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Summary. Let (2, % P) be a probability space and let {X, (w)},_, be a
sequence of i.id. random vectors whose state space is Z™ for some positive
integer m, where Z denotes the integers. For n=1,2,... let S, (w) be the

random walk defined by S,(w)= Z X (w). For xeZ™ and «eU™, the m-

j_
dimensional torus, let {a,x)=e>" Z o;x;. Finally let ¢(a)=E{<o, X, (w)>}

be the characteristic function of the X ’
In this paper we show that, under mild restrictions, there exists a sct
Q,<=Q with P{Q,} =1 such that for we, we have

lim =0 for all aeU™ a=0,

n— o

1 n
2 2 (50D

As a consequence of this theorem, we obtain two corollaries. One is
concerned with occupancy sets for m-dimensional random walks, and the
other is a mean ergodic theorem.

1. Preliminaries

Let G be a locally compact abelian group. Let G be the dual of G, that is G is the
set of continuous homomorphisms of G to T, the unit circle in the complex
plane. G is a group under pointwise multiplication and inherits a natural
topology from G. Now put the discrete topology on G, call it G,. Then G,=G is
a compact (but very large) group such that G is dense in G. G is called the Bohr
compactification of G. If m is Haar measure on G then m(G)=0. For details of
this, see ¢.g. Rudin [3, Ch. 1]

Now suppose {m,}> , is a sequence of probability measures on G. In an
obvious way, we may con51der them also as measures on G. We shall say the
sequence {m,} is ergodic provided m, converges weakly to m. The reason for the
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name is that such sequences provide mean ergodic theorems for unitary repre-
sentations of G on an arbitrarily Hilbert space, as shown in [2]. It follows from
the Paul Lévy continuity theorem that {m,} is ergodic if and only if

{<v,g>m,(dg)—0 for every yeG, y+identity since the Fourier transform 7 of m
G
is zero for every non-trivial yeG.

Now suppose 0=<p=1. We shall call a measurable subset I, of G a p-set
provided limm, (I )=p for every ergodic sequence {m,}. There exist many p-sets

and examples are not difficult to construct. Let H be a closed subset of G with
m(H)=p, such that H is a continuity set for m, i.e. the boundary of H has Haar
measure zero. Then it follows at once that HN G is a p-set. For example, let I be
a closed subinterval of the unit circle with Lebesgue measure p, and let yeG be
of infinite order. Then {geG|{y,g>el} is a closed continuity set for m with
measure p, and {geG|(y,g>el} is a p-set. Now if G=Z" for some m>1, then G
=U™, where U is the unit circle. Thus if a=(o;, ..., o, )e U™ is not a root of unity
then

(=(ly,...,1 yeZm|<a, 1Yel}

is a p-set.

2. The Main Results

With the notation as defined in the abstract, we shall prove the

Theorem. If [p(e)| <1 for ae U™ a£0and if E| X, (j,w)| <o forj=1,...,m then
there exists a set Qo< £ with P{Q,} =1 such that for we,

lim

hR—>®

L5 ason|-0

Sfor all 0 U™, a=0.

Remarks. i) By X, (j, ) or S,(j, w) we mean the j™ coordinate of X ,(w) or S,(w)
respectively.

ii) The hypothesis |¢(@)| <1 for a0 is inessential. If we consider the class of
random walks for which [¢(ag)|=1 for some a,+0 then this is the class of
random walks which lives on some subgroup of Z”. We can then prove an
analogous theorem for that subgroup.

3. Proof of the Theorem

For m=1 the theorem was proved in [1]. However the case m>1 is considera-
bly more difficult and appears to be interesting in its own right.
2m

j
Lemmal. Let 6,= +1 for j=1,...,2m with ) 6,=0. Define k;=— 34, I
-1

= 1=
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=1,...,2m—1. Then for arbitrary numbers x...,x,, we have Zéjxj
2m—1

Z ki(x;, —x,). Moreover |k,|<m for all j, and ky;_, 0 for j=1, ..
The proof of the lemma is obvious and will be omitted. []

Lemma 2. Let m be a positive integer and let 1,€(0,1), j=1,...,m. Let M<N be
positive integers. Then

Z ﬁrl{'zk~.izk—1< "N .

