
Discrete Comput Geom 5"449-483 (1990) G 6 try
© 1990 Springer-Verlag New York Inc.

Partitioning Arrangements of Lines
I: An Efficient Deterministic Algorithm*

Pankaj K. Agarwal t

Courant Institute of Mathematical Sciences,
New York University, NY 10012, USA

Abstract. In this paper we consider the following problem: Given a set A ° of n lines
in the plane, partition the plane into O(r 2) triangles so that no triangle meets more
than O(n/r) lines of .~. We present a deterministic algorithm for this problem with
O(nr log n log ° r) running time, where co is a constant < 3.33.

1. Introduction

In the last few years several randomized divide-and-conquer algorithms for a
variety of geometric problems have been developed [AS], [Cll] , [C12I, [C13],
[CS], [CTV-1, lEGS], [GOS] using e-nets [H W I or the random-sampling tech-
nique of [C12] (see also [RS1] and [RS2]). The e-net theory shows that, for a given
set X of n objects and a set ~ _~ 2 x of ranges with finite Vapnik-Chervonenkis
dimension (see [HW] for definition), there exists a subset N c X of size r, for any
r > 0, such that if z e ~ . and z c~ N = ~ , then I~1 = O((n/r) log r). Moreover, the
theory asserts that a random sample N of size r will be an e-net with high
probability. A similar result has been independently obtained by Clarkson
[C12], [C13]. It states roughly that if we draw a random sample N of size r from our
set X and partition the underlying geometric space into cells with the property that
(i) each cell can be defined in terms of only a "constant" number of elements of N,
and (ii) each cell does not meet any element of N, then, with high probability, no

* Work on this paper has been supported by Office of Naval Research Grant N00014-87-K.OI29, by
National Science Foundation Grant DCR-83-20085, and by grants from the Digital Equipment
Corporation and the IBM Corporation. A preliminary version of this paper appears in the Proceedings
of the 5th Annual Symposium on Computational Geometry, 1989, pp. 11-22.

i Current address: Department of Computer Science, Duke University, Durham, NC 27706, USA.

450 P.K. Agarwal

cell meets more than O((n/r) log r) elements of X. Random-sampling techniques
allow us to split the original problem into subproblems of small size, which can
then be solved recursively. For example, if the objects are "lines in the plane" and
an element of ~ is the "set of lines intersecting a given triangle," then these results
imply that, for a given set L~ a of n lines in the plane, there exists a subset N = L,e of
size r such that any triangle which misses all lines in N intersects O((n/r) log r) lines
of Ae. A problem involving the set L,e of lines can then be split into subproblems by
computing the arrangement of the lines in N and by triangulating every face of
the arrangement; each resulting triangle A induces a subproblem involving only
O((n/r) log r) lines of A a intersecting A. As an example of a problem that benefits
from this set-up, consider Hopcroft's problem (see [CSY]): Given m points and n lines
in the plane, does any point lie on any line? Applying the above divide-and-conquer
strategy to the given lines, and partitioning the points among the triangles, each
subproblem involves only the points that fall within some triangle and the line
cutting it. More details concerning this and other problems of this kind are given in
the second part of this paper [A]. The same approach works for other geometric
objects in the plane as well as in higher dimensions.

Unfortunately the random-sampling technique or the e-net theory only proves
the existence of such a subset N, but does not show how to construct it
deterministically (and efficiently). This has forced all algorithms based on these
techniques to use randomization to obtain N (the only randomized step in most of
these algorithms is that of choosing a good sample N). The randomization is
justified because the above theories show that most subsets N of size r satisfy the
desired properties, so a random choice of such a subset will succeed with high
probability. Still, a major open problem in this area is to find an efficient
deterministic algorithm to obtain a "good" sample. Recently, Chazelle and
Friedman I-CF] gave a general framework which unifies the results of Haussler and
Welzl [HW] and Clarkson [C13], and yields a deterministic algorithm to construct
a good sample. Although their algorithm runs in polynomial time, it is not very
efficient (in particular its time complexity is too high an overhead for most of the
applications). This has motivated researchers to look for special cases, where faster
deterministic constructions are possible. Woeginger [Wo] gave an O(n) algorithm
to construct an e-net for a very special case, where the objects are points in the
plane and the ranges are half-planes. A much more significant result in this
direction has been obtained by Matoulek [Ma], who showed that, given a set of n
lines in the plane, the plane can be partitioned into O(r 2) triangles in time
O(nr 2 log z r) so that no triangle intersects more than O(n/r) lines (however, these
triangles in general are not formed by an arrangement of a sample subset of the
lines). Note that an important property of the algorithm is that each triangle it
produces is cut by only O(n/r) lines, rather than O((n/r) log r), as promised by the
probabilistic techniques. If r is constant, then this algorithm is optimal, and can be
used to remove randomization from most of the "random-sampling"-based
algorithms involving lines or segments [AS], lEGS], [GOS], [HW]. However, it is
not efficient if r is large, in particular if r = n ~, for some 0 < ~ < 1. Let us be more
specific concerning this efficiency issue. Even though Matoulek's algorithm is
much faster than that of Chazelle and Friedman, it is still inefficient when
compared with the following "lower bound." Since the algorithm produces O(r 2)

Partitioning Arrangements of Lines, I 451

triangles and each is met by O(n/r) lines, the total input size of all the corresponding
subproblems (that is, the total number of line-triangle crossings) is O(nr) (we can
show that the bound is tight in the worst case). Thus it is natural to seek an
improved algorithm whose complexity is close to O(nr). As we will see later, this
improvement does make a difference, because in many applications we do want to
choose r to be n ~, for some 0 < ~t < 1.

In this paper we achieve such an improvement, and obtain an O(nr log n log ~' r)
deterministic algorithm which, given a set L~ of n lines, partitions the plane into
O(r 2) triangles, none of which meets more than O(n/r) lines (here a~ is some
constant < 3.33). Then we apply this algorithm to remove randomization and to
improve the time complexity of solutions to several problems. A common
characteristic of the time complexity of previously known algorithms for these
problems is that they are worse by a factor of O(n~), for any 6 > 0 (with a constant
of proportionality depending on 6), than the worst-case output size, or than some
other natural measure of complexity that can be associated with the problem. For
example, the running time of the best-known (randomized) algorithm to compute
incidences between m points and n lines is O(m2/3-'~n2/3+2'~ + (m + n)log n),
for any 6 > 0 [EGS], which is worse by a factor of O((n2/m) ~) than the maxi-
mum possible number of such incidences. (A slightly faster but still random-
ized algorithm for this problem has been given in [EGH*] which runs in
O(m2/3n 2/3 log ¢ n + (m + n 3/2) log 2 n) expected time. The difference between these
two algorithms is that the first algorithm can be made deterministic without
increasing its running time, using Matougek's algorithm, while the second algor-
ithm is not yet known to admit a similarly efficient determinization.) Factors like
O(n 6) appear in the bound of these algorithms due to the fact that they use small
values of r (in most cases constant values). Although Matougek's algorithm makes
most of these algorithms deterministic, it also cannot choose a large value of r,
because its running time is quadratic in terms of r, in which case the overhead of
constructing the partition dominates substantially the time complexity, resulting in
an inefficient algorithm. On the other hand, by applying our algorithm, we can use
a sufficiently large value of r, which allows us to remove the O(n ~) factor from the
bounds. Another disadvantage of using a small value of r is that the algorithm then
becomes recursive and more complex. In contrast, by choosing an appropriate
large value of r, we partition the plane just once, because then the subproblems are
sufficiently small, and can be solved directly by other means; this makes the
algorithms much simpler.

In a companion paper [A] we demonstrate the usefulness of our partitioning
algorithm by obtaining efficient algorithms for a variety of problems involving lines
or line segments in the plane. These algorithms are deterministic, faster than
previously known algorithms, and optimal up to a polylog factor in many cases.
The problems that benefit from it include computing incidences between points
and lines, computing many faces in arrangements of lines or segments, counting
intersections in a set of segments, implicit point location, and spanning trees with
low stabbing number.

Our algorithm for partitioning the plane works in two phases. The first phase
partitions the plane into O(r 2 log ~' r) triangles, each of which intersects O(n/r) lines.
The second phase reduces the number of triangles to O(r 2) still maintaining the

452 P.K. Agarwal

property that no triangle meets more than O(n/r) lines, using a similar technique to
that of Matou~ek [Ma]. We believe that the second phase is unnecessary, i.e., that
the first phase or some appropriate variant of it produces only O(r 2) triangles, but
we have not been able to prove it so far. Even if this is not the case, in most of the
applications we can stop after the first phase and solve the subproblems directly
within each of the resulting O(r 2 log ° r) triangles, without increasing the asymp-
totic complexity of the algorithm.

This paper is organized as follows. In Section 2 we describe the geometric
concepts that we use. Section 3 gives an algorithm for a subproblem which is
interesting in its own right, namely that of computing the r th leftmost intersection
point induced by a set of n lines inside a given convex quadrilateral. Section 4 is the
heart of our algorithm; it presents an algorithm to partition a given convex
quadrilateral .~ intersecting m lines and containing K of their intersection points
into O(m/(+ K/(2) convex quadrilaterals (for an arbitrary parameter () so that
both the number of lines crossing any subquadrilateral .~' and the number of their
intersections inside .~' are small (the precise conditions are given in Theorem 4.t 5).
In Section 5 we describe the first phase of the partitioning algorithm, which
basically consists of applying the algorithm of Section 4 recursively, and Section 6
describes the second phase of the algorithm. Section 7 shows how to modify the
analysis to handle degenerate cases as well. In Section 8 we conclude with some
final remarks and open problems.

