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Abstract. This paper answers the question, " I f  a regular polygon with n sides is 
dissected into m triangles of equal areas, must m be a multiple of n ?" For n = 3 
the answer is "no," since a triangle can be cut into any positive integral number of 
triangles of equal areas. For n = 4 the answer is again "no," since a square can be 
cut into two triangles of equal areas. However, Monsky showed that a square cannot 
be dissected into an odd number of triangles of equal areas. 

We show that if n is at least 5, then the answer is "yes." Our approach incorporates 
the techniques of Thomas, Monsky, and Mead, in particular, the use of Sperner's 
lemma and non-Archimedean valuations, but also makes use of affine transforma- 
tions to distort a given regular polygon into one to which those techniques apply. 

Introduction 

We prove  the fo l lowing theorem:  

Theorem. Let n >- 5 be an integer. A regular n-gon is dissectable into ra triangles 
o f  equal areas if  and only i f  m is a multiple o f  n. 

We explo i t  the  me thods  in t roduced  by  T h o m a s  [7] and  M o n s k y  [5] in the 
s tudy  o f  d issec t ions  o f  the  square ,  and  by  M e a d  [4] in the s tudy o f  d issec t ions  
o f  the n -d imens iona l  cube ,  and  also make  use o f  affine t rans format ions .  

1. Background 

In  1967 R ichman  and  T h o m a s  [6] asked,  " C a n  a rec tangle  be  d issec ted  into an 
o d d  number ,  m, o f  n o n o v e r l a p p i n g  t r iangles ,  all  having the same a r e a s ? "  Since 
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affine transformations preserve combinatorial type, parallelness, and ratio of  
areas, "rectangle" can be replaced with "square" without loss of generality. 
Richman showed that the answer is "no"  for m = 3 or 5 and that if the answer 
were "yes"  for some odd integer m, then it would also be "yes"  for any odd 
integer larger than m. 

Thomas [7] proved that the unit square cannot be dissected into an odd number  
of  nonoverlapping triangles of  equal areas if the coordinates of  the vertices of  
the triangles are rational numbers with odd denominators.  Monsky [5], extending 
Thomas 's  result, showed that the answer is always negative. His proof  generalized 
Thomas 's  and consisted of two parts, one combinatorial and the other valuation- 
theoretic. The combinatorial argument generalized Sperner's iemma in the plane. 
By itself it could be used to extend the result to the case where the vertices of  
the triangles have rational coordinates without restricting the denominators to 
be odd. For the case of  arbitrary vertices, Monsky extended the 2-adic valuation 
of Q to the reals, used it to partition the points in the plane into three sets, and 
then applied properties of valuations and a generalized Sperner's lemma. 

In 1979 Mead [4] extended Monsky's valuation argument and his general- 
ization of Sperner's lemma to •", obtaining the following theorem: 

An n-dimensional cube can be divided into m n-dimensional simplices all of 
equal n-dimensional volumes if and only if  m is a multiple of n !. 

We now describe these techniques in detail. 
By a dissection of a polygon P we mean a family of  triangles whose union is 

P and such that the intersection of the interiors of any two distinct triangles is 
empty. If, in addition, the triangles have the same areas, the dissection is called 
an equidissection of P. A polygon is equidissectable if it possesses an equidissection. 
A simplicial decomposition of P is a dissection of P such that the intersection of 
any two of the triangles is either empty, a vertex, or an entire side of  both triangles. 

Consider a dissection of P in which each vertex of each triangle is labeled 
either Po, P, ,  or /'2. A triangle T is complete if its vertices are labeled Po, P, ,  
and /'2; a segment S is complete if its vertices are labeled P0 and P,.  

Lemma 1.1 (Sperner's Lemma,  Simplicial Z/2  Form). Consider a simplicial 
decomposition of a polygon P in which each vertex is labeled either Po, P1, or P2. 
The number of complete triangles in the decomposition of P is odd if and only if  the 
number of complete segments on the boundary of P is odd. 

Though the segments labeled PoP, appear  to play a special role in Lemma 1.1, 
we could just as well have considered only segments of  the form PoPz, or only 
segments of  the form P, P2. 

The following lemma generalizes the simplicial 2~/2 form of Sperner's lemma 
to nonsimplicial dissections. (See [5].) 

