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Abstract. For a finite set A of points in the plane, let g(4) denote the ratio of the
maximum distance of any pair of points of 4 to the minimum distance of any pair
of points of 4. For k > 0 let c,(k) denote the largest integer c such that any set 4 of

k points in general position in the plane, satisfying g(4) < oz\/E for fixed

o> 4 /2\/5/7: = 1.05, contains at least ¢ convex independent points. We determine
the exact asymptotic behavior of ¢ {(k), proving that there are two positive constants
B = B(a), y such that Bk < ¢ (k) < yk'. To establish the upper bound of c (k) we
construct a set, which also solves (affirmatively) the problem of Alon et al. [1] about
the existence of a set A of k points in general position without a 7-hole (i.e., vertices
of a convex 7-gon containing no other points from A4), satisfying g(4) < a./k. The
construction uses “Horton sets,” which generalize sets without 7-holes constructed
by Horton and which have some interesting properties.

1. Introduction

All points in this paper lie in the plane. Points x, x,, ..., X, are convex independent,
if they are vertices of a convex n-gon. Convex independent points x,, X5, ..., X,€ A
form an n-hole in a set A of points in the plane, if they form a convex n-gon
containing no other points from A. For any positive integer n, let f(n) be the
smallest integer such that every set of f(n) points in general position in the plane
(i.e., no three lic on a line), contains n convex independent points. Erd6s and
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Szekeres [2], [31 proved that f(n) exists and showed that

Mm—4
2”‘2+1£f(n)s<n )+1.
n—2

Alon et al. [1] studied the effect of restricting the geometry of the configurations.
The configurations which establish the lower bound on f(n) have some pairs of
points very close together and others very far apart. The authors of [ 1] investigated
the effect of placing an upper bound on the ratio of the maximum and minimum
distances and showed that in this case substantially stronger results are true.

Let A be a set of k points in general position in the plane. We define

B max{d(a,b):a,be A,a # b}
B min{d(a,b):a,be A,a # b}’

q(A)

where d{a, b) is the Euclidean distance of two points a and b. We can assume
without loss of generality that min{d(a, b): a, be A, a # b} = L.

In this case g(A) is the diameter of A. 1t is interesting to study the asymptotic
behavior of the smallest value of the maximum number of convex independent
points in a set A of k points in general position, which satisfies an inequality
q(A) < a\ﬂc, for some positive constant a. Let us note that there exists a positive
constant a, such that the inequality g(4) > ae\/lg holds for any number k and for
any set A of k points in the planc (see [1]). Alon et al. [ 1] proved thatif ¢(4) < aﬁ,
then the set 4 contains at least fk*/* convex independent points for some positive
constant § = f(a). In Section 2 we prove by probabilistic methods a stronger result:
If g(A) < aﬁ, then the set A contains at least k!> convex independent points
for some positive constant f§ = f(x).

On the other hand, Alon et al. [1] showed by probabilistic arguments that, for
every fixed & > 0, the following holds: For any large integer k > k{e) there is a set
A of k points in the plane satisfying g(4) < 4ﬁ, which does not contain more
than k'/3*¢ convex independent points. In Section 4 we show a stronger result.
For any constant ¢ > 4- (2/7:)”3\/5 = 596 and for any large enough integer
k > k(c), we construct a set 4, of k points in general position in the plane satisfying
q(4,) < a\/k for o > \/ 2\/§/n = 1.05, which does not contain more than ck'/

convex independent points. Note that for every o < . /2\/5 7 there is a set A of

k points which satisfies g(A4) < rxﬁ only for small k (it is proved in Section 4).
In Section 4 we also study the existence of 7-holes in a set 4 of k points satisfying

q(A4) < aﬁ. Horton [5] constructed, for every k, a set A of k points in general
position without 7-holes. We prove that the set A, (mentioned above) also does
not contain 7-holes. It solves for any constant « the problem from [1] whether,

for large k, there exists a set A of k points satisfying g(A4) < aﬁ, which does not
contain 7-holes. Indeed, as we say above, for every a < /2\/5/1: there is a set A
of k points satisfying g(A4) < aﬁ only for small k.
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Section 3 gives the definition and some properties of “Horton sets.” Horton
sets are “anticonvex™ sets whose definition is based on ideas of Horton [5]. (By
“anticonvex” sets we mean sets with no large holes and no large convex in-
dependent subsets.) These sets are used in constructions in Section 4.

2. The Lower Bound on c,(k)
In this section we estimate the lower bound on c (k) by proving Theorem 2.1.

Theorem 2.1. For any positive constant a, there is a positive constant § = f{a) such

that any set A of k points in general position, satisfying ¢(A) < aﬁ, contains at
least Bk''® convex independent points.

