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Abstract. The link center  of  a simple polygon P is the set of points  x inside P at 
which the maximal  l ink-dis tance from x to any other  point  in P is minimized.  Here 
the link dis tance between two points  x, y inside P is defined to be the smallest  
n u m b e r  of  straight edges in a polygonal  path  inside P connect ing x to y. We prove 
several geometr ic  propert ies  of the link center  and  present  an a lgor i thm that  calcu- 
lates this set in t ime O(n2) ,  where n is the n u m b e r  of  sides of  P. We also give an 
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O(n log n) algorithm for finding an approximate link center, that is, a point x such 
that the maximal link distance from x to any point in P is at most one more than 
the value attained from the true link center. 

1. Introduction 

This paper concerns itself with analysis and calculation of the link center of a 
simple planar polygon P having n sides. The notion of a link distance between 
two points x, y inside P has been recently introduced in [13]; it is defined as the 
smallest number of" l inks"  (i.e., straight segments) in a polygonal path connecting 
x and y within P, and is a useful metric for path planning within P when straight 
motion is cheap but turns are expensive. 

Suri [13] presents a linear-time algorithm for calculating the link distance 
between any two given points within P, provided a triangulation of P is given 
(such a triangulation can be calculated in time O(n log n) by the technique of 
[6], or in almost linear time by the recent algorithm of [15]). In fact, the technique 
in [13] provides a linear-time algorithm for decomposing (a triangulated) P into 
k-visibility regions for a fixed source point v, where the ith visibility region consists 
of  all points within P whose link distance from v is exactly i. (In particular, the 
first visibility region is just the set of  all points in P visible from v; see [2], [4], 
[5], and [8] for analysis of  visibility within a simple polygon.) 

Suri [14] has also considered the problem of  calculating the link diameter of 
P, where this quantity is defined as the maximal link distance between any two 
points in P. He presents an algorithm for calculating this diameter in time 
O(n log n), using an interesting divide-and-conquer approach on the set of 
vertices of P. In this paper we consider the somewhat more difficult problem of 
calculating the link center of  P, defined to be the set of all points within P whose 
maximal link distance to any point of P is the smallest possible. As will be shown 
below, the link center is in general not a singleton; nevertheless it is connected 
and has certain convexity-like properties. From the point of view of geometric 
location theory, any point in the link center can serve as a location for a mobile 
unit that has to reach any point within P so that the maximal number of  turns 
it needs to perform is minimized; alternatively, such a point can serve as a location 
for a transmitter that can broadcast to any point within P (along a path fully 
contained in P) such that the maximal number of relays necessary to reach any 
point in P is minimized. 

Section 2 of  this paper introduces the notion of  geodesic and link geodesic 
paths along with their associated metrics and establishes several useful results 
about these concepts. Section 3 contains an analysis of  various properties of  the 
link center and some additional related results needed for the calculation of the 
link center. Section 4 presents an O(n2)-time algorithm for calculating the link 
center. Section 5 gives an O(n log n)-time algorithm for finding a point in an 
"approximate"  link center, in the sense that its maximal link distance to any 
point inside P is at most one larger than the smallest possible such value, attained 
at points in the actual link center. 
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2. Geodesics and Link Geodesics 

Let P be (the set of  points lying in the interior or on the boundary of) a simple 
polygon in the plane. A polygonal path between points x and x '  in P will be 
denoted by listing the endpoints of the segments that constitute the path, for 
example,  ~ = (x = x 0 , . . . ,  Xk = X'). I f  V and w are two vertices of  P then b[v, w] 
will refer to the polygonal path obtained by traversing the boundary of P clockwise 
from v to w. Two different metrics will be used in what follows: the Euclidean 
metric and the link metric. Given points x and x '  in a polygon P and a continuous 
path ~ from x to x '  (in fact, it suffices to consider only polygonal paths), we 
denote the usual Euclidean length of the path as IE(~). Given a polygonal path 

