Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1979

p-Sets for Random Walks

J.R. Blum¹* and J.I. Reich²

¹ Committee on Statistics, University of Arizona, Tucson, AZ 85721, USA

² 1703 President Street, New York, NY11213, USA

Summary. Let (Ω, \mathcal{F}, P) be a probability space and let $\{X_n(\omega)\}_{n=1}$ be a sequence of i.i.d. random vectors whose state space is Z^m for some positive integer *m*, where *Z* denotes the integers. For n=1,2,... let $S_n(\omega)$ be the random walk defined by $S_n(\omega) = \sum_{j=1}^n X_j(\omega)$. For $x \in Z^m$ and $\alpha \in U^m$, the *m*-dimensional torus, let $\langle \alpha, x \rangle = e^{2\pi i} \sum_{j=1}^m \alpha_j x_j$. Finally let $\phi(\alpha) = E\{\langle \alpha, X_1(\omega) \rangle\}$ be the characteristic function of the X's.

In this paper we show that, under mild restrictions, there exists a set $\Omega_0 \subset \Omega$ with $P\{\Omega_0\} = 1$ such that for $\omega \in \Omega_0$ we have

$$\lim_{n\to\infty}\left|\frac{1}{n}\sum_{j=1}^n\langle\alpha,S_j(\omega)\rangle\right|=0 \quad \text{for all } \alpha\in U^m, \ \alpha\neq 0.$$

As a consequence of this theorem, we obtain two corollaries. One is concerned with occupancy sets for m-dimensional random walks, and the other is a mean ergodic theorem.

1. Preliminaries

Let G be a locally compact abelian group. Let \hat{G} be the dual of G, that is \hat{G} is the set of continuous homomorphisms of G to T, the unit circle in the complex plane. \hat{G} is a group under pointwise multiplication and inherits a natural topology from G. Now put the discrete topology on \hat{G} , call it \hat{G}_d . Then $\hat{G}_d = \bar{G}$ is a compact (but very large) group such that G is dense in \bar{G} . \bar{G} is called the Bohr compactification of G. If m is Haar measure on \bar{G} then m(G)=0. For details of this, see e.g. Rudin [3, Ch. 1].

Now suppose $\{m_n\}_{n=1}^{\infty}$ is a sequence of probability measures on G. In an obvious way, we may consider them also as measures on \overline{G} . We shall say the sequence $\{m_n\}$ is ergodic provided m_n converges weakly to m. The reason for the

^{*} Research supported by N.S.F. Grant #MCS77-26809

name is that such sequences provide mean ergodic theorems for unitary representations of G on an arbitrarily Hilbert space, as shown in [2]. It follows from the Paul Lévy continuity theorem that $\{m_n\}$ is ergodic if and only if $\int_G \langle \gamma, g \rangle m_n(dg) \rightarrow 0$ for every $\gamma \in \hat{G}$, $\gamma \neq$ identity since the Fourier transform \hat{m} of mis zero for every non-trivial $\gamma \in G$.

Now suppose $0 \leq p \leq 1$. We shall call a measurable subset I_p of G a p-set provided $\lim_n m_n(I_p) = p$ for every ergodic sequence $\{m_n\}$. There exist many p-sets and examples are not difficult to construct. Let H be a closed subset of \overline{G} with m(H) = p, such that H is a continuity set for m, i.e. the boundary of H has Haar measure zero. Then it follows at once that $H \cap G$ is a p-set. For example, let I be a closed subinterval of the unit circle with Lebesgue measure p, and let $\gamma \in \widehat{G}$ be of infinite order. Then $\{\overline{g} \in \overline{G} | \langle \gamma, \overline{g} \rangle \in I\}$ is a closed continuity set for m with measure p, and $\{g \in G | \langle \gamma, g \rangle \in I\}$ is a p-set. Now if $G = Z^m$ for some $m \geq 1$, then $\widehat{G} = U^m$, where U is the unit circle. Thus if $\alpha = (\alpha_1, \dots, \alpha_m) \in U^m$ is not a root of unity then

$$\{l = (l_1, \ldots, l_m) \in Z^m | \langle \alpha, l \rangle \in I\}$$

is a *p*-set.

