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Summary. Let ((2,Y,P) be a probability space and let {X,(co)},=l be a 
sequence of i.i.d, random vectors whose state space is Z"  for some positive 
integer m, where Z denotes the integers. For n = l , 2  . . . .  let S,(e)) be the 

random walk defined by S,(co)= ~ Xj(co). For x e Z "  and c~U m, the m- 
j = l  

dimensional torus, let (o: ,x )=e2~i~  ~jxj. Finally let ~b(c~)=E{(e, Xl(co)) } 
j=l 

be the characteristic function of the X's. 
In this paper we show that, under mild restrictions, there exists a set 

f20 o f  2 with P{O0} =1 such that for co~f2 o we have 

1 " 
lira nj  ~(~'S'i(c~ = 0  for all c~cU m, c~+O. 

n~oo 

As a consequence of this theorem, we obtain two corollaries. One is 
concerned with occupancy sets for m-dimensional random walks, and the 
other is a mean ergodic theorem. 

1. P r e l i m i n a r i e s  

Let G be a locally compact abelian group. Let (~ be the dual of G, that is G is the 
set of continuous homomorphisms of G to T, the unit circle in the complex 
plane. G is a group under pointwise multiplication and inherits a natural 
topology from G. Now put the discrete topology on (~, call it dd. Then Ga = (~ is 
a compact (but very large) group such that G is dense in G. G is called the Bohr 
compactification of G. If m is Haar  measure on G then re(G)=0. For  details of 
this, see e.g. Rudin [3, Ch. 1]. 

Now suppose {m,},~ 1 is a sequence of probability measures on G. In an 
obvious way, we may consider them also as measures on (~. We shall say the 
sequence {m,} is ergodic provided m, converges weakly to m. The reason for the 
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name is that such sequences provide mean ergodic theorems for unitary repre- 
sentations of G on an arbitrarily Hilbert space, as shown in [2]. It follows from 
the Paul L6vy continuity theorem that {m,} is ergodic if and only if 
~(7 ,g)  m,(dg)--,0 for every 7EG, 7 =f identity since the Fourier transform n~ of m 
G 
is zero for every non-trivial 7~G. 

Now suppose 0 < p < l .  We shall call a measurable subset I v of G a p-set 
provided lim m~(lp):p for every ergodic sequence {m,}. There exist many p-sets 

n 

and examples are not difficult to construct. Let H be a closed subset of G with 
re(H) =p, such that H is a continuity set for m, i.e. the boundary of H has Haar  
measure zero. Then it follows at once that H r~ G is a p-set. For example, let I be 
a closed subinterval of the unit circle with Lebesgue measure p, and let yeG be 
of infinite order. Then {~EGI(~ ,~)~I  } is a closed continuity set for rn with 
measure p, and {g~Gl (7 ,g )e I}  is a p-set. Now if G = Z  "~ for some m >  1, then d 
= U ~, where U is the unit circle. Thus if ~ =(cq, ..., %)~ U m is not a root of unity 
then 

{1 = (lb. . . ,  lm)~Z~l(~, l} ~I} 

is a p-set. 

2. The Main Results 

With the notation as defined in the abstract, we shall prove the 

Theorem. I f  [ ~ (~)l < 1 for c~ U m, c~ . 0 and if E IX 1 (J, co) l < ce for j = 1,..., m then 
there exists a set ~?oc~ with P{~o} = 1 such that for co~(2 o 

1 ~ 
lim n ~(~,Sj(co))  = 0  
r l ~ o ~  j ----1 

for all c~eU ~, ~ 0 .  

Remarks. i) By Xn(j, co) or S,(j, co) we mean the jth coordinate of X,(co) or S,(co) 
respectively. 

ii) The hypothesis 14(~)1 < 1 for e . 0  is inessential. If  we consider the class of 
random walks for which tqS(~o)l=l for some ~o+0  then this is the class of 
random walks which lives on some subgroup of Z m. We can then prove an 
analogous theorem for that subgroup. 

3. Proof of the Theorem 

For m = 1 the theorem was proved in [1]. However the case m > 1 is considera- 
bly more difficult and appears to be interesting in its own right. 

2 m  j 

L e m m a l .  Let 6j= +_1 for j = l  . . . . .  2m with ~ 6j=0.  Define k j = - y . ( 5 ~ ,  l 
j ~ l  l = 1  



p-Sets for Random Walks 195 

2m 

= l , . . . , 2 m - 1 .  Then for arbitrary numbers x 1 .. . .  ,x2m we have ~ ~jxj 
2 m - 1  j = l  

= ~ k j ( x j+ l -x j ) .  Moreover Ikjl<m for all j, and k 2 j _ l # 0  f o r j = l , . . . , m .  
j = l  

The proof  of the lemma is obvious and will be omitted. [ ]  

L e m m a  2. Let m be a positive integer and let rj~(O, 1), j = l ,  ...,m. Let M < N be 
positive integers. Then 

f i  2,, N m rJ2k--J2k 1 < 
'k  = m 

j = l  

Proof. The p roof  is by induct ion on m. For  m = 1 we have 

N 1 --r  N-j l+I  2 N  
< - -  2 rJ2 J l=  ~ 1 - r  = l - r '  