2. Geometric Preliminaries

This section defines the geometric concepts, and formalizes the notation that we
use in this paper. Let ~ = {l 1, 12 ln} denote a set o fn lines in the plane. These
lines induce a planar map called the arrangement ~ ¢ (~) of ~ , whose vertices are
the intersection points of lines in Yf, edges are maximal connected portions of lines
in ~F not containing a vertex, and faces are maximal connected portions of the
plane not meeting any edge or vertex of ~¢(.J~). See [El for more details. For
simplicity we assume that the lines in / ,~ are in general position, that is, no three
lines are concurrent, and that no line in ~ is vertical. For any point p e R 2, we
define its level to be the number of lines in ~ lying above it (not counting the lines
passing through p). For any 0 < k < n, the k-level of ~¢(~:) is the set of(closure of)
edges of .~¢(~) whose level is k (see Fig. 1). A k-level of ~¢(~'~) is a monotone

Fig. L

•. / . ~ lifted 2-1evel

The 2-level, 1-approximate 2-level, and 2-simNified 2-level.

Partitioning Arrangements of Lines, I 453

polygonal chain with two unbounded rays. More details on k-levels can be found in
[E], [EW], and [We].

Lemma 2.1. Let Pl and pz be two points in the plane whose levels are k 1 and k2,
respectively. Then the line segment PiP2 intersects at least lkl - - k 2 1 lines of ~:.

Proof. Obvious from the definition of k-levels. []

Lemma 2.2 [Ma]. Let ~1, a//2 ql s denote pairwise disjoint sets of levels of
~ (~ :) with Iq~il-> ~0, for all i < s, then there exists a level Uie~lli such that
~=1 Ivil <- nZ/~o.

We call an x-monotone polygonal path H (not necessarily formed by the edges
of ~¢(g)) an e-approximate k-level, for e < k, if it lies in the strip bounded between
the k - e and k + e levels of d(~e:) (see Fig. 1). A set of e-approximate 2ei-levels, for
i < Ln/2e], is called an e-approximate leveling of ~¢(~) . Let Po, Pl Pm be the
vertices of a k-level of d(~,~¢). For any J < m, we define the &simplified k-level to be
the polygonal path formed by connecting Po to P6, P~ to P2~ PLm/aja to Pro, and
concatenated with the left and right rays of the k-level incident to Po and pro,
respectively. Edetsbrunner and Welzl [EW] proved that

Lemma 2.3 [EW-J. For a given set of n lines ~ , and 0 < k < n, a J-simplified k-level
is a [-6/27-approximate k-level of ~l(:,~).

Another geometric concept that we use in this paper is duality (see [E]. In R 2,
the dual of a line is a point, and the dual of a point is a line. The duality
transformation can be chosen in such a way that it preserves the "above-below"
relationship between points and lines. The dual of a line segment pq is a double
wedge formed between the dual lines p*, q* of p, q, respectively, and not containing
the vertical line through their intersection point. We denote the dual of a feature
(point, line, or segment) 7 by y* (see Fig. 2).

Let .~ be a convex quadrilateral with vertices ql, q2, qa, q4 ordered in counter-
clockwise direction, and let a.~ denote the boundary of.~. Let .~ = {:1, :2 :m}
denote a set of lines passing through .~, and let K be the number of intersection
points of L# contained inside .~. The intersection points of d.~ and .~e are called the
endpoints of L,e. For simplicity let us assume that every line of &a intersects tg~ at
two points, i.e., does not touch ~ at one of its vertices (or at an edge).

Fig. 2.

f,

A segment e = a-~ and its dual e*.

454 P.K. Agarwal

~2

13 ' . ~

~ q 3

e6

Fig. 3. Quadrilateral .~, and set £e: solid lines denote red lines, dashed lines denote green lines, and
dotted lines denote blue lines.

The set Le of lines can be partitioned into three different classes according to the
location of their endpoints (see Fig. 3):

(i) "Red" lines Ler: a line ~ belongs to Let if one of its endpoints lies on qlq2 or
q2q3 (referred to as the left endpoint) and the other one lies on qlq4 or q3q4

(referred to as the right endpoint), i.e., f crosses the diagonal qlq3; let
ILer] = m ,

(ii) "Blue" lines Leb: a line d belongs to Leb if one of its endpoints lies on qlq2

(referred to as the left endpoint) and the other one lies on q2q3 (referred to as
the right endpoint); let ILebt = rob.

(iii) "Green" lines Les: a line f belongs to Leg if one of its endpoints lies on qlq4

(referred to as the left endpoint) and the other one lies on q3q4 (referred to as
the right endpoint); let ILegl -- ms.

These three sets are pairwise disjoint and &o r u Leg u Leb = Le" Let Kxy denote
the number of intersection points between La x and Ley lying inside ~, where
x, y ~ {r, b, g}. It is easily seen that Leb and Le~ do not intersect inside .~, that is
Kbg = 0. Without toss of generality we can assume that m r > m/2 because otherwise
we can cyclically renumber the vertices of.~ so that the above inequality is satisfied.
For the sake of exposition we assume that qt is the upper left corner of .~.

Let A = {al, . . . , a,,r} (resp. B = {b 1 b,,.}) be the left (resp. right) endpoints
of Let appearing in counterclockwise (resp. clockwise) direction around d.~. Let n, a
be the permutations defined by left and right endpoints of Let, respectively, that is,
for a line d/e Ler, its left (resp. right) endpoint is denoted by a~(0 (resp. b,(0).

3. Selecting the Kth Leftmost Intersection Point

Let Pt pr denote the intersection points of the lines in Ae lying inside .~ and
ordered in increasing x-coordinate. In this section we consider the problem of
calculating the r th leftmost point p~ of these intersections, for any given ~ < K. The
algorithm extends the recent algorithm of Cole et al. [CSSS] for calculating the kth
leftmost intersection point of n lines in the entire plane. One of the key steps of the
algorithm is to count the number of instersection points of Le lying inside a given

Partitioning Arrangements of Lines, I 455

convex quadrilateral. We first give an algorithm that counts the number of
intersections inside a convex quadrilateral in time O(m log m), where m is the
number of lines passing through .~.

3.1. Countin9 Intersection Points Inside a Convex Quadrilateral

Let ¢ denote the sequence of endpoints of lines in A a sorted along 0.~ in the
counterclockwise direction, starting from one of its vertices. Let a, b e 8 (with
a < b) denote the endpoints of a line f e L~ a. It is easily seen that ~ intersects another
line g' inside .~ if and only if exactly one of the endpoints of g' lies between a and b
(see Fig. 4). Therefore to count the number of intersection points inside .~ we scan
once and do the following at each point of g. If we encounter a line ~ for the first
time, we insert ~ on top of a stack maintained as a binary tree ~ , and if we
encounter g for the second time, we remove it from ~, but before doing so we count
the number of lines in the tree that were inserted after ~. It can be easily verified that no
intersection is counted twice. Since each operation requires O(log m) time, we have

L e m m a 3.1. For a given convex quadrilateral .~ and a set .~ of m lines passing
through it, we can count the number of intersections of .~ lying inside .~ in time
O(m log m).

R e m a r k 3.2. The above algorithm can count the number of intersections lying
inside any k-gon ~ in O(m log m) time.

Next we give an algorithm for finding the xth leftmost intersection point inside
-~ using the counting procedure just described.

3.2. Computing the ~th Leftmost Intersection

Cole et al. [CSSS] have given an O(m log m) algorithm that returns the xth leftmost
intersection point in a set A a of m lines in the plane. Their algorithm cannot be
applied directly to our case because it counts all intersection points of .~ lying to
the left of the xth one, while we count only those intersection points that lie inside .~.
However, we will show that the algorithm of [CSSS] can be easily adapted to our
case. We assume that the reader is familiar with this algorithm, so we describe it

Fig. 4. A line with endpoints a and b.

456 P.K. Agarwal

here only briefly, and show how to modify it for our case; for more details, see
[CSSS].

Let it(a) denote the permutation of lines in ~ sorted in decreasing order of their
intercepts with the line x = a, assuming that no two lines in ~ intersect at x = a.
The rank of a, denoted ~k(a), is defined to be the number of intersection points of.La
lying inside .~ and to the left o fx = a. The ~cth leftmost intersection point p, is such
that ~k(a*) = x, where a* = x(p,) + ~, for some sufficiently small e > 0 (in this
description we assume that no two points Pi, P~ have the same x-coordinate).

Cole et al.'s algorithm [CSSS] is based on Megiddo's technique [Me], further
improved by Cole [Co], for implicit parametric searching. Using a sorting
network, e.g., that 'of Ajtai et al. [AKS], n(a*) can be obtained by performing
O(m log m) comparisons, performed in O(log m) batches of O(m) independent
comparisons each, where each comparison answers a question of the form: "Does
lie above ~ at x = a*?" Although we do not know a*, we can answer a question of
this form by computing the rank of the abscissa x(qo), where qu is the intersection
point of ~ and ~. If ~(x(qu)) > x, then q~ lies to the right of x = a*, so the order of
and 6 there coincides with their order at x = - oo; otherwise the order is reversed.
In such a sorting network there are O(log m) levels and at each level s = O(m)
questions are asked; let z 1, z 2 z s denote the x-coordinates of the intersection
points corresponding to the questions to be answered at a level j. If we resolve the
question for the median value zm~ a of zl z s, then we can resolve the question for
at least half of the above points, e.g., if z~,~d < a*, then z~ < a* for all z~ < Zme d. For
the remaining half of the points, the question can be resolved by applying the same
method recursively, thus allowing us to resolve all m questions by actually
computing the rank of only O(log m) points. Once all comparisons are resolved at
level j, we can continue to level j + 1 of the network. At the end, all comparisons
have been resolved and we have obtained the sorted order of the lines in ~ along
x = a*, still without knowing the exact value of a*. However, this order is easily
seen to determine uniquely how many intersection points of ~ lie to the left of
x = a*, thus the set of these intersections, as well as the subset of these points lying
inside .~, are fully determined at the end of the algorithm. By keeping track of all
inequalities of the form z~,d < a* or zm,d > a* we finally obtain an interval

< a* < r , and the logic of the procedure is easily seen to imply that at is the
x-coordinate of p~. The point p~ itself is also easy to obtain by recording, for each
Zm,d, the two lines that induce it.

