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Abstract. A minimum Steiner tree for a given set X of points is a network 
interconnecting the points of X having minimum possible total length. In this note 
we investigate various properties of minimum Steiner trees in normed planes, i.e., 
where the "unit disk" is an arbitrary compact convex centrally symmetric domain 
D having nonempty interior. We show that if the boundary of D is strictly convex 
and differentiable, then each edge of a full minimum Steiner tree is in one of three 
fixed directions. We also investigate the Steiner ratio p(D) for D, and show that, for 
any D, 0.623 < p(D) < 0.8686. 

I. Introduction 

Given a compac t ,  convex, central ly symmetr ic  d o m a i n  D in the Eucl idean  plane 
E 2, we can define a n o r m  II'LtD: E2 ~ R by setting II~llo = ,~ where ~ = ~.fi and  
t~ ~ dD, the b o u n d a r y  of  D. We can  then define a met r ic  dD on E 2 by tak ing  
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Thus, aD = {£1HxIID = 1}. The resulting metric space M = M(D) = (E 2, do) is often 
called a Minkowski or normed plane with unit disk D. We usually suppress the 
explicit dependence of various quantities on D. For a finite subset X c E 2, a 
minimum spanning tree S = S(X) consists of a collection of segments AB with A, 
B ~ X which spans all the points of X, and such that the sum of all the lengths 
]]Anllo is a minimum. We denote this minimum sum by LM(X ). Further, we define 

Ls(X ) = inf LM(Y), 
Y~-X 

where Y ranges over all finite subsets of E 2 containing X. It is not hard to show 
that there always exists X'~_ X with [X'l < 2 [ X I -  2 having Ls(X ) = LM(X'). 
When equality holds we say that the Steiner tree T(X) (= S(X')) is a full Steiner 
tree for X. The minimum spanning tree S(Y) is called a minimum Steiner tree T(X) 
for X. The points of Y \ X  are usually called Steiner points of T(X); the points of 
X are known as regular points of T(X). 

Minimum Steiner trees have been the subject of extensive investigations during 
the past 25 years or so (see [3-1, [8], [121, or l-6,1 for a survey of some of this work). 
Most of this research has dealt with the Euclidean metric, with much of the 
remaining work concerned with the L1 metric, or, more generally, the usual Lp 
metric. It has been shown, for example, that the determination of Lr(X) in general 
is an NP-complete problem, both for the Euclidean as well as the L t case (see [7] 
and I-6]). 

In this note we investigate various properties of minimum Steiner trees for 
general normed planes M(D). In particular we study the Steiner ratio p(D) for 
M(D), defined by 

L~(X) 
p = i n f - - .  

x LM(X) 

Thus, p(D) is a measure of how much the total length of a minimum spanning 
tree can be decreased by allowing additional (Steiner) points. It is known [9] that, 
for the L 1 metric (so that D is the square with vertices (+  1, 0), (0, + 1)), p(D) = ~. 
More recently, it has been shown [4] that, for the Euclidean (or Lz) metric, 

p(D) = x/~/2. We show that, for any D, 

0.623 < p(D) < 0.8686. 

For prior results on minimum Steiner trees in normed planes, the reader should 
consult [2,1, [5], [1], [13], [15,1 and [16,1. This note is organized in the following 
way. In Section 2 fundamental properties of minimum Steiner trees are presented. 
In Section 3 some properties of the Steiner ratio are given; in particular, we show 
that p(D) >_ infn p(H) where H ranges over all unit disks which are hexagons. The 
main result is proved in Section 4. Finally, we give several conjectures in Section 5. 
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2. Fundamental Properties of  Minimum Steiner Trees 

Let IABt denote the Euclidean length of the segment AB, and let tlABll denote 
the length of AB in the norm I['ll determined by D, an arbitrary fixed compact, 
convex, centrally symmetric domain in E 2. 

Theorem 1. Suppose that OD is differentiabte and strictly convex. Then every full 
Steiner minimum tree consists of three sets of parallel segments. 

The proof of Theorem 1 rests on two lemmas. 

Lemma 1. Suppose that OD is differentiable. Then every Steiner point in a minimum 
Steiner tree has degree three. Furthermore, if A, B, and C are three distinct points 
of OD and A*, B*, C* is the triangle induced by the three tangent lines to D at A, 
B, and C, respectively, then { O A, O B, OC} forms a minimum Steiner tree for { A, B, C} 
if and only if the orioin 0 is the centroid of A'B'C*.  

The proof of the first half of Lemma 1 is given in [1] and [10]. (The proof in 
[t]  has the hypothesis that the norm is uniformly convex. This hypothesis is 
removed in [10].) The proof of the second half of Lemma 1 can be found in [2]. 

