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Summary. This work is devoted to prove the following fact: Suppose that 
is a nuclear space whose dual ~' is nuclear under the strong topology. 
If X' is a weakly adapted mapping with values in 4Y such that for any qS~,  
X'(qS) has a modification which is a semimartingale then there exists a 
unique projective system of Hilbert space-valued semimartingales indexed 
by the Hilbert-Schmidt neighbourhood base of the dual space whose 
'projective limit' is X'. 

In the last part we study in detail a semimartingale defined as the 
convolution of a distribution by a random Dirac measure whose support is 
determined by the trajectories of a real-valued semimartingale. 

Introduction 

Suppose that �9 is a nuclear space whose dual ~' is also nuclear under the 
strong topology. In 1-12] we have defined the semimartingales in ~' as the 
projective systems of Hilbert space-valued semimartingales indexed by the 
Hilbert-Schmidt neighbourhood base of ~', constructed the stochastic integrals 
of the previsible processes with respect to these semimartingales, studied some 
subclasses of them and given some applications to the stochastic flows and 
partial differential equations. Any semimartingale in ~' induces a linear map- 
ping from ~ into some vector subspace of the real-valued semimartingales. If 
this subspace can be equipped with a topology under which it is a Banach 
space then any linear mapping on ~ with values in this Banach space induces 
also a semimartingale in ~' and this statement can be proved using the 
classical tools of functional analysis (cf. 1-12]). However, the space in which the 
linear mapping takes its values may be a non-locally convex vector space, 
namely S o (cf. the notations) and in this case the methods that we have 
mentioned above do not work. In this work we prove that any such mapping 
induces also a semimartingale in ~' and the second section is completely 
devoted to the proof of this fact. In the first section we give the basic 
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definitions and some results obtained in [12]. The third section deals in 
detail with a special example of a semimartingale in the space of the distri- 
butions on IR defined as the convolution of a distribution with the Dirac 
measure whose support is a real-valued semimartingale. Using Ito's formula we 
calculate the explicit forms of the elements of the corresponding projective 
systems. In particular, the representation theorems which are the generali- 
zations of Ito's formula in some certain sense, suggest a rigorous definition for 
the so-called stochastic evolution equations or partial stochastic differential 
equations. Further applications to non-linear flows and Physics will be given 
in the forthcoming papers. 

I. Notations and Preliminaries 

denotes a locally convex, nuclear space whose topological dual 45' is nuclear 
under its strong topology fl(q~', 4~) denoted by 4~}. If U is an absolutely 
convex (i.e. convex and balanced) neighbourhood (of zero) in 45, we denote 
by ~(U) the quotient set ~/pvl(O) completed with respect to the norm Pv 
where Pv denotes the gauge function of U and k(U) denotes the canonical 
mapping from 4~ onto 4~(U). Let us recall that 4~ is called nuclear if there exists 
a neighbourhood base (of zero) q/ such that for any U~q/, there exists Vc  U, 
V~#, for which the canonical mapping k(U, V): ~(V)---~(U), defined by k(U) 
=k(U, V) o k(V), is nuclear (cf. [6], [8]). If B is a bounded, absolutely convex 
subset of ~, we note by 45[B] the completion of the subspace of ~, spanned by 
B, with respect to the norm PB (i.e. gauge function of B). It is well known that, 
in each nuclear space, there exists a base of neighbourhoods ~h(~) such that 
4~(U) is a separable Hilbert space whose dual can be identified by 4~'[U~ U ~ 
being the polar of U, and 4~ is (a subspace of) the projective limit of 

{(~(U), k(U)): U~q/h(~) } 

(cf. [8], p. 102). We shall denote by ~ ( ~ ' )  the set 

{u~ ue~(~)} 

and ~ffh(~) is defined by interchanging ~ and ~ .  
(f2, o~, p) denotes a complete probability space and ( 4 ;  t_>0} will represent 

a right continuous, increasing family of the sub-a-algebras of f t .  We suppose 
as usual that o~ o contains all the P-negligeable subsets of f2. S o denotes the 
space of the equivalent classes (with respect to evanescent processes) of real- 
valued semimartingales. If xeS ~ we define [Xlk, keN, as 

IXlk=sup{E[ihsdx s A 1]: h~el} (I.1) 

where E(.) denotes the mathematical expectation with respect to the probabili- 
ty P, e 1 is the set of the previsible processes h such that 
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n-1  
h= ~ ailjjtl,ti+dj, 

i=1 
O__t 1 < . . .  < t , <  +o% 

a i being an ~-measurable  random variable bounded by one. ]lti, ti+ 1~ is the 
stochastic interval ]tl, ti+ 1] xt2, and the integral at the right hand side of (I.1) 
is the stochastic integral. Define Ix[ o as 

lX[o = ~ 2-klXlk 
k=l 

then d ( x , y ) = l x - y [  o is a metric on S O and (SOd) is a Fr6chet space (non- 
locally convex) (cf. [3] and [43). Moreover, the set of local martingale and the set 
of previsible processes of finite variation, having uniformly bounded jumps 
(both) are the closed subsets of (S ~ d) (cf. [4], Remark IV.3 and Theorem IV.4). 
If x is a special semimartingale with its canonical decomposition 

x = m + a  

i.e. a is a previsible process of finite variation with a o =0  and m is a local 
martingale, we denote by ]Ix q lp the following quantity 

ItXIIp = Ira, 1/2 ~ g p' m]~ + Idasl p> l, 
o 

where L p denotes LV(t2, ~ ,  P). The set of real-valued semimartingales for which 
the above quantity is finite is denoted by S p and this is a Banach space under 
If. lip (cf. [3]). 