Assume that A4 is a set of k points in general position such that g(4) < a\/@
and the minimum distance of a pair of points from 4 is 1. Then g(A) is the diameter

of A and A is placed inside a disk D of radius r = aﬁ centered at a point O € A.

Let us consider a circle C of radius r centered at a point S. We place { k!/3 |
rectangles with sides s = ak'/® and t = ak ™/ so that they touch the circle C from
inside in regular intervals and one of the two longer sides of each rectangle is a
chord of the circle C (see Fig. 1). Traveling counterclockwise along the circle C,
we denote the touching rectangles by R, R,,..., R,s+; and their centers by S,
S,, ..., 8, (in the order of their appearance along the circle).

Lemma 2.2. If we choose at most one point from each of the rectangles R,,
i=1,...,  k'? | then the chosen points are convex independent. .

Proof. In the proof we use the points K, L, L', L", M, M’, and N, whose definition
is apparent from Fig. 2. For any i = 1, 2,..., | k3], we need to prove that the
rectangle R; lies entirely on the other side of the straight line LL” than the
rectangles R;_, and R, ,. In other words, we need to prove |L/N| >t + |[M'N].
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Fig. 2

We use basic claims about rectangular triangles and estimate:

. 8/2
— arcsin —

’ ) 2n
ALSL = AS8;+SL' — A §;,,SL = k'3 | r

|LL'| = |SL|-sin(4 LSL') > |SL|-3 A LSL
b4

> k.%.‘]zk*—l/Sz%akl/tS
n 4 ’
LL'I2 M2 "Nz o 2 Tl 1/6Y2 (1. 11/632
LN| = pen) = EEE MM LU — MM Gk — Gak)
KL |KM| |KM'| 20 /k
= 6ok V% = 6t.
Thus |L'N| — |{M'N|>1t. O

So if at least fk'/? of the rectangles R; are nonempty (i.e., contain at least one
point of 4), then at least Sk'/® points of 4 are convex independent. Therefore, for
a fixed set A, we look for a placement of the circle C and the rectangles R, in the
plane such that at least §k'/3 of the rectangles R; are nonempty. We proceed by
probabilistic methods.

Let M be the set of all rectangles R with sides s and ¢ and with center in the
disk D’ of radius 3r centered at the point 0. For any rectangle R from M, the
direction of the sides of length s is called the direction of the rectangle R.-Since M
is equivalent to the product of D’ (corresponding to the placement of the center
of R) and <0, =) (corresponding to the direction of R), there is a measure y on M
which is equivalent to the product of Lebesgue measures on D’ and on <0, n).
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Here is a key lemma:
Lemma 2.3. There is a positive constant ¢ = c(«) such that
u{ReM: R A # &} = cu(M).
The proof of Lemma 2.3 relies on two lemmas.

Lemma 24. Let a be a point from A and let A(j) be the set of points @ from A
such that j < d(a, a') < j + 1, where d(a, a') is Euclidean distance of points a and a'.
For every positive integer j the set A(j) contains at most c,j points, for some positive
constant c,.

Proof. Consider the 155 straight lines of directions (i/15j)r, i=0, 1,...,15 — 1,
going through the point a. Together with the circle of radius (j + $) centered at
a they divide the plane into 60j parts. Assume two points b, ¢ € A(j) lie in the same
part. Then

d(b, ¢) < (4 bac)-d(a, b) + |d(a, b) — d(a, ¢)| < %, G+D)+i<l.

Hence each of the 60j parts contains at most one point from A(j), and setting
¢, = 60 gives the result. O

ForaeA,i=0,1,...,k, we denote:

M(a) = {ReM: aeR},
M;={ReM:|RnA|=i},
m; = (M)

Lemma 2.5. There are two positive constants ¢, and ¢3 such that:
(i) Yae A: (M(a)) = c,,
(i) Vae A: Y ;o4 f(M(a) " M(@)) < ¢5.

Proof. (i) Centers of rectangles R € M(a) with fixed direction e {0, n) lie in a

rectangle with a center g, sides s and ¢, and direction ¢. Thus, y(M(a)) = = - st = ma’.
(ii) Directions of rectangles from M(a) ~ M(d’) are in an interval I of length

2 arcsin(t/d(a, @) (if t < d(a, a)) or = (if t = d(a, 4')). In both cases the length of the

interval I is at most nt/d(a, a'). Since the rectangles from M(a) n M(a) lic in M(a),

nt k16

wM(a@) " M(@@)) < |I]-st < d(a, a) v G m

for some positive constant c,.
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If the distance d(a, a') is greater than 2s > . /s* + %, then M(a) » M(a') is empty.
Hence

L2s
Y WM@n M@) =pM@)+ 3 Y wMa) o M)

a'eA J=1 a'eA(p)