The following lemma is the dual of the fact that one side uniquely determines 
the other two sides of an equilateral triangle in a "nice" norm (see also [10]). 

Lemma 2. Suppose OD is differentiable and strictly convex and A ~ OD. Then there 
exist unique points B and C on OD such that {OA, OB, OC} forms a minimum Steiner 
tree for the set {A, B, C}. 

Proof Let L be the line tangent to 0D at point A. Let L' and L" be two other 
lines parallel to L; L' passes through O and L" is three times as far from L as L' 
is (see Fig. l(a)). Suppose that L' intersects t3D at two points B' and C', and that 
the two tangent lines of ~3D at B' and C' intersect L" at B" and C", respectively. 

L " 

L ' '  

L " - -  

A 

, ,9 ; ~  

B" M "" 

Ca) 
F i g .  1. 

A 
L 

L" GCL ) 0 

Z ° B" Z C" 

(b) 
C o n s t r u c t i o n  of  {A, B, C}. 

¥ Fig*) 
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Let M be a point on L". Through the point M we have two tangent lines to dD 
which intersect L' at points G(M) and H(M), respectively. Note that as M goes 
from B" to C", the length of the segment OH(M) is decreasing, and the length of 
OG(M) is increasing. Moreover, IOH(B")I > IOG(B")I = IOB'I and IOH(C")I = 
lOCI < IOG(C")I. Thus, there exists a point Z between B" and C" such that 
IOH(Z)I = IOG(Z)I. For such a point Z, let B and C be the tangent points on lines 
ZG(Z) and ZH(Z), respectively, and let L intersect ZG(Z) and ZH(Z) at points E 
and F, respectively. It is not hard to see that O is the centroid of triangle ZEF. 
By Lemma 1, OA, OB, and OC form a minimum Steiner tree for {A, B, C}. This 
proves the existence of the required points B and C. 

To prove uniqueness, suppose B and C satisfy the required hypothesis. Let 
ZEF be the triangle formed by the three tangent lines to t3D at A, B, and C, 
respectively. By Lemma 1, O is the centroid of triangle ZEF. Thus, Z must be on 
line L" and IOG(Z)I must equal IOH(Z)I. If Z lies between B" and C", then we 
have seen that there is just one such Z satisfying IOG(Z)I = lon(z)l. Next, we 
show that i f Z  = Z* is not between B" and C", then IOG(Z)I # IOH(Z)t. Without 
loss of generality, assume that Z* is on the left-hand side of B" (see Fig. l(b)). 
Then the line Z*G(Z*) is tangent to aD at a point X above the L'. Let X' be the 
symmetric image of X on t3D, and let the tangent line to dD at X intersect L' at 
Y. Clearly, IOG(Z*)I = IOYI < fon(z*)t. [] 

Theorem 1 follows at once from Lemmas 1 and 2. 
The dual norm II'llD. of a norm I1"11o is defined by 

xry 
tlxtlo. = max Ilyllo" 

It is a well-known fact that D* is the polar dual of D, i.e., 

D* = {y: xry < 1 for all x ~ D} 

and D** = D. It can be shown (see [2]) that, for triangle A*B*C* in Lemma 1, 
II A'B* il o. = lIB*C* J[o. = II c 'a*  II o*, i.e., A*B*C* is an equilateral triangle in the 
dual norm. From this observation and Theorem 1, it is easy to show that, for 
differentiable and strictly convex D, any direction determines two unique directions 
such that three lines respectively in these directions intersect at vertices of an 
equilateral triangle. We call these directions a consistent triple of directions (with 
respect to D). 

Suppose that A, B, and C are on 0D such that OA, OB, and OC form a consistent 
triple. Let A', B', and C' denote the reflections of A, B, and C with respect to O, 
respectively. Then A', B', C' ~ t3D and the hexagon AC'BA'CB'A is partitioned into 
six congruent equlateral triangles of side length 1, by joining each of its six vertices 
to O. The sides of the triangles are in each of the three directions of the consistent 
triple. 
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3. Relations Between Steiner Ratios 

In this section we investigate relations between Steiner ratios for different norms. 
The first result is a consequence of Theorem 1. 

Lemma 3. Let Po be a positive number. Then 

(for all norms tl'llD, p(D) >__ Po) "~ (for all hexagon norms t1"11~, p(H) > Po)" 

Proof  (=~) This direction is clear. 
( ~ )  For  proving a lower bound, it suffices to restrict our attention to full Steiner 

trees. First, suppose 0D (with which determines the norm Itll D under consideration) 
is differentiable and strictly convex. Let T be a full Steiner tree for a point set P. 
By Theorem 1, T consists of three sets of parallel edges (in a consistent triple of 
directions). Let OA, OB, and OC be three vectors of unit length parallel to the 
edges of T. Then A, B, C ~ OD. Let A', B', and C' be the reflections of A, B, and 
C, respectively. Then AC'BA'CB'A  is a convex hexagon inscribed in 0D. The length 
Ls(P) of Tin the norm It'll o is equal to the length L'(T) of T in the norm LI'LI AC'BA'CB'A" 
By assumption, L'(T) > pol_~(P), the length of the minimum spanning tree for P 
under }I'IIAC'BA'Ca'A" However, since L'M(P) > LM(P), we get Ls(P ) > poLM(P). 