Now let us give the definitions of 'the stochastic process' with values in ~': 

Definition 1.1. Let X be the following set: 

where each X ~ is a stochastic process with values in the separable Hilbert 
space ~'(U). X will be called a projective system on ~' (of stochastic processes) 
if for any Ua~h(qYp) and V c  U, V~Ch(~'~) , k(U, V)o X v and X v are undis- 
tinguishable. 

Definition 1.2. Let X be a projective system of stochastic processes on 4', 
denoted by 

We say that X has a limit in ~' if, for any t>0,  there exists a measurable 
mapping X' t from (f2, .~) into (~', (~(~')) where ~(~')  denotes the cylindrical a- 
algebra of qY such that 

k(U) o X; =XV~ a.e. 

for any UeY/h(~). 
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In the following, each time that the index set of a projective system is not 
specified, it will be understood that it is either q/h(~) or q/h(~}). 

Definition 1.3. Let X be a projective system of stochastic processes on ~' with a 
limit X'  in ~b'. The pair (X, X) is called a g-process on ~b'. We say that the g- 
process (X, X') or the projective system X possesses the property 7~ if any 
element X v of X possesses the property rc in ~b'(U). 

Remark. In the sequel, if there is no confusion the pair (X, X') will be denoted 
by a single letter. 

Definition 1.4. Suppose that X and Y are two projective systems of stochastic 
processes on ~'. We say that X and Y are undistinguishable if X v and yv  are 
undistinguishable stochastic processes, for any Ueqlh(~'~). 

Definition 1.5. Let X'  be a mapping on 1R+ x f2 with values in ~' such that, for 
any t > 0  and ~bs~, co~--,(qS, X't(~o)) is ~-measurable.  We say that X' generates 
a projective system of stochastic processes (on ~') if there exists a projective 
system whose limit is X'. 

If Z is a separable Hilbert space and Z is a measurable mapping on 1R+x f2 
with values in Z, Z will be called a semimartingale if it is right continuous with 
left limits, adapted and it has a decomposition 

Z = M + A ,  A o =0, 

where M is a local martingale and A is a process of finite variation (cf. [5]). It 
is well known that Z has a uniquely defined continuous local martingale part. 
We denote by [rz, z ]  t the following process which is of finite variation: 

Ill, z ] l ,={z  c, z~},+ Y, IIAZ~II~ 
s< t  

where {Z C, Z C} is the unique previsible process such that  c 2 c I IZt l tz -{Z,  ZC}t is a 
local martingale. 

Definition 1.6. A g-process X on ~' is called a semimartingale on ~' if X v is a 
semimartingale in ~'(U) for any U~q/h(~). The set of semimartingale on ~' 
will be denoted by S~ 

If Z is a semimartingale with values in a separable Hilbert space Z, we 
denote by IlZl[p, p=> 1, the following quantity: 

[[M, M]]oo + ~ FIdA~IJ v,(o, " I lZ l lp  = 1/2 
0 "-~, P) 

The set (of equivalence classes) of semimartingale for which this quantity is 
finite is denoted by SP(Z) and S~ denotes simply all the semimartingales with 
values in Z. In fact, for  II.llp to be a norm we should choose the canonical 
decomposition of Z i.e. 

Z = M + A  
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where A is also previsible with A 0 =0. Hence, in the sequel, when we write 
IIZIIp we will understand that Ilzllp is calculated for the canonical decom- 
position of Z. 

Definition 1.7. Let X be a g-process on ~'. X is called an S~ or 
we say X~SP(~ ') if, for any U~qlh(~' ), X v is in SPgb'(U)). 

In [12] we have shown the following result: 

Theorem 1. Suppose that X'  is a weakly adapted mapping IR + x ~2 with values in 
~' such that, for any O~cb, the mapping on IR+ x 

(t, co)~ <~, x;(co)> 

has a modification which is an Sl-semimartingale. Then there exists a unique 
projective system (up to a projective system of evanescent process) X such that 
(X, X') is an element of SI(q)'). 

If ~ is bornological, then there exists a mapping Y: Ill+ x ~ - * ~ '  with right 
continuous trajectories having left limits in ~', such that k(U) o Y and X v are 
undistinguishable for any U~h(~'~). 

