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Abstract. For a finite set A of points in the plane, let q(A) denote the ratio of the 
maximum distance of any pair of points of A to the minimum distance of any pair 
of points of A. For  k > 0 let c,(k) denote the largest integer c such that any set A of 

k points in general position in the plane, satisfying q(A)< ctx/~ for fixed 

> V/2x/~/n - 1.05, contains at least c convex independent points. We determine 
the exact asymptotic behavior of c,(k), proving that there are two positive constants 
fl = fl(ct), ? such that flk i/3 <_ c,(k) <_ )'k 1/3. To establish the upper bound of c~(k) we 
construct a set, which also solves (atfirmatively) the problem of Alon et al. [1] about 
the existence of a set A of k points in general position without a 7-hole (i.e., vertices 

of a convex 7-gon containing no other points from A), satisfying q(A) < ~x//k. The 
construction uses "Horton sets," which generalize sets without 7-holes constructed 
by Horton and which have some interesting properties. 

1. Introduction 

All po in ts  in this p a p e r  lie in the plane.  Poin ts  x l ,  x2 . . . . .  x ,  are  convex independent, 
if they are  vertices of a convex n-gon. Convex  independen t  po in ts  x 1, x 2 . . . . .  x ,  E A 
form an n-hole in a set A of  po in ts  in the plane,  if they form a convex n-gon 
con ta in ing  no o ther  poin ts  f rom A. F o r  any posi t ive integer  n, let f (n)  be the 
smal les t  integer  such tha t  every set of  f (n)  poin t s  in genera l  pos i t ion  in the plane 
(i.e., no  three  lie on a line), con ta ins  n convex independen t  points .  E rd6s  and  
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Szekeres [2], [3] proved that f(n) exists and showed that 

2n - 4"] 
2 " - 2 +  1 < _ f ( n ) < _ \ n _ 2 / +  1. 

Alon et al. [ 1] studied the effect of restricting the geometry of the configurations. 
The configurations which establish the lower bound on f(n) have some pairs of 
points very close together and others very far apart. The authors of [1] investigated 
the effect of placing an upper bound on the ratio of the maximum and minimum 
distances and showed that in this case substantially stronger results are true. 

Let A be a set of k points in general position in the plane. We define 

q(A) = 
max{d(a, b): a, b ~ A, a ¢- b} 

min{d(a, b): a, b e A, a ¢ b} ' 

where d(a, b) is the Euclidean distance of two points a and b. We can assume 
without loss of generality that min{d(a, b): a, b ~ A, a ~ b} = 1. 

In this case q(A) is the diameter of A. It is interesting to study the asymptotic 
behavior of the smallest value of the maximum number of convex independent 
points in a set A of k points in general position, which satisfies an inequality 

q(A) < ax/k, for some positive constant ~. Let us note that there exists a positive 

constant ct o such that the inequality q(A) > ~ox/k holds for any number k and for 

any set A of k points in the plane (see [ 1]). Alon et al. [ t ] proved that if q(A) < ctw/k, 
then the set A contains at least flk 1/4 c o n v e x  independent points for some positive 
constant fl = fl(ct). In Section 2 we prove by probabilistic methods a stronger result: 

If q(A) < cry/k, then the set A contains at least flk 1/a convex independent points 
for some positive constant fl = [3(~). 

On the other hand, Alon et al. [1] showed by probabilistic arguments that, for 
every fixed e > 0, the following holds: For  any large integer k > k(e) there is a set 

A of k points in the plane satisfying q(A) < 4\//k, which does not contain more 
than k ~/3+~ convex independent points. In Section 4 we show a stronger result. 

For  any constant e > 4" (2 /~) l / ax f3 -  5.96 and for any large enough integer 
k > k(c), we construct a set Ak of k points in general position in the plane satisfying 

q(Ak) < o~N//k for ~t >_ x/2w/3/~ --'_ 1.05, which does not contain more than Ck 1/3 

convex independent points. Note that for every a < v/2~/3/rc there is a set A of 

k points which satisfies q(A) < ~x//k only for small k (it is proved in Section 4). 
In Section 4 we also study the existence of 7-holes in a set A ofk  points satisfying 

q(A) < ~x/~. Horton [5] constructed, for every k, a set A of k points in general 
position without 7-holes. We prove that the set A k (mentioned above) also does 
not contain 7-holes. It solves for any constant ~ the problem from [1] whether, 

for large k, there exists a set A of k points satisfying q(A) < ~%/k, which does not 

contain 7-holes. Indeed, as we say above, for every c¢ < x/2v/3/rc there is a set A 

of k points satisfying q(A) < ax/k  only for small k. 
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Section 3 gives the definition and some properties of "Hor ton  sets." Hor ton 
sets are "anticonvex" sets whose definition is based on ideas of Hor ton [5]. (By 
"anticonvex" sets we mean sets with no large holes and no large convex in- 
dependent subsets.) These sets are used in constructions in Section 4. 

2. The Lower  Bound on ca(k) 

In this section we estimate the lower bound on c~(k) by proving Theorem 2.1. 

Theorem 2.1. For any positive constant ~, there is a positive constant fl = fl(~) such 

that any set A of  k points in 9enerat position, satisfying q(A) < ~x//k, contains at 
least flk t/3 convex independent points. 