If OD is not differentiable or not strictly convex, we can approximate it by a 
sequence of differentiable and strictly convex norms approaching D. The theorem 
follows by taking limits. []  

Lemma 4. Suppose D and D' are two unit disks in the plane such that, for some 
linear transformation A of  the plane, we have A(D) = D'. Then p(D) = p(D'). 

Proof. For any two points x and y, 

IIx - YlID = llh(x - Y)tlo, = IIAx - AytlD,. 

Thus, A is a length-preserving transformation of the D-plane to the D'-plane, and 
the desired conclusion follows. []  

Note that every parallelogram D is the image of a square S under a linear 
transformation. Hwang [9] proved that, for a square S, p(S) = 2. Thus, for any 
parallelogram D, a(D) = ~. 

From Lemma 4, we also know that if D and D' are similar, then p(D) = p(D'). 
Note that D and D' are similar if and only if {1'tlo = 2ll 'llo, for some positive 
constant 4. If IL'IIA = 211"[In for a positive constant 4, then the unit disks A and B 
are similar and PA = PB" 

Lemma 5. Let I['ll~ = 411"(Io, and D' ~ D c D". Then p(D) > 2p(D'). 

Proof Let II TIIo denote the total length of a tree Tunder  the norm II'IID. Clearly, 
ft TIIo, > II TIIo >- II TIIo,,. A minimum Steiner tree (or a minimum spanning tree) on 
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a point set P in the Minkowski plane with norm tl'llo, is denoted by SMTo,(P) 
(or MSTo,(T)). Then we have 

II MSTo(P) II o < 11MSTD,(P)]I o -< tl MSTo,(P) II o' 

and 

Thus, 

IISMTo(P)[Io >~ IISMTo(P)IIo,, ~ IISMTo,,(P)IIo,, = 211SMTo,(P)Ito,. 

HSNTo(P)[Io tlSMTD,(P)IIo, 
> 2  

tlMSTo(P)IIo - IIMSTo,(P)IIo, 

for any point set P. It follows that p(D) >_ 2p(D'). []  

In Lemma 5 choose D to be a regular 2n-gon and D' and D" to be the 
circumscribed and inscribed circles of D, respectively. Then it is known that 

p(D) _ V/3/2 cos(Tr/2n). (This is a result of  Sarrafzadeh and Wong [14].) 

4. Bounds for the Steiner Ratio 

We prove the following theorem in this section. 

Theorem 2. For any D, 

1 
Po = 0 .623 ' "  < p(D) <_ " ~  

3 
- 0.8685...,  

where Po is the root of 16x 3 - 3x - 2 = 0 in (0.5, oo). 

Proof We first prove the lower bound. By Lemma 3, it suffices to consider the 
case that D is a hexagon. To begin, let us first explain where the equation 
16x 3 - 3x - 2 = 0 comes from. 

Let A, B, C, A', B', and C' denote vertices of D, and suppose first that they are 
on a circle with center at the origin O, Assume that 20~ = / A O B '  = /_B'OC >_- 
/__ COA'. Then the circle ~with center 0 and tangent to AB' lies inside hexagon D 
(see Fig, 2). Using Lemma 5, we choose D' and D" to be the two circles of radii 
cos ~ and 1, respectively, with center O. Then we obtain 

p(D) > -~- cos 0~. (1) 

Let AB,,/'/~' be the parallelogram similar to parallelogram ABA'B' with respect to 
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C 

C' 

Fig. 2. The hexagon norm D. 
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the origin O and passing through C. Let E be the intersection of OC and B'A'. It 
is easy to see that  

t['i[ABA'B" tOC[ 
tl'[lzaz'z, IOEI 

Note that L.OB'A' = / O A ' B ' =  (180 ° - /_.BO' A')/2 = / A O B ' / 2  = ~. Thus, 
/__OEA' = L B'OC + L OB'A'  = 3~t. Therefore, IOEI/IOCI = sin a/sin 3~. Again 
using Lemma 5, we take D' and D" to be the parallelograms ABA'B '  and ABA'B' .  
Then we have 

sin ~ 2 sin 
p(O) > p(ABA'B')  _ - -  = (2) 

sm3c~ 3 s i n 3 ~ '  

since p(P) = ~ for a parallelogram P. We have now obtained two lower bounds  
in (1) and (2). Next, we consider what  happens if the two lower bounds  agree. Set 

X = COS ~X 
2 

2 sin 

3 sin 3~ 

Note that sin 3a = sin a(4 cos ~ - 1) = sin ct(~ x 2 - -  1). Thus, we have 

16x 3 - 3 x -  2 = 0. 