For the sake of completeness we will sketch the proof: X' induces a linear 
mapping on �9 with values in S 1, which is sequentially continuous. Hence 
k(U)oX'  induces a linear continuous mapping on ~ [ U  ~ with values in S 1. 

r Decomposing k(U) as k(U, V)ok(V), for some V~qlh(~'p), V U, we see that 
k(U)o X is a nuclear mapping on ~ [ U  ~ with values in S ~. Take any repre- 
sentation of it (cf. [8]) 

k(U)oX'= ~ ,~,F~(U)| 
i = 1  

where (21)eP (i.e. the space of the summable sequences), {FI(U)} is equicon- 
tinuous in ~'(U) and (x i )cS  1 is bounded. Define 

co 
xy(o) = y ,~i ~(u) xi(o) 

i = 1  

then X v has right continuous trajectories with left limits in O'(U), it is in 
SI(O'(U)) and k(U, V ) ( X y ) = X  y a.e. for any Veqlh(O'p), V c U .  Since both of 
them are right continuous they are undistinguishable. Of course the limit of 
{XV: U~q./a(O}) } in ~' is X'. If �9 is bornological, then the mapping induced by 
X' itself is continuous, hence we can do these things globally and show that 
there exists some K~Xh(O' ) and a semimartingale Y with values in O'[K].  
Then it is sufficient to inject Y into ~'. [IQED 

In the following section we shall show that the first part of this theorem is 
true for S O . 

II. The Characterization of the Semimartingales 

In the following we shall denote by ~ the space of the simple previsible, 
uniformly bounded, real-valued stochastic processes whose unit ball is denoted 
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by e 1. ~ denotes the space of the uniformly bounded previsible processes 
completed under the supremum topology, whose unit ball will be noted by ~1. 
If x is a real valued semimartingale, then it is well known that the mapping 
h--~(h.x)t is continuous on g with values in L ~ where h .x  denotes the stochas- 
tic integral of h with respect to x and L ~ is the space of the equivalence classes 
of random variables under the convergence in probability (cf. [3], Theorem 3, 
p. 329). 

By the help of these results we shall prove the following theorem: 

Theorem II.1. Suppose that X '  is a weakly adapted mapping on ]R+x ~2 with 
values in ~' such that, for any c ~ ,  the mapping 

(t, ~,)--+ (,L x't(~)) 

has a modification which is a semimartingale. Then there exists a projective 
system of semimartingales on ~' having X'  as its limit. 

The proof of the theorem will be made in several steps. We prove first the 
following fact: 

Lemma ILL X' defines a linear mapping 5~ on ~b with values in S ~ I f  U~~ 
then denote by J(h, O) the mapping on ~ x ~ [ U  ~ with values in S O defined by 

J(h, qb) = h. 2(q~). 

Then J is continuous on ~ xtb[U ~ with values in (S ~ d). 

Proof If ~b~ ,  denote by Jf(q~) a modification of (t, co)--,(qS, X;((~)) which is a 
semimartingale (more exactly an element of (S ~ d)). If f'(~b) is another such 
modification, J~(q~) and I?(q5) are undistinguishable, hence q~---*J~(~b) is well 
defined. If Ueqlh(q)'~) , Y2o ivo is a linear mapping on ~ [ U  ~ with values in S o 
where ivo denotes the injection ~b[U~ Suppose that (~b,) converges to ~b 
in ~ [ U  ~ and (Jf(q~,)) converges to y in (S~ Since ivo is continuous, 
(qS, X~(co)) converges pointwise to (~b, X',(co)) for any (t, c~)MR+ x ~2. Hence 

y,(co) = (qS, X;(co)) = 27 (~b)~ (co) a.e. 

for any t > 0  and this implies that y=J~(~b). Consequently the mapping 
qS---~J~(q~) is continuous on ~ [U~ Moreover, by what we have said above 
h---~h.X(4) is continuous on g with values in (S ~ d) (as one can show using the 
closed graph theorem) and a theorem of functional analysis (cf. [8], p. 88, 
Theorem 5.1) says that the bilinear mapping (h, qb)-+h. J~(q~) is continuous on 
x~0[U ~ with values in (S ~ d). I ]QED 

Now we prove the following 

Lemma 11.2. Let (dpl) be a countable dense subset of U ~ in ~ [ U  ~ and keN.  
Then we have 

P(co: sup sup 12(~bi)t(co)l < + oo} = 1. 
t<=k i 

Proof To prove this result we take [0, k] instead of IR+ and modify ~, el by h~ 
= 0  for t > k  (cf. the remark at p. 401 of [3]). Moreover it is sufficient to take 



A Characterization of Semimartingales on Nuclear Spaces 27 

the supremum with respect to t on a countable dense subset D k of [0, k]. Let 
us suppose now that the contrary holds. Then there exists a~] 0, 1] such that 

P{sup sup 12((oi)tl = + oo} > a > 0 .  
t eDk  i 

Choose V~#h(~'~) with V c U  such that the injection i(V ~ U~ 
~[-U~ ~ is nuclear. Since any nuclear mapping is universally O-decom- 
posable (cf. [-1], p. 203) and 

o ivo=(2 o ivo ) o i(V ~ U ~ 

the mapping 4)-*J~oivo(d?) is O-decomposable at any t>O, i.e. there exists a 
random variable j(v with values in ~'(U) such that 

2 (~b), = (~b 12 v) a.e. (II. 1) 

for any q~eq)[U~ Similarly, for any hE~, by LemmaII.1, the mapping 
4)--,(h.J~(~b)) t is 0-decomposable, hence there exists a ~'(U)-valued random 
variable (h. j~)v such that 

(h. X (~b)) t = (q5 [ (h. l~)v) a.e. (II.2) 

for any q b ~ [ U ~  Denote by L~ the space of equivalence classes of 
~'(U)-valued random variables under the topology of convergence in probabil- 

X)k on ~ with values in ity. Then (II.2) defines a linear mapping h-~(h. ~v 
L~ Suppose that (h n) converges to h in ~ and (h'.X) v converges to Y in 
L~ By LemmaII.1,  (h".J((~b)) converges to h.J((q~) in (S~ for any 
(be~[U~ hence 

(q5 ] Y) = (h. J((qS)) k = (~b I (h. j~)v) a.e. 