Assume that A is a set of k points in general position such that q(A) < ex /~  
and the minimum distance of a pair of points from A is 1. Then q(A) is the diameter 

of A and A is placed inside a disk D of radius r = ax /k  centered at a point O e A. 
Let us consider a circle C of radius r centered at a point S. We place Lk~/3J 

rectangles with sides s = ~k ~/6 and t = ~k-  1/6 so that they touch the circle C from 
inside in regular intervals and one of the two longer sides of each rectangle is a 
chord of the circle C (see Fig. 1). Traveling counterclockwise along the circle C, 
we denote the touching rectangles by RI, R2 . . . . .  RLk~ ~j and their centers by S 1, 
$2 . . . . .  SLk, ,j (in the order of their appearance along the circle). 

Lemma 2.2, I f  we choose at most one point f rom each of  the rectangles R~, 
i = t . . . . .  ~kl/3j, then the chosen points are convex independent.. 

Proof  In the proof  we use the points K, L, L', L", M, M', and N, whose definition 
is apparent from Fig. 2. For  any i =  1, 2 . . . . .  Lk~/3J, we need to prove that the 
rectangle R~ lies entirely on the other side of the straight line LL" than the 
rectangles Ri_ 1 and Ri+l. In other words, we need to prove IL'N[ > t + [M'N]. 

C 

Fig. 1 
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Fig. 2 

We use basic claims about rectangular triangles and estimate: 

KLSL' = & S i + I S L '  - &Si+ISL = 2 ~  _ arcsin s/2 
k kl/3] r 

2n n s/2 7n 
> - -  k - 1 / 3  
- -  k 1/3 2 r 4 

2 
ILL'I = ISLI'sin( & LSL') >_ ISLI " - . & L S L '  

7Z 

2 7n 
> ~ x / k ' - ' - -  k -  1/3 = ~k l /6 ,  
- n 4 

I L ' N [ -  I M ' N I -  
ILL'I 2 IMM'I 2 ILL'i 2 _ tMM'I 2 

> 
JKL'I IKM'I IKM'f 

= 6~k-1/6 = 6t. 

> 

Thus IL'NI - iM'NI > t. [] 

So if at least flk 1/3 of the rectangles Ri are nonempty (i.e., contain at least one 
point of A), then at least flk ~/~ points of A are convex independent. Therefore, for 
a fixed set A, we look for a placement of the circle C and the rectangles R~ in the 
plane such that at least flk 1/3 of the rectangles Ri are nonempty. We proceed by 
probabilistic methods. 

Let M be the set of all rectangles R with sides s and t and with center in the 
disk D' of radius 3r centered at the point O. For any rectangle R from M, the 
direction of the sides of length s is called the direction of the rectangle R. Since M 
is equivalent to the product of D' (corresponding to the placement of the center 
of R) and <0, n) (corresponding to the direction of R), there is a measure/~ on M 
which is equivalent to the product of Lebesgue measures on D' and on <0, n). 
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Here  is a key lemma:  

L e m m a  2.3. There is a positive constant c = c(~) such that 

p({R E M: R n A ~ ~Z~}) -> cp(M). 

The  p roof  of  L e m m a  2.3 relies on two lemmas.  

L e m m a  2.4. Let a be a point from A and let A(j) be the set of  points a' from A 
such that j <_ d(a, a') < j + 1, where d(a, a') is Euclidean distance of  points a and a'. 
For every positive integer j the set A(j) contains at most c g points, for some positive 
constant c 1. 

Proof. Consider  the 15j straight lines of directions (i/15j)rc, i = 0, 1 . . . . .  15j - 1, 
going th rough  the point  a. Together  with the circle of radius (j + ½) centered at 
a they divide the plane into 60j parts.  Assume two points b, c ,~ A(j) lie in the same 
part .  Then 

7~ 
d(b, c) <_ (& bac).d(a, b) + Id(a, b) - d(a, c)l <_ ~ j  (j + 1) + ½ < 1. 

Hence  each of the 60j par ts  contains at mos t  one point  from A(j), and setting 
Cl = 60 gives the result. [ ]  

Fo r  a ~ A, i = 0, 1 . . . .  , k, we denote:  

M(a) = { R e M :  a e R } ,  

M,  = { R ~ M :  IR h A l  = i}, 

mi = #(Mi). 

L e m m a  2.5. There are two positive constants c 2 and c3 such that: 

(i) Va ~ A: it(M(a)) = c2, 

(ii) V a ~ A :  ~a,~A It(M(a) n M(a')) <<_ c3. 

Proof. (i) Centers  of  rectangles R ~ M(a) with fixed direction e ~ (0,  ~) lie in a 
rectangle with a center a, sides s and t, and  direction e. Thus,  #(M(a)) = n" st = ~ 2 .  

(ii) Direct ions of  rectangles f rom M(a) n M(a') are in an interval I of  length 
2 arcsin(t/d(a, a')) (if t < d(a, a')) or n (if t ~ d(a, a')). In bo th  cases the length of the 
interval  I is at mos t  nt/d(a, a'). Since the rectangles f rom M(a) c~ M(a') lie in M(a), 

rot k -  1/6 
l~(M(a) n M(a')) < I11 "st _< _ _ . ~ 2  < c4 

d( a, a') L d( a, a')J 

for some posit ive cons tant  c4. 
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If the distance d(a, a') is greater than 2s > x / ~  + t ~, then M(a) n M(a') is empty. 
Hence 

h2sj 
#(M(a) n M(a')) = p(M(a)) + ~ ~ p(M(a) n M(a')) 

a'EA j =  1 a'~A(j) 