To resolve a comparison at x = z~a, we proceed as follows. Let .~- denote the
portion of .~ lying to the left of the vertical line x = zm,d, by Lemma 3.1 and the
subsequent Remark, we can count the number of intersection points of Za lying
inside .~- (which is at most a pentagon) in O(m log m) time. Thus the rank of Zme d
can be computed in O(m log m) time, so the overall running time of the algorithm is
O(m log 3 m). By using Cole's improvement [Co], the time can be reduced to
O(m log 2 m). Cole et al. [CSSS] observed that it is not necessary to compute the
exact rank of a point because we are only interested in knowing whether Zm¢ d lies to
the left or to the right of p~. They proved that it suffices to compute an approximate
rank of a point, which can be done in O(m) amortized time, yielding an O(m log m)
algorithm. Using the same idea we can also compute our version of approximate
rank in amortized time O(m), and therefore we obtain

Partitioning Arrangements of Lines, I 457

Theorem 3.3. Given a convex quadrilateral .~, a set of m lines ~ , and an integer K, we
can determine, in time O(m log m), a vertical line, so that .~ contains exactly x
intersection points to the left o f that line.

Remark 3.4. (i) The remark following Lemma 3.1 implies that we can extend the
above algorithm to any k-gon with O(m log m) running time.

(ii) The above algorithm uses the sorting network of Ajtai et al. I'AKS], which
involves a very large constant, therefore making our algorithm impractical. A
possible solution to circumvent this problem is to use the much simpler Batcher's
sorting network CB]; this network has depth O(log 2 m) and therefore the overall
running time of the resulting algorithm becomes O(m log 2 m). However, to obtain a
better asymptotic complexity, we use the former algorithm.

4. Partitioning a Convex Quadrilateral

This section describes an algorithm to partition the convex quadrilateral .~ into
convex quadrilateral subcells so that on the average only few lines pass through
each cell, and the maximum number of lines passing through each cell is also low.
To be more precise, for any given positive integer (< m, we want to partition .~
into M = O(m/(+ K/(2) cells so that the following conditions are satisfied (where
m~ is the number of lines passing through the ith cell, and K~ is the number of
intersections with the ith cell):

(i))-'/M= 1 mi = O(m + K/O, max/mt = O(x/~),

(ii) E ~ I Ki = K, max/K i < (x / ~ .

4.1. A Special Case

Before solving this general problem we consider a special case in which .~ contains
only "red" lines and we do not care how many intersection points lie in a cell.
Moreover, although most cells in the construction to follow will be quadrilaterals,
some could have up to six edges.

First, compute the left and right endpoints of all lines in .W and sort them to
obtain the lists A and B. Next, for all 1 < i < t = [-m/~q, connect ai~ to b~:. The
segments a~ bi~ are called pseudoedges (see Fig. 5). The pseudoedges partition .~ into
cells .~, -~z -~t- The following sequence of lemmas show that this partitioning
has the desired properties.

Lemma 4.1. A line di ~ .~" intersects at least In(i) - tr(i)l lines of LP inside .~.

Proof. Without loss of generality assume that n(i) > tr(i). Since only tr(i) - 1 lines
have their right endpoints preceding the right endpoint of d~, at least n(0 - tr(i) of
the lines, whose left endpoints precede that of ~, have their right endpoints after
b,(0 in B. But every such line crosses the line ~ inside .~, showing that at least
In(i) - tr(i)l lines of f f intersect di inside .~. []

458 P.K. Agarwal

Fig. 5.

ea / a2

~4

I / / q4

Partitioning .~ into .~ -~t with m = 6 and (= 2. The dashed edges are pseudoedges.

Let (i denote the number of pseudoedges intersected by the line ~.

Lemma 4.2. ~'7'=1 ~i < 2K/~ + m.

Proof. If a line ~ intersects fib pseudoedges, then it is easily seen that

In(i) - tr(i)l > (~i - 1)(.

Summing over all lines, we obtain

I:~(i) - a(i)t > ~. (6, - 1)¢.
i = l i = 1

Let v~ denote the number of lines of La that ~ intersects inside .~. We have
~ i~ t v~ = 2K, because there are only K intersection points inside .~ and each inter-
section is counted twice. By Lemma 4.1, In(i) - tr(i)l < v~, therefore

(~ i - 1) ~ < 2 K or 6i < + m . []
i = 1 i=I -- T

Let mi denote the number of lines passing through the cell -~r Since the line ~ lies
in 6j + 1 cells, we have

Corollary 4.3. ~[=1 m, = ~.~'= 1 (6j + 1) < 2(K/(+ m).

Lemma 4.4, Let I~ denote the number of lines passing through the cell ,~ but not

having any of their endpoints on 0~. Then Iz t < 2 x / ~ for all i < t.

Proof. Let . ~ denote the set of lines passing through the cell .~j but not having
any endpoint in .~. Par t i t ion the set ~ into disjoint subsets .~xy, for x =

Par t i t ion ing Arrangements of Lines, I 459

z = l

Fig. 6.

ql 114

t y = 4

V = I

q~

Line g~ intersects a t least 6(l ines of .~.

I , . . . , t - i, y = 1 i - 1, such that a line ~ belongs to L~'xy if one of its endpoints
lies in .~+~ and the other in ,~_y. Let/~,y = t.g% t. Note that

Vdj ~ Lexy, lit(j) - a(j)t _> ~(x + y - 1).

By Lemma 4.1, a line ~ e .~exy intersects at least (x + y - 1)(lines (see Fig. 6).
Summing over all x and y we get

2K _> Z ~. #~,r(x + y - 1) . (
x y

o r

2K

x y x y X y
(4.1)

Let .~a~ ~ .W~ denote the set of all lines having one endpoint in .~;+~. Then

(4.2)

Similarly, if .W~'__. L~ denotes the set of lines having one endpoint in -~i-y, then

x y y

Moreover ~ ~y b% = / ~ - Therefore (4.1) can be written as

2K
.~/' (4.3)

x y

Since ~.~lLa~ t = #i and, for all x,] -~I < 2~, the term ~x xI~'I minimizes when

#i
ILe ' t -- i - 2 ~

for 1 _< x < L/~d2~J,

for x = L/~d2~J + 1,

otherwise.

460 P.K. Agarwal

Hence,

F, x. I-~1 _>
X

Lu4/2~J

E
X = |

(4.4)

Similarly,

Y

(4.5)

By substituting (4.4) and (4.5) in (4.3), we obtain

(4.6)

Let L#i/2~J = a and let/t~/2(= a + v, for some 0 < v < 1, then (4.6) becomes

2K
- - > 2(a + 1)(2~(a + v) - ~a) - 2~(a + v)

or

K
(-~ > (a + 1)(a + 2v) - (a + v)

= (a + v) 2 + v(1 - v)

_> (a + v) 2 (because 0 < v < 1)

=~-~.

Therefore, Pi < 2x/~- []

Concerning running time, notice that the sets A and B, and therefore -~1 -~,
can be computed in time O(m log m). Moreover, for each line E~, we can easily
compute the cells it crosses--they are simply all the cells lying between (and
including) the cell containing a~u~ and the cell containing b~u ~. Thus the total
time spent in computing the lines passing through each cell is bounded by
O(m log m + K/(). Now it follows from Lemma 3.1 that number K~ of intersections
within -~i can be computed in time O(mi log mi). Therefore the total time spent in
computing intersectiong is at most

Partitioning Arrangements of Lines, I 461

Hence, we can conclude that

Lemma 4.5. The above algorithm partitions .~ into t = [-m/~7 subcells -~1 ~, in
time O(m log m) such that

(i) ~[=1 mi <- 2(m + K/(), and

(ii) max/mi _< 2 x / ~ + 2~.

Moreover, we can compute ~i and K i (as defined above)for all -~i, in time
O((m + g / () log m).

Remark 4.6. Note that in the special case at hand we have ignored the issue of
making the numbers K~ small. Also, the resulting partitioning can have one cell
with six edges or two cells with five edges each. These issues will be addressed in the
following general algorithm.

4.2. General Algorithm

Next we give an algorithm for the general case using the above procedure as a
subroutine. Our algorithm consists of five steps.

The first step applies the preceding algorithm to the collection of red lines, to
partition the quadrilateral .~ into a collection of cells Q r = {.~~}, for
t = [-mJ(7, so that every cell contains the left (resp. right) endpoints of at most
red lines. Let R = {r 1 , r t- 1} denote the set of pseudoedges that bound the
quadrilaterals of Q~; they are referred to as "red" pseudoedges.

The second step applies the preceding algorithm to the collection of green lines
(where this time d~ is divided into a left and a right portion at q4 and q2), to
partition .~ into a collection of cells Qg = {.~~}, for u = ['mg/(7, so that every
cell contains the left (resp. right) endpoints of at most (green lines. Let
G = {gl gu- 1 } denote the set of pseudoedges bounding the quadrilaterals of
QS; these pseudoedges are referred to as "green" pseudoedges. Since the endpoints
of all green lines lie on qlq4 and q3q4, all green pseudoedges extend from qlq4 to
q3q4. Assume that the quadrilaterals .~ are sorted in their order along qlq4, and
that .~ is bounded by the two pseudoedges g~_ ,, g~, for 1 < i < u.

In the third step we apply the same algorithm to the collection of blue lines
(again, partitioning d.~ at q2 and q4), to partition .~ into a collection of cells
Qb ~b = { 1~}, for v = I-mw/~7, so that every cell contains the left (resp. right)
endpoints of at most ~ blue lines. Let B = {b 1 by_l} denote the set of
pseudoedges bounding the quadrilaterals of Qb; they are referred to as "blue"
pseudoedges. This time all pseudoedges extend from qlq2 to q2q3. Assume that the
quadrilaterals . ~ are sorted in their order along q~q2, and that . ~ is bounded by
the two pseudoedges b~_ 1, b~, for 1 < i < v. See Fig. 7 for an illustration of the
resulting pseudoedges.