Consequently the mapping h ~ ( h . X ) ~  is continuous on g with values in 
L~ and the image of gl under this mapping is bounded in L~ 
One can show, as in the one-dimensional case (cf. [3], p. 402), that the boun- 
dedness of this set is equivalent to 

sup P{ II(h.J~)vll >c} ,0. 
h ~ l  C ~ O 0  

We have 

lIJ(vl[ =sup  [(qbi I )~v)l =sup  IX(4/)t[ a.e. 
i i 

hence (t, co)~llJ(v(co)tl has an optional right lower semi-continuous modifi- 
cation which will be denoted by f(co). Define T, by 

7", =inf{t~Dk: f > n}/x k, 

then T n is a stopping time and the lower semi-continuity o f f  implies that 

P{fr>=n}>a. 
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Since the mapping r162 is O-decomposable, there exists Z, eL~ 
such that 

(r I Z . )  = 2(~b)r  " a.e. 

for any C e ~ [ U ~  Since l~o,r,~ belongs to g~, Z,  belongs to the image of ga 
under the mapping h ~ v --*(h. X)k. Moreover 

II/,l[~,(u) =sup ](r [2,)[ =sup I)((r j =ft ,  a.e. 

consequently, for any heN, there exists Z,  in the image of g~ with 

P {lIz , ll >n} >a 

but this contradicts the boundedness of the set {(h.J~)tv: hegl} in 
L~ I IQED 

Lemma II.3. Under the hypotheses of Theorem II.1, there exists a right con- 
tinuous projective system with left limits whose projective limit is X'. 

Proof. Let Ueqlh(~]b}), by the dual characterization of the nuclear spaces (cf. 
[8]), we may suppose that the injection ivo: 45[U ~ ~--~r is nuclear. Choose any 
representation of it as 

i~o= ~ ,~F~(U)|162 
i=1  

where (hi) e l  1, (F i(U)) c ~ ' ( U )  is equicontinuous and (r c r is bounded. Define 
XV(co) by 

By Lemma II.2, 

x[(co)= ~ ;~,s 
i = l  

I~il sup 12(r162 < + oo 
i=1 t<= k 

a.e.  

for any keN. Therefore t~XV(co) is right continuous with left limits in ~b'(U), 
for almost all coef2, in the norm topology of qY(U). If Ce~[U~  we have 

J~ (q~)~ = (q51 X v) a.e. 

by the continuity of q~-~(qS) from ~ [ U  ~ into (S ~ d). If Ve~ with Vc  U 
and if e e l [ U ~  then 

(4)jk(U, V)oXV)=(i(V ~ U~162163 v) a.e. 

since (b[U ~ is separable 

k(u, v)o x [=  x ~, a.e. 
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and both sides are right continuous, hence the stochastic processes 
k(U, V)o X v and X v are undistinguishable. I IQED 

Remark. The uniqueness of the projective system (up to a projective system of 
evanescent processes) is obvious because of its right continuity. 

To complete the proof of Theorem II.1, we should show that the elements 
r of {XV: U~ ~h(q~)} are the semimartingales. For the notational convenience, in 

this part, we shall denote X v by X(U). 
Let 0 be any element of ~/h(~}), choose V, W and U in ~/h(~}) such that W 

c V c U c O  and that k(V, W), k(U, V) and k(0, U) are nuclear (cf. the no- 
tations). Define 

T.=inf{t>0: HXt(W)ll>n}, n~N.  

T, is a stopping time and it increases to infinity with neN.  Denote by X"(W) 
the following process: 

Xt (W)= Xt(W) l(t< r,~ + Xr,_ (W) l~t__>r,~ 

where Xr ,_(W ) denotes the left hand side limit of t-~X~(W) at t=T,. X'(W) is 
a uniformly bounded right continuous stochastic process having left limits. 
Moreover, for any ~ b ~ [ W ~  (~b [X~(W)) is a semimartingale. Let 

Q~'(W)= ~ AX~(W) l(llax~(w)ll>,), 
O<s<=t 

Q"(W) is an adapted process of finite variation. Let 

Y"(W)=X'(W)-Q"(w) 

then Y"(W) has uniformly bounded jumps and (qSl Y"(W)) is a semimartingale 
for any 4)~(b[W~ If we can show that the image of Y'(W) under k(0, W) is 
undistinguishable from a ~'(0)-valued semimartingale, the proof of 
Theorem II.1 will be completed. Since the jumps of Y"(W) are uniformly 
bounded, for any qS~q~[W~ (OIY'(W))=Y"(W)(4))is a special semimar- 
tingale. Hence it has a unique decomposition 

M"(W) (d?) + A"(W) (0) 

where M"(W)(c~) is a local martingale and A'(W)((a) is a previsible process, 
of finite variation. For notational simplicity, let us write (omitting n and W) 

Y (d))= M (r + A((~). 