Lemma 1.2 (Sperner's Lemma, Nonsimpl ic ia lZ/2  Form), Considera dissection 
of a polygon P in which each vertex is labeled either Po, P,, or P2. Suppose that no 
line contains vertices of  all three types and that P has an odd number of segments 
labeled PoP~ on its boundary. Then some triangle in the dissection is complete. 
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Lemma 1.2 suffices for our method of proof  of  the theorem when n is odd. 
However, for even n we need a stronger form of  Lemma 1.2. 

Lemma 1.3 (Sperner's Lemma, Nonsimplicial Integral Form). Consider a dis- 
section of a polygon P in which each vertex is labeled either Po, Pl, or P2. Assume 
that no line contains vertices of all three types. Let nl(PoPIP2) be the number of 
complete triangles for which the orientation given by the order PoP~ P 2 is counterclock- 
wise and let n2( PoP1P~) be the number for which the orientation PoP1 P2 is clockwise. 
Orient the boundary of P counterclockwise. Let n~ (PoPl) be the number of complete 
segments on the boundary for which the order PoP1 is compatible with the orientation 
of the boundary and let n2( PoP~) be the number for which the orientation PoP 1 is 
incompatible. Then 

n~( PoP~ P2) - n2( PoPIP2) = n~( PoP1) - n2( Po P~). 

(In particular, if hi(PoP1)~ n2( PoP1), there is a complete triangle.) 

The proof  of Lemma 1.3 is similar to that of  Lemma 1.2, and is left to the reader. 
To find the parity of  the number of  complete segments on the boundary of P 

in a labeling that meets the conditions of  Lemma 1.2, it suffices to consider only 
the original edges of  the polygon P. Since an edge of P that contains points 
labeled Po and P~ cannot contain points labeled P2, the only edges of  P that can 
contain complete segments have vertices labeled Po and Po, Po and Pt, or P~ and 
P~. By noting that the parity of  the number of  complete segments on any such 
edge is not altered by the introduction of points of  type Po or P~, we see that in 
a dissection of P the number  of complete segments on the boundary of P is odd 
if and only if the number  of  complete edges of P itself is odd. 

The labels P0, P~, and P2 will be assigned by using a function "ord" ,  whose 
domain is C and whose range is contained in R w {oo}. Consider a fixed positive 
prime integer p. For any nonzero rational number  r/s, (r, s) = 1, define ord(r/s) 
as follows: if r / s = p " . r ' / s ' ,  where ( p , r ' ) = l = ( p , s ' ) ,  ord(r / s )=m.  Define 
ord(0) = ~ .  Then ord : O ~ Z w {~} satisfies 

(1) ord(xy) = ord(x) + ord(y),  
(2) ord(x + y) -> min{ord(x), ord(y)}, with equality if ord(x) ~ ord(y),  
(3) ord(x)  -< ~ ,  with equality if and only if x = 0. 

This function can be extended to a function o rd :C  ~ R u {oo} (in an infinite 
number of  ways) which satisfies the same three conditions. (See [1] and [3].) We 
let "ord"  denote one such function. Strictly speaking, this function should be 
denoted "ordp",  but for the sake of simplicity we will generally omit the subscript 
p, the context will make it clear which prime p is assumed. 

Partition the points of  the plane into three sets Po, P~, / '2  as follows: 

( x , y ) e P o  if o r d ( x ) > 0  and o r d ( y ) > 0 ,  

( x , y ) e P l  if ord(x)-<0 and ord(x)-<ord(y) ,  

( x , y ) e  P2 if ord(y)<-0 and ord(y) <o rd (x ) .  
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For example, (0,0) and (p, p2) are in Po, (1, 1), (1, p), and (I /p ,  1) are in PI, 
and (p, 1/p) and (1, 1/p) are in P2. 

The key property of this labeling is: 

Lemma 1.4. For any complete triangle T, relative to the labeling induced by ord, 

ord(2 • area T) -< 0. 

For a proof, see [5]. 
It follows from Lemma 1.4 that the labeling defined by the partition of the 

plane into the sets Po, P~, P2 satisfies the hypotheses of  Lemmas 1.2 and 1.3. For 
if a line contained points labeled P0, P:, P2, then the degenerate complete triangle 
they would form would have area 0, which contradicts Lemma 1.4. 