= (x = Xo . . . .  , xk = x') from x to x', the link length of the path is defined to be 
the number  k of  segments in the path and is denoted by IL(£). The Euclidean 
distance dE(x, x') between points x and x '  in a polygon P is defined by 

dE(X, X') = min{IE(-~)} 

over all continuous (polygonal) paths ~ from x to x'. The link distance dL(X , X') 

between x and x '  is given by 

dL(X , X') -= min{Ig(:~)} 

over all polygonal paths ~ from x to x'. (It is easily checked that d L is indeed a 
metric on P.) We will call a path ~ connecting points x and x '  within P geodesic 
if IE(.~ ) = dE(X , X'). Similarly, we call g link-geodesic if lL(.g)= dE(X, X'). Any 
geodesic or link-geodesic path must be simple. Between any two points x and x '  
in P there is a unique geodesic path. This path is polygonal and will be denoted 
by g(x, x'). On the other hand, there may be many link-geodesic paths between 
two points. A path $ from x to x '  is called an optimal link-geodesic path if g is 
a link-geodesic path and lE(g) is minimum over all link-geodesic paths from x 
to x'. 

Concerning these concepts, note that the number of  links on a geodesic path 
between two points x, x '  in P can be considerably larger than the link distance 
between x and x '  (see Fig. 1). It also turns out that there can be more than one 
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Fig. 2 

optimal link-geodesic path between two points. Moreover, two such paths may 
fail to have a deformation that takes one of  them to the other through a family 
of  optimal link-geodesic paths (see Fig. 2). 

In the following we give a few lemmas about basic properties of  geodesic and 
link-geodesic paths. 

Lemma A. Given line segments xy and x 'y '  in P and optimal link-geodesic paths 
= ( x = x 0 , . . . ,  Xk =X')  and )7= (y = y o , . . . , Y , ,  =Y') ,  any point q on 2 can see 

some point r on fi (i.e., the segment qr is contained in P). 

Proof. Let xixi+~ be a link of ~; if)7 intersects xixi+l then every point on xix~+l 
sees a point on ft. Assuming that fi does not intersect x~xi+~, consider the chain 
Yo, Xo, x j , . . . ,  Xk, Ym. Form a simple polygon P~ as follows: starting at x~, traverse 
the chain in each direction until a point on fi is reached, then connect these two 
points using the portion of fi between them. The polygon P~ contains x~x,+~ and 
every interior point of  this segment must see some vertex of P~ other than xi and 
x~+l. By the optimality of  ~, no interior point of  x~x~+l can see another vertex of  
2, so the vertex of P1 seen by an interior point of  x~xi+~ must be a point on 
(although not necessarily a vertex of) y. 

What about the endpoint  x~ (or x~+~)? I f  the neighbor of  x~ along the boundary 
of  P~ is a point of  fi we are done. Otherwise we consider two cases: either x~ is 
a reflex vertex or a convex vertex of P~ (the interior angle at x~ is greater or less 
than ~r): in the reflex case xi must see a vertex of P1 other than x~_l and x~÷~ and 
because of the optimality of  2 this vertex must lie on )7; in the convex case the 
optimality of  ~ implies that the segment xi_~x~+~ is not contained in P~, i.e., the 
triangle xHx~xi+~ contains some other vertex of  PI that is visible from x~; again 
by the optimality of ~ that vertex must lie on 3~. [] 

Lemma B. The conclusion o f  Lemma A holds i f  2 and fi are geodesic paths (in 
the Euclidean metric) instead o f  optimal link-geodesic paths. 

Proof. Same as above. [] 

Lemma C. Given any points x, x',  y c P and a geodesic (resp. an optimal link- 
geodesic) path 2 = (x  = Xo, • • •, Xk = X') in P and given any point q on 2, we have 

dE(q, y) < max{dE(X, y) ,  dL(X', y)}. 
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Proof Assume that ~ = (x =Xo . . . .  , Xk = X') is a geodesic (resp. an optimal 
link-geodesic) path from x to x'  and let 

d = max{dL(X, y),  dL(X' , y)}. 

We proceed by induction on d. The case d = 1 simply reduces to Lemma B (resp. 
Lemma A) where xy and x'y play the roles of  the two segments, and ~ and the 
trivial path )7 = (y) are the two paths connecting their respective endpoints. 