2. The Main Results

With the notation as defined in the abstract, we shall prove the

Theorem. If $|\phi(\alpha)| < 1$ for $\alpha \in U^m$, $\alpha \neq 0$ and if $E|X_1(j,\omega)| < \infty$ for j = 1, ..., m then there exists a set $\Omega_0 \subset \Omega$ with $P\{\Omega_0\} = 1$ such that for $\omega \in \Omega_0$

$$\lim_{n \to \infty} \left| \frac{1}{n} \sum_{j=1}^{n} \langle \alpha, S_j(\omega) \rangle \right| = 0$$

for all $\alpha \in U^m$, $\alpha \neq 0$.

Remarks. i) By $X_n(j,\omega)$ or $S_n(j,\omega)$ we mean the jth coordinate of $X_n(\omega)$ or $S_n(\omega)$ respectively.

ii) The hypothesis $|\phi(\alpha)| < 1$ for $\alpha \neq 0$ is inessential. If we consider the class of random walks for which $|\phi(\alpha_0)| = 1$ for some $\alpha_0 \neq 0$ then this is the class of random walks which lives on some subgroup of Z^m . We can then prove an analogous theorem for that subgroup.

3. Proof of the Theorem

For m=1 the theorem was proved in [1]. However the case m>1 is considerably more difficult and appears to be interesting in its own right.

Lemma 1. Let
$$\delta_j = \pm 1$$
 for $j = 1, ..., 2m$ with $\sum_{j=1}^{2m} \delta_j = 0$. Define $k_j = -\sum_{l=1}^{j} \delta_l$, l

$$=1, \dots, 2m-1.$$
 Then for arbitrary numbers x_1, \dots, x_{2m} we have $\sum_{j=1}^{2m} \delta_j x_j$
= $\sum_{j=1}^{2m-1} k_j (x_{j+1} - x_j).$ Moreover $|k_j| \leq m$ for all j , and $k_{2j-1} \neq 0$ for $j = 1, \dots, m$.

The proof of the lemma is obvious and will be omitted. \Box

Lemma 2. Let *m* be a positive integer and let $r_j \in (0, 1)$, j = 1, ..., m. Let $M \leq N$ be positive integers. Then

$$\sum_{\substack{M \leq j_1 \leq \dots \leq j_{2m} \leq N \\ m = 1}} \prod_{k=1}^m r_k^{j_{2k} - j_{2k-1}} \leq \frac{2^m N^m}{\prod_{j=1}^m (1 - r_j)}.$$

Proof. The proof is by induction on *m*. For m = 1 we have

$$\sum_{M \leq j_1 \leq j_2 \leq N} r^{j_2 - j_1} = \sum_{j_1 = M}^N \frac{1 - r^{N - j_1 + 1}}{1 - r} \leq \frac{2N}{1 - r}$$

Now suppose the conclusion holds for m. Then

$$\sum_{\substack{M \leq j_1 \leq j_2 \leq \dots \leq j_{2(m+1)} \leq N \\ M \leq j_1 \leq j_2 \leq N }} \prod_{\substack{k=1 \\ k=1}}^{m+1} r_k^{j_{2k}-j_{2k-1}}} = \sum_{\substack{M \leq j_1 \leq j_2 \leq N \\ M \leq j_1 \leq j_2 \leq N }} r_1^{j_2-j_1} \sum_{\substack{j_2 \leq j_3 \leq \dots j_{2(m+1)} \leq N \\ m+1 \\ m$$

by the induction hypothesis and the case m = 1.

