, there exist stationary Gaussian $\left(X_{t}\right)$ with absolutely continuous spectral measure such that $A_{N}^{-1} \sum_{t=1}^{N} H_{n}\left(X_{t}\right)$ is asym-
ptotically non-Gaussian and either $\sum\left|r_{H_{n}}(t)\right|<\infty, \sum r_{H_{n}}(t)=0$ (in this case the norming factor $A_{N}=N^{\gamma}, 0<\gamma<1 / 2$) or the series $\sum\left|r_{H_{n}}(t)\right|$ diverge logarithmically but $r_{H_{n}}(t) \cdot t$ fails to be slowly varying (and the norming factor is the 'usual' $N^{1 / 2}$); H_{n} is any odd ($n=3,5, \ldots$) Hermite polynomial.

Proof of Theorem 5. Let $m \geqq 1$ be the Hermite rank of H. As $E H_{k}\left(X_{0}\right) H_{j}\left(X_{t}\right)$ $=\delta(k, j) k!(r(t))^{k}$,

$$
\begin{equation*}
r_{H}(t)=r^{m}(t) \sum_{n=m}^{\infty} c_{n}^{2} n!r^{n-m}(t) . \tag{2.6}
\end{equation*}
$$

By (2.1), $\left|r_{H}(t)\right| \geqq|r(t)|^{m} c_{m}^{2} m!/ 2$ if t is sufficiently big, hence by (2.3),

$$
\begin{equation*}
\sum_{t}\left|r^{m}(t)\right|<\infty \tag{2.7}
\end{equation*}
$$

Conversely, (2.7) implies (2.3) by (2.6). This discussion can be summarized in
Lemma 5. Conditions (2.3) and (2.7) are equivalent. By Lemma 5,
By Lemma 5,

$$
\begin{gather*}
\operatorname{Var}\left(N^{-1 / 2} \sum_{t=1}^{N} \sum_{k \geqq n} c_{k} H_{k}\left(X_{t}\right)\right) \leqq \sum_{k \geqq n} \sum_{t=1}^{N} c_{k}^{2} k!\left|r^{k}(t)\right| \\
\cdot(N-t) / N \leqq C \sum_{k \geqq n} c_{k}^{2} k!\rightarrow 0 \quad(n \rightarrow \infty) \tag{2.8}
\end{gather*}
$$

According to (2.3) and (2.4), Var $S_{N} \sim \sigma^{2} N$. Together with (2.8) this implies that it suffices to prove Theorem 5 for H whose Hermite series is finite.

Denote $J_{N}=\left\langle S_{N}^{\left(n_{1}\right)}, \ldots, S_{N}^{\left(n_{k}\right)}\right\rangle$ where $S_{N}^{(n)}=\sum_{t=1}^{N} H_{n}\left(X_{t}\right)$ and $n_{1} \geqq m, \ldots, n_{k} \geqq m$. We prove that

$$
\begin{equation*}
J_{N}=o\left(N^{k / 2}\right) \tag{2.9}
\end{equation*}
$$

for $k \geqq 3$. Here $J_{N}=\sum_{\gamma} J_{N}(\gamma)$, where

$$
\begin{equation*}
J_{N}(\gamma)=\sum_{t_{1}, \ldots, t_{k}=1}^{N} \prod_{1 \leqq i<j \leqq k} r^{l_{i j}}\left(t_{i}-t_{j}\right), \tag{2.10}
\end{equation*}
$$

the sum \sum_{γ} is taken over all connected diagrams (i.e. partitions of the table G (1.6) which satisfy (a) and (b)), and $l_{i j}=l_{i j}(\gamma)$ is the number of edges between the i-th and j-th row of the table G. The formula above for J_{N} is a particular case of (1.5), see also [14], Proposition 1.1. By the definition,

$$
\begin{equation*}
\sum_{j \neq i} l_{i j}=n_{i}, \quad i=1, \ldots, k . \tag{2.11}
\end{equation*}
$$

Write $J_{N}(\gamma)=J_{N}^{\prime}(\gamma)+J_{N}^{\prime \prime}(\gamma)$, where $J_{N}^{\prime}(\gamma)$ is the sum (2.10) taken over t_{1}, \ldots, t_{k} $=1, \ldots, N$ such that $\left|t_{i}-t_{j}\right|<K$ if $l_{i j}>0, i, j=1, \ldots, k$. As γ is connected, without loss of generality we can assume that G_{1}, \ldots, G_{k} are properly ordered (see Lemma 4), i.e. for each $i=1, \ldots, k-1$ there exists an edge $\left[(i, j),\left(i^{\prime}, j^{\prime}\right)\right] \in \gamma$ such that $i^{\prime}>i$. Set $s_{i}=t_{i}-t_{i^{\prime}}, i=1, \ldots, k-1$. Then

$$
J_{N}^{\prime}(\gamma) \leqq C_{\left|s_{i}\right| \leqq K, i=1, \ldots, k-1,\left|t_{k}\right| \leqq N} 1 \leqq C N .
$$

By Lemma 6 below, this concludes the proof.

Lemma 6. $J_{N}^{\prime \prime}(\gamma) \leqq \varepsilon(K) N^{k / 2}$, where $\varepsilon(K) \rightarrow 0(K \rightarrow \infty)$.
Proof. By definition, $J_{N}^{\prime \prime}(\gamma)=\sum_{1 \leqq i<j \leqq k} I_{i j}$, where

$$
I_{12}=\sum_{t_{1}, \ldots, t_{k}=\overline{1, N},\left|t_{1}-t_{2}\right|>K} \prod_{1 \leqq i<j \leqq k} r^{l_{i j}}\left(t_{i}-t_{j}\right)
$$

if $l_{12}>0,=0$ if $l_{12}=0$ and other $I_{i j}$ are defined analogously. Set $r_{12}(t, s)=r(t$ $-s)$ if $1 \leqq t, s \leqq N,|t-s|>K,=0$ if otherwise; $r_{i j}(t, s)=r(t-s)$ if $1 \leqq t, s \leqq N,=0$ if otherwise, and $(i, j) \neq(1,2), i, j=1, \ldots, k$. Then

$$
\begin{equation*}
I_{12}=\sum_{t_{1}, \ldots, t_{k}} \prod_{1 \leqq i<j \leqq k} r_{i j}^{l_{i j}}\left(t_{i}, t_{j}\right) . \tag{2.12}
\end{equation*}
$$