L2sj k -  1/6 L2sJ k -  1/6 

<_c2+ Z Z c j.c, . . . . . .  

j = 1 a" e A(j) J j = ~ J 

for some positive constant c3. [] 

k k Proof of  Lemma 2.3. For the sums ~i= 1 ml, ~i= 1 t2mi, the Cauchy-Buniakowski 
inequality (a special case of the H61der inequality) has the following form: 

m i i 2 m l  > i m  i . 
i=1 i=1 i = 1  

k k Now we estimate the sums ~i= 1 imi, ~i= 1 i2mi: 

k 

imi = ~ /a(M(a))= ~ c2 = c2k, 
i = 1  aeA aeA 

k 

Z i 2 m i  = 2 Z lt(M(a) c~ M ( a ' ) )  <_ E C3 : C3 k .  
i= 1 a~A a' eA a~A 

We get 

k k (~,i=, iml)2 (c 2 k)2 c 2 
mz > k ~ - -  k ,  

i = 1  - -  Z I = I  i 2 m i  c a k  c3  

#({R e M: R c~ A ¢ ~} )  ~ k  ms (c2/c3)k 
- -  > 

#(M) #(M) - re-n(3~x/k) 2 
- c > O  

for some positive constant c. [ ]  

Proof of  Theorem 2.1. Let the circle C be randomly placed inside D', and let the 
collection of the rectangles R;, i = 1 . . . . .  Ukl/3l, be randomly rotated inside C. So, 
for every i = 1 . . . . .  LkX/3_J, the rectangle R~ is chosen from a set S, which contains 
nonempty rectangles from M twice (see Fig. 3) and empty rectangles from M at 
most twice. The rectangle R~ is chosen from the set S according to a probabilistic 
measure, which is a multiple of the measure p. Thus, the rectangle R~ is nonempty 
with a probability 

/~({R ~ S: R c~ A ~ ~ } )  Ia({R~M:R n A  #= ~ } )  
>_ > c .  

#(S) /~(M) 
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The expected number of nonempty rectangles Ri, i = 1, . . . ,  [_kl/3J, is at least 
c[_kl/3j >_ (c/2)k 1/3. Consequently, there is a placement of the rectangles Ri such 
that at least (c/2)k ~/3 rectangles Ri are nonempty. Now, setting/~ = c/2, Lemma 
2.2 completes the proof of Theorem 2.1. 

The following theorem can be proved by similar arguments (if  r = ~ U ,  s = ek ~/3, 
t = ~k-~/3, i e { 1, 2 . . . . .  LkZ~/3j}). 

Theorem 2.6. For any ~ ~ ~½, 3) and for  any positive constant ~, there exists a 
positive constant ~ = ~(c~, ~) such that any set A o f  k points in 9eneral position 
satisfyin9 q(A) < c~k ~ contains at least Ilk ~ ~4~/3 convex independent points. 

On the other hand, using the original construction of Erd6s and Szekeres [3], 
it is not difficult to obtain a set S of k points, which satisfies q(S) < k and does 
not contain more than (log 2 k + 2) convex independent points. 

3. H o r t o n  S e t s  

This section brings a definition of "Hor ton  sets" and gives some other definitions 
and claims used in the next section. 

If a is a point, then its x-coordinate is denoted by x(a). We say that k points 
are in strongly 9eneraI position if they are in general position and they have distinct 
x-coordinates. If H is a set of k points in strongly general position, then we usually 
use the notation 

H = {ho, h 1 . . . . .  hk -  1}, x(ho) < x(hO < " "  < x(hk- 1)" 

A nonsingular linear transformation is a transformation 

T: [x, y] ~-~ [sx + ty, ux + vy], 

where s, t, u, v are real numbers and 
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Observation 3.1. Let A be a set of  points in general position and let T be a 
nonsingular linear transformation. Then points Pl . . . . .  p, ~ A are convex independent 
or form an n-hole in A if and only if points T(pa) . . . . .  T(p,)e T(A) are convex 
independent or form an n-hole in T(A), respectively. 

A sequence of  r points Pl, P2 . . . . .  Pr, x(PO < x(p2) < " "  < x(Pr) is said to be 

(i) convex, if for all i, j, k, 1 < i < j < k < r, the point  p] lies below the straight 

line PlPk, 
(ii) concave, if for all i, j, k, 1 < i < j < k < r, the point  pj lies above the straight 

line PiPk. 

A convex sequence of r points Pl, P2 . . . . .  Pr is upper closed by a point  p, if 
x(PO < x(p) < x(pr) and the point  p lies above the polygonal  line PxPz'"Pr.  A 
concave sequence of  r points  PI, P2 . . . . .  Pr is lower closed by a point  p, if 
x(pl) < x(p) < x(pr) and the point  p lies below the polygonal  line PlP2""Pr. 

The set A of points in strongly general position is said to be 

(i) upper r-closed if every convex sequence of r points from A is upper  closed 
by some point  from A, 

(ii) lower r-closed if every concave sequence of  r points f rom A is lower closed 
by some point  from A, 

(iii) r-closed if it is both  upper  and lower r-closed. 

Definition 3.2. Let C and D be two sets of points in strongly general position. If  
the set C lies entirely below any straight line connect ing pair of  points from D and 
the set D lies entirely above any straight line connect ing a pair of points from C, 
then we say that  C lies deep below D and D lies high above C. 

Theorem 3.3. Let A and B be finite sets of  points in strongly general position, which 
contain no (r + s - 1)-hole. Let A be upper r-closed, let B be lower s-closed, and let 
A lie deep below B. Then the set A ~2 B also contains no (r + s - 1)-hole. 