Lemma 3. Let *m* and *n* be positive integers and let $\alpha \in U^m$ such that $\alpha \neq 0$, $2\alpha \neq 0, ..., n\alpha \neq 0$. Then for all positive integers *N* we have

$$E\left|\sum_{j=1}^{N} \langle \alpha, S_j(\omega) \rangle\right|^{2n} \leq \frac{N^n 2^n (2n)!}{(1 - \max_{1 \leq j \leq n} |\phi(j\alpha)|)^n}.$$

Proof. Define $\delta_k = \begin{cases} 1 & k = 1, ..., n \\ -1 & k = n+1, ..., 2n \end{cases}$. We have

$$E\left|\sum_{j=1}^{N} \langle \alpha, S_{j}(\omega) \rangle\right|^{2n} = E \sum_{j_{1}, \dots, j_{2n}=1}^{N} \prod_{k=1}^{n} \langle \alpha, S_{j_{k}}(\omega) \rangle \prod_{k=n+1}^{2n} \overline{\langle \alpha, S_{j_{k}}(\omega) \rangle}$$
$$= E \sum_{j_{1}, \dots, j_{2n}=1}^{N} \left| \langle \alpha, \sum_{k=1}^{2n} \delta_{k} S_{j_{k}}(\omega) \rangle \right|$$
$$\leq \sum_{j_{1}, \dots, j_{2n}=1}^{N} \left| E \left\langle \alpha, \sum_{k=1}^{2n} \delta_{k} S_{j_{k}}(\omega) \right\rangle \right|.$$
(3.1)

Now let P_{2n} be the family of permutations of (1, ..., 2n) and for $\sigma \in P_{2n}$ define

$$S_{\sigma} = \{ \overline{J} = (j_1, \dots, j_{2n}) | 1 \leq j_k \leq N, j_{\sigma(1)} \leq j_{\sigma(2)} \leq \dots \leq j_{\sigma(2n)} \}.$$

Then clearly $\bigcup_{\sigma \in P_{2n}} S_{\sigma}$ is the collection of all sequences (j_1, \ldots, j_{2n}) with $1 \leq j_k \leq N$. Therefore we obtain from (3.1) that

$$E\left|\sum_{j=1}^{N} \langle \alpha, S_{j}(\omega) \rangle\right|^{2n} \leq \sum_{\sigma \in P_{2n}} \sum_{J \in S_{\sigma}} \left| E\left\langle \alpha, \sum_{k=1}^{2n} \delta_{k} S_{jk}(\omega) \right\rangle \right|.$$
(3.2)

Note that $\sum_{k=1}^{2n} \delta_k S_{j_k}(\omega) = \sum_{k=1}^{2n} \delta_{\sigma(k)} S_{j_{\sigma(k)}}(\omega)$ and that for each $\sigma \in P_{2n}$ the numbers $\delta_{\sigma(k)}$, k = 1, ..., 2n satisfy the conditions of Lemma 1. Therefore there exist integers $k_r(\sigma)$, $r=1, \ldots, 2n-1$ such that

$$\sum_{k=1}^{2n} \delta_{\sigma(k)} S_{j_{\sigma(k)}}(\omega) = \sum_{r=1}^{2n-1} k_r(\sigma) [S_{j_{\sigma(r+1)}}(\omega) - S_{j_{\sigma(r)}}(\omega)],$$

and we obtain

$$\sum_{J \in S_{\sigma}} \left| E \left\langle \alpha, \sum_{k=1}^{2n} \sigma_{k} S_{j_{k}}(\omega) \right\rangle \right|$$

$$= \sum_{\substack{1 \leq j_{\sigma(1)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ 1 \leq j_{\sigma(1)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ \leq \dots \leq j_{\sigma(2n)} \leq N \\ \leq \dots \leq j_{\sigma(2n)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ = \sum_{\substack{1 \leq j_{\sigma(1)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ 1 \leq j_{\sigma(1)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ \leq \dots \leq j_{\sigma(2n)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ = \sum_{\substack{n=1 \\ r=1}}^{n} |\phi(k_{r}(\sigma)\alpha)|^{j_{\sigma(r+1)} - j_{\sigma(r)}}$$

$$\leq \sum_{\substack{1 \leq j_{\sigma(1)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ 1 \leq j_{\sigma(2n)} \leq \dots \leq j_{\sigma(2n)} \leq N \\ r=1 \\ |\phi(k_{2r-1}(\sigma)\alpha)|^{j_{\sigma(2r)} - j_{\sigma(2r-1)}}}.$$