M<=jl <j2<g jl=M 

Now suppose the conclusion holds for m. Then 

m + l  

E H "krJ2k--Jak-1 
M<.]I <" < <" + <N : J 2 :  . . .=J2(rn 1 ) :  k ~ l  

m +  1 

= E F{ 2 - j I  2 H 'kr'J2k--J2k-1 

M<=jl <=j2<N j2<J3<...J2(m+l) <<-N k = 2  

2ra Nm 2~+1N~+1 
< 2 rJ ~-j' < m + l  ~ m + l  

M <=jt < "2<N =J = [ I  (1 - r j )  I ]  (1-r~) 
j = 2  k = l  

by the induct ion hypothesis and the case m = 1. []  

L e m m a 3 .  Let m and n be positive integers and let 
2 7 # 0 ,  ..., nc~#O. Then for all positive integers N we have 

N t2. N~2~(2n)! 

E j~=I<~,Sj(Eo)> < ( 1 -  max tr "" 
l<=j<n 

1 k = l  . . . .  ,n 
Proof. Define c5 k = _ 1 k = n + 1 . . . . .  2 n" We have 

N 12,~ N ]L[ 2~ 

j Jl . . . . .  j 2 n = l  k = l  k = n + l  

=E Z S;5 ) 
j~ . . . . .  J2~= 1 

~-~ EN EIO~,k2~_l(~kXjk ((1))> . 
J~ . . . . .  J 2 . =  1 

~ U m such 

<~, Sjk(~)> 

that c~#O, 

(3.1) 
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Now let Pz, be the family of permutations of (1 ....  ,2n) and for ~eP2. define 

S~ = { J =  01 .. . . .  Je,)[ 1 <Jk < N,J~o)<J~(2)<". NJ~(z,)}" 

Then clearly ~j S, is the collection of all sequences (j, . . . .  ,j~,) with 1 < j e <  N. 
ff~P2n 

Therefore we obtain from (3.1) that 

~" I / 2" a ; 

2n 2n 

Note that ~ dkS~(co)= ~ 6~)S~o(~(co) and that for each ~r~P~. the numbers 
k=l k ~ l  

5~), k=l  .... ,2n satisfy the conditions of Lemmal .  Therefore there exist 
integers k~(a), r = 1 ....  , 2 n -  1 such that 

2n 2 n -  1 

k ~ l  r ~ l  

and we obtain 

= 
< J.(~)< .,, gL,(2m <hr 

= 

JE / : " - ~  -Sj~ ~(e))]/t 

(k,(a) (co)- Sso,,, (o) 
r = l  

2n-- I  

I-I Ir j~ 

The proof of the Lemma is now completed by summing over the permutations 
on (1, ..., 2n). 

Lemma 4. For k = 1 . . . . .  m we have 

= 2 

=< ~ (I (r ~(~) ~)l~-,-J~.-.. (3.3) 
l <~jo-o)<=,,.<-j~(2m<=N r=  1 

The first equality in (3.3) follows from the preceding remark, the second from 
properties of exponentials, and the third from the fact that the blocks S/~(,+l)(co) 
--S~(r ) are pairwise independent. The final inequality is obvious. 

Now apply Lemma 2 to the bast expression in (3.3) to obtain (3.4) 

I / z, \l 2"N" 2"N" 
2 E I & max 14(J~)l)" 

- - g ' k  L ( ~ - - l ( ~ ( k 2 r - l ( 0 " ) ~ ) l )  j=l ..... , (3.4) 
r ~ l  
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Proof. 
(~, sj(o)) 1 N =g ~ j~=l i~kSj(k, o~)<~, Si(co)) 

j = l  

1 -- <_--)2ElSi(k, co)l<C N(N+I) o(g). [] 
- N  i=1 = 2N 

Lemma 5. Let f be a complex-valued function defined on U m, and suppose f has 

continuous partial derivatives. Suppose oj <_K for all e~U m. Let C rn 
= [I  [aj, bi] be a subcube of Um. Then for all ~, fi ~ C we have 

j = l  

[f(/~)l _-< If(~)l +2K ~ (bi-a). 
j = l  

Proof. The proof is by induction on m. The case m = 1 follows from the mean- 
value theorem, and the induction proof is straight forward. We omit the 
details. [] 

Now fix an m-cube C =  ( ]  [a i, b~] such that C does not contain a root of 
j = l  

unity of U ~ of order <2m. We have 

Lemma 6. N~lim sup~c N 1-- ~=1 ~ (~' SJ(C~ 

Proof. Let [xJ denote the greatest integer <x .  For each positive integer N, 
partition C into [N~]m subcubes by partitioning each interval [aj, bi] into [N~] 
subintervals of equal length. Choose a point c~ k from each subcube and define 

AN={ 09[ NI---j=I~' (~k'SJ(~)) <N--~6' k--l' "" [-X~]m}" 

Then we have 

P(A~)< ~, P <~k, Sj(cO)> ~--~ 
k = l  j = l  

< Z N~E (~k, $i(~)) (3.5) 
k = l  j = l  

by the Ceby~ev inequality. Now let l~b(c%)l=max 
~sC j = l  ..... 2m 

pothesis ]~b(c%) I < 1. Now we may apply Lemma 3 and (3.5) to obtain 

3m m 
N~-N~ N2m22m(4m)! 