Let S~ = R w B w G, and let dr denote the set of endpoints of segments in 6e. Let
F denote the set of bounded faces in the arrangement of ~.~ w S/'. If a face ~-, • F
touches the boundary of.~, then it is called a boundary cell, otherwise it is called an

462 P.K. Agarwal

~4

qs

Fig. 7. Red, green, and blue pseudoedges.

internal cell (see Fig. 8). The boundary of an internal cell is formed by four
pseudoedges, two of which are always red. On the basis of the color of their edges
we partition the cells into three catagories:

(i) Red-green cells: cells formed by the intersection of .~ for 1 < i < u and .g~
for 1 _< j _< t. A red-green cell formed by ~ c~ .~ is denoted by ~'tl. If ~ j is
an internal cell, then its edges are portions of g~_l ,gt~G, and
r j _ l , r j e R (a n d i < u , 1 < j < t).

(ii) Red-blue cells: cells formed by the intersection of .~b for 1 <: i _< v and ~
for 1 _< j _< t. A red-blue cell formed by ~ c~ .~ is denoted by ~ . If ~ is
an internal cell, then its edges are portions of b~_ 1, bi e B, and r j_ 1, ri ~ R
(a n d i < v , 1 < j < t) .

(iii) Red-blue-green cells: cells formed by the intersection of.g~, ~ , and .~ for
1 < i < t. We denote such a cell by ~1t. If ~-1i is an internal cell, then its
edges are portions of b 1, gl, r~_ 1, and r i (and I < i < t).

The problem with the boundary cells produced by the arrangement of 0~ u ~ is
that some of them may have more than four edges. However, since every cell has at
most four pseudoedges, it cannot have more then eight edges in total. At the fourth
step of our algorithm, we partition all boundary cells with more than four edges
into two or three convex quadrilaterals and triangles by appropriate diagonals,
which we also call pseudoedges (see Fig. 9).

Fig. 8.

q~

Internal and boundary cells: shaded regions denote internal cells.

Partitioning Arrangements of Lines, 1 463

Fig. 9. Cells with seven or eight edges: dashed lines are the pseudoedges added to partition the cell into
convex quadrilaterals and triangles.

A cell with five or six edges is partitioned arbitrarily into two convex quadri-
laterals, but a cell with seven or eight edges is partitioned in such a way so that one
of the new pseudoedges intersects only red and green lines, and the other intersects
only red and blue lines. It is easily seen that such a partition is always possible. For
example, an 8-cell lying between the red pseudoedges r~_ 1, ri is partitioned by
connecting the left endpoint of r l_ t to the left endpoint of ri, and the right endpoint
of y~_ 1 to the right endpoint of r~ (see Fig. 9). 7-cells are partitioned in a similar
manner.

Note that there can be at most one cell having seven or eight edges. The
existence of an 8-cell implies that no pair of pseudoedges intersect, and the existence
of a 7-cell allows only very limited pattern of pseudoedge intersections. Moreover
the existence of a 7- or 8-cell implies that the first step creates at least one red
pseudoedge.

Next, for each of the cells produced so far, we compute the line passing through
it, and count the number of intersection points lying in it. If K > 6(2 and a cell ~

has K s > (x / ~ intersection points, then we partition it into [Kd~x/rK7 cells, each

containing at most (x / ~ intersections, using the algorithm of Section 3. With some
care we can obtain such a partition with at most one 5-cell. Every 5-cell is further
partitioned by a diagonal irrto two subcells. This yields a final collection of
quadrilaterals {-~1, -~2~u}, which is the output of the algorithm.

4.3. Analysis of the Algorithm

The algorithm just described for partitioning a convex quadrilateral is fairly simple.
Its analysis, however, is not. For i = 1 M, let mi denote the number of lines
passing through -~i, and let Ki denote the number of intersections contained in -~i.
For simplicity we assume that the lines are in general position, that is, no three lines
are concurrent, and no line is vertical. We begin by bounding the total number of
cells created by the algorithm and the number of lines meeting each cell. As we shall
see later, the constants appearing in the bounds for max~ mt and ~a mt control the
exponent of the logarithmic factor in the bound for the time complexity of the
overall partitioning algorithm, therefore we try to obtain as small constants as
possible. If we do not worry about constants, the proof can be simplified a lot.
To bound the total number of cells produced by our algorithm, we first estimate
the number of cells formed by overlapping the original red, green, and blue
pseudoedges.

464 P.K. Agarwal

Lemma 4.7. Let N be the number of cells produced by overlappin9 the red, 9teen,
and blue pseudoedges, then

2 K
N <: ~ m + ws - 2. (4.7)

Proof We bound the number of boundary and internal cells separately. The
number of boundary cells is obviously equal to the number of endpoints of
pseudoedges, namely 2]5e] = 2 (u + v + t - 3).

Next, consider the number of internal cells. To bound the number of red-green
and red-blue-green cells, we use the following charging scheme. Let w be the
intersection point of a red line ~' and a green line f'. Suppose that the right endpoint
of Y lies on qlq4 in a cell .~, and that the left endpoint of ~' (on qlq4) lies in ~ .
If i = 1 and 1 < j < t, then we charge w to the red-blue-green cell ~1i (e.g., w4 in
Fig. 10), and if 1 < i < u and 1 < j < t, then we charge w to the red-green cell ~
(e.g., w 2 in Fig. 10). I f .~ ca .~ is a boundary cell, then we do not charge w to any cell
(e.g., w a in Fig. 10). Similarly, if the right endpoint of E lies on qaq4, then we charge
w to the cell ~'i~ (e.g., wl in Fig. 10), where .~ contains the right endpoint of t"
(on qaq4) and .~ contains, as before, the right endpoint of •. Again, no charge
is made if .~ ca -~ is a boundary cell.

Clearly, each internal red-green intersection is charged to at most one cell.
Morever, it is easily checked that each internal red-green or red-blue-green cell is
charged exactly (2 red-green intersections, namely those between the red lines
whose right endpoint lies in .~ and the green lines whose right or left endpoint (as
the case might be) lies in .~[(by construction, all those intersections points do lie
inside .~). Hence there are at most Krg/(2 red-green and red-blue-green cells.
Similarly, we can prove that there are at most K,b/(2 red-blue cells. Thus, the
overall number N of cells after the third step is bounded by

Krg Krb
N < 2(t + u + v) +- - -~-+-~- - -6

< + + + ~ (Krg + Krb) -- 6

2 ~!~
< ~ (m + 2) + (K,g + Krb) - - 6

2 K
< ~ m + ~ - 2 . []

Lemma 4.8, Let M be the total number of cells produced by the above algorithm.
Then

3 2K

Partitioning Arrangements of Lines, I 465

ql , , £' q4

q2 qa

~x q4

q2 q3

Fig. 10. Charging of a red-green intersection point.

Proof. It is easy to see that for any two adjacent boundary cells, one of them has
at most four edges, therefore there are at most I A el cells with five or more edges (see
Fig. 11). Moreover, there is at most one cell with seven or eight edges. Since each 5-
or 6-cell is partitioned into two convex quadrilaterals and the 7- or 8-ceil into three
convex quadrilaterals, the fourth step creates at most I~el + 1 convex quadrilater-
als, which in conjunction with (4.7) implies that after the fourth step the number of
cells is at most

2m K 3m K
-~-- + ~ - 2 + (t + u + v - 3) _< ~ - + ~-~- 5.

Finally, the fifth step adds at most I-KJ(. , /~-] new cells at each quadrilateral

containing K~ > (x/-/(intersection points. Since there can be at most K/((x/K)
such quadrilaterals, the total number of new cells is at most

~ (~ K K + 1) _< 2 ~ g g -<~,

because we apply this step only for K > 4(2. Thus

3m 2K

M <_T+ F. []

Next, we bound the maximum number of lines passing through any cell and the
total number of line-cell crossings.

Lemma 4.9.
satisfies

For each 1 <_ i <_ M, the number mi of lines passing through the cell .~

m, < max{2-~/2v/K + 4(, 2 x / ~ + 6(}. (4.8)

Fig. 11. No two adjacent cells have more than four edges.

466 P.K. Agarwal

Proof Note that a cell 2~i produced by our algorithm is a subset of some cell
~', ~ F (the cells obtained by overlapping red, blue, and green pseudoedges).
Therefore it suffices to bound the number of lines passing through a cell in F. First,

g r let us consider a red-green cell ~-u = -~ n .~j. By Lemma 4.5, .~ meets at most

2v/~gg + 2(green lines and 3} meets at most 2X/~r ~ + 2(red lines, and since no

blue line passes through a red-green cell, there are at most 2 (x / ~ + ~/~gg + 20
lines passing through ~'u" Similarly, we can show that a red-blue cell meets at most

2(x/~, , + ~ + 20 lines.
Finally, let ~-xi be a red-blue-green cell, then ~ ~ is the intersection of

.~], .~ , and .~. Since .~] (resp. .~) meets at most 2(green (resp. blue) lines, ~-~

has at most 2 x / ~ ~ + 6(lines. Now the lemma follows from the fact that

m a x { x / ~ , + x/-K~bb, ~ + ~/K,,} < x/~K. []

For x, y e {r, b, g}, let 6~ 'r denote the number of pseudoedges of color x
intersected by the line ~ of color y. It follows from Lemma 4.2 that

'~ 2K~
y~ ,~x < +rex.

i=1 - -

In the next two lemmas we bound the "mixed" sums ~7'3t 6~g,Y',721 6~ b,
ETzx j~r, and X~rl ~i hr.

Lemma 4.10. ~..":='1 6~ s <- K,g/C + ms a n d ~.m~ 1 (~[b ~ Krb/C + rob.