Lemma 11.4. q5--+M(qS) and 0---,A(f5) are linear, continuous mappings on ~ [ W  ~ 
with values in (S ~ d). 

Proof. The fact that q5--*M(qS) and q5---,A(qS) are well defined and linear follows 
from the uniqueness of the canonical decomposition of a special semimar- 
tingale (cf. [3]). Let 4 ) ~ [ W ~  then there exists a sequence of stopping times 
(Sk) increasing to infinity such that (M(qS)t^s~; t>0)  is a uniformly integrable 
martingale and (A(O)t^s~; t>O) is of integrable variation. We have then 
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E [ A M  (gP)t,,s,,+ AA(gP)t,,s,~I ~ t -  ] = AA(O),,,s,~ 

since A(qS) is previsible. Hence 

I/A(q~), A ski __<E EIA g(q~)t ̂  ski I ~ - 3  --< n il~b II,rwol, 

since n is independent of Sk, this estimation implies that 

[AA((~)tl<n[[(pjfe~woj, [AM((~)t]<2nd[(~][~Lwo ~ a.e. 

for any t__>O and qS~g~[W~ Suppose that (~bk) converges to ~b in ~ [ W  ~ and 
(M(Ok)) to m in (S ~ d). Then A(dpk ) converges also to some a~S ~ in (S ~ d). 
However 

I A M(cbk)t I = ]M(d~k)t - M(4)k)t I <= 2 n sup II q~k It,~wo~ < + oo  
k 

and 

IAA(~bk),t < n. sup II ~bk[l~twol < + oo. 
k 

Since the set of local martingales and the set of previsible processes of finite 
variation having uniformly bounded jumps are closed in (S ~ d) (cf. [3], [4]), m 
is a local martingale and a is a previsible process of finite variation. Since Y is 
a stochastic process with values in ~'(W); (Y(Ok)) converges to Y(~b) in (S ~ d) 
as one can see applying the closed graph-theorem. Hence 

Y(O)=m+a,  ao=0,  

and the uniqueness of the canonical decomposition of Y(qS) implies that m 
=M(qS) and a=A(qS) i.e. the mappings ~b~A(qS) and qS--+M(qS) are 
continuous. ]IQED 

We have: 

LemmaII.5. Let {qSj} be a countable, dense subset of V ~ in ~[V~ Then for any 
k s N ,  we have 

and 

P{co: sup sup [M(i(W ~ V~ < + oo} = 1 
t<k j 

P{o:  sup sup ]A(i(W ~ V~162 < + oo} = 1. 
t~=k j 

Proof By the closed graph theorem the mappings (O,h)-+h,A(~) and 
(d~ ,h)~h .m(~)  are continuous on ~EW ~ xg with values in (S~ Then the 
proof follows from LemmaII.2. ][QED 

Since i(V ~ U ~ is nuclear it can be represented as 
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kjFj(U)| 
j=l 

where (F~(U))~@'(U) is equicontinuous (2j)el 1 and ( ~ j ) ~ [ V  ~ is bounded. 
Define 

At(~) = ~ ,~jA(i(W ~ V~ FAu) 
3=1 

]~/lt(o) ) = ~ .~./ M (i( W ~ V~ F~(U). 
.i=1 

By Lemma II.5, the sums are uniformly almost surely convergent hence A and 
M are right continuous with left limits in the norm topology of #'(U). Mo- 
reover, for any qSe#[U~ we have 

(41~,)+(~1~,) =(~lk(C, V)o k(v, w)(Y,)) 
=(q~lk(V, W)(Y,)) a.e. 

~ ~ 

Since A, M and k(U, W)o Y are with values in ~b'(U) and all of them are right 
continuous, A +A4 and k(U, W)oY are undistinguishable. Moreover M and 
have uniformly bounded jumps. Since (qSIAr is a local martingale, for any 
(p~b[U~ a stopping time argument shows that M is in fact a local martingale 
with values in ,:b'(U). Hence k(0, U)oA~ is also a local martingale with values in 
�9 '(0). A is a right continuous previsible process with values in ~'(U), without 
loss of generality we can suppose it bounded. The continuity of the mapping 

t 

(h, q))~ S hs dAs(cp) 
0 

from e x~b[U ~ into L ~ implies 

i) the set T =  hsdAs(cp): h~e 1, ~p~U ~ is bounded in L ~ 

ii) T c L  1 and T is convexe. 

Consequently, there exists a probability measure Q equivalent to P (c.f. [3], 
p. 402) such that, for any (p~(b[U~ A(q)) is a previsible Q-quasimartingale and 
it can be decomposed as 

d ((p) -- N(cp) + B(cp) 

where N(cp)is a continuous local martingale and B(tp) is of integrable variation 
(on [0, t]), previsible. By the methods which we have already used, N can be 
lifted as a continuous local martingale with values in q~'(0) and B as a process 
of integrable variation in ~'(0) (c.f. [12], Theorem II.I and II.2), hence A can 
be lifted as a Q-semimartingale with values in ~'(0) so also as a P-semi- 
martingale. Moreover A is previsible in ~o'(0) so its continuous local martingale 
part is null i.e../i is of finite variation in ~'(0). 
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Now let us complete the proof of Theorem II.l: 
We have 

x ,  A ~.(w) = x~(w)  + AXe .  1~,~ T~} = Y? (W) + Q2( w)  + A X ~ (  W) 1~,~= ~.} 