For any dissection of  a polygon P, we say that the labeling is complete if the 
number of  complete edges on the boundary of  P is odd. In this case there is an 
odd number of  complete segments on the boundary, so some triangle T is 
complete. Suppose a polygon P is equidissected into m triangles and that the 
labeling of P is complete, or, more generally, that there is a complete triangle T 
in the equidissection. Then 

0 -> ord(2 • area T) = ord(2 • area P) - ord(m) 

and therefore 

oral(m) -> ord(2 • area P). 

This inequality is the key to obtaining information about m. 

2. The Proof 

We illustrate the general argument by showing that if a regular hexagon is 
equidissected into m triangles then 6 divides m. Let T be the affine transformation 
which maps three consecutive vertices of  the hexagon to the points (0, I), (0, 0), 
and (1, 0). It follows that the center of  the hexagon is mapped to (1, 1) while the 
other three vertices go to (2, 1), (2, 2), and (1, 2). Let P* be the image hexagon. 
Then P* has area 3 and admits an equidissection into m triangles. 

To show that 3 divides m, consider an ord for p = 3 and label the plane as in 
Section 1. Since the edge joining (0, 0) and (1, 0) is the only complete edge on 
the boundary of  P*, the labzling of  P* is complete, and, by Lemma 1.2, there 
is a complete triangle. Therefore, ord m -> ord(2 • area P*) = 1, and 3 divides m. 

Now consider an ord for p = 2 and again label the plane as in Section 1. Then 
the vertices of  P*, taken in counterclockwise order from the origin, are of types 
Po, P~, P2, Po, P~, P2, so the labeling of P* is not complete. Nevertheless, by 
Lemma 1.3, there are at least two complete triangles in the equidissection of  P*. 

The treatment of the equidissection of a regular n-gon (n -> 5) into m triangles 
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follows a similar pattern. We show that n divides m by proving that o rdp(m)> 
o r d p ( n ) -  1 for each prime p dividing n. 

Fix such a prime p. Set O=2zr/n and ~'= e ~. 
Let P be the regular n-gon with vertices at ((cos jO) - 1, sin j0),  j ~ Z/n.  Let T 

be the linear map 

(x, y) ~ - 2  x c o s ~ - y s m ~ , x c o s ~ + y s i n  , 

and let P '  be the image of P under this map. Since P is inscribed in a circle of  
radius 1, 2 .  area P = n sin 0 and 2- area P ' =  (n .  sin 0) det T = n.  (2 sin 0) 2. The 
image of  (cos u, sin u) under T is ( - 2  cos(u + 0/2),  - 2  c o s ( u -  0/2)).  Since 
-2(cos(A + B ) -  c o s ( A -  B)) = 4 sin A sin B, the image under T of  ((cos u ) -  
1, sin u) is (4 sin((u + 0)/2)  sin(u/2),  4 sin((u - 0)/2) sin(u/2)).  In particular, the 
vertices of P'  are the points 

( ( j +  1)0 jO (j 1)0 sinJO). (xj, y j )=  4 s i n - - - - ~ s i n ~ - , 4 s i n  2 

Since 2.  sin(jO/2) is the product of l - ~ J  by a root of unity, we find that 
ord(2,  sin(jO/2))= ord(1 -~ J )  and therefore that 

while 

ord(x~) = ord(1  - U )  + ord(1  - C J+')  

ord(yj) = ord(1 - s r j) + ord(1 - ~,j-1). 

We use the following well-known facts from the theory of cyclotomic fields. 
If  p is odd and ~'J # 1, then ord(1 - ~'J) -< 1/(p - 1) with equality if and only if ff~ 
is a pth root of unity. If p = 2 and ~7 j # +1, then o r d ( 1 -  ~J)<-½ with equality if 
and only if ~J = +i. (See [2].) 

Lemma 2.1. Forj~Z/n ,  n>-4, ordp(yj)< 1 whenever 

(a) p is odd and j ~ O or 1~ or 
(b) p = 2  andj#O, 1, n/2, orn /2+l .  