Proof We only prove the first part of the lemma; the second part can be proved in
a symmetric way. Let 6 be a green line intersecting 6~ g red pseudoedges,
rk+ 1 rk+6r,, and let E' be a red line having its right endpoint in ~ for
k + 1 < I < k + 6~ g (see Fig. 12(a)). It is easily checked that d' intersects ~ inside .~.
Since each .~[contains the right endpoints of ~ lines, d~ intersects at least (3~ g - 1)~
red lines inside .~. But there are at most K,g red-green intersection points, therefore
summing over all green lines, we obtain

m 8 ~ g

2 (61 g-l)C-<K,g or ~ 61 g_< + m v []
i = l i= l

. r~+1 11" g l ~
Q ~ ' " .I rk+3 "','"

rk+2' • " ~ ~" i g 2

rk'+4

(a) (b)
Fig. 12. Illustration for (a) Lemma 4.10 and (b) Lemma 4.11.

Partitioning Arrangements of Lines, I 467

Lemma 4.11. E~.£: 6~ ~ < K~ff ~ and E,~=~ 3b~ < K,b/~.

Proof Let 6 be a red line intersecting 3~ ~ green pseudoedges, at, . . . , g~V. Suppose
that the right endpoint of f~ lies on qtq,. Let f ' be a green line whose left endpoint
(on q~q,) lies in .~ for l < ~ (see Fig. 12(b)). It is easily seen that d' intersects
inside .~. Similarly, if the right endpoint of d~ is on q3 q4, then d/intersects any green
line whose right endpoint (on q3q4) lies in .~ for I _< 3~r. Since each .~ contains
left endpoints, and also ~ right endpoints, of green lines, 6 intersects at least b~-
green lines inside .~. Summing over all red lines, we obtain

m~ ~ Kr s
E 3~ r'~ < Krg or ~i gr <

i= l i= l - T "

Similarly, we can prove that ~7': i 8br < Krb/~" []

Lemma 4.12. Let m; denote the number of lines passing through the ith cell of F,
then

2 5
m~< K + m. (4.9)

, o l

Proof. Let ~7 ~. denote the number of cells crossed by a line 6 ~ ,W~, where J
x e {r, b, g}. Each cell ~- meeting 6 is charged to the leftmost point wa of 0 # c~ 6,
therefore for all cells crossed by 4, except the leftmost one, w~ is an intersection
point o fa pseudoedge and 6 (see Fig. 13). For red lines it follows from Lemmas 4.2
and 4.11 that

mr mr
E r/I = E (~ir'J¢" ~t ~r Jr" ~br + 1)

i=1 i=1

_< 2 - ~ + - ~ + ~-~ + 2mr. (4.10)

Similarly, using Lemmas 4.2 and 4.10 we can show that
mb mb
E ~b = E ((~bb .~_ ¢~rb .~ ~gb ~U 1)

i=1 i=1

__< 2-K~ + %-~b + 3mb

(4.11)

Fig. 13.

tO 2 -..~ W4" -.f " . . "]

Line d~ and the cells in F; celt c~ is charged to w ~.

468 P.K. Agarwal

and

ggg Kr,
r/r < 2 ~ - + ~ - + 3m,. (4.12)

i = 1

t m s x Since E L , m, = ~x~{,,b.,} ~ j= , r/j, summing (4.10), (4.1 1), and (4.12), we obtain

N 2
~=lm'i < ~ (K,, + Kbb "-b K,, + K,, + Krb) q- 3(m, + mb) "-b 2m~

i =

2 5
< g-; K + ~ m (because mr > m/2; see Section 2). []

Next, we bound ~ = t mi, that is, the total number of line-cell crossings, for the
final cells produced by the algorithm.

Lemma 4.13. Let m i denote the number of lines in cell .~; then

M

Z mi < (4 + 4x//2) K 4x/~)m" ~= , ~+(5+

Proof. Let m, denote the number of lines meeting the ctth cell after the fourth step.
First consider the case when F has a cell ~'~ with seven or eight edges, say eight
edges (see Fig. 9). Let rl- 1 and ri denote the red pseudolines bounding ~-~. In this
case the fourth step adds only two pseudoedges, ?L and ~'R. Since ~L does not
intersect green lines and intersects only those red lines whose left endpoints lie in
.~, it adds at most (+mb line-cell crossings. Similarly ~R adds at most (+ m,
line-cell crossings. Moreover, if F has a 7-cell, then it can also have one 5-cell. Thus
by Lemma 4.12,

2 5
~m~ < ~ K + ~m + (2~ + m~ + mb) + m.

Note that in this case the first three steps create at least three pseudoedges, which
implies that m > 3~. Since mg+ m b <_ m/2, we have

2
E m , < ~ K + 5m.

¢t

On the other hand, if all cells after the third step have at most six edges, then every
cell is partitioned into at most two cells. Thus by Lemma 4.12, the total number of

Partitioning Arrangements of Lines, I

line-cell crossing after the fourth step is

~m~,<~K+5m.
~t

469

It is easily seen that the final step creates at most 2x/~/(new cells. Moreover, in
that step a cell ~~ is partitioned only when K > 6(2, in which case
m, < 2x/~v/K + 4((see Lemma 4.9). Hence, we obtain

~1 4 2 ~ (2V/~x/~
i= mi<-~ K + 5 m + + 4 0

K 8x//~ 5m = (4 + 4x//2) -(- + +

K 4x/~)m < (4 + 4w/2) ~- + (5 +

because K < m2/2. []

Finally, we analyze the running time of the algorithm.

Lemma 4.14. It requires O((m + K/O log m) time to compute all subquadrilaterals
21 ~ , to determine the lines passing through each .~, and to count the number of
intersection points in each .~.

Proof. It follows from Lemma 4.5 that Q', Qg, and Qb can be computed in time
O((mr +mb + rag) log m) = O(m log m). Once we have computed all pseudoedges,
the set F of cells, obtained by overlaying these pseudoedges, can be computed, for
example, by sweeping a vertical line through the quadrilateral .~. The time spent in
the sweep is O((15Pl + IFI) log 5~) = O((m/~ + K/~ 2) log m), because it encounters
at most O(EFI) intersection points. Since step 4 simply scans all boundary cells and
splits those having more than four edges, it can be easily done in O(ISet) time.

As for the final step, let m~ (resp. K~) be the number of lines meeting
(resp. intersection points contained in) the ~tth cell produced by the first four
steps. The lines passing through each cell ~'~ can be computed in time
O(m log m + ~ m~ log m) = O((m + K/O log m) (see Lemma 4.13) by tracing
every line through the cells that it intersects, and spending O(log m) time at each
such cell. It follows from Lemma 3,1 that the quantities K~, for all cells J~'~, can be
calculated in time O((m + K/O log m). Moreover, step 5 of the algorithm partitions
the ~tth cell into at most [K,/~x/~] convex quadrilaterals, which is done by
applying the algorithm of Section 3 at most [KJ~x/~] - 1 times, each application

470 P.K. Agarwal

taking O(m~ log m~) time (see Theorem 3.3). Therefore, the total time spent in the
final step is bounded by

_

= O ((~ + x / K) l °gm)

= O ((~ + m) l o g m)

(because m r _< 2x/2v/K + 4()

(because K < ~-~).

Thus, the overall running time of our algorithm is O((m + K/~) log m).

Hence, we can conclude that

[]

Theorem 4.15. We can partition the convex quadrilateral .~, in time
O((m + K/() log m), into M < 3m/(+ 2K/(2 convex subquadrilaterals ~1 ~M,
with the property that each .~ is crossed by mi lines and contains K~ intersection
points, so that the following conditions are satisfied:

(i) ~"~/Mffi I m i ~_~ Aim + A2(K/~); max m r < A3x//K + A4~;

(ii) E ~ I K, = K; max K, < Cx/~,

where A1 = (5 + 4x/~), A z = (4 + 4x/~), A 3 = 2V/2, and A , = 6. We can also
compute the set of lines intersectiny the interior of each -~i, and the values of K i.

Remark 4.16. If some other simpler sorting network of O(log 2 n) depth is used in
the final step of our algorithm, then the running time will be O((m + K/() log 2 m)
instead of O(m + K/() log m).

5. Partitioning the Plane into Quadrilaterals

In this section we obtain the main result of this paper. Let Z~' = {#1 ~2 f, } be a
set of n lines in the plane, and let R be an "enclosing rectangle" of A °, i.e., one that

contains all (~) in tersec t ion points of Z~e. For a given integer r > 0, we want to

partition R into O(r 2 1o[~ p r) convex quadrilaterals, for some constant fl > 0 to be
determined later, so that each of them is crossed by at most n/r lines.

The idea is to use the algorithm of the previous section recursively. Fix (= n/Tr,
where 7 is a constant to be chosen later (for simplicity let us assume that n is a

Partitioning Arrangements of Lines, I 471

multiple of yr). At each step of the algorithm we have a convex quadrilateral .~,
which meets m of the given lines and contains K of their intersection points.

/ N

Initially ~ = R , m = n , and K = (~) (a s s u m i n g that the lines are in general
\ /

position). At each recursive step, the algorithm proceeds as follows: if ra < n/r,
there is nothing to do, so we stop; otherwise partition ~ into M convex
quadrilaterals using the algorithm of the previous section (for the initial fixed value
of 0.

Let ml denote the number of lines meeting the convex quadrilateral ~i and let Ki
denote the number of intersection points of Ae contained in -~v Let C¢(m, K) denote
the maximum number of cells into which such a .~ will be partitioned by all
subsequent recursive applications of the algorithm, and let J (m , K) denote the
maximum time required for such a partitioning. It follows from Theorem 4.15 that

~(ml, Ki) if m > -,
C~(m,K) <- i=1 r (5.1)

1 otherwise,

{ff~ (~) 1 n J-(mi, K i) + D m + ogre if m > - ,
3-(m, k) < i= ~ r (5.2)

D otherwise,

where D > 0 is some constant and M, m~, and K~ satisfy the bounds given in
Theorem 4.15.

Next we bound the values of <¢(m, K) and ~--(m, K) using (5.1) and (5.2). In what
follows by Log x we mean max{log x, 1}, and similarly, later, by Log Log x we
mean max{log log x, log log x/~}.

Lemma 5.1. There exists a constant E > 0 such that

if(m, K) < ~- + Log # (~,

where fl = max{log A1, log(1 + A2) } < 3.33.