Proof Let H be an ( r + s - 1 ) - h o l e  of  the set A w B .  We denote  A ' = H n A ,  
B' = H n B. The sets A' and B' are nonempty  because the sets B and A contain 
no (r + s - 1)-holes. Since A' lies deep below B', the points of A' form a convex 
sequence, and the points of  B' form a concave sequence. There are two possibilities: 
A'  contains at least r points or  B' contains at least s points. In the first case a 
point  of  A which upper  closes the convex sequence of  points of  A' lies in the 
convex hull of  H = A' w B'. Similarly, in the second case a point  of  B which lower 
closes the concave sequence of  points of B' lies in the convex hull of  H = A' ~_J B'. 
This completes the proof. [ ]  

Lemma 3.4. Let C and D be finite sets of  points such that the points of  C ~ D are 
in strongly general position, and let C lie deep below D. Then if al, a2 . . . . .  a~ is a 
convex sequence of n points from the set C w D, then either the points a 2, a 3 . . . . .  a ._  1 
lie in C or all the points ax, a2 . . . . .  a. lie in D. Similarly, if al, a2 . . . . .  a. is a concave 
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sequence o f  n points f rom the set C w D, then either the points az, a 3 . . . . .  an_ 1 lie 
in D or all the points al, a 2 . . . . .  a n tie in C. 

Proof  Let the sequence a~, a 2 . . . . .  an be convex. For  any i = 2, 3 . . . . .  n - 1, if 
the point  ai lies in D, then D also contains the points ai_~ and a~+ r Thus  if D 
contains  some of the points  a2, a3 . . . . .  a ,_ 1, then all points  al,  az . . . . .  an lie in D. 
The  case of a concave sequence al ,  a 2 . . . . .  a, is similar. [ ]  

Fo r  any finite set o fk  points  in strongly general position H = {h o, h 1 . . . . .  h,_ 1}, 
x(ho) < x(hl) < .. .  < X(hk_ 0, we define subsets H . . . .  0 < z < n as follows: 

H~.n = {hi~ H: i -  z (mod n)}. 

N o w  we define H o r t o n  sets and  say something abou t  them. 

Definition 3.5. A finite set of points in strongly general position is called Horton 
if it is H o r t o n  according to a finite number  of  applicat ions of the following rules: 

(i) Every one-point  set is Hor ton .  
(ii) If the sets Ho,2 and H1, 2 are H o r t o n  and Ho.2 lies deep below or high 

above  H L z ,  then the set H is Hor ton .  

Example  3.6. H o r t o n  [5] constructed,  for any positive integer t, a set of  2 t points  
in general  posi t ion wi thout  7-holes as follows: 

S, = {[i,d(i)]: i =  O, 1 , . . . , 2 ' -  1}, 

where d(i)= ~)=1 a t ' ( 2 ' +  1) ~- 1 and (a laz . . .a , )  is the binary expansion of the 
integer i (i.e., ~ =  x a t '  2t-J  = i and  a~, a2 . . . . .  a, ~ {0, 1}). The sets S, are H o r t o n  
sets according to our  definition because their construct ions use the following 
observat ion:  If  a set H is a H o r t o n  set, then the set H w (H + (e, M)) is also a 
H o r t o n  set, where (H + (~, M)) is the set H shifted by a vector  (e, M) with 
sufficiently small  x -coord ina te  ~ > 0 and sufficiently large y-coordinate  M > 0. 
(Indeed, the sets (H w (H + (e, M)))o ' 2 = H and (H w (H + (e, m)))l, 2 = H + (e, M) 
are Hor ton ,  and the first one lies deep below the second one.) 

F o r  any H o r t o n  set H, we denote  the sets Ho.z and H I ,  2 by H,ow and Hup p in 
such order  that  H~o w lies deep below H~pp. 

Observation 3.7, Any  contiguous segment o f  a Horton set H, i.e., H ' =  
{hie  H: i o < i < il}, is a Horton set. 

Proof  We prove  the observa t ion  by induction. Fo r  every one-point  set the 
observa t ion  holds. Let H be a H o r t o n  set and let the observat ion  hold for the sets 
H~ow and Hupp (i.e., for the sets Ho. 2 and HI,2) whose sizes are less than I n l .  
Assume H '  is a cont iguous  segment  of  H. Since the sets H '  n H~o w and H '  c~ Hupp 
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are cont iguous segments of  Hto w and Hup p, respectively, they are both Hor ton .  
H '  c~ HIo w lies deep below H'  c~ Hup p. The sets H '  c~ Hjo w and H'  ~ Hup p are equal 
to the sets H~.z and H '  in some order. Hence the set H'  is Hor ton .  [ ]  1,2 

N o w  we prove two theorems which show that  H o r t o n  sets are a good example 
of  "an t iconvex"  sets. 

Theorem 3.8. Every Horton set is 4-closed and contains no 7-hole, 

Theorem 3.9. Let  a Horton set H contain a convex or a concave seque~:ce o f  lenyth 
t. I f  t is odd, then H contains at least h(t) = 2 ~t +1~/2 - 1 points. I f  t is even, then H 
contains at least h(t) = 3 . 2  t/2- ~ - 1 points. 