Thus assume that d > 1. Assume also without loss of  generality that dL(X, y) = d 
and that dL(X ' , y )=k  where l<--k<-d (the case k = 0  is trivial) and let a =  
( y =  Uo, . . . ,  Ud =X) and ~ = ( y =  v o , . . . ,  Vk =X')  be paths realizing these dis- 
tances. In addition, let ~ be a geodesic (resp. an optimal link-geodesic) path 
from Ud-~ to Vk-1. By induction, every point r on • satisfies 

dL(r, y) <-- max{dL(Ua-l, y),  d e ( v k l ,  y)} = d - 1. 

By Lemma B (resp. Lemma A), each point q on ~ sees some r on ff and so 

dL(q, y) <: dE(q, r) + dE(r, y) <-- d. [] 

Lemma D. For any points y, y' ~ P there exists a vertex v of  P such that d L ( y  , y') -< 
dE(y, v). 

Proof Let k = d L ( y  , y')  and let )7= (Y=Yo, - . . ,Yk  =Y')  be an optimal link- 
geodesic path from y to y'. Let w be the point obtained by intersecting the 
boundary of P with the ray emanating from Yk-~ which passes through Yk =Y', 
and let v and v' be the endpoints of the boundary edge that contains w. 

The segment connecting yk-~ and w is certainly the optimal link-geodesic path 
between these two points. Applying Lemma C to this path (with y '  playing the 
role of  q) implies that dL(y, w) >-- dL(y, y'). Again applying Lemma C, but now 
to the optimal link-geodesic path formed by the edge connecting v and v' (with 
w playing the role of q), then yields 

max{dL(Y, v), dL(y, V')} ='-- dL(y, w) >-- dL(y, y'), 

as desired. [] 

3. The Link Center 

In this section we analyze several properties of the link center that will be useful 
for the calculation of this set, to be presented in the following section. 

The k-neighborhood or k-disk about a point x e P (closely related to the notion 
of kth visibility regions mentioned in the introduction) is defined by 

Nk(x) = {x'~ PIdE(X, x ' ) -  k} 
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and the covering radius c(x) of x is the smallest k such that P ~  Nk(X). (Note 
that c(x) = 1 if and only if P is star-shaped with respect to x,) The link diameter 
of  P is defined by DL(P) = maxx~p c(x) and the link radius is defined by rL(P) = 
minx~p c(x). The link center of  P is defined by 

CL(P) = {x ~ PIc(x) = rE(P)}. 

See Fig. 3 for an illustration of these concepts. 
Using the Euclidean metric we can similarly define, for any nonnegative 

number  a,  the a-ne ighborhood about a point, the covering radius of  a point, 
and the geodesic diameter, radius, and center of  a polygon. As it turns out, these 
concepts for the continuous Euclidean metric are simpler to analyze and calculate, 
as demonstrated,  e.g., in [1], [12], and [14]. 

We will now establish some properties of  the k-disks Nk(X) for points x e P 
and of the link center o f  P. 

Theorem 1. Let k>-I and let v be a point of  P. The neighborhood Nk(V) is a 
subpolygon of  P all of  whose corners lie on the boundary of  P and each of  whose 
edges is one of  two types: 

(a) a (portion of  a) side of  P; 
(b) a segment wz connecting a reflex vertex w of  P to a point z on the boundary 

of  P. 

Proof (by induction on k). For the base case k = 1 note that Nt(v)  is nothing 
but the visibility polygon of the vertex v, which obviously has the properties 
prescribed in the theorem (see, e.g., [4]). Now let k >  1 and assume Nk_~(V) has 
the prescribed properties. Let e be a type (b) edge of  Nk-~(V). It Cuts P into two 
parts, one of  which does not contain Nk_~(v). Call that part Pc. Let Ve be the 
weak visibility polygon of  edge e in polygon P~, i.e., Ve comprises all points 
x c P~ for which the straight segment xy is contained in Pe for some y e e. Again, 
it is well known [4] that Ve is a subpolygon of P~ that has the structure prescribed 
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by the theorem (with respect to Pe). We claim that Nk(V)= N k - t ( v ) w U  {Vete 
is a type (b) edge of Nk-l(v)}.  This immediately implies that Nk(V) has the 
desired properties, since the boundaries of  Nk- l (v )  and the visibility polygons 
Ve consist only of  type (a) and (b) edges and since Ve and Nk_~(v) intersect in 
e. For a proof  of  the claim note that obviously N k - l ( V ) c  Nk(V) and V e t  Nk(V) 
for each type (b) edge e of Nk-t(V). On the other hand, let XSNk(V):  if 
dL(V, X) < k, then x ~ Nk- t (v) .  I f  dL(V, X) = k, then let ~ = (v = Xo . . . .  , Xk = X) be 
a link-geodesic path from v to .x. Clearly, Xk-~ ~ Nk-I(V) and x ~  Nk_~(v). Thus 
the link Xk-lX has to intersect the boundary of Nk_~(V), and, since £ lies entirely 
within P, this intersection has to be at a type (b) edge e of  Ng_~(v). Obviously, 
x ~ V~, which concludes the proof  of  the claim and the theorem. [] 