(5.3)

Proof. We prove the above inequality by induction on K. If we choose
y >_ 4(x/~ + 1), then for K < 6(2, after applying the algorithm once, we have

max m i < max{2x/~v/K + 4(, 2 x / ~ + 6(}

= max{(ax/~ + 4)(, (2v/6 + 6)(}

= 4(x/~ + 1)(< n/r

and therefore, the algorithm stops. By Theorem 4.15, this step partitions .~ into at
most 3 (m/(+ K/ (2) cells. Thus, if we choose E > 3, then for K < 6(2, (5.3) holds
trivially.

472 P.K. Agarwal

For K > 6(2, suppose inductively that (5.3) holds for all K ' < K. Since

K, < (x / ~ and K > 6(2, K, < (v / ~) x / ~ = K/x//-6 < K. Therefore by induction
hypothesis, (5.3) holds for all .~, so (5.1) implies

e[" K,) K,
~(m,K)_<i=l \ ¢ + ~ L°gp~2" (5.4)

Since ¥i, Ki <_ (~ , we have

Log (-~ <_ Log ~ - - max log ,1 .

K > 6(2 implies that log x /K/ (z > 1, therefore (5.4) can be written as

~(m, K) _< E + log a
i=1 ~ -

= E ~ mi+ Ki • log a
i=1

_< ~ a l~ + (A2 + 1) log ~

Let fl = max{log A 1, log(1 + A2)}, then

(by Theorem 4.15).

Therefore

' (° (7 2- ~ A I ~ + (A 2 + I) <

~(m, K) < E + log a ~-~

[]

Remark 5.2. The actual value of fl depends on the constants appearing in
Theorem 4.15(i)..We believe that these constants are not optimal, so fl is likely to be

smaller than 1og2(5 + 4~j/2) = 3.33.

Next we bound the running time ~--(m, K) of the algorithm.

Lemma 5.3. There exists a constant F > 0 such that

8r(m, K) <- F (m + ~) log m" Loga ~" Log Log ~. (5.5)

Partitioning Arrangemeuts of Lines, I 473

Proof. Again we prove the inequality by induction on K. In Lemma 5.1 we
showed that, for K < 6(2, the algorithm stops after one step of recursion. By
Theorem 4.15, this step requires O((m + K/O log m) time, therefore if we choose F
sufficiently large, then (5.5) holds trivially.

For K > 6(2, suppose inductively that (5.5) holds for all K' < K. Since K~ < K
(see Lemma 5.1), by induction hypothesis, (5.5) holds for all ~ , so (5.2) implies

5-(re, K)_< ~ F ra i+ logml.Log #~-" o g L o g ~ + D m+ logm.
i = l

(5.6)

Note that, for all i, K~ _< ~x//K , therefore

#Ki K, maxflog# X/~, 1 }. max{log log / ~ , log log x/~}" Log ~- Log Log ~- _<

But K > 6(2, therefore it is easily seen that

Log# f~-~LogLog / ~ = l o g # / ~ l o g l o g N / ~ . (5.7)

Substituting it in (5.6), we obtain

~-(m, K) < F m~ + log m. log # • log log + D m + log m
i = l

1 u) F

<_ AIm+(A2+I)~ ~*log #

(log log ~ -- l) log m + D (m + -~) log m

K 1) log m log log ~-~ --

+D(m+~-)logm (by Theorem 4.15)

< (m + ~) I F log# ~2" log log +(D-Flog#~)llogm

because fl = max(log A 1, log(A 2 + 1)}. Since K > 6(2, we have log#(K/~ 2) > 2 a,
and therefore, by choosing F = 1)/2 #, we obtain

(~) re.log# ~" K J-(m, K) _< F m + log K log log

K # K <F(m+~)logm.Log ~ .Log Log ~-~. []

474 P.K. Agarwal

These lemmas imply that

Theorem 5.4. Given a set ~ o f n lines in the plane and a parameter 1 < r < n, we
can partition an enclosin# rectangle R into O(r 2 log # r) convex quadrilaterals in time
O(nr log n log # r log log r), so that each quadrilateral meets at most n/r lines o f Zz'.

Proof. Choose (= n/~,r, where 7 = 4(x/~ + 1). At the top level of the recursion
m = n and

K = < - - .
2

Therefore

K n2/2 ~2r2
(~ < n2/72r 2 2

and m/(= n/(n/Tr) = 7r. Substituting these values in (5.3) we obtain

~)2r2

= O(r 2 log # r)

and by substituting K / (= (n2/2)/(n/Tr) = (rr/2)n in (5.5) we get

~r) ~2r2 ~2r2
3-(n,n 2) < F n + ~ n logn-Log # - ~ - L o g L o g ~-

= O(nr log n log # r log log r). []

Remark 5.5. (i) As a side product our algorithm outputs, for each cell, the lines
intersecting its interior.

(ii) To make the notation easier to follow, we henceforth replace the term log # r.
log log r by log °' r for some fixed constant o9 slightly larger than ft. Since we do not
know what the best value for fl is, this convention involves no real loss of
information.

6. Constructing Approximate Levels

In this section we describe the second phase of our algorithm that reduces the
number of triangles from O(r z log # r) to O(rZ), while maintaining the property that
each triangle meets O(n/r) lines of Aa. As mentioned in the introduction, this second
phase is not required in most of the applications. As an intermediate step, the
algorithm constructs an (n/2r)-approximate leveling of ~¢(.L#) (as defined in Section
2), with O(r 2 log # r) edges in total, from the partition obtained in the first phase of

Partitioning Arrangements of Lines, I 475

the algorithm. Once an (n/2r)-approximate leveling has been constructed, we
proceed in the same way as Matougek [Ma]. We first describe how to obtain an
(n/2r)-approximate leveling.

Let ~ denote the planar map induced by the preceding partition of the enclosing
rectangle R. We assume that all lines in 5(' intersect dR at its vertical edges. Let
A = {a x, a2 a,} (resp. B = {b~, b 2 b,}) denote the intersection points of the
lines in £~' and the left (resp. right) vertical edge of t~R, sorted in decreasing order of
their y-coordinates. For I < i < r, add a~,/, and b~,/, to the set of vertices of ~. We
triangulate all faces of ~, in time O(r 2 log a r). The triangulated map .ff also has
O(r 2 log p r) edges. The following observations enable us to compute approximate
levels efficiently.

Lemma 6.1. Let ~ga (resp. ~) denote the k - n/2r (resp. k + n/2r) level o f s¢ (~) .
Then the interior of a triangle in J does not intersect both :;U~ and 9F b.

Proof Assume to the contrary that there is such a triangle A = V~VjVk that crosses
of" a and .~b, then A contains a point p of the level k - n/2r - 1 and another point q
of level k + n/2r (see Fig. 14). Obviously, the segment PaPb lies entirely in A, but by
Lemma 2.1 it intersects at least n/r + 1 lines of ~ , which contradicts the property
that no triangle in ~ intersects more than n/r lines of ~ . []

Lemma 6.2. Let ~r a (resp. .~rb) denote the k - n/2r (resp. k + n/2r) level o f d(LP).
Let Vo be a vertex of f~ on the left vertical edge of R, whose level is between k - n/2r
and k + n/2r. There exists a path H in ~ from Vo to the right vertical edge of R which
lies between ~r and JU b. Moreover 1"I can be converted into a monotone path without
increasing its number of edges, such that the new path also lies between o,~ a and 3U b.

Proof Let A ---- AI , A 2 A t denote the sequence of triangles visited if we follow
~b from left to right (ifa portion of)f'b lies on an edge of a triangle, then we pick up
the triangle lying below that edge). If a triangle appears more than once in A, then
retain only its first occurrence. It is easily seen that A forms a connected region
from the left vertical edge to the right vertical edge of c~R, and its boundary is
formed by the edges of ~ (see Fig. 15); we call it a corridor. Let FI denote the top
portion of c~A. FI is a connected polygonal path from the left vertical edge of dR to
its right vertical edge, formed by the edges off6. Obviously FI does not intersect ore b.

j "

Fig. 14. A triangle intersecting both .~o and ,~h-

476 P.K. Agarwal

I Z I ~ Z3 1

I x I i ~

I I I ~ j t
t I I j l ~ l I

. , , " - - - ~ ' , ~ . - - ~ ,

t Z 2 2:41

/

Fig, 15. Level ~e b contained in the corridor A; H is the upper boundary of A.

Since each triangle of A intersects ~b, 1I cannot intersect Xa (see Lemma 6.1), thus
17 ties between Ae and Ae" b.

To prove the second part, let F denote any polygonal path lying between Ac a and
af~b . Let vl be the first vertex on F at which F turns backward. Let ~ denote the first
point on F after vl (along F), which has the same x-coordinate asv I. Since v~ lies
above Ar b, and Xb is a x-monotone path, the vertical segment vl~ does not cross
a~b. The same argument implies that vl~ does not intersect ~'~a, and therefore the
new path also lies between afa and ~'~b. Whenever we add a new edge, we remove at
least one edge of F, which proves that shortcutting F does not increase its number
of edges. []

Since the path H lies between the k - n/2r and k + n/2r levels of d(L,f'), it is an
(n/2r)-approximate k-level of ~¢(.£e). Therefore ~ contains an (n/2r)-approximate
(in/r)-level, for each i < r. Let f~i denote the subgraph of f~ consisting of all edges
that fully lie between the levels in/r - n/2r and in/r + n/2r. To obtain ~t, we need to
compute the level of each vertex of f~ and the highest and the lowest levels crossed
by each edge off~. Let ~b(v) denote the level of a vertex v e f~. Let Vivj denote an edge
of f~ with x(vi) < x(vj). If there are h lines of .£a intersecting ~ and k of these lines
lie above vi, then

~k(vj) = O(vi) -- k + (h - k) = t,b(vi) - 2k + h. (6.1)

For each vertex of f~ lying on the left vertical edge of dR, we can compute its
level by counting the number of lines of £a lying above it. The partitioning
algorithm produces the subset of lines of La that crosses each edge of f~, so it is
trivial to count how many of them lie above the left endpoint of e. The levels of all
vertices of ~ are now easy to determine by propagating levels from left to right
along the edges of ~, using (6.1). As for determining the levels crossed by an edge e
of f~, we sort the lines intersecting e along the edge. Once we know the level of the
endpoints of e, we can easily compute the levels crossed by e. Next we partition f~
into ~1 , f#,, and find a path from a~/, tobi~/, in f~ using a depth-first search
from a~/,, for i ~ r. Finally, if any of the resulting paths is not x-monotone, we make
it monotone by shortcutting all edges that turn backward. Since the edges in f~, for
i < r, are pairwise disjoint, there are at most O(r 2 log a r) edges in the resulting
(n/2r)-approximate leveling of ~¢(,£P).