P r o o f  o f  Theorem 3.8. We use the induction. Theorem 3.8 holds for every 
one-point  set. Let H be a H o r t o n  set and let H~o,~ and H,pp be 4-closed sets with 
no 7-holes. The set H = Hlo w w H,pp contains no 7-hole (Theorem 3.3). Consider 
a convex sequence a, b, c, d of length 4 in the set H. According to Lemma 3.4 
either all a, b, c, d lie in Hupp, or  both  b and c lie in H~o w. In the first case the 
sequence a, b, c, d is upper closed by some point  from H~pp. In the second case, 
if b = h~, the point  h~+ a s H,pp upper  closes the sequence a, b, c, d. Hence the set 
H is upper  4-closed and similarly also lower 4-closed. [ ]  

P r o o f  o f  Theorern 3.9. Values h(1) = 1 and h(2) -- 2 are obviously correct. Assume 
a Hor ton  set H contains a convex or  a concave sequence a 1, a 2, . . . ,  at+2 of  length 
(t + 2). According to Lemma 3.4 the points  a 2, a 3 . . . . .  at ÷ 1 lie either all in H~o w 
or  all in Hup p. Hence one of  the sets H~ow and H~pp contains at least h(t) points 
whose x-coordinates  are in the interval (x(a2), x(at÷l)).  Since points from H 
are alternately from the subsets H~ow and Hap p, and al and at÷2 both  lie out-  
side the interval (x(a2), x(at÷ 1)), the set H contains at least 2h(t) + 1 = h(t + 2) 
points. [ ]  

Claim 3.10 is often used in Section 4. 

Claim 3.10. For every Horton set H, all subsets H . . . .  0 <_ z < n, are Horton. 

Proof. The proof  is in two steps: 

(i) Claim 3.10 holds for every odd n, 
(ii) if Claim 3.10 holds for an integer n, then it holds also for an integer n' = 2n. 

(i) For  a fixed odd n we prove Claim 3.10 by induct ion on the size of H. Claim 
3.10 holds for any one-point  H o r t o n  set. Assume H is a Hor ton  set and Claim 
3.10 holds for n and the H o r t o n  s e t s  Ho,  2 and  HI.  2. For  any integer z, 0 < z < n, 
we denote  A = (H~,,)o, 2, B = (H~,,)I, 2. If z is even, then A c Ho,2, B c H1,2, 
A = (Ho.2)~/2.n, and B = (H1,2)~,+z_l)/z,,. If  z is odd,  then A c Hi ,2 ,  B ~ Ho.z ,  
A = (Hl,z)~,_l)/2,n, and B = (H0,2)~,+~)/2,,. In bo th  cases, A lies deep below or 
high above B, and both  A and B are Hor ton  according to the inductive assumption.  

(ii) Assume Claim 3.10 holds for a number  n and let H be a Hor ton  set. Let 
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0 < z < n. If z is even, then H z , 2 n  : (Ho ,2 )z /2 ,  n. If z is odd, then Hz,2n  : 

(Hl,z) tz-1)/2,n" In bo th  cases, the set H~,2, is H o r t o n  according to the assumpt ion.  
Claim 3.10 holds for n' = 2n. [ ]  

In  the construct ion in Section 4 we use H o r t o n  sets with special locat ion of 
points. 

L e m m a  3.11. For every e o > 0 and for  every positive integer m, we can construct 
a Horton set H of  m points such that, for  any i = O, 1 . . . .  , m - 1, the point h~ lies 
in the open eo-neighborhood of  x-axis and its x-coordinate is equal to i. 

Proof  Let S be the cont igous segment of  the Hor ton  set Siqog2m ] (see Example  
3.6) which contains  m points  with the smallest x-coordinates.  H o r t o n  set I'(S) 
satisfies all the required conditions, where T is a nonsingular  linear t ransformat ion  
T: [x, y]  ~ [x, 6y] (6 > 0 sufficiently small). [ ]  

4. The Upper Bound on c~(k) 

In this section we construct ,  for any positive integer k, the set Ak for which Theo rem 
4.1 holds. 

Theorem 4.1. For every k and for every c > 4(2/n)1/3x/3 - 5.96, there is a set A k 

o f k  points in 9eneral position satisfying q(Ak) < ~ x / k ,  which contains neither 
a 7-hole nor, for larye k >_ k(c), more than ck 1/3 convex independent points. 

First  we construct,  for every 6 e (0, ½) and for every positive integer m, three 
auxil iary sets L, B, and A having m 2 points.  L is the square lattice m x m, A has 
similar features as the set Ak (where k , - - cons t -m 2) and B is an intermediate  step 
between L and A. Both A and B form approx imate ly  the square lattice m x m. 

Consider  two small numbers  e, g e (0, 6/2), whose values will be specified later. 
We use a H o r t o n  set H = {h o, hi . . . .  , h,,_ ~}, which satisfies L e m m a  3.11 for e o = e, 
and a set G = {go, gt . . . . .  gin-1}, which satisfies L e m m a  3.11 for eo = e' after the 
interchange of axes (i.e., after the nonsingular  linear t rans format ion  T: [x, y] 
[y, x]). We define: 

where, for every i, j = 0, 

llj = 

bi j  =- 

a i j  = 

L =  {lij: i , j = O ,  1 . . . . .  m - l } ,  

B = {bij: i , j  = O, 1 . . . . .  m - 1}, 

A = {aig: i , j  = 0, 1 . . . . .  m -  1}, 

1 , . . . , m -  1, 

[i,j], 

h i q- (0, j), 

h~ + (g~ - [0, 0])  = g j  + ( h ,  - [0, 03). 
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For  any fixed i, j = 0, 1 . . . . .  m - 1 we say that the points 1 o ~ L, bi~ ~ B, a o e A 
correspond to one another. Each point b 0 from B lies in the e-neighborhood of the 
corresponding lattice point I w Each point a~j from A lies in the e '-neighborhood 
of the corresponding point b o and in the g-neighborhood of the corresponding 
lattice point li~. 