Call a subset S c p geodesically convex if for any points x, x'  ~ S, the geodesic 
path from x to x '  is contained in S (see also [12]); similarly, call S link convex 
if any optimal link-geodesic path from x to x '  is contained in S. Note that these 
notions of  convexity are preserved under intersection. It can be shown that 
link convexity implies geodesic convexity, whereas the converse is not true (see 
Fig. 4). 

Lemma 2. For any y c P and any k >-0, Nk(y)  is both geodesically convex and 
link convex. 

Proof. This is an immediate consequence of Lemma C. [] 

Since the link center of  P is just the intersection of the sets Nr(x) over all 
x ~ P where r = rE(P  ) and since, by definition, the intersection of link convex 
(geodesically convex) sets is link convex (geodesically convex), we obtain the 
following result: 

Theorem 3. The link center o f  a polygon P is link convex, geodesically convex and 
thus connected. 

As was mentioned above, the link center of  a polygon P consists of the 
intersection of  the sets Nr(x)  over all x ~ P. In fact, a slightly stronger result can 
be proven: 

Theorem 4. The link center of  a polygon P is the intersection o f  the sets Nr(v) 
over all convex vertices v of  P, where r = rE(P). 

Fig. 4 



288 w. Lenhart et al. 

Proof Lemma D implies that CL(P) is the intersection of Nr(v) for all vertices 
v of P. However, Lemma C is easily seen to imply that for a reflex vertex v the 
neighborhood Nr(v) contains the intersection of Nr(vt) and N,(v2), where v~ 
and v2 are the two convex vertices at the ends of  the chain of reflex vertices of 
P that contains v. [] 

In the remainder of this section we establish a relationship between the link 
radius and the link diameter of a polygon. To accomplish this we use the following 
lemmas: 

Lemma 5. Let  T be a finite free tree and let T be a family of subtrees of T. I f  
S n S' ~ f~ for every S, S' e T, then ('-~{scT} ~ G. 

Proof. See Proposition 4.7, p. 92, of [7]. [] 

Lemma 6. Let k >- 1 and let S be a finite set of  points of  polygon P. I f  Nk(X) c~ 
Nk(y) ~ Q for every x, y ~ S, then [-') {Nk+I(X)IX ~ S} ~ 0 .  

Proof Let A be an arbitrary but fixed triangulation of P. The triangles of A with 
the relation "sharing an edge" form a graph that is a tree T. For every x e S let 
Tx be the triangles of A that intersect Nk(X). Tx viewed as a graph must be a 
subtree of T. The assumptions of the lemma imply that Tx and Ty have a nonempty 
intersection for every x, y ~ S. Lemma 5 now implies that ('-] {Tx[x ~ S} ~ •, i.e., 
there must be a triangle in A that intersects Nk(X) for all x c $. Clearly, this 
triangle is contained in Nk+l(X) for each x ~ S, which proves our lemma. [] 

We are now ready to prove that the link radius of a simple polygon is 
approximately half of the link diameter. 