Now, let ~o denote the angle in (0 °, 90 °) such that 

2 sin ~o 
Po = - -  x//~ cos ~0 - • (3) 

2 3 sin 3o% 
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We consider  the general hexagon n o r m  II'}ID- Since D is a centrally symmetr ic  
hexagon,  it is easy to find a central ly symmetr ic  quadra t ic  curve passing through 
the six vertices of  D. Since D is convex, this quadra t ic  curve must  be either an 
ellipse or  a pair  of  parallel lines. If  it is a pair  of  parallel lines, then hexagon D 
degenerates to a paral le logram,  which is the image of a square under a linear 
t ransformat ion.  In that  case, by L e m m a  4, we obtain  p(D) >_ ~ > Po (see the remark 
after L e m m a  4). Thus,  we can assume that  the quadrat ic  curve is an ellipse. Hence, 
we can linearly t ransform it into a unit circle. At the same time, the hexagon D 
is t ransformed into a centrally symmetr ic  hexagon inscribed in the circle. By 
L e m m a  4, it suffices to s tudy the latter hexagon.  Thus,  the assumpt ion  that  D is 
inscribed in a circle is no loss of  generality. Also, we may  assume / A O B ' >  
/_ B'OC > /COA' .  Next,  we consider two cases. 

Case 1: L_ AOB' <_ 20t o. In  this case the circle of  radius cos ~o with center O lies 
inside hexagon D. So, by L e m m a  5 and  (3), we have 

p(D) >_ -~-~ cos ct o = Po. 

Case 2: L_AOB' > 2~t o. Let  L be a linear t ransformat ion  which t ransforms A and 
B' to A and B", respectively, where B" is a point  on the unit  circle such that 
/ A O B "  = 2~ o. Suppose  that  L t ransforms C to C". We claim that  tOC"l _< 1 (see 
Fig. 3). To  show this, let us write OC = 20B' + ~OA' where 2 > 0 and ¢ > 0. Then 
OC" = 20B" + ~OA'. So, 

IOC"I 2 = A21OB"I 2 + ~21OA't2 + 2A~IOB"I'IOA't cos L_B"OA' 

= 22 + ~2 _ 22~ cos 2Cto 

< 22 + ~2 _ 2).¢ cos LAOB'  

= lOCI 2 = 1. 

F 

B" O 

Fig. 3. Proof that lOC"l < t. 

A' 

1 
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Thus, I OC"J ~ 1, i.e., C" is inside the unit circle. Now, we consider the hexagon 
AB"C"A'B"C" where B" and C" are the images of B and C' under the linear 
transformation L. If the circle C 2 of radius cos ct o and center O lies inside hexagon 
AB"C"A'B'C",  then, by Lemma 5, we have 

p(D) = p(AB"C"A'B"C')  >_ - -  x//3 cos 0t o = Po- 
2 

Next, we assume that circle C 2 does not lie inside hexagon AB"C"A'B"C".  Then 
C2 must intersect either B"C" or C'A'. Choose a point F on the arc between B" 
and A' such that IB"FI = iAB"[. Let ABA'B' be a parallelogram similar to 
parallelogram AB"A'B" with respect to the origin O and passing through the point 
F. Then parallelogram ABA'B' contains the hexagon AB"C"A'B"C". By Lemma 
5, we have 

p(O) = p(AB'C"A'B"'C") >_ 
2 sin eo 

3 sin 3ct o 
- Po. 

This completes the proof of the lower bound. 
Next, we prove the upper bound. Suppose D is a compact convex centrally 

symmetric region with center O. First, assume that OD is strictly convex and 
differentiable. Let A, B, and C be three points on OD such that OA, OB, and OC 
form a consistent triple of directions. Let A', B', and C' denote the reflections of 
A, B, and C. Suppose that E, F, and G are midpoints of AB', AC', and B'C, 
respectively. Define a := ]{OEt[o, b := t[OFtto, and c := IlOG[Io. Note that any point 
A on c3D is associated with a unique consistent triple of directions. 

C l a i m  1. There exists a point A on t3D such that a < b = c. 