12s] k18 L2s] s

S+ )y Y G St Y efeg— <0y
j=1acAp J j=1 j

for some positive constant ¢;. ]

Proofof Lemma 2.3. Forthe sums ) ¥, m;, Y -~ t*m;, the Cauchy-Buniakowski
inequality (a special case of the Holder inequality) has the following form:

Now we estimate the sums Y r_y im;, Y +_; i’m;:

!Mx-
g
Il

Y HM@) =} c; = sk,

i=1 acd acd

M =
Bl
]

YN uM@nM@) <Y ey =k

i=1 aeAda'ed acd
We get
i m > -y im)? > (c2k) _ é k,
Z, 1 i%m; 3k o
#({REMZRﬁA?éQ}): §=1mi> (c3/cs)k >0
wM) WMy g 7{(3a\/§)2
for some positive constant c. O

Proof of Theorem 2.1. Let the circle C be randomly placed inside D', and let the
collection of the rectangles R;, i = 1,...,| k'/> |, be randomly rotated inside C. So,
for every i = 1,...,| k'3, the rectangle R, is chosen from a set S, which contains
nonempty rectangles from M twice (see Fig. 3) and empty rectangles from M at
most twice. The rectangle R, is chosen from the set S according to a probabilistic
measure, which is a multiple of the measure p. Thus, the rectangle R; is nonempty
with a probability

M{RES:RNA# D) p{ReM:RNA#Q)
wS) - wM) B




Convex Independent Sets and 7-Holes in Restricted Planar Point Sets 141

Fig. 3

The expected number of nonempty rectangles R,, i=1,...,| k'*] is at least
o k'3 | > (¢/2)k'3. Consequently, there is a placement of the rectangles R; such
that at least (¢/2)k'/ rectangles R; are nonempty. Now, setting § = ¢/2, Lemma
2.2 compiletes the proof of Theorem 2.1.

The following theorem can be proved by similar arguments (if r = ak®, s = ak™?,
t=oak B ie{l,2,..., k¥ ]}

Theorem 2.6. For any te<{},3) and for any positive constant o, there exists a
positive constant B = P(a, 1) such that any set A of k points in general position
satisfying q(A) < ok® contains at least Bk* ~*"3 convex independent points.

On the other hand, using the original construction of Erds and Szekeres [3],
it is not difficult to obtain a set § of k points, which satisfies ¢(S) < k and does
not contain more than (log, k + 2) convex independent points.

3. Horton Sets

This section brings a definition of “Horton sets” and gives some other definitions
and claims used in the next section.

If a is a point, then its x-coordinate is denoted by x(a). We say that k points
are in strongly general position if they are in general position and they have distinct
x-coordinates. If H is a set of k points in strongly general position, then we usually
use the notation

H={hg, hy,..., b1}, xlho) < x(hy) <+ < x(hy - y)-
A nonsingular linear transformation is a transformation
T:[x, y]r>[sx + ty, ux + vy],

where s, t, u, v are real numbers and

det|” ‘|0

u v
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Observation 3.1. Let A be a set of points in general position and let T be a
nonsingular linear transformation. Then points p,, ..., p, € A are convex independent
or form an n-hole in A if and only if points T(p,),..., T(p,) € T(A) are convex
independent or form an n-hole in T(A), respectively.

A sequence of r points py, p,, ..., p,, X(p;) < x(p,) < --- < x(p,) is said to be

(i) convex, if for all i, j, k, 1 <i < j < k <r, the point p; lies below the straight

line p;py.,
(ii) concave, ifforalli,j, k, 1 <i<j <k <r, the point p; lies above the straight
line p;p,.
A convex sequence of r points p,, p,,...,p, 1s upper closed by a point p, if
x(p;) < x(p) < x(p,) and the point p lies above the polygonal line p,p,---p,. A
concave sequence of r points py, p,,...,p, is lower closed by a point p, if

x(py) < x(p) < x(p,) and the point p lies below the polygonal line p,p, - p,.
The set A of points in strongly general position is said to be

(i) upper r-closed if every convex sequence of r points from A is upper closed
by some point from A4,
(i) lower r-closed if every concave sequence of r points from A is lower closed
by some point from A,
(iii) r-closed if it is both upper and lower r-closed.

Definition 3.2. Let C and D be two sets of points in strongly general position. If
the set C lies entirely below any straight line connecting pair of points from D and
the set D lies entirely above any straight line connecting a pair of points from C,
then we say that C lies deep below D and D lies high above C.

Theorem 3.3. Let A and B be finite sets of points in strongly general position, which
contain no (r + s — 1)-hole. Let A be upper r-closed, let B be lower s-closed, and let
A lie deep below B. Then the set A u B also contains no (r + s — 1)-hole.