Theorem 7. For any simple polygon P 

Proof Let k =  [DL(P)/2].  By the triangle inequality DL(P)--<2rL(P), i.e., k -  < 
rL(P). We claim that Nk(X) n Nk(y) ~ Q for any pair of points x, y c P, which 
by virtue of Lemma 6 and Theorem 4 implies the desired rE(P )-< k-I-1. For a 
proof of the claim let x and y be two points in P. Let ~, = (x = Wo, • • . ,  ws = y) 
be a link-geodesic path connecting x and y and let i=  Is /2] .  Since s cannot 
exceed the diameter DE(P ) we have i<_ k. Consider wi: obviously dE(X, Wi)<-i 
and dL(Wi, y) --< S -- i --< i--< k. Thus the neighborhoods Ni(x) and Ni(y) intersect 
and so do Nk(X ) and Nk(y), which proves the claim and the theorem. [] 

It is possible to strengthen the result of  Theorem 7 somewhat. For polygons 
with odd link-diameter DL(P) we will now show that the link radius rL(P) is 
always equal to [DL(P)/2].  The proof of  this fact is very similar to the proof 
given above but it involves more geometry. 
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At first we give an analogue of Lemma 5. It is a topological version of Helly's 
theorem for convex sets, first shown by Helly himself [9] and then in a slightly 
stronger form by Molnfir [11]. For our purposes a cell in the plane is a simply 
connected compact  subset of  the plane. 

Lemma 8. Let C be a set of cells in the plane. I f  C n C' is a cell for every C, 

C ' ~ C  and C n C' n C " ~ O  for C, C', C"~C,  then ( - ] { C ~ C } ~  Q. 

With this lemma we can prove a slightly stronger version of Lemma 6. 

Lemma 9. Let k >-1 and let S be a finite set of points of  polygon P. I f  Nk(X)c~ 
Nk+l(y) ~ ~ for every x, y ~ S, then [-) { Nk+l(x)tx ~ S} ~ 0 .  

Proof. First note that clearly all neighborhoods Nk(X) are cells. Any two such 
neighborhoods, if they have nonempty intersection, intersect in a cell (because 
they are link convex). Thus by Lemma 8 it suffices to show that the assumptions 
of  this lemma imply that Nk+I(X ) ~ Nk+l(y)n Nk+I(Z ) ~ ~ for x, y, z ~ S. 

Let x, y, z be three points in S and consider the neighborhoods Nk+~(x), 
Nk÷l(y), and Nk(Z). I f  Nk÷~(x )nNk+t (y )nNk(Z)~(D,  then obviously also 
Nk+~(x)nNk÷l(y)r~Nk+t(z)~;~,  as desired. So assume that Nk+~(x)c~ 
Nk÷~(y)r~Nk(Z)=Q. The assumptions of  this lemma imply that Nk+~(x)n 
Nk÷l(y) ~ 0 .  Because of  link convexity (Lemma 2), this intersection must be 
simply connected. Thus Nk÷ ~(X) W Nk÷~(y) forms a subpolygon of  P that is simple, 
i.e., it has no holes. By the assumptions of  this lemma Nk(Z) intersects both 
Nk+l(X ) and Nk÷l(y). Since we assume that Nk+l(X)('~ Nk+l(y ) C~ Nk(Z ) = O ,  it 
follows that Nk(z) intersects Nk÷~(X) u Nk+l(y) in at least two different connected 
components.  Thus the complement of Nk+I(X) U Nk+~(y) U Nk(Z) has a bounded 
connected component  (i.e., the polygon formed by this union has a hole). Call 
it X. 

Consider the boundary of  X. Since X lies completely inside the polygon P, 
the structure Theorem 1 implies that each of  Nk+l(X), Nk+~(y), and Nk(Z) can 
contribute at most one edge to the boundary of  X. It follows that X must be a 
triangle and the edge contributed by Nk(Z) can "see"  all of X, in particular also 
its opposite corner (which is in Nk÷~(X) n Nk+~(y)). Thus this corner is in Nk+l(z) 
and it follows that N k  + I ( X ) n Nk + l (y ) C~ Nk ÷ l ( z ) ~ Q, as desired. [] 

With this lemma the following theorem can be proven in the same manner  as 
Theorem 7. 

Theorem 10. For a simple polygon P with odd link diameter DE(P ) the link radius 
is given by 

rL e,:I°  1 
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4. Calculating the Link Center 

The results of  the preceding section lead to a rather simple approach to the 
calculation of  the link center of  a given simple polygon P with n sides, which 
can be implemented to run in O(n 2) time. Specifically, we first calculate the link 
diameter o f  P in time O(n log n) by the technique in [13]. Theorems 7 and 10 
then give at most two possible values for the link-radius r =  rL(P): it can be 
[DL(P) /2]  or, in the case of  even link diameter, it can also be [DL(P)/2]  + 1. 