Hence 

Xt ~ T. (0) = k (0, W) (Y~" (W)) + k (0, W) (Q7 (w)) 

+ k(O, W)(AX~.(W)) l~,~= ~.~ 

and k(0, W)(Q~(W)) and k(0, W)(AXT. ) I~,>=T.~ are the semimartingales in ~'(0). 
Moreover 

k(0, W)(Y2(W))=k(0, U)(~,)+ k(0, U)(~i3 

where (M,) is a local martingale with values in (b'(U) and k(0, U)(A,) is a 
process of finite variation (it is even previsible and with uniformly bounded 
jumps). Hence the stochastic process {Xt~ T.(0); t >  0} is a semimartingale with 
values in ~'(0) and T, increases to infinity, so {X,(0); t>0} is a semimartingale 
with values in q~'(0). Since 0~/ /h(~)  is arbitrary, the proof of TheoremII.1 is 
completed. ]IQED 

We state some important consequences of Theorem II.l: 

Corollary ILl.  i) Suppose that g is a continuous linear mapping on qY and (X', X) 
is a semimartingale on ~b'. There exists a unique projective system of semi- 
martingales X g such that (goX', X g) is a semimartingale. 

ii) Suppose that (X', X) is a semimartingale on q~' and Q is another probabili- 
ty measure equivalent to P. Then (X', X) is also a semimartingale under Q. 

As a consequence of the Theorem of Meyer-Dellacherie-Mokobodski (cf. 
[-3], [5]) and Theorem II.1 we have the following 

CorollaryII.2. Let X'  be a weakly measurable mapping on lR+x ~ with values in 
~' such that, for any O~b, (t, co)-~O,X'~(co)) has a right continuous 
modification 2(0).  Denote by J the algebra generated by the previsible rect- 
angles. Then there exists a projective system of semimartingales whose pro- 
jective limit is X'  if and only if the set 

Do={il l t (s)dX(O)s;  H ~ J }  

is bounded in L ~ for any ~ ~ ~b. 
If ~} is a nuclear Fr6chet space one can define also the semimartingales in 

the ordinary sense: 

DefinitionII.1. Suppose that ~b~ is a nuclear Fr6chet space and Y a mapping on 
lR+x f2 with values in ~ ' .  Y is called an s-semimartingale if for any U~~ 
k(U)o Y is a semimartingale with values in q)'(U). 

Remark. Since ~//h(~) is countable, Y is necessarily right continuous with left 
limits. 
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Definition lI.2. Suppose that ~} is a nuclear Fr6chet space and Y is a right 
continuous stochastic process with values in ~}. Y is called a w-semimartingale 
if, for any q~e~, the stochastic process (t, co)~ <q~, Yt(co)) is a semimartingale. 

By the argument that we have used to prove the fact that the projective 
system of Theorem ILl is a projective system of semimartingales, one can show 
the following: 

Corollary II.3. Suppose that ~'~ is a nuclear Fr~chet space. Then any w-semi- 
martingale in cff is an s-semimartingale. 

The following result is an interpretation of some results of Functional 
Analysis from a probabilistic point of view: 

Corollary II.4. i) Suppose that F is a Banach space. Then F is finite dimensional 
if and only if any w-semimartingale with values in F is an s-semimartingale. 

ii) Suppose that E is a locally convex Fr~chet space. Then E is nuclear if and 
only if every w-semimartingale with values in E is an s-semimartingale. 

Proof. i) 'If ' part is trivial. Conversely suppose that (x,) is a weakly summable 
sequence. It is a (discrete) w-semimartingale, by the hypothesis it is a semi- 
martingale hence it is absolutely summable, Dvoretzky-Rogers Theorem im- 
plies that F is finite dimensional (cf. [8], p. 184, Corollary 3). 

ii) The same method shows that the space of the weakly summable se- 
quences in E is algebraically isomorphic to the space of the absolutely sum- 
m a n e  sequences in E. Since E is a Fr6chet space, this isomorphism is also a 
topological one and this is a sufficient condition for the nuclearity of E (cf. 
[8]). [IQED 

III. Some Applications 

Suppose that z is a real-valued semimartingale and define 6 z on N (i.e. the 
space of C~ on IR with compact support) as 

Then by Theorem II.1, ~z generates a projective system of semimartingales such 
that the corresponding g-process is a semimartingale on 9 ' .  If ~b~@, for any 
xelR, by Ito's formula we have 

t 

q~(x + z,) = q~(x + Zo) + ~ q~'(x + Zs_) dzs 
0 

f 

+ x + z s - ) d  . . . .  

+ y' [~o(x+z,)-~b(x+zs_)-Azsq) ' (x+z~_)]  P-a.e. (IfI.i) 
O < s < t  

For any (t, co)EIR+ x f2, the mapping x---> qS(x +zt(co)) is again an element of @. 
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The mappings 

t 
---+ t! c c x ~r ( x + z , ) c l ( z , Z S s  

o 

x-+ Y, [4'(X+Zs)-4'(x+z~_)-Az+4"(x+z+_)]=A,(4'(x)) 
0<s__<t 

are continuous for any t > 0  and for almost all co~2. Define T o as 

To -- inf{t __> 0: [zt[ >n}/x n, n~N. 