$$(3.3)$$

The first equality in (3.3) follows from the preceding remark, the second from properties of exponentials, and the third from the fact that the blocks $S_{j_{\sigma(r+1)}}(\omega)$ - $S_{j_{\sigma(r)}}$ are pairwise independent. The final inequality is obvious. Now apply Lemma 2 to the last expression in (3.3) to obtain (3.4)

$$\sum_{J \in S_{\sigma}} \left| E\left\langle \alpha, \sum_{k=1}^{2n} \delta_k S_{j_k}(\omega) \right\rangle \right| \leq \frac{2^n N^n}{\sum\limits_{r=1}^n (1 - |\phi(k_{2r-1}(\sigma)\alpha)|)} \leq \frac{2^n N^n}{(1 - \max_{j=1,\dots,n} |\phi(j\alpha)|)^n}.$$
(3.4)

The proof of the Lemma is now completed by summing over the permutations on (1, ..., 2n).

Lemma 4. For $k=1, \ldots, m$ we have

$$E\left|\frac{\partial}{\partial \alpha_k}\frac{1}{N}\sum_{j=1}^N\langle \alpha,S_j(\omega)\rangle\right|=O(N).$$

p-Sets for Random Walks

Proof.

$$E\left|\frac{\partial}{\partial \alpha_{k}}\frac{1}{N}\sum_{j=1}^{N}\langle \alpha, S_{j}(\omega)\rangle\right| = E\left|\frac{1}{N}\sum_{j=1}^{N}i\alpha_{k}S_{j}(k,\omega)\langle \alpha, S_{j}(\omega)\rangle\right| \leq \frac{1}{N}\sum_{j=1}^{N}E\left|S_{j}(k,\omega)\right| \leq C\frac{N(N+1)}{2N} = O(N).$$

Lemma 5. Let f be a complex-valued function defined on U^m , and suppose f has continuous partial derivatives. Suppose $\left|\frac{\partial f}{\partial \alpha_J}\right| \leq K$ for all $\alpha \in U^m$. Let $C = \prod_{j=1}^m [a_j, b_j]$ be a subcube of U^m . Then for all $\alpha, \beta \in C$ we have $|f(\beta)| \leq |f(\alpha)| + 2K \sum_{j=1}^m (b_j - a_j).$

Proof. The proof is by induction on m. The case m=1 follows from the mean-value theorem, and the induction proof is straight forward. We omit the details. \Box

Now fix an *m*-cube $C = \prod_{j=1}^{m} [a_j, b_j]$ such that C does not contain a root of unity of U^m of order $\leq 2m$. We have

Lemma 6.
$$\lim_{N \to \infty} \sup_{\alpha \in C} \left| \frac{1}{N} \sum_{j=1}^{N} \langle \alpha, S_j(\omega) \rangle \right| = 0$$

Proof. Let [x] denote the greatest integer $\leq x$. For each positive integer N, partition C into $[N^{\frac{3}{2}}]^m$ subcubes by partitioning each interval $[a_j, b_j]$ into $[N^{\frac{3}{2}}]$ subintervals of equal length. Choose a point α_k from each subcube and define

$$A_{N} = \left\{ \omega \middle| \left| \frac{1}{N} \sum_{j=1}^{N} \langle \alpha_{k}, S_{j}(\omega) \rangle \right| < \frac{1}{N^{\frac{1}{16}}}, \ k = 1, \dots, [N^{\frac{3}{2}}]^{m} \right\}.$$

Then we have

$$P(A_N^c) \leq \sum_{k=1}^{[N_2^3]^m} P\left\{ \left| \frac{1}{N} \sum_{j=1}^N \langle \alpha_k, S_j(\omega) \rangle \right| \geq \frac{1}{N^{\frac{1}{16}}} \right\}$$
$$\leq \sum_{k=1}^{[N_2^3]^m} N^{\frac{m}{4}} E\left(\left| \frac{1}{N} \sum_{j=1}^N \langle \alpha_k, S_j(\omega) \rangle \right|^{4m} \right)$$
(3.5)

by the Čebyšev inequality. Now let $|\phi(\alpha_0)| = \max_{\alpha \in C} \max_{\substack{j=1,...,2m \\ j=1,...,2m}} |\phi(j_{\alpha})|$. Then by hypothesis $|\phi(\alpha_0)| < 1$. Now we may apply Lemma 3 and (3.5) to obtain

$$P(A_N^c) \leq \frac{N^{\frac{3m}{2}} N^{\frac{m}{4}}}{N^{4m}} \frac{N^{2m} 2^{2m} (4m)!}{(1 - |\phi(\alpha_0)|)^{2m}} = O\left(\frac{1}{N^{\frac{m}{8}}}\right).$$
(3.6)