Partitioning Arrangements of Lines, I 477

The correctness of the algorithm follows immediately from the above discussion,
so we only have to analyze the running time of the algorithm.

Lemma 6.3. Given a set .~ of n lines, we can construct, in time O(nr log n logo" r), an
(n/2r)-approximate leveling of ~ (~) having only O(r 2 log # r) edges in total.

Proof. By Theorem 5.4, the planar graph f¢ can be constructed in time
O(nr log n. log °' r) and it has only O(r 2 log o r) triangles. It follows from the above
discussion that it takes O(nr log n log °' r) time to compute the level of each vertex
and the levels crossed by each edge of f¢. Therefore, we can obtain f#~, for i < r, in
O(nr log n logo" r) time. The depth-first search takes only O(r 2 log o r) time, and it
takes the same amount of time to convert the computed paths into monotone
paths. Hence, the lemma follows. []

Remark 6.4. Matougek [Ma] also constructs an approximate leveling as an
intermediate step, but in a direct and much simpler (though inefficient) manner.
His algorithm works roughly as follows.

Partition R into r 2 vertical slabs each containing at most O(n/r 2) intersection
points of ~ . Let V 0 V,: denote the vertical edges of these slabs, and let
a~. x az., denote the intersection points of V~ and S'~ sorted in decreasing order of
their y-coordinates. For each j < r/2 and 0 < i < r 2 connect ai,2i,/r to a~+l,2~,i,.
These polygonal paths are shown to form an (n/r)-approximate leveling of d (~) .

The problem with this approach is that the approximate leveling has O(r 3) edges
in total, and the time needed to obtain it is O(nr 2 log 2 r), which is substantially
dominated by the partitioning of R into vertical slabs. Partitioning R into r 2 slabs
is done to ensure that no segment a~, 2jn/rai+ 1,2jn]r crosses too many levels. Using
our improved partitioning technique we are able to obtain an (n/2r)-approximate
partitioning that has almost an order of magnitude fewer edges (in terms of r), and
the running time of our algorithm is also about an order of magnitude faster. If r is
small, e.g., 0(1), then M atou~ek's algorithm is better (it runs in optimal linear time),
but for large values of r it becomes very inefficient. As we will see in [A], in most of
the applications it is desirable to use a large value of r.

After computing an (n/2r)-approximate leveling of ~¢(£P), we apply the same
technique of Matougek to partition R into O(r 2) triangles. Let KI, K2 Kr
denote the set of (n/2r)-approximate levels of ~¢(£#). Using Lemmas 2.2 and 2.3,
Matou§ek proved that

Lemma 6.5 [Ma]. There exists a polygonal path H~ between Kai- ~ and Kai + 1 such
that ~ l IHit = O(rZ).

Note that K31_ 1 lies between the levels 3i(n/r) - 3. (n/r) and 3i(n/r) + ½. (n/r),
and K3t ÷ 1 lies between the levels 3i(n/r) - ½. (n/r) and 3i(n/r) + 3. (n/r). Therefore
II~ lies between the levels 3i(n/r) -T- ~" (n/r), which shows that II 1 H,/a forms an
(3n/2r)-approximate leveling of ~¢(Sa). By applying Suri's algorithm [S] of

478 P.K. Agarwal

~3

R"
" " ' . I I " - f t I

' t t I l

t I t

I

. [-. I I J

". . I " I ~ . - I t l

t , I . r
• . I i I

~t t - I , - I , I

Fig. 16. Triangulation of X'*.

computing a minimum link path in the simply connected region, lying between
g3 i - 1 and K31+ 1, we obtain a path II;, such that IrI;t < III~1. Since 1-I' i lies between
K3i-1 and K3i + 1, it is also a (3n/2r)-approximate (3in/r)-level. Hence, we have

Corollary 6.6. Given a set ~ of n lines and a parameter 1 < r < n, we can compute a
set o f (3n/2r)-approximate levels of M (~ a) , J d = { H] H'/3 } in time
O(nr log n log '~ r) with the property that ~ 1 IrI ;I = O(r2) .

Matou~ek has also proved that

Lemma 6.7 [Ma]. There are at most O(nr) intersections between ~ and .~.

In view of Lemma 6.7, X" can be decomposed into O(r 2) edges, each intersecting
at most O(n/r) lines of Ae. Next, construct the vertical decomposition X'* of X by
drawing a vertical line from every vertex of Jd in both directions until it meets an
edge of:,*" or R (see Fig. 16). Since every vertical edge added to X w R lies within
3n/r levels, it intersects at most 3n/r lines of A a. Therefore, every trapezoid of X'*
intersects at most O(n/r) lines of .W. Finally, partition each trapezoidal cell of X *
into two triangles. Hence, we can obtain the main and final result of the paper.

Theorem 6.8. Given a set £e of n lines in the plane, and a parameter 1 < r < n, we
can decompose the enclosin# rectan#le R into O(r 2) trian#les in time
O(nr log n log ° r), for some constant co < 3.33, so that no trian#le meets more than
O(n/r) lines of .~.

Remark 6.9. Once R has been partitioned into O(r 2) triangles, we can easily
compute, for each triangle, the set of lines passing through its interior by spending
O(nr) additional time.

7. Coping with Degenerate Cases

In this section we show how to modify our partitioning algorithm so that it also
works in degenerate cases, when more than two lines of A¢ are concurrent, or more
than one intersection point of lines in L~ ° lie on the same vertical line. To facilitate

Partitioning Arrangements of Lines, I 479

these modifications, we first need to redefine some of the terminology introduced in
Sections 2 and 4.

(i) I f t > 2 1 i n e s o f ~ p a s s t h r o u g h a p o i n t p , thenwecons iderpas(t2)

intersection points. Therefore, although the number of distinct intersection

(n) the sum oftheir"weights,"asjust defined, points in A" can be less than 2 '

is still 2 "

(ii) The level of a vertex of d (o~) can no longer be uniquely defined, so we
redefine the k-level of d (~) to be the polygonal path formed by the closure
of the (open) edges of d(~f ') whose level is k. Let Po, ---, Pm be the vertices
of a k-level of d (g) . Let w i denote the weight of p~, and, for any h < m, let
plj be the vertex of a k-level such that z.,t=oX?i~-1 wt < J~ < ~ o w,. We now
define the f-simplified k-level to be the polygonal path connecting Po to
p~, p~ to p~ pi, to Pro, for s = [_(~,twt)/6_t, concatenated with the left and
right rays of the k-level incident to Po and Pro, respectively.

(iii) For a convex quadrilateral .~, we use A" to denote the set of lines passing
through the interior of .~, and we let K denote the total weight of the
intersection points contained in the interior of .~.

(iv) The set A (resp. B) of left (resp. right) endpoints of the lines in La, defined in
Section 2, now becomes a multiset, because many lines can have a common
endpoint. If two lines ~ and 6 have a common left (resp. right) endpoint x
and ~ lies counterclockwise (resp. clockwise) from 6, when directed from x
into 2, then ~(i) < n(j) (resp. a(i) > a(j)). In other words, A and B are
ordered in the way they should be, if we shrink .~ slightly.

(v) Finally, the quantity ~ defined in Section 4 denotes the number of
pseudoedges whose relative interior intersects ~. Similarly we define the
quantities 6~ r.

Next we briefly describe the modifications in our algorithm and in its analysis,
required to make them work in degenerate cases as well; we leave it for the reader
to fill in the details.

Observe that in Section 3.1 we actually count the number of inversions to
compute K~, Kb~, and Kg~, which gives the total weight of the intersection points
(not the number of distinct intersection points) contained in .~, so this part of the
algorithm does not require any modification. However, now it is not always
possible to find a vertical line that, for a given k < K, has exactly k intersection
points in ~ to its left (see Section 3.2). Instead, we find the rightmost vertical line
having < k intersections in .~ to its left. If we interpret the order of the lines of .~
along a vertical line 2 as the order that would result by moving 2 slightly to the left,
then it is easily checked that the procedure described in Section 3.2, with obvious
and trivial modifications, would produce the desired line. We now apply this
procedure, in the final step of our general partitioning algorithm (see Section 4.2),

to partition a cell ~'~ into subeells, each containing ~ (v/-K intersection point in its
interior.

480 P.K. Agarwal

q2 (a) q3 q2 (b) q~

Fig. 17. Cells in degenerate cases: (a) special case; (b) general case.

The algorithm of Section 4.1 remains the same. Since many elements in A or B
can have the same value, two or more pseudoedges can have a common endpoint
(see Fig. 17(a)) or even completely overlap; however, we regard overlapping
pseudoedges as a single edge. It can be checked that our new conventions regarding
A and B imply that a line ~ ~ L,e intersects at least I rr(i) - a(i) l lines inside .~, that is,
Lemma 4.1 still holds, which in conjunction with the new definitions of K and
implies that Lemma 4.2 also continues to hold. Lemma 4.4 is trickier to adjust. We
redefine/~i as the number of lines passing through .~ and not having an endpoint
whose rank in A or in B is between (i - 1)~ + 1 and i~. With some care, the proof
can be modified to yield the same bound on/z/.