We prove that a suitable choice of e and e' gives an "anticonvexity" of A 
described by Claim 4.2. 

Claim 4.2. The set A contains neither a 7-hole nor, for c' > 122/3 -'- 5.24 and large 
m >__ mo(c'), more than c'(m - 4) 2/3 convex independent points. 

We determine e as an arbitrary positive number smaller than half of the smallest 
nonzero distance between a point from L and a straight line connecting two points 
from L. Using such fixed e we construct the set B. Further we determine e' as an 
arbitrary positive number smaller than half of the smallest nonzero distance 
between a point from B and a straight line connecting two points from B. Using 
such fixed e' we construct the set A. 

Suppose that a point l i j eL  lies inside the convex hull of points litl)j(l) . . . . .  
l,,~jt,) e L. The above choice of e ensures that the point blj e B lies inside the convex 
hull of the points b , ~ t l  ) . . . . .  bit,)jtr)~ B. Further, the above choice of e' ensures 
that the point a o E A lies inside the convex hull of points a~t~jtl) . . . . .  a,,~j~,) e A. 
This proves the following observation. 

Observation 4.3. 

(i) I f  seven points from A form a 7-hole, then there is no point from L inside the 
convex hull of the corresponding seven points from L. 

(ii) I f  some points from A are convex independent, then the corresponding points 
from L lie on a perimeter of their convex hull. 

The following claims together with Observation 4.3(i) prove that A contains 
no 7-hole. 

Claim 4.4. I f  seven points from L are such that there is no point from L inside their 
convex hull, then they lie on a straight line or on a pair of parallel lines. 

Claim 4.5. I f  seven points from L lie on a straight line or on a pair of  parallel lines, 
then the corresponding seven points from A do not form a 7-hole. 

Proof  o f  Claim 4.4. We show that every seven points of the lattice Z x Z (the 
set of all points with integer coordinates) with no points of Z x Z inside their 
convex hull lie on a straight line or on a pair of parallel lines. This is enough to 
prove claim 4.4. 

Consider seven lattice points which do not lie on a straight line. Let a be a 
vertex of the convex hull of our seven points and let b and c be its adjacent vertices. 
Of  course, the points a, b, and c are among our seven lattice points. Let b' or c' be 
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C' 

a 15 b" 

Fig. 4 

the closest lattice point to a on the line segment ab or ac, respectively. We denote 
b" = b' + (b' - a), c" = c' + (c' - a), d = b' + (c' - a) (see Fig. 4). The line segment 
ab" contains only three lattice points a, b', b", the line segment ac" contains only 
three lattice points a, c', c". No point inside the triangle ab'c' is a lattice point 
because such points lie inside the triangle abc and, consequently, inside the convex 
hull of our seven lattice points. Also no point inside the triangle b'c'd is a lattice 
point. Indeed, if a point e inside the triangle b'c'd is a lattice point, then a point 
a + (d - e) inside the triangle ab'c' is a lattice point. Similarly, there are no lattice 
points inside the line segments b'd and c'd. If there is a lattice point inside the line 
segment b'c', then b -- b', c = c', and all our seven points lie on the straight line 
b'c' and on its parallel line going through the point a. We finish the proof with 
the case that the parallelogram ab'dc' contains no lattice points different from its 
vertices. In this case there are no lattice points between the parallel lines ab' and 
c'd, and also between the parallel lines ac' and b'd. Since the lattice point d cannot 
lie inside the convex hull of our seven lattice points, they must lie on the semilines 
ab', c'd, ac', and b'd, and, consequently, either on the parallel semilines ab' and c'd 
or on the parallel semilines ac' and b'd. [] 

Before the proof  of Claim 4.5 we present some notation and a lemma. A set of 
all points from L lying on a straight line p is denoted by Lp. A set of points from 
B or A corresponding to points from Lp is denoted by Bp or Ap, respectively. 

Lemma 4.6. I f  p is parallel to the y-axis,  then after the interchange o f  axes  the set 
Ap is Horton.  I f  p is not parallel to the y-axis,  then the set Ap is Horton.  

Proof. If p is parallel to the y-axis, then after the interchange of axes the set Ap 
is Hor ton  because it is a shift o fa  Hor ton set. I fp  is not parallel to the y-axis, then 

Bp = {bi,j,, bizi2 . . . . .  bi~}, 0 <_ i 1 < i 2 < ""  < i s <_ m. 

By the definition of Bp, there are two numbers Ai > 0, Aj such that Ai = 

i2 - il = i 3  - i 2  . . . .  = is -- is-1 and Aj =J2  - J l  = J a  - J 2  . . . . .  J~ - i s -  1. A 
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nonsingular linear transformation T: [x, y] ~-~ [x, y + J l + (x -- i OAj/Ai] maps the 
set {h i . . . . . .  h J  onto the set Bp. The set {hi, . . . . .  h~,} is Horton because it is a 
contiguous segment of some Hor ton  set H~.a,. The above nonsingular linear 
transformation T maps any Horton set onto a Horton set since it preserves 
x-coordinates. Thus Bp is Horton. Now from the choice of e' it follows that Ap is 
also Horton. 