T o is a stopping time and it increases to infinity by n. Moreover the set 

{ 4"(. + z<, ̂  ~.~_ (co)): (t, co) ~lP, + • r 

is a bounded subset of ~ for almost all co~2 since it is a subset of 

{4"(. +y):  ]y[<n} 

for almost all coe~2 and the right translation is a continuous mapping on N. 
Let L o be any element of Jdh(~ ) absorbing {4"(. +z(t^r,)_);  (t, co)~lR+x ~2}. 
Denote by z ~ the process stopped at T o. Then 4'(. + z  ~ is a bounded, previsible 
stochastic process in the separable Hilbert space ~ [Lo]  so the stochastic 
integral 

t 

~ 4"(. + zL)~lZs 
0 

defines a semimartingale with values in ~ [ L  0]. Consequently the negligeable 
set on which (III.1) does not hold is independent of x~lR id we modify the 
stochastic integral as above. Moreover, the same method shows that the 
mapping 

t A  T n  

x - ~  J" 4 ' " (x+z~_)d(zC,  z %  
O 

is C ~ and of compact support for any t > 0  and for almost all co~Q. We have 

[A+(4'(x))[<sup[4'"(x+zs_ +OAz,)[ ~ (Az+) 2, 0~(0, 1), 
s<t s<=t 

F6({z~(CO); S < t} + {z s_ (CO); S < t}) is a compact set hence the mapping 

x --+At(4'(x)) 

is of compact support for any t > 0  and for almost all co~2. For fixed (t, co), 
denote by Kt(co) the support of x-->At(4'(x)). If R is in @', by the local 
characterization of the distributions, R is equal to D~g on Kt(co ) where/3~]N, g 
is a continuous function of compact support whose support includes K~(co) (cf. 
[9]). Consequently, we have 
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Y~ ER(4(. +z~)-q~(. +~_)-q~'(. +~_)/J~)2 
s<t  

< F~ IYg(~)(D~x4)(~+~)-D~4(~+~-)-d~D~x +~ 4'(~ +~_))d~l 
s< t  

<=�89 E(Azs)2< +oo a.e. 
x d R  s < t  

hence the sum converges in ~ for any t>O and for any coEg2 such that 
t~zt(co ) is right continuous with left limits. Therefore, for any Re~' ,  we have 

R(~b(. + zt))=R(~b ( . +Zo))+R ( iK" ,o(7" 0'(. +zs_)dzs)) 

1 / t  ^ rn  

+ F ER(4(. + z ) - 4 ( .  +Zs_)-4'(. + z  s )slz)] a.e. 
O < s < t  

where iKn is the injection from ~ [ K , ]  into ~.  Denoting the adjoint of iK, by 
k(K~ we have 

/ [ t A r n  

tA Tn 

= ~ ( k ( K ~  
0 

tA  Tn 

= ~ R(#(.+z~_))dz~ a.e. 
0 

since we have modified the stochastic integral to obtain a N[Kn]-valued 
stochastic integral. As one can show easily R commutes also with the Stieltjes 
integral and we obtain 

t 

R(qS(. +zt))=R(q5 (. +Zo))+ ~R(qS' (. +Zs_))dz ~ 
O 

1 t 
! n(qY'(. +G-) )  d (z c, zC)~ +~  

+ ~ ER(~b(. +z,))-R(#o(. +Zs_)) 
O < s < t  

-R(#)'(. + z~_)) Az~] (III.2) 

for any t>=0 and for almost all coEf2. Since both sides are right continuous 
they are undistinguishable and we have the following 

TheoremHL1. Let z be a real valued semimartingale. I f  R is an element of ~', 
define X;(e)) as 

X;(oa)=R *~z,(,o), 
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where ' , '  denotes the convolution. Then X'  generates a unique projective system 
of semimartingales X such that the g-process (X', X) is a semimartingale on @'. 

Proof By (III.2), for any 05E9, (05,X't) has a modification which is a semi- 
martingale. Then the theorem follows from Theorem II.1. I]QED 

Theorem III.1 and the relation III.2 are equivalent to 

Theorem III.2. Denote by J( the mapping on 9 with values in S o defined by (up 
to an evanescent process) 

2(05),=R(05(. +z3). 

Then f2 is a linear, sequentially continuous with values in (S ~ d) such that 

2(05), = Jr + ~(2oDx)(05)s_ azs 
0 

1 '  +~ !(2om~l(05)s_ d~z c zC~ 

+ ~ [J((O)s-2(05)s-(2oDx)(05)s_Azs] a.e. (III.3) 
O < s < t  

for any t > O. 

Proof The relation (III.3) is obvious. The sequential continuity of Jf follows 
from the closed graph theorem and from the fact that the random variable 
X;(.)  takes its values in 9 ' ,  for any t e N + .  I IQED 

Remark. The representation (III.3) gives a rigorous definition of the partial 
stochastic differential equations. 