Our general algorithm described in Section 4.2 also does not change except that
in the final step we now use the modified algorithm mentioned above to partition

the cells ~~ into [K~/~x/~] cells, each containing at most ~x//K intersection points
in its interior. Note that now we can have some triangular cells that do not have an
edge lying along c~.~ but only have a vertex lying on c~2/; these cells are also
considered as boundary cells. We may even have some zero-area cells, caused by
overlapping pseudoedges, but we discard these cells. In view of our convention
regarding the weights of intersection points and the order of the lines along c~.~, it is
easy to see that the charging scheme of Lemma 4.7 still works. (More specifically,
we charge a red-green intersection to a red-green cell ~:u if the rank of the right
endpoint of the red line is between (j - 1)(+ 1 and j (and the rank of the
appropriate endpoint of the green line is between (i - 1)(+ 1 and i(, and similarly
for red-blue intersections.) Moreover, using the same argument as in Section 4.3, we
can prove Lemmas 4.10 and 4.11 in this degenerate setting because we are not
counting those pseudolines that intersect g at their endpoints. Finally, it can be
shown that Lemmas 4.9, 4.12, and 4.13 also hold, because, although a line ~ can
meet the boundary of many cells, it meets the interior of exactly 6~ + I cells. Lemma
4.14 can also be shown to hold, using our notational convention in degenerate
cases.

As for the second phase of our algorithm, Lemmas 6.1 and 6.2 are not affected by
degeneracies in .C~. However, computing the graphs c~ k now becomes slightly more
difficult because the level of a vertex v of f¢ may be undefined (that is, when v is a
"heavy-weighted" vertex of ~/(.C~') as well). But for each vertex v of ~3, we can
compute the lines of f f passing through it in time O(nr log n log °' r), because a line
passing through a vertex v either lies in the interior of a triangle adjacent to v, or

Partitioning Arrangements of Lines, I 481

contains one of the edges adjacent to v. Moreover, for each edge incident to v, we
can compute, in time O(nr log n log ~' r), its level in a sutficiently small neighbor-
hood of v. Therefore, we can still propagate the levels from left to right along the
edges of if, and can determine the levels crossed by each edge of ft. Thus, we can
partition ff into (¢1 , (~r and obtain an (n/2r)-approximate leveling of ~¢(~). It
can be checked that the technical results in [EW] and [Ma] can be extended to the
degenerate case, which in turn implies that Lemmas 2.3 and 6.5 still hold if we
follow our new conventions regarding simplified levels and the weights of intersec-
tion points. It is also easy to check that the proof of Lemma 6.7 does not require the
lines of Sg. to be in general position.

Hence, we can conclude that Theorem 6.8 holds, with appropriate modifications
as discussed above, even if the lines are not in general position.

8. Conclusions

In this paper we presented a deterministic algorithm that, given a set ~ of n lines
and a parameter 1 < r < n, partitions the plane into O(r 2) triangles, each of which
meets at most O(n/r) lines of ~ . Although we showed that our algorithm is optimal
up to a polylog factor, there are some questions that still remain unanswered:

(i) The time complexity of our algorithm has an extra log ~' r factor. The value
of ~0 depends on the constants appearing in the bounds of max~ mt and
~ff=l mi in Theorem 4.15. We believe the values of these constants can be
improved by doing a more careful analysis, so a natural question is to
determine the best possible values of these constants.

(ii) As mentioned in the introduction, we conjecture that the second phase of
our algorithm is redundant, i.e., the first phase itself or some appropriate
variant of it produces O(r 2) triangles; so far we have not been able to prove
this conjecture.

(iii) One drawback of our algorithm is that its space complexity is O(nr). This is
because at every level of recursion we need to determine the lines passing
through each cell. Can the space complexity be reduced to O(n + r2)?

(iv) The f~(nr) lower bound applies only if we want to report the lines passing
through each triangle. No nontrivial lower bound is known if these
crossings need not be reported. A challenging open problem is to establish a
similar lower bound in this case too.

Besides the above open problems related to our algorithm, there are several
other open problems related to the general partitioning problem.

(i) The most challenging open problem is to generalize our algorithm to three
dimensions. That is, for a given set H of n planes in R 3 and a parameter
1 < r < n, how fast can we partition space into O(r 3) tetrahedra so that
no tetrahedron meets more than O(n/r) planes of H? The algorithm of [CF]
yields such a partitioning in time O(nl°). Since the number of plane-tetra-
hedron crossings is ®(nr 2) in the worst case, an ideal solution would be an
algorithm whose running time is close to O(nr2).

482

(ii)

(iii)

(iv)

P. K. Agarwal

Our algorithm relies on the fact that the objects are straight lines, so it is
still an open problem whether a similar algorithm exists for curves. Note
that the algorithm of Chazelle and Friedman [CF] works even for curves,
but their construction is very inefficient. Moreoever, in the case of curves,
the techniques of [(CF], as well as the random-sampling technique, both
give a slightly weaker bound, namely, they partition the plane into O(r 2)

simply shaped regions, each meeting at most O((n/r) log r) curves (instead
of O(n/r)).
Suppose we have a collection of m blue lines and a collection of n red lines.
For a given parameter r, how fast can one partition the plane into O(r 2)
triangles, so that each triangle meets O(m/r) blue lines and O(n/r) red lines?
Note that the random-sampling technique easily yields a similar partition-
ing, with each triangle meeting O((m/r)log r) blue lines and O((n/r)log r)
red lines.
Suppose we have a collection ~ of n segments which intersect at K points.
The random-sampling technique shows that, for a given parameter r, we
can partition the plane into O(r + Kr2/n 2) triangles so that no triangle
meets more than O((n/r)log r) segments of ~. Can our algorithms
be extended to yield a deterministic algorithm that produces that
many triangles, each meeting O(n/r) segments, and runs in time close to
O(n + Kr/n) (the lower bound on triangle-segment crossing in this case is
f~(n + Kr/n)).

Acknowledgments

I would like to thank my adviser Micha Sharir for encouraging me to work on this
problem, for several valuable discussions, and for reading earlier versions of this
paper which helped a lot in improving its quality. Thanks are also due to two
anonymous referees for their useful comments.

References

[A]

[AS]

[AKS]

[a]

[CF]

[Cll]

[O2]

P. K. Agarwal, Partitioning arrangements of lines, II: Applications, Discrete and Computa-
tional Geometry 5 (1990), 533-574.
P. K. Agarwal and M. Sharir, Red-blue intersection detection algorithms with applications to
motion planning and collision detection, SlAM Journal on Computing 19 (1990), 297-322.
M. Ajtai, J. Komlos, and E. Szvmer6di, Sorting in c log n parallel steps, Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 1983, pp. 1-9.
K. E. Batcher, Sorting networks and their applications, Proceedings of the AFIPS Spring Joint
Summer Computer Conference, voL 32 (1968), pp. 307-314.
13. Chazclle and J. Friedman, A deterministic view of random sampling and its use in
geometry, Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, 1988, pp. 539-549.
K. Clarkson, A probabilistic algorithm for the post office problem, Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, 1985, pp. 75-84.
K. Clarkson, New applications of random sampling in computational geometry, Discrete and
Computational Geometry 2 (1987), 195-222.

Partitioning Arrangements of Lines, I 483

[CTV]

[Co]

[CSSS]

[CSY]

[E]
[EGH*]

lEGS]

[EW]

[GOS]

[HW]

[Ma]

[Me]

[RSl]

I-RS2]

[C13] K. Clarkson, Applications of random sampling in computational geometry, II, Proceedings of
the 4th Annual Symposium on Computational Geometry, 1988, pp. 1-11.

[CS] K. Clarkson and P. Shor, Algorithms for diametric pairs and convex hulls that are optimal,
randomized and incremental, Proceedings of the 4th Annual Symposium on Computational
Geometry, 1988, pp. 12-17.
K. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for triangulating a
simple polygon, Discrete and Computational Geometry 4 (1989), 423-432.
R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, Journal of the
Association for Computing Machinery 31 (1984), 200-208.
R. Cole, J. Salowe, W. Steiger, and E. Szemer6di, An optimal-time algorithm for slope
selection, SIAM Journal on Computing 16 (1989), 792-810.
R. Cole, M. Sharir, and C. K. Yap, On k-hulls and related problems, SIAM Journal on
Computing 16 (1987), 61-77.
H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl,
Implicitly representing arrangements of lines or segments, Discrete and Computational
Geometry 4 (1989), 433-466.
H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity and construction of many faces in
arrangements of lines or of segments, Discrete and Computational Geometry 5 (1990), 161-196.
H. Edelsbrunner and E. Welzl, Constructing belts in two-dimensional arrangements with
applications, SlAM Journal on Computing 15 (1986), 271-284.
L. Guibas, M. Overmars, and M. Sharir, Ray shooting, implicit point location, and related
queries in arrangements of segments, Technical Report 433, Dept. Computer Science, New
York University, March 1989.
D. Haussler and E. Welzt, e-nets and simplex range queries, Discrete and Computational
Geometry 2 (1987), 127151.
J. Matougek, Construction of e-nets, Discrete and Computational Geometry, this issue,
427-448.
N. Megiddo, Applying parallel computation algorithms in design of serial algorithms, Journal
of the Association of Computing Machinery 30 (1983), 852-865.
J. Reif and S. Sen, Optimal randomized parallel algorithms for computational geometry,
Proceedings of the 16th International Conference on Parallel Processing, 1987, pp. 270-277.
J. Reif and S. Sen, Polling: A new randomized sampling technique for computational
geometry, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 1989,
pp. 394-404.

IS] S. Suri, A linear algorithm for minimum link paths inside a simple polygon, Computer Vision,
Graphics and Image Processino 35 (1986), 99-110.

[We] E. Welzl, More on k-sets of finite sets in the plane, Discrete and Computational Geometry 1
(1986), 83-94.

[Wo] G. Woeginger, Epsilon-nets for half planes, Technical Report B-88-02, Dept. of Mathematics,
Free University, Berlin, March 1988.

Received May 20, 1989, and in revised form January 5, 1990.