Proof Without loss of generality, assume a _< b < c. As A moves to the position 
of C', we have c _< a < b. View (a, b, c) as a point in three-dimensional space. The 
three planes a = b, b = c, and c = a partition the first quadrant  into six regions. 
A point going continuously from the region a < b < c to the region c < a < b 
must cross one of boundaries a = b_> c, a < b = c, or  b < a = c (see Fig. 4). 
Rearranging the labels of points, we obtain a _< b = c for some point A. [ ]  

Extend OE, OF, and OG to intersect 0D at E', F', and G', respectively. Let H 
be the midpoint of OE'. Draw the line H'HH" parallel to CC' with H'  and H" as 
intersection points with t3D (see Fig. 5). 

C l a i m  2. I f  a = b <__ c, then IH'H[ >_ ]HH"]. Moreover, ]H'H[ = ]HH"] if and only 
i f a = b = c .  

Proof Connect F and G. Then FG is parallel to C'C (see Fig. 5). Let I be the 
intersection of FG and OE. Then I is the midpoint of FG and also the midpoint 
of OE. Assume that line H'H" intersects lines OF and OG at F" and G", respectively. 
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C 

< b=c 

\ b , ~ ,  ,Y  
\ l , ' )"  
\ [ 

c<a<b 

Fig. 4. Cases for Claim t. 

Since I FII = [IG I and FG is parallel to H'H", we have [ F"HI = I HG"I. Moreover, 

IOFI IOGI IOII IOEI 
IOF"I IOG"I Ionl IOE'I 

- ] l O E ] l o  = a 

and 

IOFl IOGt 

IOF'I IOa'l 

E 1 

A B' 

H ' ~  G" 

(F', F")C, 'C 

B A' 
Fig. 5. Construction for Claim 2. 



Minimum Steiner Trees in Normed Planes 361 

So, if a = b < c, then F' ,  F", and H'  are identical and G" is on  ~D or on the outside 
of  D. Hence Ill'HI >_ IHH"t. Clearly, a < c if and only if G" is on the outside of  
D if and only if I H'HI > [HH"]. [] 

Claim3.  Thereex is t sapoin tAonODsuchthata  < b,a < c, andlH'HI = tHH"t. 

Proof If there exists a point A on 8D such that a = b = c, then, by Claim 2, 
IH'HI = IHH"I. So, we may assume such a point A does not  exist. By Claim 1, 
we can find a point A on 8D such that a = b < c. Now, move A along 8D to B. 
When A reaches B, we have c = a < b. We view the points a, b, and c in this 
process as three continuous functions a(t), b(t), and c(t) of a parameter  t in an 
interval [to, t l ]  where a(to) = b(to) < C(to) and c(q) = a(tO < b(tO. 

First, assume that, for t e [to, q ] ,  a(t) < b(t) and a(t) <_ c(t) (see Fig. 6(a)). By 
Claim 2, IH'Ht > IHH"[ at t o and IH'H] < [HH'] at t 1. Thus, there exists 
t*e( to ,  t l)  such that  IH'HI = IHH"I at t*. So, the point  A corresponding to t* 
meets our  requirements. 

Now, we remove the restrictions. Let t2 be the largest value t in [to, t l ]  such 
that a(t) = b(t). Then, for t e (t 2, t l] ,  a(t) < b(t). Let t 3 be the smallest value t in 
(t2, t t ]  such that a(t) = c(t). If, for t e It2, t3), a(t) < c(t) (see Fig. 6(b)), then there 
exists a required t* in [tz, t3]. So, we may assume that, for t ~ It2, t3), a(t) > c(t). 
Let t+ be the largest t in [to, t3) such that c(t) = min(a(t), b(t)). If b(t+) = c(t+) < a(t+) 
(see Fig. 6(c)), then, by permuting a, b, and c, we can find a required t* in (t4, t3). 
So, we may  assume a(t+) = c(t+) < b(t4). Now, the interval [t  o, t+] has the same 

I I I I I I 
I ! I I I I 
I I I I I I u,, ,,, 

t o t 1 t o t 2 t 3 t I 

(a) ('o) 

', , , 
I I ~ I I ...... I 

t 4 t 3 - t o t 4 t 3 

(c) (~) 

Fig. 6. Various cases in Claim 3. 
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proper ty  that the interval [t o, t t ]  has. This means that we can either find a required 
t* or  find a smaller interval having the same property as [t 0, t l] ,  Note  that 

{t • [to, t l] [a(t) = b(t) < c(t)} = {t • [to, t t]  [a(t) = b(t) <__ c(t)}, 

{ t •  [to,  t l ] ta( t )  = c(t) < b(t)} = { te  [to, t l ] la( t )  = c(t) < b(t)}. 

Since these are closed sets, there exists a min imum distance between them. Let So 
and st be the two values respectively in the two sets such that  Iso - Sll achieves 
its min imum value. Then,  applying the above argument  to the interval with 
endpoints  s o and  s t, we can find a required t* in the interval. [ ]  

Assume A satisfies Claim 3. Next, we consider three cases. 