By Theorem 4 we need to calculate the intersection n Nr(v) over all convex 
vertices v of  P. We shall try this for the smaller of  the two candidate values for 
r first. I f  the intersection is nonempty,  then it is the link-center of  P. I f  it is found 
to be empty,  then Theorem 7 guarantees that the intersection n N,(v) will be 
nonempty for the larger candidate value of  r and this intersection will constitute 
the link-center. Thus it suffices to present an O(n 2) algorithm for the construction 
o f n  Nk(V) over all convex vertices v of P, where k is any fixed integer between 
1 and n. 

Theorem 1 implies that each Nk(V) is a subpolygon of  P each of whose sides 
is either (a portion of) an edge of P or a segment e connecting a reflex vertex w 
of  P to the boundary of  P (called a type (b) edge in Theorem 1). Denote such 
a segment by ev(w). A type (b) segment e~(w,) cuts the polygon P into two parts, 
one of which contains the vertex v. Denote this subpolygon by e~(w). Let us 
assume the notational convention ev(w) -- P if for some convex vertex v the reflex 
vertex w is not incident to a type (b) edge of  Nk(V). With this convention, deaf ly  

Nk(v) = n  {e~---~--~lw reflex vertex of P}. 

We want to compute 

{Nk(V)lV convex vertex of P} 

= n  {e~--~-~lv convex vertex and w reflex vertex of P} 

= n  {P(w)lw reflex vertex of  P}, 

where P(w)=n  {e--~(-~lv convex vertex of  P}. The structure of  a subpolygon 
P(w) is particularly simple: its boundary consists of  two segments e~, e2 emanating 
from w, each of which is either one of  the segments ev(w) or a side of  P incident 
to w, and of a portion b[q~, q2] of  the boundary of  P between the two other 
endpoints q~, q2 of  e~, e2 respectively. 

We can therefore proceed as follows: we first triangulate P in time O(n log n) 
as in [6]. For each convex vertex v of  P we compute Nk(V) in O(n) time using 
Suri's algorithm [13], and for each reflex vertex w we collect the (at most n) 
segments e~(w). It is then straightforward to compute each P(w) in O(n) time, 
respectively. (Note that if  P has no reflex vertices then the link center o f  P is 
clearly P itself.) 

We are thus left with the problem of calculating n w  P(w). Note that the total 
number  o f  edges in the boundaries of  the subpolygons P(w) is only O(n), so 
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that the intersection of these polygons can be calculated trivially in time O(n 2) 
as follows. We calculate the O(n 2) intersection points between edges of  (distinct) 
P(w)'s.  For each edge e of  such a polygon we have O(n)  intersection points o f  
this kind along e, so that en[f- '~wP(w) ] is equal to the intersection of half- 
segments of  e, each delimited at one of these intersection points. The intersection 
of  these half-segments is trivial to calculate in O(n)  time. Thus all the edges 
along the boundary of the link center can be calculated in overall O(n 2) time. 
Since there are only O(n)  such edges, the final step of  finding the circular order 
of  these edges along the boundary of the link center is now easy to accomplish 
in subquadratic time. We have thus shown: 

Theorem 11. The link center of  a simple polygon P having n edges can be calculated 
in O(n 2) time. 

5. Finding an Approximate Link Center 

The result of  the preceding section immediately raises the question whether the 
link center of  a simple polygon P with n sides can be calculated in subquadratic 
time. This problem is also motivated by the fact (used above) that the link 
diameter (and an approximation of the link radius) can be calculated in O(n log n) 
[14], and that the (unique) geodesic center of  P can be calculated in time 
O(n log 2 n) [12]. Even if all we seek is just one point in the link center, we still 
do not know how to find it in subquadratic time. However, as we show in this 
section, if we are willing to compromise,  and are satisfied with finding an 
approximate link center, by which we mean a point whose covering radius exceeds 
the link radius at most by one, then we can achieve this goal in time O(n tog n). 