For any $r_{i j}(t, s) \geqq 0, i, j=1, \ldots, k, t, s \in \mathbb{Z}$ and $l_{i j}=l_{j i} \geqq 0$ which satisfy (2.11), the following inequality holds:

$$
\begin{equation*}
R \leqq \min \left(\prod_{1 \leqq i<j \leqq k} R_{i j}, \prod_{1 \leqq i<j \leqq k} R_{j i}\right), \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{i j}=\left(\sum_{t}\left(\sum_{s} r_{i j}^{n_{i}}(s, t)\right)^{n_{j} / n_{i}}\right)^{i_{i j} / n_{j}} \tag{2.14}
\end{equation*}
$$

and R denotes the right hand side of (2.12). In fact, by Hölder's inequality:

$$
\left|\int h_{1} \ldots h_{k}\right| \leqq \prod_{j}\left(\int\left|h_{j}\right|^{\beta_{j}}\right)^{1 / \beta_{j}}, \quad 1 / \beta_{1}+\ldots+1 / \beta_{k}=1
$$

we have

$$
\begin{aligned}
& R \leqq \sum_{t_{2}, \ldots, t_{k}}\left(\sum_{t_{1}} r_{12}^{n_{1}}\right)^{l_{12} / n_{1}} \ldots\left(\sum_{t_{1}} r_{1 k}^{n_{1}}\right)^{l_{1 k} / n_{1}} \prod_{2 \leqq i<j \leqq k} \ldots \\
& \leqq \sum_{t_{3}, \ldots, t_{k}}\left(\sum_{t_{2}}\left(\sum_{i_{1}} r_{12}^{n_{1}}\right)^{n_{2} / n_{1}}\right)^{l_{12} / n_{2}}\left(\sum_{t_{2}} r_{23}^{n_{2}}\right)^{l_{23} / n_{2}} \cdots \\
& \cdot\left(\sum_{t_{2}} r_{2 k}^{n_{2}}\right)^{l_{2 k} / n_{2}}\left(\sum_{i_{1}} r_{23}^{n_{1}}\right)^{l_{13} / n_{1}} \cdots\left(\sum_{i_{1}} r_{1 k}^{n_{1}}\right)^{l_{1 k} / n_{1}} \prod_{3 \leqq i<j \leqq k} \cdots \\
& \leqq \ldots \leqq \prod_{1 \leqq i<j \leqq k} R_{i j} ;
\end{aligned}
$$

the other inequality of (2.13) can be proved analogously.
By (2.12), (2.13) and (2.7),

$$
I_{12} \leqq C \max \left\{\left(\sum_{|t|>K}\left|r^{n_{1}}(t)\right|\right)^{l_{12} / n_{1}},\left(\sum_{|t|>K}\left|r^{n_{2}}(t)\right|\right)^{l_{21} / n_{2}}\right\} N^{\gamma}
$$

where

$$
\gamma=\min \left(\sum_{1 \leqq i<j \leqq k} l_{i j} / n_{j}, \sum_{1 \leqq i<j \leqq k} l_{i j} / n_{i}\right) \leqq k / 2 ;
$$

the last inequality follows from (2.11).
Proof of Theorem 6. Let $m \geqq 1$ denote again the Hermite rank of H. Similarly as in the previous theorem, $\left|r_{\boldsymbol{H}}(t)\right| \geqq C\left|r^{m}(t)\right|$ for t sufficiently big, which implies

$$
\begin{equation*}
|r(t)| \leqq C[L(t) / t]^{1 / m} \tag{2.15}
\end{equation*}
$$

It follows from (2.15) that $\operatorname{Var}\left(S_{N}-\sum_{t=1}^{N} c_{m} H_{m}\left(X_{t}\right)\right) \leqq C N$. Together with (2.5) this implies that it suffices to prove Theorem 6 with $H(x)$ replaced by $c_{m} H_{m}(x)$.

Let γ be any connected diagram of the table (1.6), where $n_{1}=\ldots=n_{k}=m$ and $l_{i j}, i, j=1, \ldots, k$ be the same as in the proof of Theorem 5 . We'll prove that

$$
\begin{align*}
J_{N}(\gamma) & =\sum_{t_{1}, \ldots, t_{k}=1}^{N} \prod_{1 \leqq i<j \leqq k}\left(L\left(\mid t_{i}-t_{j}\right) / /\left|t_{i}-t_{j}\right|\right)^{l_{i j} / m} \\
& =o\left(\left(L_{1}(N) N\right)^{k / 2}\right) . \tag{2.16}
\end{align*}
$$

In fact, $J_{N}(\gamma) \leqq C(N L(N))^{k / 2} I(\gamma)$, where

$$
I(\gamma)=\int_{[0,1]^{k}} \prod_{1 \leqq i<j \leqq k}\left|t_{i}-t_{j}\right|^{-\left(l_{i j}+\varepsilon\right) / m} d^{k} t
$$

as $L(t N) / L(N) \leqq C(\varepsilon) t^{-\varepsilon}, 1 / N \leqq t<1$ uniformly in N for any $\varepsilon>0$. By another property of slowly varying functions ([25], Chap. 5.2) $L(N)=o\left(L_{1}(N)\right.$). It remains to apply Lemma 7 below.
Lemma 7. For $\varepsilon>0$ sufficiently small, $I(\gamma)<\infty$.
Proof. Let us prove first that

$$
\begin{align*}
i & \equiv \int_{0}^{1} d t \prod_{2 \leqq j \leqq k}\left|t-t_{j}\right|^{-\left(\varepsilon+t_{1 j} / m\right)} \\
& \leqq C(\varepsilon) \sum_{2 \leqq i<j \leqq k}\left|t_{i}-t_{j}\right|^{-\varepsilon^{\prime}} \leqq C(\varepsilon) \prod_{2 \leqq i<j \leqq k}\left|t_{i}-t_{j}\right|^{-\varepsilon^{\prime}} \tag{2.17}
\end{align*}
$$

where $\varepsilon^{\prime}=\varepsilon^{\prime}(\varepsilon) \rightarrow 0(\varepsilon \rightarrow 0)$. In fact, assume that $0=t_{1}<t_{2}<\ldots<t_{k+1}=1$. Then i $=\sum_{j=1}^{k} \int_{i j}^{t_{j+1}}=\sum i_{j}$, where

$$
i_{j} \leqq \int_{t_{j}}^{t_{j+1}} d t /\left|t-t_{j}\right|^{\beta_{j}}\left|t-t_{j+1}\right|^{\gamma_{j}} \leqq C(\varepsilon)\left|t_{j+1}-t_{j}\right|^{-\varepsilon m}
$$

as

$$
\beta_{j}=\sum_{i=1}^{j}\left(\varepsilon+l_{1 i} / m\right)<1, \gamma_{j}=\sum_{i=j+1}^{k}\left(\varepsilon+l_{1 i} / m\right)<1
$$

$\beta_{j}+\gamma_{j} \leqq 1+\varepsilon m$ and $\varepsilon>0$ is sufficiently small, $j=2, \ldots, k-1$, while

$$
i_{1} \leqq \int_{0}^{t_{2}} d t| | t-\left.t_{2}\right|^{\varepsilon+t_{12} / m}\left|t-t_{3}\right|^{\gamma_{2}} \leqq C\left|t_{2}-t_{3}\right|^{-2 m \varepsilon}
$$

due to $\left|t_{3}-t\right|^{\gamma_{2}} \geqq\left|t_{3}-t_{2}\right|^{2 m \varepsilon}\left|t_{2}-t\right|^{\gamma_{2}-2 m \varepsilon}$ and $\gamma_{2}-2 m \varepsilon+\varepsilon+l_{12} / m<1$. Similarly, $i_{k} \leqq C(\varepsilon)\left|t_{k}-t_{k-1}\right|^{-2 m \varepsilon}$. This proves (2.17).