Proof  o f  Claim 4.5. Let p and q be two parallel lines. We prove Claim 4.5 by 
showing that the set Ap w Aq contains no 7-hole. If the lines p and q are not parallel 
to the y-axis, then the Horton sets Ap and Aq are without a 7-hole and 4-closed. 
The numbers ~ and e' are determined so that Ap lies high above or deep below 
Aq. It follows from Theorem 3.3 that Ap w Aq does not contain a 7-hole. If the 
lines p and q are parallel to the y-axis, then a similar consideration after the 
interchange of axes completes the proof. [] 

The first part of Claim 4.2 (A contains no 7-hote) is proved. Now we give the 
two simple temmas and finish the proof of Claim 4.2. 

I.emma 4.7. Let g(t) be the sum of  the first (t - 1) terms of  the sequence 1, 1, 2, 2, 
3 . . . . .  I f  a Horton set H contains a convex or a concave sequence of  length t, then 
the size of  H is greater than 9(t). 

Proof  It is sufficient to prove that g(t) < h(t), where h(t) is as in Theorem 3.9: 

g(1) = 0 < 1 = h(1), 

g(2) = 1 < 2 = h(2), 

" ' ' 7  

g(t + 2) = g(t) + L(t + 1)/23 + [-(t + 1)/2q 

= g(t) + t + 1 < h(t) + t + 1 <_ h(t) + h(t) + 1 = h(t + 2). 

By Ll-metric we mean the metric defined by 

[]  

dl([xl ,  Yl], [x2, Yz]) = tx2 - - x t l +  I Y2 --Yl I- 

Further in this section all distances and lengths are considered in L~-metric. 

Lemma 4.8. A sum of  lengths (in Ll-metric) of  any 2(n + 1) 2 pairwise different 
nonzero vectors with integer coordinates is greater than ~n 3. 

Proof  The number of vectors of length i (in Ll-metric ) with integer coordinates 
is equal to 4i, and a sum of their lengths is equal to 4i 2. The number of vectors 
of length at most n with integer coordinates is equal to ~7=1 4i = 2n(n + !). A 
sum of their lengths is equal to ~7= 1 4i2 = 2n( n + 1)(2n + 1), which is the smallest 
sum of 2n(n + 1) pairwise different nonzero vectors with integer coordinates. This 
shows Lemma 4.8. [ ]  
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P r o o f  o f  C la im  4.2. As we said above,  Observa t ion  4.3(i) and Claims 4.4 and 4.5 
prove  that  A contains  no 7-hole. It remains to prove  that  the set A of m z points  
does not  contain  more  than c'(m - 4) 2/3 convex independent  points,  for c' > 12 z/3 
and  large m >_ mo(c'). 

Let A' be a convex independent  subset of  A, and let L'  be the set of  the points  
f rom L cor responding  to the points  of A'. All points of  L' lie on the per imeter  of 
the convex hull of L'  (Observat ion  4.3(ii)). First suppose that  the points  f rom L' 
do not  lie on a line. Let 11, 12 . . . . .  Is be the vertices of  the convex hull of  L' in the 
counterclockwise order. Fo r  any i = 1, 2 . . . . .  s, we define a vector w~ = l~+ 1 - l~ 
with integer coordinates  (if i = s, then natural ly l~+ 1 = 11) and a vector  v~ as the 
smallest  vector  with integer coordinates  such that  there is a positive integer cl with 
w i = c i v  i. So, on the line segment  1~1i+1 there are just  points  l i ,  I i q -V  i . . . . .  l~ + 
qVl  = li+~ f rom the lattice L. 

N o w  we investigate, for i = 1, 2 . . . . .  s, how m a n y  points  l i, l~ -+ vi . . . . .  Ii + 
c~vi = l~+ 1 can be f rom L'. Assume the straight line p = l~I~+ 1 is not parallel to the 
y-axis. By H i we denote the set of points  of  A corresponding to the points  1~, 
l~ + v~ . . . . .  l~ + clv~ = l~+~. The set H~ is H o r t o n  because it is a cont iguous segment  
of  the H o r t o n  set Ap.  The construct ion of the set A ensures that  the points  f rom 
H~ n A' form a convex or a concave sequence in the H o r t o n  set H i. The  set Hi 
contains  (c~ + 1) points. L e m m a  4.7 says that  c~ + 1 > g(r~), where r~ = IH~ c~ A'I. 
If the s traight  line p = l~l~+l is parallel to the y-axis, then we proceed similarly 
(with the interchange of  axes). Again, c~ + 1 > 9(r~). 

The  per imeter  of  the convex hull of  L '  (in Ll -metr ic  ) is less than or  equal  to 
the per imeter  of  the square  (0,  m - 1) x (0,  m - 1), which equals 4(m - t). In 
our  no ta t ion  

]lw~l] _< 4 ( m -  1). (1) 
i = 1  

On the other  hand,  

t{wifE = ciI{viIt > g(ri)ltviff = (1 + 1 + 2 + 2 + 3 + "")ftvitl 
~, ,  ~ '  

= (blv~ll + IIv~ll + 112v~ll + llZvill + 11By, It + ""), 

llw~ll > ~ (llv~tl + ILvill + N2v~ll + NNv~lI + l[3vill + ""). 
i=  1 i=  I M, ~ ,,J (2) 

Since any  two vectors  vi and vj have different directions, each of the vectors  v i, 
2v~ . . . .  is different f rom each of the vectors v j ,  2vj  . . . .  Thus  any vector  occurs at  
mos t  twice on the r ight -hand side of  (2). By L e m m a  4.8., if the number  ~ =  l(r~ - 1) 
of  the vectors  on the r ight -hand side of (2) is at least 2" 2(n + 1) 2 for an integer n, 
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then the sum of their lengths is greater than 2" ~n 3. Therefore, if we find an integer 
n such that 

4 ( n + 1 )  2 <  ~ ( r ~ - - l ) < 4 ( n + 2 )  2 , 
i = 1  

then 

Ilwill > 8n3. 
i=1  

Now inequality (1) above gives 

8n3 < 4(m - 1), 

8n 3 < 12(m - 1), 

4n 2 < 122/3(m - 1)2/3. 