Case 1: a > V/3/2. Consider  Pt  = {A, B, C}. Then 

IISMT(POHo < IIaoIIo + ItnOIIo + IICOtlD = 3 

and [IMST(POI[o > 4a. Thus, 

3 , / i  p(D) < IISMT(P1)IIo < ....... < - - -  < P r  
IIMST(P1)IIo - 4a - 2 

Case 2: a < ( w / ~  - 2)/2. Consider  P2 = {0 ,  A,  C', B}. Then 

IfSMT(P2)I[o < 1 + 2a 

and I tMST(Pz)It  o = 3. Thus, 

IJSMT(P2)It o 1 + 2a 
p(D) < < - -  <_ p , .  

It MST(P2)It D - 3 

Case  3:  ( ~ f ~  - 2)/2 < a < xf3/2. Let f ( a )  = a + 3/4a. Then, for 

a < V/3/2 ,  f ' (a )  = 1 - 3/4a 2 < O. 

Hence, f ( a )  <_ f ( ( x / - ~  -- 2)/2) = 2pl for (~ - 2)/2 _< a _< x/~/2. Define z := 

IIn 'HIIo = IIHH"IIo. 
If a < z, then consider P3 = {O, A, C'}. Let J be the intersection point  of 0t1'  

and BA.  It is easy to show that J C '  is parallel to  O H "  and 

IJOI l O C I  1 
IIJC'llo = I IgOI Io -  

IOn'l IH'H"I 2z 
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E ~ 
A B' 

H' i j  Q H" 

C '  . . . . . .  " . . . . . .  C 

\\ // 

B A' 

Fig. 7. Locating the point K in proof of upper bound. 

Let K be intersection of OC' and AB (see Fig. 7). Then 

IJKI [JKI IJOl 1 

llJAIlo = a - IOE,--~ i = a 2[OHI - a 210H'I a 4z 

So, 

3 3 
ItSMT(P3)tlo ~ tIJAI1D + IldC'lto + llJOltr, ~ a + ~ ~ a + ~ ~ 2p~ 

and ttMST(P3)t[ D = 2. Thus, p(D) <_ Pl. 
If a > z, then consider P4 = ~O, E ,  H }. Since IH'HI = IHH"t and tHE'} = 

[HOI, H'OH"E'  is a parallelogram. It  follows that }fH'E'II~ = 1 and 

tlMST(P4)IID = 2. 

Let Q be the intersection of  OA and H'H. Then triangles OBA and QE'O are 
similar. So, QE' is parallel to OB and 

IOE'I 1 
IIQE'IID = IIQO[ID = -  - 

IABI 2a 

Moreover,  

IQHI IQOI 

llOg'tlo = z -LOC"-~ = z 2IOAI 

1 
Z - -  - - "  

4a 



364 Ding-Zhu Du, Biao Gao, R. L. Graham, Zi-Cheng Liu, and Peng-Jun Wan 

So, 

3 3 
IISMT(P,)[Io < z + 4a -< a + 4a -< 2p,. 

Thus, p(D) < Pl. 
So far, we have proved the upper bound for dD being strictly convex and 

differentiable. Now, we consider the general case. When dD is not strictly convex 
or not differentiable, we can use a sequence of strictly convex and differentiabte 
norms to approach it from its interior. For each norm in the sequence, we can 
find A, B, C such that OA, OB, OC form a consistent triple of directions and Claim 
3 holds. Since sequences {A}, {B}, and {C} all lie in the compact set D, we can 
find a subsequence of the norms such that the corresponding subsequences of {A}, 
{B}, and {C} all converge. Assume that they converge to A*, B*, and C*, 
respectively. Then OA*, OB*, and OC* form a consistent triple of directions for 
D and Claim 3 also holds for them. So, the upper bound Pl also holds for general 
norms. [] 

5. Discussion 

Motivated by the above work, we make the following conjectures. 

Conjecture 1. For any norm II'llo, ~ ~ p(D) <_ x/3/2. Moreover, p(D) = ~ if and 

only if D is a parallelogram and p(D) = x/-3/2 if and only if D is an ellipse. 

Conjecture 2. Let D' be a regular 2n-gon, Then, for any centrally symmetric 2n-gon 
D, p(D) < p(D'). 

Conjecture 3. For any norm IL'IID, p(D) = p(D*), where 11"11o, is the dual norm to 

INIo. 

Conjecture 4. In any normed plane, the Steiner ratio can be achieved by a set of 
at most four points. 

There is a computational method for verifying the lower bound in Conjecture 
t. With this method, we have been able to prove that if [PI < 6, then, in any 
normed plane, Ls(P) > (~)LM(P) (see the Appendix). 

For the upper bound in Conjecture 1, Liu and Du [ t l ]  proved that it holds 
for Lp norms. 