P(A~)< ~ (1 _ iqS(c%)l)2, ~ 

~ O  

max I~(L)I, Then by hy- 

(3.6) 
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3 1 (~, < N  ~ , k = l  .. . .  ,m . Now define B N = co I sup ~ J= 

Then it follows from Lemma 4 and the Ceby~ev inequality that 

(3.7) 

Combining (3.6) and (3.7) we have 

P{(AN~BN)c}=o ~ �9 (3.8) 

If co ~ A N c~ B N and c~ ~ C then e is in one of the [N~],~ subcubes of C. Suppose 
c~ is in the subcube corresponding to at" Then 

1 j=l ~ <~'SJ(co)> ~< N j=l ~ <(Xr' SJ(co)>-t-N�88 j=l ~ bj-aJ[N~ 
o (1)  

<= N~r~ + ~ = 0 -N~4 " (3.9) 

The first inequality follows from Lemma 5 and the second is obvious. We 
conclude that for co ~ A N c~ B N we have 

sup~c l j = 1  ~ (c~, Sj(o)> =O ( N ~ ) "  (3.10) 

From (3.8) we have 

~, P{(AN~c~BN~)~}< oo (3.11) 
N=I 

and we use the Borel-Cantelli lemma to conclude that P{Oc}=l,  where f2c 
={co]o is in all but a finite number of AN~6~BN16}, and clearly for coef2~ we 
have 

1;;g '~1~ Sj(co)> lim sup ~ (c~, =0.  
N~oo ~EC 1~' j=l 

Now a well-known argument shows that the same holds along the entire 
sequence proving the lemma. [] 

It is easily seen that we may write U " - { r o o t s  of unity of order <2m} 

= U C M, where each C M is a cube of the type in Lemma 6. Consequently for 
M=I 

cor ~ Oc, ~ and ee  U CM the averages converge to zero. 
M=I M=O 
If e is a nonzero root of unity of order <2m let 

AN:{(A)I l j~=I <~ Sj(c2~ <NI~} �9 
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Using Lemma3 with n = l  and the Ceby~ev inequality we obtain 

(1t p{ACN}<N~O =O ~ -  . Using the same technique as in Lemma6 we 

obtain the almost sure convergence for each such c~. Combining this with the 
previous paragraph concludes the proof of the theorem. 

4. Applications 

In this section we give several applications of the main result. Let {S,(co)},~ 1 
be a random walk in Z"  satisfying the hypotheses of the theorem. Let 

co co {#, {', }},=1 be-the sequence of random measures on Z m obtained by placing mass 
1In on Sl(co), ..., S,(co) for each n. Then the Fourier transform of# , ( . ,  co) is given 

i i by fi,(c~,co)=- (c~,Sj(co)). The theorem tells us that for c o ~ o  we have 
n j = l  

limfi,(c~,co)=0 for ~ U %  c~=~0. Therefore the sequence {#~(.,co)}~~176 is an 
n ~ c o  

ergodic sequence of measures, as defined in Sect. 1. Now let Ip be an arbitrary p- 
set in Z m as defined in Sect. 1. Then it follows that 

lim #,(Ip, co)= lim L )(,p(Sj(co))=p, 
n ~ c o  n ~ c e  n j = l  

i.e. the limiting proportion of time that the random walk {S,(co)},~ 1 spends in Ip 
is p. We summarize this in 

Corollary 1. Let J be the class of all p-sets in Z m with 0 < p < l .  Let {S,(co)},~ 1 
be a random walk in Z m satisfying the hypotheses of the theorem. Then there exists 

f2oEs with P{f20}=l such that for co~(2 o and IpE~r we have 

1 
lim }' Zip(Sj(co))=p. 

n ~  n j = l  

For a second application let H be an arbitrary Hilbert space and let 
{Uj, J E Z " }  be a group of unitary operators indexed by Z m, i.e. UjUj2  
= UJ1 +J2" Let P be the orthogonal projection on the subspace of H defined by 
{ f e H l U j f = f ,  JeZm}.  Let { # n ( ' , c o ) } n c o = l  be the random ergodic measures 

Ujd#,(J ,  cO)=n 1- ~ UsA~). By applying the results of [2] defined above. Then 
Z m j =  i 

and the theorem we obtain 

Corollary 2. Let {S,(co)},~ 1_ be a random walk in Z m satisfying the hypotheses of 
the theorem, and let {Uj, J ~ U m} be a group of unitary operators on a Hilbert 
space H, indexed by Um. Then there exists f2 o o f  2 with P(f20)= 1, such that for 

co~f2 o we have strong 
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1_ 2_  
l i m i t  ~ Us~(~,) = P , 
n ~ c o  n j = l  

i.e. for every f E H, 

lim ! ~ Usj(~)f-P f =0. 
n ~  j = l  
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