By successive application of (2.17),

$$
I(\gamma) \leqq C(\varepsilon) \int_{0}^{1} \int_{0}^{1} d t_{k-1} d t_{k}\left|t_{k}-t_{k-1}\right|^{-\left(\varepsilon^{\prime \prime}+l_{k, k-1} / m\right)}<\infty
$$

as $l_{k, k-1}<m$ and $\varepsilon^{\prime \prime}>0$ is sufficiently small.

3. Non-central Limit Theorems

Theorems 7-9 below serve as counterexamples to the central limit theorems of Section 1-2, when some of their conditions are violated. This applies to (a) the condition (ii) of Theorem 1, (b) the condition of finiteness of the Ito-Wiener expansion of $\left(\xi_{t}\right)$ in Theorem 1 and (c) the conditions (2.3) and (2.4) of Theorem 5. The variance A_{N}^{2} of $S_{N}=\sum_{t=1}^{N} \xi_{t}$ grows linearly in Theorem 7 and 8 , while in Theorem 9 it behaves like N^{γ}, where γ is any number between 0 and 2 . The limiting processes in Theorem 7-9 are expressed as multiple stochastic integrals (m.s.i.) with respect to different (or vector) Gaussian measures, which is a simple generalization of m.s.i. of Sect. 1 (see e.g. [20, 30]). Below we recall the basic properties of such integrals.

Let $\mathscr{B}(\mathbb{R})$ denote the Borel subsets of \mathbb{R} with finite Lebesgue measure. By a \mathbb{C}^{m} valued white noise $W=\left(W_{1}, \ldots, W_{m}\right)$ in \mathbb{R} we mean a (complex) Gaussian family $\left(W_{i}(A), A \in \mathscr{B}(\mathbb{R}), i=1, \ldots, m\right)$, defined on a probability space (Ω, \mathscr{F}, P) such that $E W_{i}(A)=0$,
and

$$
\begin{equation*}
E W_{i}(A) \overline{W_{j}(B)}=r_{i j} \int_{A \cap B} d x \tag{3.1}
\end{equation*}
$$

$$
\overline{W_{i}(A)}=W_{i}(-A),
$$

$i, j=1, \ldots, m, A, B \in \mathscr{B}(\mathbb{R})$. We assume below that the covariance (matrix) $\left(r_{i j}\right)_{i, j=1, m}$ of W is strictly positive definite. Introduce the Hilbert spaces $L^{2}\left(\mathbb{R}^{n}\right.$, $\left.\left(\otimes \mathbb{C}^{m}\right)^{n}\right)=L^{2}\left(\mathbb{R}^{n}, \cdot\right)(n=1,2, \ldots)$, consisting of all functions $f: \mathbb{R}^{n} \rightarrow\left(\otimes \mathbb{C}^{m}\right)^{n}, f$ $=\left(f_{i_{1}}, \ldots, i_{n}\right)_{i_{1}, \ldots, i_{n}=1, m}$ with finite norm

$$
\left(\int_{\substack{\mathbb{R}^{n} \\ i_{1}, \ldots, i_{n}=\overline{1, m} \\ j_{1}, \ldots, j_{n}=\overline{1, m}}} r_{i_{1} j_{1} \ldots} \ldots r_{i_{n} j_{n}} f_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right) \overline{f_{j_{1} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right)} d^{n} x\right)^{1 / 2}
$$

The symmetrization operator sym in $L^{2}\left(\mathbb{R}^{n}, \cdot\right)$ is given by

$$
(\operatorname{sym} f)_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right)=\sum_{(p(1), \ldots, p(n)) \in \mathscr{P}_{n}} f_{p(1) \ldots p(n)}\left(x_{p(1)}, \ldots, x_{p(n)}\right) / n!
$$

where \mathscr{P}_{n} is the set of all permutations $p=(p(1), \ldots, p(n))$ of $(1, \ldots, n)$.
Proposition (c.f. [23], Theorem 1.1). Let $W=\left(W_{1}, \ldots, W_{n}\right)$ and ($r_{i j}$) satisfy the conditions above. For any $n \geqq 1$ and $f \in L^{2}\left(\mathbb{R}^{n}, \cdot\right)$ there exists random variable

$$
I_{n}(f)=\int_{\mathbb{R}^{n} i_{1}, \ldots, i_{n}=\overline{1, m}} f_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right) W_{i_{1}}\left(d x_{1}\right) \ldots W_{i_{n}}\left(d x_{n}\right)
$$

(the m.s.i. of f with respect to W), with the following properties:
(w1) $\quad I_{n}(f)=I_{n}(\operatorname{sym} f) \in L^{2}(\Omega) ;(w 2) \quad E I_{n}(f)=0 ;$
(w3) $E I_{n}(f) I_{k}(g)=\delta_{n k} n!(\operatorname{sym} f, g)_{n}$
for any $k \geqq 1$ and $g \in L^{2}\left(\mathbb{R}^{k}, \cdot\right)$, where $\delta_{n k}$ is Kroneker's δ and $(\cdot, \cdot)_{n}$ is the scalar product in $L^{2}\left(\mathbb{R}^{n}, \cdot\right)$.

We say that $f \in L^{2}\left(\mathbb{R}^{n}, \cdot\right)$ is even if $\overline{f_{i_{1} \ldots i_{n}}\left(x_{1}, \ldots, x_{n}\right)}=f_{i_{1} \ldots i_{n}}\left(-x_{1}, \ldots,-x_{n}\right)$, $i_{1}, \ldots, i_{n}=1, \ldots, m, x_{1}, \ldots, x_{n} \in \mathbb{R}$. If $f \in L^{2}\left(\mathbb{R}^{n}, \cdot\right)$ is even, then $I_{n}(f)$ is real.

Given a function $f \in L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{1}\right)$ and $i_{1}, \ldots, i_{n} \in\{1, \ldots, m\}$, we define

$$
\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) d W_{i_{1}} \ldots d W_{i_{n}}=I_{n}(\tilde{f}),
$$

where $\tilde{f} \in L^{2}\left(\mathbb{R}^{n},\left(\otimes \mathbb{C}^{m}\right)^{n}\right), \tilde{f}_{j_{1} \ldots j_{n}}=f$ if $\left(j_{1}, \ldots, j_{n}\right)=\left(i_{1}, \ldots, i_{n}\right),=0$ if otherwise. In the case $\left(r_{i j}\right)=\left(\delta_{i j}\right),(w 3)$ implies that

$$
\begin{array}{rl}
E \int_{\mathbb{R}^{n}} & f\left(x_{1}, \ldots, x_{n}\right) d W_{i_{1}} \ldots d W_{i_{n}} \cdot \overline{\int_{\mathbb{R}^{n}} g\left(x_{1}, \ldots, x_{n}\right) d W_{j_{1}} \ldots d W_{j_{n}}} \\
& =\chi\left(i_{1}, \ldots, i_{n} ; j_{1}, \ldots, j_{n}\right) \int_{\mathbb{R}^{n}} f \bar{g} d^{n} x \tag{3.2}
\end{array}
$$

where $\chi\left(i_{1}, \ldots, i_{n} ; j_{1}, \ldots, j_{n}\right)$ is the number of permutations $p=(p(1), \ldots, p(n)) \in \mathscr{P}_{n}$ such that $\left(i_{p(1)}, \ldots, i_{p(n)}\right)=\left(j_{1}, \ldots, j_{n}\right)$. In particular,

$$
E\left|\int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) d W_{1} \ldots d W_{1} d W_{2}\right|^{2}=(n-1)!\int_{\mathbb{R}^{n}} f \bar{g} d^{n} x .
$$

