Erratum: New Lower Bounds on the Self-Avoiding-Walk Connective Constant ${ }^{1}$

Takashi Hara, ${ }^{2}$ Gordon Slade, ${ }^{3}$ and Alan D. Sokal ${ }^{4}$

Received August 30, 1994

Due to a coding error in our calculation of the integral

$$
\begin{equation*}
C_{0}\left(0, x ; \frac{1}{2 d}\right)=\int_{[-\pi, \pi]^{d}} \frac{d^{d} k}{(2 \pi)^{d}} \frac{e^{i k \cdot x}}{1-d^{-1} \sum_{j=1}^{d} \cos k_{j}} \tag{1}
\end{equation*}
$$

the values given in the second column of Table IV contain errors in their final four digits. The correct values are given here in Table I. The error is negligible $\left(<10^{-17}\right)$ for $d \geqslant 4$. These errors do not affect other numerical values quoted, apart from a change in the final digit of the $d=3,(0,0)$ entry of Table II, whose correct value is slightly improved to 3.956776 .

The integral $C_{0}(0,0 ; 1 /(2 d))$ is equal to the expected number of returns to the origin of the simple random walk in \mathbb{Z}^{d}. For $d=3$, this has been computed exactly in terms of an elliptic integral in ref. 1 and in terms of the gamma function in ref. 2. The latter contains an erroneous numerical prefactor, which when corrected as indicated in ref. 3 yields the exact expression

$$
\begin{equation*}
C_{0}\left(0,0 ; \frac{1}{6}\right)=\frac{\sqrt{6}}{32 \pi^{3}} \Gamma\left(\frac{1}{24}\right) \Gamma\left(\frac{5}{24}\right) \Gamma\left(\frac{7}{24}\right) \Gamma\left(\frac{11}{24}\right) \quad(d=3) \tag{2}
\end{equation*}
$$

[^0]Table I. Corrected Values of $C_{0}(0, x ; 1 /(2 d))$ for $d=3$, Rounded to Ten Digits after the Decimal

x	$C_{0}(0, x ; 1 /(2 d))$ for $d=3$
$(0,0,0)$	1.5163860592
$(1,0,0)$	0.5163860592
$(1,1,0)$	0.3311486021
$(1,1,1)$	0.2614701264
$(2,0,0)$	0.2573358873
$(2,1,0)$	0.2155896208
$(2,1,1)$	0.1917916506
$(2,2,0)$	0.1683310356
$(2,2,1)$	0.1569524128
$(3,0,0)$	0.1652707810
$(3,1,0)$	0.1531388988
$(3,1,1)$	0.1441957103
$(3,2,0)$	0.1324510731
$(4,0,0)$	0.1217332037
$(4,1,0)$	0.1171304972
$(5,0,0)$	0.0966064520

Evaluation of the right side using both Mathematica and Maple gives $1.51638605915197801815 \ldots$, which agrees with our entry here in Table I and with the value 1.516386059 from ref. 1 but disagrees with the final digits of the value 1.516386059137 ... quoted on p. 126 of ref. 3.

Finally, in an unrelated matter, there is a typographical error in the $d=3,(2,2)_{\text {opt }}$ entry of Table II, whose correct value is 4.476141 .

REFERENCES

1. G. N. Watson, Three triple integrals, Q. J. Math. (Oxford) 10:266-276 (1939).
2. M. L. Glasser and I. J. Zucker, Extended Watson integrals for the cubic lattices, Proc. Natl. Acad. Sci. USA 74:1800-1801 (1977).
3. P. G. Doyle and J. L. Snell, Random Walks and Electric Networks (Mathematical Association of America, 1984).

[^0]: ${ }^{1}$ This paper appeared in J. Stat. Phys. 72:479-517 (1993).
 ${ }^{2}$ Department of Applied Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan. E-mail: hara@appana.ap.titech.ac.jp.
 ${ }^{3}$ Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1. E-mail: slade@mcmasterca.
 ${ }^{4}$ Department of Physics, New York University, New York, New York 10003. E-mail: sokal@acl4.nyu.edu.