If e' > 122/3, then, for large m, 

4(n + 2) 2 < c'(m - 1) 2j3. 

For any c' > 122/3 and for any large m > mo(c'), the following upper bound of a 
size of the set A' is established: 

[A'I = ~ (ri - 1) < 4(n + 2) I < c'(m - 1) 2/3. 
t=1  

The case when the points of L' lie on a line can be treated similarly. [] 

P r o o f  o f  Theorem 4.1. For a given positive integer k we find an integer m such 

that (x /3n/8) (m - 4) 2 < k _<_ (x /3n/8) (m - 3) 2. The nonsingular linear transforma- 

tion T: [x, y] v-~ [x + y/2,  x/3y/2] maps the lattice L of m 2 points onto the set 
T(L),  which forms the triangle lattice on the rhombus R with vertices [0, 0], 

[m - 1, 0], [~(m - 1), (Vf3/2)(m - 1)], and [~(m - 1), (x /3 /2)(m - 1)]. The triangle 
with vertices [t, t], [t + 1, t], [t, t + 1], where t = [_(m - 1)/2 ], is mapped by T 
onto a triangle, which we denote by A. The expected number of points from T(L)  

lying in the interior of the disk of diameter 2~/2x/~/n" k 1/2 centered randomly in 

the t r iangle/k is equal to 2/x/3-(n/4)(x//2-x/3/n • kl/2) 2 = k. Thus, there is a disk D 

of diameter ~/-2-x/~/n. k 1/2 containing at least k points from T(L)  in the interior. 
If 6 > 0 is sufficiently small in the above construction of the set A, then the disk 
D also contains at least k points from T(A)  in the interior. Some k of these points 
(for example, the ones with the smallest x-coordinates) form the set Ak which 

satisfies q(A~) < x/-2-x/~/n" k 1/2, contains no 7-hole, and does not contain more 
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than c ' ( m -  4)2/3<7 C'(8/N//3/Tz)l/3k 1/3 convex independent points, for c ' >  12 2/3 
and large k. It follows that A k does not contain more than ck 1/3 convex inde- 

pendent points, for every c > 122/3(8/x//3/n)l/3 = 4(2/rc)l/3w/3- 5.96 and large 
k > k(c). [] 

Similarly, it is possible to prove the following theorem. 

Theorem 4.9. Let 6 ~ (½, 1). For any positive real number ~ > 0 there is a positive 
constant c = c(a) such that, for any large k, there exists a set A k of k points in 
general position which satisfies q(Ak) < ctk ~ and contains at most ck 2~1-~/3 in- 
dependent points. 

Proof. The proof  is short, and some details are left to the reader. 
For  large k and m -" (e/2)k 6, consider the above set A of m 2 points satisfying 

Claim 4.2. Define the set Ak as the set of all points p of A with x-coordinate in 
the form 

n ._  ~ x(p) = d + k (5.-2)/3, 
2 

where d ~ (0, (2/~)k tl -~)/3) and n is an integer. Thus the points of A k lie in k m -~)/3 
strips of width (2/~)k tl -~)/3 and A k has about k points. 

Let C be the convex hull of a convex independent subset of A k. Less than 
c~k~l -~)/a sides of C lie in only one strip, and less than C2 ktl  -~)/3 sides of C intersect 
at least two strips, where cl and c2 are the two positive constants independent of 
k, A, and C. This gives Theorem 4.9. [ ]  

We conjecture that the result of Theorem 4.9 is the best possible and, on the 
other hand, Theorem 2.6 can be improved. 

/ _ _  

Let us remark that the coefficient a = x /2x/3/g  =" 1.05 in Theorem 4.1 is the 
smallest one which makes sense: 

Proposition 4.10. For every ~ < x//-2-x/~/Tr and large enough k, there is no set A of 

k points in the plane satisfying q(A) <_ ctx/k. 

A possible proof  is based on two known claims. 

Claim A. The disk of diameter R has the largest area among all figures with the 
diameter R. Its area is (~/4)R 2. 

Claim 13. Let d(r) be the maximum number of  points that can be placed on a convex 
figure with area P so that minimum distance between any pair of them is at least 
1/r. Then 

lim d(r__) = 2x/~ P. 
r - ~  r 2 3 
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Claim A is proved in [6], Claim B is one of the basic claims about the covering. 
We conclude this paper with a question: Suppose that A is a set of k points in 

general position satisfying q(A) <<_ ~x/~ for fixed • > v/~f3/n and k is large. Does 
it follow that A contains a 6-hole? In the general case it is an open problem 
whether any large set of points in general position contains a 6-hole. On the other 
hand, Harborth [4] proved that any set A of at least 10 points in general position 
contains a 5-hole. 
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