If $A \subset \mathbb{R}^{n}$ is Borel and $f: A \rightarrow \mathbb{C}$ is square integrable on A, then $\int_{A} f d W_{i_{1}} \ldots d W_{i_{n}}=\int_{\mathbb{R}_{n}} f \cdot 1_{A} d W_{i_{1}} \ldots d W_{i_{n}} \quad$ by definition. Finally, $2 \operatorname{Re}$ $\int_{\mathbb{R}_{n}}^{A} f d W_{i_{1}} \ldots d W_{i_{n}}=\int_{\mathbb{R}_{+}^{n} \cup \mathbb{R}_{-}^{n}} f^{\prime} d W_{i_{1}} \ldots d W_{i_{n}}$, where $\mathbb{R}_{ \pm}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \geqslant 0, i=1, \ldots, n\right\}$ and $f^{\prime}(x)=f(x)$ if $x \in \mathbb{R}_{+}^{\mathbb{R}_{n}},=\vec{f}(-x)$ if $x \in \mathbb{R}_{-}^{n}$.
Theorem 7. Let $S_{N, t}^{(n)}$ be defined by (1.1), (1.2), where $F(d x)=d x$ and

$$
\begin{align*}
& \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}c_{n}^{-1}\left|x_{1}+\ldots+x_{n}\right|^{-1 / 2} & \text { if } x_{1}\left(x_{2}+\ldots+x_{n}\right)>0 \\
0 & \text { if otherwise in } \Pi^{n},\end{cases} \tag{3.3}\\
& c_{n}=\left((n - 1) ! \int _ { I ^ { n - 2 } } 1 \left(\left|x_{1}+\ldots+x_{n}\right|<\pi\right.\right.
\end{align*},
$$

Then

$$
\begin{equation*}
N^{-1 / 2} S_{N, t}^{(n)} \stackrel{d}{\Rightarrow} \int_{\mathbb{R}^{2}} \Phi_{t}\left(x_{1}, x_{2}\right) W_{1}\left(d x_{1}\right) W_{2}\left(d x_{2}\right) \equiv \zeta_{t} \tag{3.4}
\end{equation*}
$$

where

$$
\Phi_{t}\left(x_{1}, x_{2}\right)=\left(e^{i t\left(x_{1}+x_{2}\right)}-1\right) /\left[i\left(x_{1}+x_{2}\right)\left|x_{1}+x_{2}\right|^{1 / 2}\right]
$$

if $x_{1} \cdot x_{2}>0,=0$ if otherwise in $\mathbb{R}^{2}, W=\left(W_{1}, W_{2}\right)$ is \mathbb{C}^{2}-valued white noise with covariance $r_{i j}=1(n=2), r_{i j}=\delta_{i j}(n>2)$ respectively, $i, j=1,2$.

Proof. As before we'll prove the covergence of one-dimensional distributions only. Write $\zeta_{1}=\zeta, S_{N, 1}^{(n)}=S_{N}^{(n)}, \Phi_{1}\left(x_{1}, x_{2}\right)=\Phi\left(x_{1}, x_{2}\right)$. Set also

$$
\begin{align*}
S_{N}^{\prime} & =\sum_{\left(j_{1}, j_{2}\right) \in \Lambda ; j_{1} \neq j_{2}} N^{3 / 2} \Phi\left(j_{1} / m, j_{2} / m\right) \int_{B_{N}\left(j_{1}, j_{2}\right)} d^{n} Z, \tag{3.5}\\
\zeta^{\prime} & =\sum_{\left(j_{1}, j_{2}\right) \in \Lambda, j_{1} \neq j_{2}} \Phi\left(j_{1} / m, j_{2} / m\right) \int_{B\left(j_{1}, j_{2}\right)} d W_{1} d W_{2}, \tag{3.6}
\end{align*}
$$

where

$$
\begin{aligned}
\Lambda= & \left\{\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{2}:\left|j_{i}\right| \leqq K m, i=1,2, j_{1} \cdot j_{2}>0\right\}, \\
B_{N}\left(j_{1}, j_{2}\right)= & \left\{x \in \Pi^{n}: j_{1} / m \leqq N x_{1}<\left(j_{1}+1\right) / m,\right. \\
& \left.j_{2} / m \leqq N\left(x_{2}+\ldots+x_{n}\right)<\left(j_{2}+1\right) / m\right\} \\
B\left(j_{1}, j_{2}\right)= & {\left[j_{1} / m,\left(j_{1}+1\right) / m\right) \times\left[j_{2} / m,\left(j_{2}+1\right) / m\right) . }
\end{aligned}
$$

Lemma 8. For any $\varepsilon>0$, there exist $K>0, m \geqq 1$ and $N_{0}=N_{0}(\varepsilon, m, K)$ such that

$$
E\left|\left(S_{N}^{(n)}-S_{N}^{\prime}\right) / \sqrt{N}\right|^{2}+E\left|\zeta-\zeta^{\prime}\right|^{2}<\varepsilon, \quad \forall N>N_{0}
$$

Proof. Set $\alpha_{N}(x)=e^{i x}\left(e^{i N x}-1\right) /\left(e^{i x}-1\right), \tilde{\alpha}_{N}\left(x_{1}, \ldots, x_{n}\right)=\alpha_{N}\left(x_{1}+\ldots+x_{n}\right)$. Then $S_{N}^{(n)}$ $=\int_{\Pi^{n}} \varphi_{n} \tilde{\alpha}_{n} d^{n} Z$ and $E\left|S_{N}^{(n)}-S_{N}^{\prime}\right|^{2} \leqq C\left(i_{1}+i_{2}\right)$ where

$$
\begin{aligned}
& i_{1}=\int\left|\varphi_{n} \tilde{\alpha}_{N}\right|^{2} 1\left(x \in \Pi^{n}: K / N<\left|x_{1}+\ldots+x_{n}\right|<\pi\right) d^{n} x \\
& i_{2}=\sum_{\left(j_{1}, j_{2}\right) \in \Lambda} \int_{B_{N}\left(j_{1}, j_{2}\right)} d^{n} x\left|\varphi_{n} \tilde{\alpha}_{N}-N^{3 / 2} \Phi\left(j_{1} / m, j_{2} / m\right) 1\left(j_{1} \neq j_{2}\right)\right|^{2}
\end{aligned}
$$