Proof. Assume that p is an odd prime divisor of n. Since neither ~J nor ~J-t 
is 1, ord(yj)<-2/(p-1). The result follows unless p = 3  and ~J and ~'J+~ are 
both cube roots of unity. However, this is the case n = 3, which is excluded. 
Assume now that p = 2 and j # 0, 1, n/2, or n/2+ 1. Then neither ~J nor ~-~ is 
+1. Thus, we obtain the result unless ~J and ~J-~ are each i or - i ,  which is 
impossible. [] 

For p odd, fix k~Z /n ,  k~:O or 1, so that ord(yk) is as large as possible. For 
p = 2 fix k E 7¢/n, k # O, 1, n/2, or n/2+ 1, so that ord(yk) is as large as possible. 
In both cases, let P* be the image of P'  under the linear map (x, y) -~ (x /x t ,  y/yk). 
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Lemma 2.2. ord(2 • area P*) > o r d ( n ) -  1. 

Proof. Observe that 

ord(2 • area P*) = ord(2 • area P')  - ord(xl) - ord(yk) 

= o r d ( n )  + 2 ord( 1 - ~2) _ (o rd (  1 - s r) + ord( 1 - ~.2)) _ ord(yk ) 

= ord(n) + ord(1 + ~r) - ord(yk) 

--> ord(n)  - ord(yk). 

But Lemma 2.1 shows that ord(yk) < 1. [] 

Now label the points in the plane as in Section 1. Note that P*, like P, has 
an equidissection into m triangles. 

Lemma 2.3. Some triangle in an equidissection of P* is complete. 

Proof Assume first that p is odd. We show that the labeling of  P* is complete 
by showing that the boundary of P* contains only one complete edge. Now 
(Xo/Xl, Yo/Yk) = (0, 0) and (xl/xl ,  YJYk) = (1, 0) are of  types Po and P~, respec- 
tively. Since x_l = 0 and ord(yk) --> oral(y_0, (x-1/xl, Y-1/Yk) is of  type P2. Further- 
more, i f j  ~ Z/n, j ~ - 1 ,  0, or 1, then ord(yj/yk) <-- 0 and (xj/x~, Yj/Yk) cannot be 
of  type Po. It follows that the edge joining the points (0, 0) and (1, 0) is the only 
complete edge on the boundary of P*. This proves that the labeling of  P* is 
complete; hence, there is at least one complete triangle in an equidissection of P*. 

Assume now that p = 2, and set r - -  n/2. Let C = (u, v) be the center of  P*. 
We claim that 2C is a point of  type P0 or, in other words, that o r d ( 2 u ) >  0 and 
ord(2v) >0 .  Now the center of  P '  is (a, a) with a --2 cos(0/2)  = (1+ ~') (root of  
unity); the center of P* is (a/x~, a/yk). Since ord(x0  = ord(y2) -< ord(yk) < 1, the 
result follows. Observe that if Q and Q' are opposite vertices of  P*, Q +  Q ' =  2C 
is of  type Po; it follows that Q and Q'  are of  the same type. In the paragraph 
above, we saw that when j e 7//n is - 1 ,  0, and 1, then the corresponding vertices 
(xJx~, yj/Yk) of  P* are of  types P2, P0, and P~, respectively. It follows that when 
j = r -  1, r, and r +  1, the corresponding vertices are again of  types P2, P0, and 
P~, respectively. 

Suppose finally that j ~ 7//n, j ~ - 1, 0, 1, r - 1, r, or r + 1. Then ord(yj/yk) <-- 0 
and the vertex (x:/x~, Yj/YR) of  P* cannot be of  type Po. Therefore, nl(PoPO - 
n2(PoPO = 2. As in the case of  the regular hexagon, by Lemma 1.3, there are at 
least two complete triangles in an equidissection of  P*. []  

The proof  of  the theorem follows immediately. Let p be a prime divisor of  n. 
Combining the remarks after Lemma 1.4 with Lemmas 2.2 and 2.3, we find that 
o rd(m)  > ord(2 ,  area P * ) >  o r d ( n ) -  1. Since ord(m)  and ord(n)  are integers, it 
follows that o r d ( m ) >  ord(n).  As this is true for all primes p dividing n, m must 
be a multiple of  n. [] 
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Remark. In its initial form this proof  used the Z/2 form of  Sperner's lemma, 
which is strong enough to establish the theorem for odd n. However,  for even n, 
this form of  Sperner's lemma establishes only that in an equidissection of  a 
regular n-gon into m triangles, m is a multiple of  n/2. I wish to thank one of  
the referees for pointing out that the integral version of  Sperner's lemma disposes 
o f  even n as well. 
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