J.R. Blum and J.I. Reich

Now define
$$B_N = \left\{ \omega | \sup_{\alpha} \left| \frac{\partial}{\partial \alpha_k} \frac{1}{N} \sum_{j=1}^N \langle \alpha, S_j(\omega) \rangle \right| \leq N^{\frac{5}{4}}, k = 1, ..., m \right\}.$$

Then it follows from Lemma 4 and the Čebyšev inequality that

$$P(B_{N}^{c}) \leq \frac{mO(N)}{N^{\frac{5}{4}}} = O\left(\frac{1}{N^{\frac{1}{4}}}\right).$$
(3.7)

Combining (3.6) and (3.7) we have

$$P\{(A_N \cap B_N)^c\} = O\left(\frac{1}{N^{\frac{1}{8}}}\right).$$
(3.8)

If $\omega \in A_N \cap B_N$ and $\alpha \in C$ then α is in one of the $[N^{\frac{3}{2}}]^m$ subcubes of C. Suppose α is in the subcube corresponding to α_r . Then

$$\left|\frac{1}{N} \sum_{j=1}^{N} \langle \alpha, S_{j}(\omega) \rangle \right| \leq \left|\frac{1}{N} \sum_{j=1}^{N} \langle \alpha_{r}, S_{j}(\omega) \rangle \right| + N^{\frac{5}{4}} \sum_{j=1}^{m} \frac{b_{j} - a_{j}}{\left[N^{\frac{3}{2}}\right]}$$
$$\leq \frac{1}{N^{\frac{1}{16}}} + \frac{m}{\left[N^{\frac{1}{4}}\right]} = O\left(\frac{1}{N^{\frac{1}{4}}}\right). \tag{3.9}$$

The first inequality follows from Lemma 5 and the second is obvious. We conclude that for $\omega \in A_N \cap B_N$ we have

$$\sup_{\alpha \in C} \left| \frac{1}{N} \sum_{j=1}^{N} \langle \alpha, S_j(\omega) \rangle \right| = O\left(\frac{1}{N^{\frac{1}{16}}} \right).$$
(3.10)

From (3.8) we have

$$\sum_{N=1}^{\infty} P\left\{ (A_{N^{16}} \cap B_{N^{16}})^c \right\} < \infty$$
(3.11)

and we use the Borel-Cantelli lemma to conclude that $P\{\Omega_c\}=1$, where $\Omega_c = \{\omega | \omega \text{ is in all but a finite number of } A_{N^{16}} \cap B_{N^{16}}\}$, and clearly for $\omega \in \Omega_c$ we have

$$\lim_{N\to\infty} \sup_{\alpha\in C} \left| \frac{1}{N^{16}} \sum_{j=1}^{N^{16}} \langle \alpha, S_j(\omega) \rangle \right| = 0.$$

Now a well-known argument shows that the same holds along the entire sequence proving the lemma. \Box

It is easily seen that we may write $U^m - \{\text{roots of unity of order } \leq 2m\}$ = $\bigcup_{M=1}^{\infty} C_M$, where each C_M is a cube of the type in Lemma 6. Consequently for $\omega \in \bigcap_{M=1}^{\infty} \Omega_{C_M}$ and $\alpha \in \bigcup_{M=0}^{\infty} C_M$ the averages converge to zero.

If α is a nonzero root of unity of order $\leq 2m$ let

$$A_{N} = \left\{ \omega \left| \left| \frac{1}{N} \sum_{j=1}^{N} \langle \alpha, S_{j}(\omega) \rangle \right| < \frac{1}{N^{16}} \right\}.$$

198

Using Lemma 3 with n=1 and the Čebyšev inequality we obtain $P\{A_N^c\} \leq N^{\frac{1}{8}}O\left(\frac{1}{N}\right) = O\left(\frac{1}{N^{\frac{1}{8}}}\right)$. Using the same technique as in Lemma 6 we obtain the almost sure convergence for each such α . Combining this with the previous paragraph concludes the proof of the theorem.