Proof. Let H be an (r + s — 1)-hole of the set 4 U B. We denote A" = H N A4,
B'= Hn B. The sets A’ and B’ are nonempty because the sets B and A contain
no (r + s — 1)-holes. Since A4’ lies deep below B', the points of A’ form a convex
sequence, and the points of B’ form a concave sequence. There are two possibilities:
A’ contains at least r points or B’ contains at least s points. In the first case a
point of A which upper closes the convex sequence of points of A’ lies in the
convex hull of H = A’ U B'. Similarly, in the second case a point of B which lower
closes the concave sequence of points of B’ lies in the convex hull of H = 4" U B'.
This completes the proof. O

Lemma 34. Let C and D be finite sets of points such that the points of C U D are
in strongly general position, and let C lie deep below D. Then if a;, a,,...,a, is a
convex sequence of n points from the set C u D, then either the points a,,d;, ..., a,_,
lie in C or all the points a,, a,, ..., a, lie in D. Similarly, if a,, a,, ..., a, is a concave
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sequence of n points from the set C U D, then either the points a,, as,...,a,_, lie
in D or all the points ay, a,, ..., a, lie in C.

Proof. Let the sequence a,, a,,...,a, be convex. Forany i=2,3,....,n— L if
the point @; lies in D, then D aiso contains the points ¢;_, and a;, . Thus if D
contains some of the points a,, as, ..., a,., then all points a,, a,...., a, lie in D.
The case of a concave sequence a,, d,, ..., d, is similar. O

For any finite set of k points in strongly general position H = {hg, by, ..., hy_ 4},
xthg) < x(hy) < -+ < x(h,_,), we define subsets H, ,, 0 < z < n as follows:

H,,={heH:i=z(mod n)}.
Now we define Horton sets and say something about them.

Definition 3.5. A finite set of points in strongly general position is called Horton
if it is Horton according to a finite number of applications of the following rules:

(1) Every one-point set is Horton.
(i) If the sets H, , and H, , are Horton and H, , lies deep below or high
above H, ,, then the set H is Horton.

Example 3.6. Horton [ 5] constructed, for any positive integer ¢, a set of 2’ points
in general position without 7-holes as follows:

S, ={[i,di)]:i=0,1,...,2° — 1},

where d(i) =)', a;(2' + 1Y~! and (a,a, - a,) is the binary expansion of the
integer i (i, ¥ -y @;-2' "/ =i and ay, a,,...,a,€{0, 1}). The sets S, are Horton
sets according to our definition because their constructions use the following
observation: If a set H is a Horton set, then the set H U (H + (¢, M)) is also a
Horton set, where (H + (¢, M)} is the set H shifted by a vector (¢, M) with
sufficiently small x-coordinate ¢ > 0 and sufficiently large y-coordinate M > 0.
(Indeed, the sets (H U (H + (¢, M)))o., = Hand (H U (H + (¢, M))); , = H + (¢, M)
are Horton, and the first one lies deep below the second one.)

For any Horton set H, we denote the sets H, , and H, , by Hy,, and H, in
such order that Hy,, lies deep below H .
Observation 3.7. Any contiguous segment of a Horton set H, ie, H' =
{hieH:iy < i<}, is a Horton set.

Proof. We prove the observation by induction. For every one-point set the
observation holds. Let H be a Horton set and let the observation hold for the sets
H,,, and H,,, (ie., for the sets H, , and H, ,) whose sizes are less than |H|.
Assume H’ is a contiguous segment of H. Since the sets H' n H,,, and H' ~n H,,
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are contiguous segments of H,,, and H,,,, respectively, they are both Horton.
H' n Hy,, lies deep below H' n H,,,,. The sets H' ~ H,,, and H' " H,,, are equal
to the sets Hy, , and H} , in some order. Hence the set H' is Horton. O

Now we prove two theorems which show that Horton sets are a good example
of “anticonvex” sets.

Theorem 3.8. Every Horton set is 4-closed and contains no 7-hole.

Theorem 3.9. Let a Horton set H contain a convex or a concave sequence of length
t. If't is odd, then H contains at least h(t) = 2+ V2 _ 1 points. If t is even, then H
contains at least h(t) = 3-22~' — 1 points.