By Theorem II.1 and Corollary II.1, the preceeding theorem is also equiva- 
lent to saying that 

TheoremlII.3. Denote respectively by {XV; U~Oh'h(9})}, {Xl'U; UG~h(~fl) } and 
{x2'U; U~~ the projective systems of semimartingales corresponding to X', 
Dx X'  and 2 ' i D~ X ,  where D~ denotes the derivation in 9 '  of order i = 1, 2. Then one 
has the following relation: 

t 1 t 
U U 1 U ~ c x,  = X o - ~ X s :  dzs+~ ;X~'Vd(z~'z )~ 

0 

+ ~, v v + X~' u. A z~] (III.4) IX  s - X ~ _  _ a.e. 
O<s<=t 

Moreover, as stochastic processes, both sides of (111.4) are undistinguishable for 
any U ~qih(9'p). 

Proof Let U~8/h(9~) and 05~9[U~ We have 

2(05), = (051Xv) a.e. 

2(D~05)t=(D~05,X;) = - (05 ,D~X;)=  -(05[Xt ~'v) a.e. 

2(D~ IX ~ v 05),=(05 , '  ) a.e., 
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hence the stochastic processes at each side of the equalities are undistinguish- 
able. Then, by (III.3), we have 

' 2' 
_ 2 U Z c z c  (4)LxV)=(4)lX~)-S(~lx~'V)dzs+ j ' (q~[Xs~)d~,  )s 

0 0 

+ Z [(~blX~V-Xs_)+Az~((0lXl'f)]v a.e. (III.5) 
O < s < t  

The integrals f X~s?dz~ and f 2 v ~z ~ z~.~ x~2 d . . . .  converge in ~'(U). Using the local 
structure of the distributions and Taylor's formula, as we have already done to 
prove (III.2), we obtain, for any s<=t and for any t>0,  

[[(4lXVs_XV )+Az~(4 1 v IXs: )]l __< �89 c~,(co) sup I4,P(x)I (Az~) 2 
x 

where ~t(co)>0 depends only on t, co and R. Hence 

IlXV-Xf +AzsX/Yll< +~ a.e. 
O <s <=t  

consequently both sides of (III.4) are right continuous and the theorem 
follows. IIQED 

By TheoremI.1, since ~ is bornological, if (X,X') ,  corresponding to R e ~ '  
and z s S  ~ belongs to $1(@'), then there exists right continuous stochastic 
processes having left limits with values in ~' ,  say Jr )~1 and )~2 such that 

k(U)o s = x  ~, 
k(U)oJ[1X 1,u 

k(U)oX 2 = X  2,U 

up to an evanescent process, for any Ueq/h(@}). Moreover, there exists some K 
in Yga(~') and semimartingales Y,, y1 and y2 with values in N ' [K]  such that 

j~ = iK(Y), J(~ = iK(Y1), 2 a = iK(Y 2) 

where i~; is the injection ~ ' [ K ]  ~--~ '. One can now prove, by the method that 
we have used for the proof of Theorem III.3, the following 

TheoremIII.4. Suppose that the semimartingale (X,X ' )  corresponding to R e ~ ' ,  
zES ~ be in $1(@'). Then, using the above notations, one has 

t  zs+l ! 
+ ~ [Ys-Ys_+AZ~Ys~_] a.e. (III.6) 

O <s <=t  

and the corresponding stochastic processes are undistinguishable in ~ ' [K] .  

Example. If z E S  2 then X't(co ) defined by 
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x;(~)= O(z~), 4~2, 

generates an element of $ I (~  ') as one can see by Ito's formula. 

Remark. For notational simplicity we have treated only the one-dimensional 
case, however all the results of this section extend trivially to higher dimen- 
sions. 

By definition J~l(4 ) is a modification of DxX;(r for fixed qia~. Hence, for 
fixed t~lR+, we have 

X~(4) = (D~ X;, r  = - (X;, Dx 4 )  = -- ()~t, Dx r  

=(D~Kt, 4) =Dx)(t(4) a.e. 

Since Jr1(4 ) and D~Jf.(4) are right continuous stochastic processes, they are 
undistinguishable. Similarly, for any thEN, the stochastic processes Jr.2(4) and 
D2 Jr.(4) are also undistinguishable. Consequently we have 

TheoremlII.5. For any 0 ~  one has the following equality 

t io 
+ ~, [X~(dP)-Xs_(4)+DxXs_(~)Azs]. 

O<s<=t 

Remark. i) Any semimartingale indexed by a compact interval of the positive 
real numbers can be regarded as an element of S 2 under a convenient change 
of the probability P (cf. [3]). 

ii) If zt=B t i.e. the Standard Wiener process, then stopping B t on the 
increasing, compact subsets of N by a bounded sequence of stopping times, we 
see that ()(t) corresponding to R ,  bBt satisfies the following equation 

d~t=_Dx~tdBt+~Dxl  2)~tdt, X 0 = R  ' R e ~ ' ,  

and same method works also for the following case: 

(X' ,  4 )  = ((exp - i V(. + Bs) ds). R, r (. + St)) 
0 

and the corresponding stochastic process (X~) satisfies the following equation: 

d ~ t = _ D x ~ t d B t _ V K t  1 2 ^ dt +~DxXtdt,  

Xo=R, R ~ '  

where V is an infinitely differentiable function on IR. In [12] this relation has 
been called the stochastic form of Feynman-Kac formula. Of course all this 
relations should be interpreted in the sense of Theorem III.5. 
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