4. Applications

In this section we give several applications of the main result. Let $\{S_n(\omega)\}_{n=1}^{\infty}$ be a random walk in Z^m satisfying the hypotheses of the theorem. Let $\{\mu_n\{\cdot,\omega\}\}_{n=1}^{\infty}$ be the sequence of random measures on Z^m obtained by placing mass 1/n on $S_1(\omega), \ldots, S_n(\omega)$ for each *n*. Then the Fourier transform of $\mu_n(\cdot, \omega)$ is given by $\hat{\mu}_n(\alpha, \omega) = \frac{1}{n} \sum_{j=1}^n \langle \alpha, S_j(\omega) \rangle$. The theorem tells us that for $\omega \in \Omega_0$ we have $\lim_{n \to \infty} \hat{\mu}_n(\alpha, \omega) = 0$ for $\alpha \in U^m$, $\alpha \neq 0$. Therefore the sequence $\{\hat{\mu}_n(\cdot, \omega)\}_{n=1}^{\infty}$ is an ergodic sequence of measures, as defined in Sect. 1. Now let I_p be an arbitrary *p*-set in Z^m as defined in Sect. 1. Then it follows that

$$\lim_{n\to\infty}\mu_n(I_p,\omega) = \lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\chi_{I_p}(S_j(\omega)) = p,$$

i.e. the limiting proportion of time that the random walk $\{S_n(\omega)\}_{n=1}^{\infty}$ spends in I_p is p. We summarize this in

Corollary 1. Let \mathscr{I} be the class of all p-sets in Z^m with $0 \leq p \leq 1$. Let $\{S_n(\omega)\}_{n=1}^{\infty}$ be a random walk in Z^m satisfying the hypotheses of the theorem. Then there exists

 $\Omega_0 \in \Omega$ with $P\{\Omega_0\} = 1$ such that for $\omega \in \Omega_0$ and $I_p \in \mathscr{I}$ we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n \chi_{I_p}(S_j(\omega))=p.$$

For a second application let H be an arbitrary Hilbert space and let $\{U_J, \overline{J} \in Z^m\}$ be a group of unitary operators indexed by Z^m , i.e. $U_{J_1}U_{J_2} = U_{J_1+J_2}$. Let P be the orthogonal projection on the subspace of H defined by $\{f \in H | U_J f = f, \ \overline{J} \in Z^m\}$. Let $\{\mu_n(\cdot, \omega)\}_{n=1}^{\infty}$ be the random ergodic measures defined above. Then $\int_{Z^m} U_J d\mu_n(\overline{J}, \omega) = \frac{1}{n} \sum_{j=1}^n U_{S_j(\omega)}$. By applying the results of [2] and the theorem we obtain

Corollary 2. Let $\{S_n(\omega)\}_{n=1}^{\infty}$ be a random walk in Z^m satisfying the hypotheses of the theorem, and let $\{U_J, \overline{J} \in U^m\}$ be a group of unitary operators on a Hilbert space H, indexed by U^m . Then there exists $\Omega_0 \subset \Omega$ with $P(\Omega_0)=1$, such that for

 $\omega \in \Omega_0$ we have strong

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n U_{S_j(\omega)}=P,$$

i.e. for every $f \in H$,

$$\lim_{n\to\infty} \left\| \frac{1}{n} \sum_{j=1}^n U_{S_j(\omega)} f - Pf \right\| = 0.$$

References

- 1. Blum, J.R., Cogburn, R.: On ergodic sequences of measures. Proc. Amer. Math. Soc. 51, 359-365 (1975)
- 2. Blum, J.R., Eisenberg, B.: Generalized summing sequences and the mean ergodic theorem. Proc. Amer. Math. Soc. 42, 423-429 (1974)
- 3. Rudin, W.: Fourier Analysis on Groups. New York: Inter-science 1962

Received March 25, 1977