Proof of Theorem 3.8. We use the induction. Theorem 3.8 holds for every
one-point set. Let H be a Horton set and let H,, and H,,, be 4-closed sets with
no 7-holes. The set H = H,,,, U H,,, contains no 7-hole (Theorem 3.3). Consider
a convex sequence a, b, c, d of length 4 in the set H. According to Lemma 3.4
either all a, b, ¢, d lie in H,,,, or both b and ¢ lie in Hy,,,. In the first case the
sequence a, b, ¢, d is upper closed by some point from H, . In the second case,
if b = h;, the point h,, , € H,, upper closes the sequence a, b, ¢, d. Hence the set
H is upper 4-closed and similarly also lower 4-closed. O

Proof of Theorem 3.9.  Values h(1) = 1 and (2) = 2 are obviously correct. Assume
a Horton set H contains a convex or a concave sequence dq, d,, ..., 4,4, of length
(t + 2). According to Lemma 3.4 the points a,, as, ..., q,,; lie either all in H,,,
or all in H,,,. Hence one of the sets H,,, and H,, contains at least h(t) points
whose x-coordinates are in the interval {x(a,), x(a,,)>. Since points from H
are alternately from the subsets H,, and H,,,, and a, and q,,, both lic out-
side the interval {x(a,), x(a,, ;)), the set H contains at least 2h(t) + 1 = h(t + 2)
points. O

Claim 3.10 is often used in Section 4.

Claim 3.10. For every Horton set H, all subsets H_,, 0 < z < n, are Horton.

Proof. The proof is in two steps:

(i) Claim 3.10 holds for every odd n,
(ii) if Claim 3.10 holds for an integer n, then it holds also for an integer ' = 2n.

(1) For a fixed odd n we prove Claim 3.10 by induction on the size of H. Claim
3.10 holds for any one-point Horton set. Assume H is a Horton set and Claim
3.10 holds for n and the Horton sets H,, , and H, ,. For any integer z, 0 < z < n,
we denote A = (H, Jo.5, B=(H, ), ,. f z 1s even, then A c H, ,, B H, ,,
A= (Hy )20 and B=(H, 3)p4,-1y2..- I 18 0dd, then 4 <« H, ,, B< H, 5,
A={(H{ )-1y2.0 and B = (Hy 3)p+22..- In both cases, A lies deep below or
high above B, and both A and B are Horton according to the inductive assumption.

(i) Assume Claim 3.10 holds for a number n and let H be a Horton set. Let
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0<z<n If z is even, then H, ,, =(Hy )2, If z is odd, then H, ,, =

(H{.2)z-1)2..- In both cases, the set H, ,, is Horton according to the assumption.
Claim 3.10 holds for n' = 2n. O

In the construction in Section 4 we use Horton sets with special location of
points.

Lemma 3.11. For every ¢y > 0 and for every positive integer m, we can construct
a Horton set H of m points such that, for any i =0, 1,...,m — 1, the point h; lies
in the open g4-neighborhood of x-axis and its x-coordinate is equal to i.

Proof. Let S be the contigous segment of the Horton set S, (see Example
3.6) which contains m points with the smallest x-coordinates. Horton set I'(S)
satisfies all the required conditions, where T is a nonsinguiar linear transformation
T: [x, y}—{x, oy] (6 > O sufficiently small). O

4. The Upper Bound on c,(k)

In this section we construct, for any positive integer k, the set A, for which Theorem
4.1 holds.

Theorem 4.1.  For every k and for every ¢ > 4(2/m)" 3\/3 = 5.96, there is a set A,

of k points in general position satisfying q(4,) < \/ Zﬁ/nﬂ, which contains neither
a 7-hole nor, for large k > k(c), more than ck'’® convex independent points.

First we construct, for every d€(0, 3) and for every positive integer m, three
auxiliary sets L, B, and 4 having m? points. L is the square lattice m x m, 4 has
similar features as the set 4, (where k ~ const-m?) and B is an intermediate step
between L and A. Both 4 and B form approximately the square lattice m x m.

Consider two small numbers ¢, ¢ €(0, 5/2), whose values will be specified later.
We use a Horton set H = {hg, hy, ..., h,,_ }, which satisfies Lemma 3.11 for g, = ¢,
and a set G = {go, gy, ---» Gm-1}, Which satisfies Lemma 3.11 for g, = ¢ after the
interchange of axes (i.e., after the nonsingular linear transformation T: [x, y]—
[y, x]). We define:

L={l;i,j=0,1...,m—1}
B={b;i,j=0,1,...,m—1},
A={a;i,j=01,...,m—1},
where, forevery i,j=0,1,...,m — 1,
Li=1[i71
b;j = h; + (0, j),
a;; = h; + (g; — [0,0]) = g; + (h; — [0, 0]).
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For any fixed i, j = 0, 1, ..., m — 1 we say that the points l;;e L, b;;e B, a;;€ A
correspond to one another. Each point b;; from B lies in the e-neighborhood of the
corresponding lattice point [;;. Each point a;; from A lies in the ¢'-neighborhood
of the corresponding point b;; and in the J-neighborhood of the corresponding
lattice point [;;.