As $\left|e^{i x}-1\right|>C|x|$ for $|x|<\pi$, we have

$$
\begin{aligned}
i_{1} & \leqq C \int_{0}^{\pi} \int_{0}^{\pi} d y_{1} d y_{2}\left|y_{1}+y_{2}\right|^{-3} 1\left(\left|y_{1}+y_{2}\right|>K / N\right) \\
& \leqq C \int_{K / N}^{\pi} y^{-2} d y \leqq C N / K
\end{aligned}
$$

By turning to the new coordinates $y_{1}=N x_{1}, y_{2}=N\left(x_{2}+\ldots+x_{n}\right), y_{3}=x_{3}, \ldots, y_{n}$ $=x_{n},\left|d^{n} x / d^{n} y\right| \leqq C / N^{2}$ one has

$$
i_{2} \leqq C N \int_{(0, K]^{2}} d^{2} y\left|h_{N, m}\right|^{2}
$$

where

$$
\begin{aligned}
h_{N, m}\left(y_{1}, y_{2}\right)= & \left(e^{i\left(y_{1}+y_{2}\right)}-1\right) /\left[\left(y_{1}+y_{2}\right)^{1 / 2}\left(e^{i\left(y_{1}+y_{2}\right) / N}-1\right) N\right] \\
& -1\left(j_{1} \neq j_{2}\right) \cdot \Phi\left(j_{1} / m, j_{2} / m\right), \quad\left(y_{1}, y_{2}\right) \in B\left(j_{1}, j_{2}\right)
\end{aligned}
$$

Note that $h_{N, m} \rightarrow 0(N \rightarrow \infty, m \rightarrow \infty) d^{2} y-$ a.e. in $(0, K]^{2}$. Moreover, the double sequence $\left|h_{N, m}\right|^{2}, N \geqq 2 K, m \geqq 1$ is uniformly integrable in $(0, K]^{2}$. This proves the statement of Lemma 8 about the difference $S_{N}^{(n)}-S_{N}^{\prime}$. The difference $\zeta-\zeta^{\prime}$ can be discussed analogously.

By Lemma 8, it remains to prove that

$$
\begin{equation*}
\left(N \int_{B_{N}\left(j_{1}, j_{2}\right)} d^{n} Z, \quad\left(j_{1}, j_{2}\right) \in \Lambda\right) \xrightarrow{d}\left(c_{n} \int_{B\left(j_{1}, j_{2}\right)} d W_{1} d W_{2}, \quad\left(j_{1}, j_{2}\right) \in A\right) \tag{3.7}
\end{equation*}
$$

If $n=2$ then (3.7) holds with \xrightarrow{d} instead of $\stackrel{d}{\Rightarrow}$ for N sufficiently large, as \sqrt{N} $Z(d x / N) \stackrel{d}{=} W(d x),|x|<\pi N$. Let $n>2$ and set

$$
\begin{aligned}
\beta_{N, 1}(j) & =\sqrt{N} Z(j / m N,(j+1) / m N) \\
\beta_{N, 2}(j) & =\sqrt{N} \int 1\left(x \in \Pi^{n-1}, j / N m<x_{1}+\ldots+x_{n-1}<(j+1) / N m\right) d^{n-1} Z \\
w_{i}(j) & =W_{i}([j / m,(j+1) / m)), \quad i=1,2
\end{aligned}
$$

As $\int_{B\left(j_{1}, j_{2}\right)} d W_{1} d W_{2}=w_{1}\left(j_{1}\right) w_{2}\left(j_{2}\right)\left(W_{1}\right.$ and W_{2} are independent) and

$$
\begin{equation*}
E\left|N \int_{B_{N}} d^{n} Z-\beta_{N, 1}\left(j_{1}\right) \beta_{N, 2}\left(j_{2}\right)\right|^{2} \leqq C / N \tag{3.8}
\end{equation*}
$$

(see below), (3.7) follows from

$$
\begin{equation*}
\left(\beta_{N, i}\left(j_{i}\right),\left|j_{i}\right| \leqq K m, i=1,2\right) \stackrel{』}{\Rightarrow}\left(d_{i} w_{i}\left(j_{i}\right),\left|j_{i}\right| \leqq K m, i=1,2\right), \tag{3.9}
\end{equation*}
$$

where $d_{1}=1, d_{2}=c_{n-2}$. To prove (3.8), use the multiplication rule for Ito-Wiener integrals ([13], Proposition 5.1), according to which

$$
\begin{gathered}
\beta_{N, 1}\left(j_{1}\right) \beta_{N, 2}\left(j_{2}\right)=N \int_{B_{N}} d^{n} Z \\
+(n-1) \int_{\Pi^{n-2}}\left\{\int_{-\pi}^{\pi} f_{j_{1}}(y) g_{j_{2}}\left(-y, x_{1}, \ldots, x_{n-2}\right) d y\right\} d^{n-2} Z,
\end{gathered}
$$

where $\quad f_{j}=\sqrt{N} 1(j / N m \leqq x<(j+1) / N m), \quad g_{j}=\sqrt{N} 1\left(j / N m \leqq x_{1}+\ldots+x_{n-1}<(j\right.$ $+1) / N m$). It is easy to check that $\int_{I^{n-2}}\left|\int_{-\pi}^{\pi} f_{j_{1}}(y) g_{j_{2}}(-y, \cdot) d y\right|^{2} d^{n-2} x \leqq C / N$, which implies (3.8).

Note that the covariances of the left hand side of (3.9) tend to the corresponding covariances of the right hand side, as $N \rightarrow \infty$ (In particular, $\beta_{N, 1}\left(j_{1}\right)$ and $\beta_{N, 2}\left(j_{2}\right)$ are not correlated for any j_{1}, j_{2} as they are given by Ito-Wiener integrals of different multiplicities.) It remains to show that the limit distribution of any linear combinations of $\beta_{N, i}$'s is (complex) Gaussian. This can be done by evaluating the semi-invariants of order $k \geqq 3$ similarly as in Section $1-$ 2. For simplicity, let us consider $\operatorname{Re} \beta_{N, 2}(j)=\left(\beta_{N, 2}(j)+\beta_{N, 2}(-j-1)\right) / 2$. Let p $=k(n-1)$ be even. By (1.5), the k-th semi-invariant of $\operatorname{Re} \beta_{N, 2}(j)$ is equal to

$$
2^{-k+1} \sum_{\gamma} N^{k / 2} \int_{\Pi^{p / 2}}\left(\otimes_{i=1}^{k} g\right)_{\gamma} d^{p / 2} x \equiv \sum_{\gamma} J_{\gamma},
$$

where $g=g_{j}$ (see above) and the sum is taken over all connected diagrams of the table (1.6) with $n_{1}=\ldots=n_{k}=n-1$. Let $x_{i j}, i=1, \ldots, k, j=1, \ldots, n-1$ be related by (1.7). Among variables $y_{i}=x_{i, 1}+\ldots+x_{i, n-1}, i=1, \ldots, k$, there are $k-1$ linearly independent ones; see Lemma 4 and Definition 1. From here it follows easily that $J_{\gamma} \leqq C N^{k / 2}(N m)^{1-k} \rightarrow 0$, if $k \geqq 3$.
Theorem 8. Let $\tilde{S}_{N}^{(n)}$ be defined as in Theorem 7 with the difference that φ_{n} (3.3) is replaced by