It is easy to show that Conjecture 2 holds for n < 3. In fact, for n = 2, p(D) = ~. 
For n = 3, it is not hard to show that p(D) < 3 (see the argument after Lemma 6 
in the Appendix). Moreover, from the result at the end of Section 3, p(D') >_ ¼ for 
a regular hexagon D'. Thus, for n = 3, p(D) ~ ~ = p(D'). 

Conjecture 2 implies the upper bound in Conjecture 1. In fact, any centrally 
symmetric convex domain can be approximated by a sequence of centrally 
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symmetric polygons. Applying Conjecture 2 to these polygons and taking limits, 
we obtain the upper bound in Conjecture 1. 

In fact, we believe Conjecture 3 holds in any normed space. 
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Appendix 

Let OA, OB, and OC be three vectors satisfying 

aO--A + bO'B + cOC = 0 (4) 

for three positive numbers a, b, and c, where we assume that no two of OA, OB, 
and O-C are linearly dependent. In general, let OX' denote - O X .  Form the 
centrally symmetric hexagon H by joining (in order) AC'BA'CB'A. 

Lemma 6. H is convex iff a, b, and c satisfy the trianole inequality, i.e., 

a + b ~ c ,  b + c ~ a ,  c + a ~ b .  (5) 

Proof. Note that 

Thus, H is convex iff 

b c 
- + - > _ 1 ,  
a a 

c a a b 

c [ ]  

The norm with H as its unit disk (generated by OA, OB, and OC) is denoted 
by IE'tlabc since, by Lemma 4, the Steiner ratio for it only depends on a, b, and c. 
Denote p(H) by p(a,b,c). Note that ]tOA[labc = IlOBl]ab~ = l]Ofllabc = 1 and 
tlABtla~ = IIBCItob¢ = l l f hHabc  ----" 2. Hence, a minimum Steiner tree on {A, B, C} 
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Fig. 8. 

~ 
Z 

/;x 
Set of (x, y, z) satisfying triangle inequality and x + y + z = 1. 

has length at most 3 and a minimum spanning tree on {A, B, C} has length 4. 
This implies p(a, b, c) < ¼. 

Since p(a, b, c) = p(ka, kb, kc) for k > 0, we can assume without loss of generality 
that a + b + c = 1. The set of all (a, b, c) satisfying the triangle inequality and 
a + b + c = l  forms a triangle with vertices P=(½,½,0),  Q=(½,0,½), and 
R = (0, ½, ½) (see Fig. 8). On the boundary, one of the inequalities of (6) holds with 
equality; in this case H degenerates to a parallelogram, and so p(H)= 2. Thus, 
p(a, b, c) = ~ on the boundary of PQR. Furthermore, p(~,l :~,1 ~) = 3, which is a 
maximum value p can have over the triangle PQR. 

It is easy to verify the truth of Conjecture 1 for sets of at most four points. In 
fact, let P be a set of n points and let Ls(P) and LM(P) be lengths of its Steiner 
minimum tree and minimum spanning tree, respectively. We can prove 

Ls(P) > (n/2(n - 1))LM(P) 

in the following way. We first "inflate" the edges of a Steiner minimum tree 
T on P to have width e. Thus, T becomes a polygonal region with a boundary. 
Suppose that A 1 . . . . .  An are regular points labeled in counterclockwise order 
on the boundary. Consider n spanning trees each of which is obtained by 
deleting an edge from the cycle A I A z " ' A n A  ~. The total length of these n spanning 
trees is n - 1 times the length of the cycle. Moreover, the length of the cycle 
is less than 2Ls(P). Therefore, 2(n - 1)Ls(P) > nLM(P). For n < 4, it follows that 
Ls(P) > ~LM(P). 

We next introduce a general algebraic method for verifying the conjecture for 
small n. Our method is motivated by recent work of Du and Hwang I-4]. While 

the main result in [4] is the proof that p(D) = x/3/2 for the Eucidean plane, much 
of the proof techniques carry over with no change to general normed planes. In 
particular, the following result holds. For  a general unit disk D, let us call a tree 
a full Steiner tree if, by varying its edge lengths, it can occur as a full minimum 
Steiner tree for the resulting set of endpoints. For  a full Steiner tree T, let P(T) 
denote its endpoints (i.e., vertices of degree one) and let L(T) denote its length 
(under I{'llD). 
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Fig. 9. An example. 

A 

C 

Lemma 7 [4]. Suppose OD is differentiable and strictly convex, and C is a consistent 
triple of  directions for D. Let J" denote the set of fidl Steiner trees T with edges in 
the directions of C and with IP(7")1 < n. Then the minimum value of Ls(T)/L~(T) is 
achieved by trees T with P(T) being the vertex set of a union U of at most n - 2 
congruent equilateral triangles (with edges in the directions of C) so that all vertices 
of T are on the boundary of U (see Fig. 9). 