We prove that a suitable choice of ¢ and ¢ gives an “anticonvexity” of 4
described by Claim 4.2

Claim 4.2. The set A contains neither a 7-hole nor, for ¢ > 12?/* = 5.24 and large
m > my(c’), more than c'(m — 4)** convex independent points.

We determine ¢ as an arbitrary positive number smaller than half of the smallest
nonzero distance between a point from L and a straight line connecting two points
from L. Using such fixed ¢ we construct the set B. Further we determine ¢’ as an
arbitrary positive number smaller than half of the smallest nonzero distance
between a point from B and a straight line connecting two points from B. Using
such fixed ¢ we construct the set 4.

Suppose that a point [;;€ L lies inside the convex hull of points [y, -
limji € L. The above choice of ¢ ensures that the point b;; € B lies inside the convex
hull of the points by);1), . -, bipjin € B. Further, the above choice of ¢ ensures
that the point g;;€ A lies inside the convex hull of points a;1), - -+ Giny i) € 4-
This proves the following observation.

Observation 4.3.

(i) If seven points from A form a 1-hole, then there is no point from L inside the
convex hull of the corresponding seven points from L.

(ii) If some points from A are convex independent, then the corresponding points
from L lie on a perimeter of their convex hull.

The following claims together with Observation 4.3(i) prove that A contains
no 7-hole.

Claim 4.4. If seven points from L are such that there is no point from L inside their
convex hull, then they lie on a straight line or on a pair of parallel lines.

Claim 4.5. If seven points from L lie on a straight line or on a pair of parallel lines,
then the corresponding seven points from A do not form a 7-hole.

Proof of Claim 4.4. 'We show that every seven points of the lattice Z x Z (the
set of all points with integer coordinates) with no points of Z x Z inside their
convex hull lie on a straight line or on a pair of parallel lines. This is enough to
prove claim 4.4.

Consider seven lattice points which do not lie on a straight line. Let a be a
vertex of the convex hull of our seven points and let b and ¢ be its adjacent vertices.
Of course, the points g, b, and ¢ are among our seven lattice points. Let b’ or ¢’ be



Convex Independent Sets and 7-Holes in Restricted Planar Point Sets 147

the closest lattice point to a on the line segment ab or ac, respectively. We denote
b"=b"+ ¥ —a),c"=c +(c —a),d=>b"+ (¢ — a) (see Fig. 4). The line segment
ab” contains only three lattice points a, b’, b", the line segment ac” contains only
three lattice points g, ¢’, ¢”. No point inside the triangle ab’c’ is a lattice point
because such points lie inside the triangle abc and, consequently, inside the convex
hull of our seven lattice points. Also no point inside the triangle b'c'd is a lattice
point. Indeed, if a point e inside the triangle b'c’d is a lattice point, then a point
a + (d — e) inside the triangle ab’c’ is a lattice point. Similarly, there are no lattice
points inside the line segments b'd and c¢'d. If there is a lattice point inside the line
segment b'c’, then b = b, ¢ = ¢/, and all our seven points lic on the straight line
b'¢’ and on its parallel line going through the point a. We finish the proof with
the case that the parallelogram ab'dc’ contains no lattice points different from its
vertices. In this case there are no lattice points between the parallel lines ab’ and
c'd, and also between the parallel lines ac’ and b'd. Since the lattice point d cannot
lie inside the convex hull of our seven lattice points, they must lie on the semilines
ab’, ¢'d, ac’, and b'd, and, consequently, either on the paraliel semilines ab’ and ¢'d
or on the parallel semilines ac’ and b'd. a

Before the proof of Claim 4.5 we present some notation and a lemma. A set of
all points from L lying on a straight line p is denoted by L,. A set of points from
B or A corresponding to points from L, is denoted by B, or 4, respectively.

Lemma 4.6. If p is parallel to the y-axis, then after the interchange of axes the set
A, is Horton. If p is not parallel to the y-axis, then the set A, is Horton.

Proof. If p is parallel to the y-axis, then after the interchange of axes the set 4,
is Horton because it is a shift of a Horton set. If p is not parallel to the y-axis, then

Bp={biljl’biziz""’bivjy}’ 0S11<lz<-<ls<m

By the definition of B,, there are two numbers Ai >0, Aj such that Ai=
b—iy=iy—ip=""=i—~iand Aj=j,—ji=j3—ja="""=ji—Js-1- A
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nonsingular linear transformation T: [x, y]r[x, y + j, + (x — i;)Aj/Ai] maps the
set {h;,...,h;} onto the set B,. The set {h;,..., h;} is Horton because it is a
contiguous segment of some Horton set H, ,. The above nonsingular linear
transformation T maps any Horton set onto a Horton set since it preserves
x-coordinates. Thus B, is Horton. Now from the choice of &' it follows that 4,, is
also Horton.