$$
\begin{equation*}
\tilde{\varphi}_{n}(x)=\varphi_{n}(x) \cdot 1\left(B_{n, n}\right), \tag{3.10}
\end{equation*}
$$

where $B_{n, k}=\left\{x \in \Pi^{k}: b(n+1) \leqq\left|x_{1}+\ldots+x_{k}\right|<b(n)\right\}, b(n) \downarrow 0$,

$$
\begin{equation*}
b(n) N(n) \rightarrow \infty, \quad b(n+1) N(n) \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.11}
\end{equation*}
$$

and $1 \leqq N(n) \uparrow \infty$ are integers increasing sufficiently fast with $n ; \tilde{S}_{N}=\sum_{n \geqq 3} \tilde{S}_{N}^{(n)}$. Then

$$
\tilde{S}_{N(n)} / \sqrt{N(n)} \stackrel{d}{\Rightarrow} \zeta_{1} \quad(n \rightarrow \infty)
$$

where ζ_{t} is given by (3.4), with independent W_{1} and W_{2}.

Proof. Let $S_{N}^{(n)}$ be the same as in the previous theorem. As $S_{N}^{(n)} / \sqrt{N} \xlongequal{d} \zeta_{1}$ $(N \rightarrow \infty)$ with ζ_{1} independent of $n \geqq 3$, this implies that

$$
\begin{equation*}
S_{N(n)}^{(n)} / \sqrt{N(n)} \stackrel{d}{\Rightarrow} \zeta_{1} \quad(n \rightarrow \infty) \tag{3.12}
\end{equation*}
$$

if $N(n)$ increase sufficiently fast. With (3.12) in mind, it remains to show that

$$
\begin{equation*}
\operatorname{Var}\left(\tilde{S}_{N(n)}-\tilde{S}_{N(n)}^{(n)}\right)=o(N(n)), \quad \operatorname{Var}\left(\tilde{S}_{N(n)}^{(n)}-S_{N(n)}^{(n)}\right)=o(N(n)) \tag{3.13}
\end{equation*}
$$

Let us prove the first of the relations (3.13), as the second one can be proved analogously. Consider

$$
\begin{aligned}
\operatorname{Var} \tilde{S}_{N}^{(n)} & =n!\int_{\Pi n}\left(\operatorname{sym} \tilde{\varphi}_{n}\right)^{2} D_{N}^{2}\left(x_{1}+\ldots+x_{n}\right) d^{n} x \\
& =(n-1)!\int_{I^{n}} \tilde{\varphi}_{n}^{2} D_{n}^{2}\left(x_{1}+\ldots+x_{n}\right) d^{n} x+R_{N, n}
\end{aligned}
$$

Here,

$$
\begin{gathered}
\int_{I^{n}} \tilde{\varphi}_{n}^{2} D_{N}^{2}(\ldots) d^{n} x=c_{n}^{-2} \int_{B_{n, 2}}\left|y_{1}+y_{2}\right|^{-1} D_{N}^{2}\left(y_{1}+y_{2}\right) 1\left(y_{1} \cdot y_{2}>0\right) d^{2} y \\
\quad \cdot \int_{I^{n-2}} 1\left(\left|y_{2}-x_{1}-\ldots-x_{n-2}\right|<\pi\right) d^{n-2} x
\end{gathered}
$$

Denote the last integral by $\theta_{n}\left(y_{2}\right)$. Then $\theta_{n}(y) \uparrow c_{n}^{2} /(n-1)$! $(y \downarrow 0)$ and consequently

$$
\begin{equation*}
(n-1)!\int_{I^{n}} \tilde{\varphi}_{n}^{2} D_{N}^{2}(\ldots) d^{n} x \leqq \int_{B_{n, 1}} D_{N}^{2}(u) d u . \tag{3.14}
\end{equation*}
$$

On the other hand,

$$
R_{N, n}=(n-1)!(n-1) \int_{I^{n}} \tilde{\varphi}_{n}^{2} D_{N}^{2}(\ldots) 1\left(A_{1} \cap A_{2}\right) d^{n} x
$$

where $A_{j}=\left\{x \in \mathbb{R}^{n}: x_{j} \sum_{i \neq j} x_{i}>0\right\}$. Clearly,

$$
\begin{align*}
& R_{N, n} \leqq n!c_{n}^{-2} \int_{B_{n, 2}}\left|y_{1}+y_{2}\right|^{-1} D_{N}^{2}\left(y_{1}+y_{2}\right) 1\left(y_{1} \cdot y_{2}>0\right) d^{2} y \\
& \cdot \int_{\Pi^{n-2}} 1\left(x \in \Pi^{n-2}: x_{1}\left(y_{1}+y_{2}-x_{1}\right)>0\right) d^{n-2} x \\
& \leqq n!c_{n}^{-2}(2 \pi)^{n-2} b(n) \int_{B_{n, 1}} D_{N}^{2}(u) d u \tag{3.15}
\end{align*}
$$

If $N(n-1) \geqq n!c_{n}^{-2}(2 \pi)^{n-2}, n \geqq 2$, it follows from (3.11), (3.14) and (3.15) that

Therefore

$$
\operatorname{Var} \tilde{S}_{N(n)}^{(k)} \leqq C \int_{B_{k, 1}} D_{N(n)}^{2}(u) d u, k \geqq 3
$$

$$
\begin{gathered}
\operatorname{Var}\left(\tilde{S}_{N(n)}-\tilde{S}_{N(n)}^{(n)}\right)=\sum_{k \geqq 3, k \neq n} \operatorname{Var} \tilde{S}_{N(n)}^{(k)} \\
\leqq C\left(\int_{0}^{b(n+1)} D_{N(n)}^{2}(y) d y+\int_{b(n)}^{\pi} D_{N(n)}^{2}(y) d y\right) \equiv C\left(I^{\prime}+I^{\prime \prime}\right)
\end{gathered}
$$

Here, $I^{\prime} \leqq C N^{2}(n) b(n+1)=o(N(n)), I^{\prime \prime} \leqq C \int_{b(n)}^{\pi} y^{-2} d y=C / b(n)=o(N(n))$ accord-
ing to $(3.11), \quad \square$
Theorem 9. Let $\left(X_{t}\right)_{t \in \mathbb{Z}}$ be stationary Gaussian process with zero mean, variance 1 and the spectral density

$$
f(x)= \begin{cases}c\left|x-\lambda_{1}\right|^{-\beta} & \text { if } \quad|x| \in\left(\lambda_{1}, \lambda_{1}+\varepsilon\right), \tag{3.16}\\ c\left|x-\lambda_{2}\right|^{-\beta} & \text { if } \quad|x| \in\left(\lambda_{2}-\varepsilon, \lambda_{2}\right), \\ 0 \text { if otherwise in } \Pi\end{cases}
$$

where

$$
\begin{gather*}
\beta \in(1-2 / n, 1), \quad 0<\lambda_{1}<\lambda_{2}<\pi \\
\lambda_{2}=(n-1) \lambda_{1} \tag{3.17}
\end{gather*}
$$