Let A be an arbitrary triangulation of  P and let r = rL(P  ) be the link radius of  
P. The following observation is almost too trivial to state (see also the proof  of  
Lemma 6): 

Lemma 12. There is a triangle t in the triangulation A such that every point in t 
is an approximate link center of  P. 

In other words every x e t has covering radius CL(X)~ r +  1. Let us call such 
a triangle a center triangle. That a center triangle must exist is clear: any triangle 
that contains a point of  the true link center of  P is a center triangle. 

How can we find such a center triangle quickly? Some sort of "binary search" 
on the tree formed by the triangles of  A seems to be called for. Recall that, as 
already pointed out in the proof  of  Lemma 6, the triangles of A form a graph T 
that is a tree. In this graph the n - 2 nodes are the triangles of  A and two nodes 
are adjacent iff the corresponding triangles share an edge. Obviously no node in 
T has degree exceeding 3. It is well known that, using only linear time, we can 
always find in such a tree an edge whose removal would leave two subtrees, each 
containing no more than two-thirds of  the nodes of  the original tree. I f  we could 
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also determine in O(n)  t ime which of the two subtrees contains a node correspond- 
ing to a center triangle in A, then recursive application of this tree-splitting idea 
would yield an O(n log n) algorithm for finding such a center triangle. (See [3] 
and [8] for other algorithms based on this idea.) 

Thus we want to solve the following problem in linear time: given an edge e 
of  the triangulation A that cuts the polygon P into two polygons P~ and P2, which 
of  P~ or P2 contains a triangle of  A that is a center triangle of  P? 

First a few more definitions: in the usual way we can generalize the distance 
function dE SO that one of  the arguments is a subset of P: 

dL(A, x) = min{dt.(y, x)ly e A}. 

The k-neighborhood of  a set A c p in P is then defined as 

Nk(A,  P) = {x ~ PIdL(A, X) --< k}, 

and the covering radius of A is defined as 

c(A, P) = rain{kiP c NR(A, a)}. 

With these definitions we can state the following characterization: 

l ~ m m a  13. Let e be a diagonal o f  a triangulation A o f  a simple polygon P that 
cuts P into two simple polygons P~ and P2. Let ct = c(e, P~) and c2 = c(e, P2). 

(i) I f  c~ = c2, then both triangles of  A that contain e are center triangles for P. 
(ii) I f  c~ < c2, then P2 contains a triangle of  A that is a center triangle for P. 

Proof Let r = rL(P) be the link radius of  the polygon P. 
(i) Let z be a point of  the link center of  P. Without loss of generality assume 

z lies in P~. Let p be a point in P2 for which dE(p, e) = C 2. Since a link-geodesic 
path connecting p and z must cross the segment e, we have c~ = c2 -< dE(p, z)----- r. 
From this it follows immediately that both triangles of  A that contain e must be 
center triangles of  P since any point q ~ P can be connected to any point x in 
these two triangles by a link path with at most r +  1 segments (at most r segments 
from q to some point on e and one more segment to x). 

(ii) I f  P2 contains a point of  the true link center of  P, then there is nothing 
to prove since the triangle of  A that contains that point will be a center triangle 
of  P contained in P2. So assume P~ contains a point z of  the link center of P. 
Using exactly the same argument as in (i) we get the inequalities c(< c2 <- r, and 
as in (i) we can conclude that the triangle of  A that contairs  the edge e and is 
contained in P2 is a center triangle. [] 

The only question that remains is whether the covering radii c(e, P~) and 
c(e, P2) can be computed in linear time. Using the techniques presented in [13] 
this is indeed possible if a triangulation A of  P is available. We construct in linear 
time what Suri calls the "window tree" for e in the polygon P~. The depth of 
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that tree is then the covering radius c(e, P,). The covering radius c(e, P2) can be 
computed analogously. Thus we summarize the result o f  this section: 

Theorem 14. For a simple polygon P with n vertices it is possible to compute in 
O( n log n) time a triangle contained in P all o f  whose points are approximate link 
centers of  P, i.e., they have a covering radius that exceeds the link radius of  P at 
most by one. 

(Note: The results of this section provide an alternative method for obtaining 
an approximation for the link radius with error at most one, instead of calculating 
the link diameter and using Theorem 7 or Theorem 10.) 
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