Proof of Claim 4.5. Let p and g be two parallel lines. We prove Claim 4.5 by
showing that the set 4, U A, contains no 7-hole. If the lines p and q are not parallel
to the y-axis, then the Horton sets 4, and 4, are without a 7-hole and 4-closed.
The numbers ¢ and ¢ are determined so that A, lies high above or deep below
A,. It follows from Theorem 3.3 that 4, U 4, does not contain a 7-hole. If the
lines p and q are parallel to the y-axis, then a similar consideration after the

interchange of axes completes the proof. O

The first part of Claim 4.2 (4 contains no 7-hole} is proved. Now we give the
two simple lemmas and finish the proof of Claim 4.2

Lemma 4.7. Ler g(t) be the sum of the first (t — 1) terms of the sequence 1, 1, 2, 2,
3,.... If a Horton set H contains a convex or a concave sequence of length t, then
the size of H is greater than g(t).
Proof. 1t is sufficient to prove that g(t) < h(t), where h(t) is as in Theorem 3.9:
g(1) =0 < 1 = h(1),
g(2)=1<2=hQ2),
glt +2) =gty + Lt + /2] + [ (¢ + 1)/27]
=gy +t+1<h)+t+1<ht)+ht)+1=ht+2) O

By L,-metric we mean the metric defined by

dy([x1, y11, [x2, 2 = x5 — x| + |y5 — 3.
Further in this section all distances and lengths are considered in L, -metric.

Lemma 4.8. A sum of lengths (in L,-metric) of any 2(n + 1)* pairwise different
nonzero vectors with integer coordinates is greater than $n*.

Proof. The number of vectors of length i (in L,-metric) with integer coordinates
is equal to 4i, and a sum of their lengths is equal to 4i>. The number of vectors
of length at most n with integer coordinates is equal to Y 7_; 4 = 2n(n + 1). A
sum of their lengths is equal to Y7, 4i* = 3n(n + 1)(2n + 1), which is the smallest
sum of 2n(n + 1) pairwise different nonzero vectors with integer coordinates. This
shows Lemma 4.8. [
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Proof of Claim 4.2.  As we said above, Observation 4.3(i) and Claims 4.4 and 4.5
prove that 4 contains no 7-hole. It remains to prove that the set 4 of m? points
does not contain more than ¢'(m — 4)*’* convex independent points, for ¢’ > 122/
and large m > my(c).

Let A’ be a convex independent subset of 4, and let L’ be the set of the points
from L corresponding to the points of A". All points of L’ lie on the perimeter of
the convex hull of L' (Observation 4.3(ii)). First suppose that the points from L’
do not lie on a line. Let [, [5, ..., I, be the vertices of the convex hull of L’ in the
counterclockwise order. For any i =1, 2,..., s, we define a vector w; = l,,; — [;
with integer coordinates (if i = s, then naturally [;,; = [,) and a vector v; as the
smallest vector with integer coordinates such that there is a positive integer ¢; with
w; = ¢;u;. S0, on the line segment [;l;,, there are just points [, |; + v, ..., L +
¢;v; = ;.4 from the lattice L.

Now we investigate, for i=1, 2,...,s, how many points I, L, 4 v,,..., L +
¢;v; = ki, can be from L'. Assume the straight line p = /;/;, , is not parallel to the
y-axis. By H; we denote the set of points of 4 corresponding to the points [,
L+wv,..., 1 + ¢, = I, ;. The set H; is Horton because it is a contiguous segment
of the Horton set A4,. The construction of the set 4 ensures that the points from
H;n A’ form a convex or a concave sequence in the Horton set H;. The set H;
contains (¢; + 1) points. Lemma 4.7 says that ¢; + 1 > g(r,), where r; = |H; n 4’|.
If the straight line p = ], , is parallel to the y-axis, then we proceed similarly
(with the interchange of axes). Again, ¢; + 1 > g(r).

The perimeter of the convex hull of L’ (in L,-metric) is less than or equal to
the perimeter of the square <0,m — 1> x {0, m — 1), which equals 4(m — 1). In
our notation

5

Y llwill < 4(m — 1) (1)

i=1
On the other hand,

will = cillvil = glrdlod =1 + 1 +2+2+3+ Il

rn—1

= (losll + ol + 1200 + 200 + 130l + ,)

W1
i Iwill = % (ol + loall + 1200 + 1200 + 130l + ). 2
i=1 i=1 M= —— v
r—1

Since any two vectors v; and v; have different directions, each of the vectors v;,
2v,, ... is different from each of the vectors v;, 2v;, ... Thus any vector occurs at
most twice on the right-hand side of (2). By Lemma 4.8., if the number ZL =1
of the vectors on the right-hand side of (2) is at least 2-2(n + 1)? for an integer n,
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then the sum of their lengths is greater than 2-$n>. Therefore, if we find an integer
n such that