$\lambda_{1}=\lambda_{1}(n)$ and $\varepsilon=\varepsilon\left(\lambda_{1}, n\right)$ are sufficiently small, $n(\geqq 3)$ is odd and $c=(1$ $-\beta) \varepsilon^{\beta-1} / 4$. Set $S_{N, t}=S_{N, t}^{(n)}=\sum_{s=1} H_{n}\left(X_{s}\right)$. Then

$$
\begin{equation*}
A_{N}^{2}=\operatorname{Var} S_{N, 1} \sim C_{1} N^{2+(\beta-1) n} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{gather*}
A_{N}^{-1} S_{N, t} \stackrel{d}{\Rightarrow} C_{2} \operatorname{Re} \int_{\mathbb{R}_{+}^{n}}\left[\left(e_{n}(x ; t)-1\right) / i\left(x_{1}+\ldots+x_{n}\right)\right] \\
\quad \cdot \prod_{1}^{n} x_{j}^{-\beta / 2} d^{n-1} W_{1} d W_{2} \tag{3.19}
\end{gather*}
$$

where W_{1}, W_{2} are the same as in Theorem 8 , and C_{1}, C_{2} are some constants.
Proof. Let $Z(d x)$ be the (complex) white noise in Π with variance $d x$. Then $X_{t} \stackrel{d}{\underline{d}} \int_{\Pi} e^{i t x} f^{1 / 2} d Z$,

$$
\begin{align*}
& H_{n}\left(X_{t}\right) \stackrel{d}{ } \int_{I^{n}} e_{n}(x ; t) \underset{1}{\otimes} f^{1 / 2} d^{n} Z \\
& S_{N, 1}=S_{N} \stackrel{d}{=} \int_{I^{n}}\left[\left(e_{n}(x, N)-1\right) /\left(e_{n}(x, 1)-1\right)\right] \bigotimes_{1}^{n} f^{1 / 2} d^{n} Z \tag{3.20}
\end{align*}
$$

and

$$
\begin{equation*}
A_{N}^{2}=n!\int_{\Lambda^{n}} D_{N}^{2}\left(x_{1}+\ldots+x_{n}\right){\underset{1}{\otimes} f d^{n} x}^{n} \tag{3.21}
\end{equation*}
$$

Set

$$
\begin{aligned}
\Lambda(\delta) & =\left\{x \in \Pi^{n}:\left|\sum_{i}^{n} x_{j}(\bmod 2 \pi)\right|<\delta\right\}, \\
\Lambda^{+}(\delta) & =\left\{x \in \mathbb{R}_{+}^{n}: \sum_{1}^{n} x_{j}<\delta\right\}, \\
V_{\varepsilon, i}^{+} & =\left\{x \in \mathbb{R}^{n}: x_{i} \in\left(-\lambda_{2},-\lambda_{2}+\varepsilon\right), x_{j} \in\left(\lambda_{1}, \lambda_{1}+\varepsilon\right), j \neq i\right\}, \\
V_{\varepsilon, i} & =V_{\varepsilon, i}^{+} \cup V_{\varepsilon, i}^{-}, \quad V_{\varepsilon, i}^{-}=\left\{x \in \mathbb{R}^{n}:-x \in V_{\varepsilon, i}^{+}\right\} .
\end{aligned}
$$

If $\lambda_{1}=\lambda_{1}(n), \varepsilon=\varepsilon\left(n, \lambda_{1}\right)$ and $(0<) \delta=\delta\left(n, \lambda_{1}\right)$ are sufficiently small, $\lambda_{2}=(n-1) \lambda_{1}$, and $n \geqq 3$ is odd, then the relations

$$
\begin{equation*}
x=\left(x_{1}, \ldots, x_{n}\right) \in \Lambda(\delta), \quad\left|x_{i}\right| \in\left(\lambda_{1}, \lambda_{1}+\varepsilon\right) \cup\left(\lambda_{2}-\varepsilon, \lambda_{2}\right), \quad i=1, \ldots, n \tag{3.22}
\end{equation*}
$$

imply

Write

$$
\begin{equation*}
x \in \bigcup_{i=1}^{n} V_{\varepsilon, i} . \tag{3.23}
\end{equation*}
$$

$$
A_{N}^{2}=n!\left(\int_{\Lambda(\delta)} \ldots+\int_{\Pi^{n} \backslash A(\delta)} \ldots\right)=i_{N}(\delta)+i_{N}^{\prime}(\delta) .
$$

Then $i_{N}^{\prime}(\delta) \leqq C$, while

$$
\begin{align*}
i_{N}(\delta) & =C \int_{V_{\varepsilon, 1}^{+} \cap A(\delta)} D_{N}^{2}\left(x_{1}+\ldots+x_{n}\right) \underset{1}{\otimes} f d^{n} x \\
& =C \int_{\Lambda^{+}(\delta)} D_{N}^{2}\left(y_{1}+\ldots+y_{n}\right) \prod_{1}^{n} y_{j}^{-\beta} d^{n} y \tag{3.24}
\end{align*}
$$

according to (3.16, 3.17, 3.22-3.23) and the change of variables

$$
y_{1}=x_{1}+\lambda_{2}, \quad y_{j}=x_{j}-\lambda_{1}, \quad j=2, \ldots, n ; \quad \sum_{1}^{n} y_{j}=\sum_{1}^{n} x_{j}
$$

Let $\delta(N) \downarrow 0, \delta(1)=\delta$ and $\delta(N) N \rightarrow \infty$. By (3.24),

$$
\begin{aligned}
& \left.i_{N}(\delta(N)) \sim C N^{2+n(\beta-1}\right) \int_{A^{+}(\delta N(\delta))}\left[\sin \left(x_{1}+\ldots+x_{n}\right) /\left|x_{1}+\ldots+x_{n}\right|\right]^{2} \\
& \quad \cdot \prod_{1}^{n} x_{j}^{-\beta} d^{n} x \sim C N^{2+n(\beta-1)}
\end{aligned}
$$

(the last integral converges as $N \rightarrow \infty$). Similarly, $i_{N}(\delta)-i_{N}(\delta(N))=o\left(N^{2+n(\beta-1)}\right)$. This proves (3.18).