From Lemma 7 and the proof of Lemma 3, we can obtain the following. 

Theorem 3. The inequality 

Ls(P) ~ poLM(P) 

holds for every norm and every set P of at most n points if and only if it holds for 
every hexagon norm H and every vertex set V of a union U of at most n - 2 congruent 
equilateral triangles such that all the vertices of V lie on the boundary of U, and a 
full Steiner tree for V exists with all edges in the diagonal directions of H. 

Theorem 3 suggests the following way for verifying this bound for small sets P. 
Consider a norm llll,bc. Given any point set satisfying the hypotheses of 

Theorem 3, and a full Steiner topology, we compute the length Us(P) of the Steiner 
tree for P under II'll~bc as a function of a, b, and c as follows: 

1. Choose diagonal directions OA, oB, OC all meeting at 120 ° angles so that 
OA, OB, OC satisfy (5). The corresponding (congruent) equilateral triangles 
AC'O, C'BO, BA'O, etc., have side length 1 (where X' denotes - X ) .  

2. Take all the Euclidean lengths of the edges of T to be variables. For  each 
of the sides of the associated equilateral triangles, we write down a linear 
equation involving these Euclidean edge lengths (since, under Lt'}l.bc, all these 
sides have length 1). If P has n points, then we have 2n - 3 variables and 
also 2n - 3 equations. 

3. Represent the length L = L~(P) as a sum of the ll'lI,bc-lengths of all the edges. 
This gives one more linear equation in the Euclidean edge lengths. Since 
this system of linear equations has a nonzero solution, the determinant of 
the coefficient matrix must vanish. This allows us to express L as a function 
L(a, b, c) of a, b, and c. The conjecture then follows for II'llabc for sets of size 
n if it is true that L(a, b, c) _> ~(n - t). 
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An example may clarify the process. Let n = 5 and consider the Steiner tree 
topology illustrated in Fig. 9. Thus, assuming x 2 < Yl ,  x2 <- z2,  we obtain the 
following linear equations: 

L =  a(x  t + x 2 + x 3) + b ( y l  + y2) + c(zl  + z~), 

1 = a x  1 + by  a, 

1 = a (x l  + x2) + cz~, 

1 = b ( y  1 - x2) + c(zl + x2), 

1 = c(z I + x l  - x3) + b(y2 - xx  + x3), 

1 = a x  3 -Jr cz2 ,  

1 = a ( x  2 + x3) + b y  2, 

1 = b ( y  2 + x2) + c(z 2 - x2). 

If we order the variables as (x 1, Yl, z~, x2, Y2, z2, x3), we obtain the equation 

! 

rL a b c a b c a 
1 a b 0 0 0 0 0 
1 a 0 c a 0 0 0 
1 0 b c c - b  O 0 0 

l c - b O c  0 b O b -  

1 0 O 0  0 O c a 

1 0 O 0  a b O a 

~1 0 O O b - c b c  0 

det = 0 .  

A straightforward computation shows that L = 3 is the only solution to the above 
equation. 

For  n = 5, the only such functions L = L(a, b, c) which can arise from various 
topologies for T (besides the constant function 3) are 

3 +  
( a - -  c + b ) ( b -  a + c) 

4 a b  - bc + b 2 - a 2 + ac 

and the expressions which can be obtained from this by permuting a, b, and c 
among themselves. 
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For n = 6, all such possible functions are given by 

1 - 2u 
4 + - -  

7 - 2u' 

2(b + c - a) 
4 +  

2(b + c) + a '  

(1 - -  u ) ( 7  - -  2w) 
4 +  

u - - 2 w + 3  

3(1 -- u) 
3.5 + - - -  

2(1 + u)' 

5 +  
uw + wv + uv + 2 + 3b/a 

5 + u + v + w  

(and the functions obtained by permuting a, b, and c), where u = (c - b)/a, v = 

(a - c)/b, and w = (b - a)/c. 
It is interesting to note that all of these functions are "pseudoconcave." (We 

say the function f :  R ---, I1~ is pseudoconcave if, for any x and y and 0 < 2 < 1, 
f ( 2 x  + (1 - 2)y) > min(f(x), f (y)) .  This pseudoconcavity implies that each of the 
functions assumes its minimum value on the boundary of the triangle P Q R  in Fig. 
8. However, we have already observed that, on the boundary, each such function 
has a value at least ~(n - 1). Hence, we have proved 

C o r o l l a r y  1. l f  lPt <- 6, then, for  any norm, 

Ls(e) _ ]LM(-P). 

The above proof suggests that we may be able to establish the pseudoconcavity 
of these functions L(a, b, e) without having to compute them explicitly. We hope 
to return to this approach in the near future. 
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