M+ 12 < Y (ri— 1) <d(n + 2%,
i=1
then
3wl > 80
i=1

Now inequality (1) above gives

n® <4m—1),
8n3 < 12(m — 1),

4n? < 12%3%m — 1)*3.
If ¢’ > 12273, then, for large m,
dn + 2)* < d/(m — 1)*3,

For any ¢’ > 12?3 and for any large m > m(c’), the following upper bound of a
size of the set A’ is established:

A= 3 (= 1) < 4 + 27 < clm — ).

P=1

The case when the points of L’ lie on a line can be treated similarly. |

Proof of Theorem 4.1. For a given positive integer k we find an integer m such
that (\/gn/S)(m —dP <k< (\/gn/S)(m — 3)2. The nonsingular linear transforma-
tion T:[x, ylr[x + y/2, ﬁyﬁ] maps the lattice L of m? points onto the set
T(L), which forms the triangle lattice on the rhombus R with vertices [0, 0],
[m — 1,03, [3m — 1), (/3/2)(m — 1), and [3(m — 1), (/3/2)(m — 1)]. The triangle
with vertices [t t], {t + 1,¢], [t,¢t + 1], where ¢t = {(m — 1)/2 ], is mapped by T
onto a triangle, which we denote by A. The expected number of points from T(L)

lying in the interior of the disk of diameter Z\ﬁ/n'k”2 centered randomly in
the triangle A is equal to 2/\/3 -(m/4X 2\/§/n -kY?)? = k. Thus, there is a disk D
of diameter ., /2\/5/7r-k“2 containing at least k points from T(L) in the interior.
If 6 > 0 is sufficiently small in the above construction of the set A4, then the disk

D also contains at least k points from T(A) in the interior. Some k of these points
{for example, the ones with the smallest x-coordinates) form the set A, which

satisfies g(4,) < ~/2\/§/7z-k”2, contains no 7-hole, and does not contain more
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than ¢'(m — 4)** < c’(8/\/§/n)1/3k‘/3 convex independent points, for ¢’ > 12%/3
and large k. It follows that A, does not contain more than ck'/® convex inde-
pendent points, for every ¢ > 122/3(8/\/5/71)”3 = 4(2/m)**,/3 = 5.96 and large
k = k(c). O

Similarly, it is possible to prove the following theorem.

Theorem 4.9. Let d&(4, 1). For any positive real number « > 0 there is a positive
constant ¢ = c(o) such that, for any large k, there exists a set A, of k points in
general position which satisfies q(A,) < ak® and contains at most ck**~%3 in-
dependent points.

Proof. The proof is short, and some details are left to the reader.

For large k and m = (¢/2)k’, consider the above set 4 of m* points satisfying
Claim 4.2. Define the set 4, as the set of all points p of A with x-coordinate in
the form

x(p) = d + n-g k5203,

where d € €0, (2/)k"* ~¥73> and n is an integer. Thus the points of 4, lie in k21 =913
strips of width (2/a)k"" ~9/3 and 4, has about k points.

Let C be the convex hull of a convex independent subset of 4,. Less than
¢,k 7973 sides of C lie in only one strip, and less than c, k! =9/ sides of C intersect
at least two strips, where ¢, and c, are the two positive constants independent of
k, A, and C. This gives Theorem 4.9. O

We conjecture that the result of Theorem 4.9 is the best possible and, on the
other hand, Theorem 2.6 can be improved.

Let us remark that the coefficient o = \/ 2ﬁ/n = 1.05 in Theorem 4.1 is the
smallest one which makes sense:

Proposition 4.10. For every o < . /2\/§/n and large enough k, there is no set A of
k points in the plane satisfying q(A) < a\/E.

A possible proof is based on two known claims.

Claim A. The disk of diameter R has the largest area among all figures with the
diameter R. Its area is (n/4)R2.

Claim B. Ler d(r) be the maximum number of points that can be placed on a convex
Sfigure with area P so that minimum distance between any pair of them is at least
1/r. Then

lim — = ——
r2

d(r) 2\/§P
=P,

r—>o
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Claim A is proved in [6], Claim B is one of the basic claims about the covering,
We conclude this paper with a question: Suppose that A is a set of k points in

general position satisfying g(4) < oc\/f; for fixed o > ./ 2\/ 3/ and k is large. Does
it follow that A contains a 6-hole? In the general case it is an open problem
whether any large set of points in general position contains a 6-hole. On the other
hand, Harborth [4] proved that any set 4 of at least 10 points in general position
contains a 3-hole.
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