Denote by S_{N}^{\prime} the stochastic integral in (3.20) with Π^{n} replaced by $\Lambda(\delta(N))$. By the argument above, $\operatorname{Var}\left(S_{N}-S_{N}^{\prime}\right)=o\left(A_{N}^{2}\right)$. Next, replace the factor $e_{n}(x, 1)$ -1 by $i\left(x_{1}+\ldots+x_{n}\right)$ in the integrand of S_{N}^{\prime}; the resulting integral denote by $S_{N}^{\prime \prime}$. Again, it is easy to check that $\operatorname{Var}\left(S_{N}^{\prime}-S_{N}^{\prime \prime}\right)=o\left(A_{N}^{2}\right)$. By (3.22-3.23),

$$
S_{N}^{\prime \prime}=\sum_{i=1}^{n} \int_{V_{\varepsilon, i} \cap A(\delta(N))} \ldots \equiv \sum_{i=1}^{n} S_{N, i}^{\prime \prime}
$$

where $S_{N, 1}^{\prime \prime}=\ldots=S_{N, n}^{\prime \prime}$ as the integrand of $S_{N}^{\prime \prime}$ is symmetric. Now, $S_{N, n}^{\prime \prime}$ can be rewritten as (c.f. (3.21))

$$
\begin{aligned}
S_{N, n}^{\prime \prime}= & =2 \operatorname{Re} \int_{(0, \varepsilon)^{n}}\left[\left(e_{n}(x, N)-1\right) / i\left(x_{1}+\ldots+x_{n}\right)\right] \prod_{1}^{n} x_{j}^{-\beta / 2} \\
& \cdot d W_{1}^{(\varepsilon)}\left(x_{1}\right) \ldots d W_{1}^{(\varepsilon)}\left(x_{k-1}\right) d W_{2}^{(\varepsilon)}\left(x_{k}\right),
\end{aligned}
$$

where $d W_{1}^{(\varepsilon)}(x)=d Z\left(x+\lambda_{1}\right), d W_{2}^{(\varepsilon)}(x)=d Z\left(x-\lambda_{2}\right), 0<x<\varepsilon$ are independent, if $\varepsilon>0$ is sufficiently small. By the change of variables in Ito-Wiener integrals ([13], Theorem 4.4),

$$
\begin{aligned}
S_{N, n}^{\prime \prime} \stackrel{d}{=} & N^{1+(\beta-1) n / 2} 2 \operatorname{Re} \int_{(0, \varepsilon N)^{n}}\left[\left(e_{n}(x, 1)-1\right) / i\left(x_{1}+\ldots+x_{n}\right)\right] \\
& \cdot \prod_{1}^{n} x_{j}^{-\beta / 2} d^{n-1} W_{1} d W_{2}
\end{aligned}
$$

where W_{1}, W_{2} are the same as in (3.19). The last integral converges in $L^{2}(\Omega)$ as $N \rightarrow \infty$. The convergence of general finite dimensional distributions of $S_{N, t}$ can be considered analogously.
Remark 3. Let $r(t), r_{H_{n}}(t)=n!(r(t))^{n}, f_{H_{n}}(x)$ be the covariance function of $\left(X_{t}\right)$, the covariance function and the spectral density of $\left(H_{n}\left(X_{t}\right)\right)$ in Theorem 9, respectively. It follows from (3.13) that

$$
\begin{aligned}
r(t) & \sim \text { const } t^{\beta-1}\left(\sin \left(\pi \beta / 2-t \lambda_{1}\right)+\sin \left(\pi \beta / 2+t \lambda_{2}\right)\right) \quad(t \rightarrow \infty), \\
f_{H_{n}}(x) & \sim \mathrm{const}|x|^{n(1-\beta)-1} \quad(|x| \rightarrow 0) .
\end{aligned}
$$

Consequently, $\sum\left|r_{H_{n}}(t)\right|=\infty$ if $\beta \in(1-1 / n, 1)$ while $\sum\left|r_{H_{n}}(t)\right|=\infty$ and $\sum r_{H_{n}}(t)$ $=2 \pi f_{H_{n}}(0)=0$ if $\beta \in(1-2 / n, 1-1 / n)$.

References

1. Bentkus, R.: Cumulants of polylinear forms of a stationary time series (in Russian). Lietuvos matematikos rinkinys 17, 27-46 (1977)
2. Breuer, P., Major, P.: Central limit theorem for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13, 425-441 (1983)
3. Brillinger, D.R.: Time series. Data analysis and theory. New York: Holt, Rinehart and Winston 1975
4. Dobrushin, R.L.: Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7, 1-28 (1979)
5. Dobrushin, R.L., Major, P.: Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 50, 27-52 (1979)
6. Giraitis, L.: Limit theorems for subordinated processes. Dissertation, Vilnius, 1984
7. Giraitis, L.: Central limit theorem for functionals of linear processes (in Russian). Lietuvos matematikos rinkinys 25, 43-57 (1985)
8. Gorodeckii, V.V.: The invariance principle for functions of stationary connected Gaussian variables (in Russian). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI) 97, 34-44 (1980)
9. Ibragimov, I.A.: Some limit theorems for stationary processes. Teor. Verojatn. Primen. 7, 361395 (1962)
10. Ibragimov, I.A., Linnik, J.V.: Independent and stationary sequences of random variables. Gröningen: Walters-Noordhoff 1971
11. Ito, K.: Multiple Wiener integral. J. Math. Soc. Japan, 3, 157-164 (1951)
12. Major, P.: Limit theorems for non-linear functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 57, 129-158 (1981)
13. Major, P.: Multiple Wiener-Ito integrals. Lecture Notes Math. 849, Berlin-Heidelberg-New York: Springer 1981
14. Malyshev, V.A.: Cluster expansions in lattice models of statistical physics and quantum field theory (in Russian). Usp Mat. Nauk. 35, 3-53 (1980)
15. Maruyama, G.: Non-linear functionals of Gaussian processes and their applications. In: Proceeding of the Third Japan - USSR Sympos. Probab. Theory (Tashkent 1975). Lecture Notes Math. 550, 375-378. Berlin-Heidelberg-New York: Springer 1976
16. Maruyama, G.: Applications of Wiener's expansions to some probability limit theorems. In: Third International Vilnius Conference of Probab. Theory and Math. Stat., Vilnius 1981
17. Plikusas, A.: A.: Some properties of the multiple Ito integrals (in Russian). Lietuvos matematikos rinkinys 21, 163-173 (1981)
18. Rosenblatt, M.: Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. Probab. pp. 411-443. Berkeley: Univ. Calif. Press 1961
19. Rosenblatt, M.: Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 49, 125-132 (1979)
20. Rosenblatt, M.: Limit theorems for Fourier transforms of functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 55, 123-132 (1981)
21. Rubin, H., Vitale, R.A.: Asymptotic distribution of symmetric statistics. Ann Math. Stat. 8, 165-170 (1980)
22. Sun, T.: Some further results on central limit theorems for non-linear functions of normal stationary process. J. Math. and Mech. 14, 71-85 (1965)
23. Surgailis, D.: On L^{2} and non- L^{2} multiple stochastic integrals. In: Lecture Notes Control. Inf. Sci. 36, 212-226 (1981)
24. Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 50, 53-83 (1979)
25. Zygmund, A.: Trigonometric series (2nd ed) Cambridge: Cambridge University Press 1968

Received April 20, 1983; in revised form February 25, 1985

[^0]: ${ }^{1} \quad A_{N} \sim B_{N} \Leftrightarrow \lim A_{N} / B_{N}=1$;
 $A_{N} \asymp B_{N} \leftrightarrow 0<\lim A_{N} / B_{N} \leqq \lim A_{N} / B_{N}$

[^1]: 2 This remark applies also to the proofs of Theorems 5 and 6 below

[^2]: 3 I.e. the rank of the ($m / 2, n_{k}+k-2$) matrix corresponding to T is $n_{k}+k-2$.

[^3]: 4 Not necessary Gaussian