Msji2.. . SjamEN k=1 (1—7‘)

:i

j=1

Proof. The proof is by induction on m. For m=1 we have

L N {—pN-h+l 9N
Ja—J1 — <
L T LS,

Mzj12j25N j1=M

Now suppose the conclusion holds for m. Then

m+1

Z nrjzk Jak-1

M=ji1Sj28.. Sj2em+1)SN k=

m—+1
— Z r{z~jz Z n rkak—jzk—l
M<jiSj25N J22i32 . dagm+ 1y EN k=2
o pm N 2m+le+1
§ Z r{Z_hm-%—l § m+1 >
M=jpZj2EN
=hzi2s H(l”‘r]) H (I“Vk)
j=2

k=1

by the induction hypothesis and the case m=1. []

Lemma3. Let m and n be positive integers and let acU™ such that o300,
20%0,...,na£0. Then for all positive integers N we have

»_ N"2(n)!
“(1— max [p(ju)))"

15j=n

aj(

1 k=1,...,n

1 kengd,..on Wehave

Proof. Define 5k={

2n AL
-E z [T<aS, @) I] @S, @)

Jiseendzn=1 k=1 k=n+1

=E i <oc, %5,{ Sjk(w)>

Jiseendon=1

E <oc ZZ 5, sjk(w)>‘. (3.1)
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Now let B, be the family of permutations of (1,...,2#n) and for oeP,, define

Sa-:{j:(jlf' Sl EREN ey Sley S Siocam)-
Then clearly { ] S, is the collection of all sequences (jy, ..., j,,) With 1<), <N,

geln
Therefore we obtain from (3.1) that
2n

E %(a,Sl(wD i Z Z E<oc,§_::5k5jk(w)>.
j=1 k=1

¢ePa, JeSs
2n

Note that Z 6,8, (w)= Z 90098 .4(@) and that for each o€P, the numbers

(3.2)

Ogpy K= 1 Zn sat1sfy the conditions of Lemma 1. Therefore there exist
integers k, (o ) .,2n—1 such that

2n 2n—1

k;léc(k) Sjc-(k)(w)$ rgl icr(o-)[Sjc(r+1](a))_Sja(r)(a))]’

and we obtain
2n
Y E <ac, > o, Sjk(a))>!
JeSy k=1
= z

LEfeyZ - Slazm =N

2n-1
E <a, Y k@S, @)-S,,, (w)]>}
r=1

2n—1

E H <k (0 ? Ja(r+1)(a)) Jo‘(v)(a))>(

r=1

1 §j0(1)§---§jd(2n)§N

2n—1

= Y [T 19k, (o) )i +2=doe
1fjeyS . . Sic2m SN r=1

= ) H(¢(k2r (@) o) feen o=y, (3.3)
18joyE . Slaam SN r=

The first equality in (3.3) follows from the preceding remark, the second from

properties of exponentials, and the third from the fact that the blocks S, {w)
~8§;,,, I pairwise independent. The final 1nequahty is obvious.
Now apply Lemma 2 to the last expression in (3.3) to obtain (3.4)
! In mN? on N
(e Fasolfa B g
e 1— n
s Z A=16t_ @2 PN g

The proof of the Lemma is now completed by summing over the permutations
on(l,...,2n. O

Lemmad, For k=1, ...,m we have

K N
Bl 3 (S op| =0
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Proof.
O LS s p|=ElL Y sk
Eé*ﬁjg Ko, S(w)y|= Nj;l“k ik, )<, S ()
1 NON+1)
éﬁj;ElS,»(k,w)léCT—O(N)- O

Lemma 5. Let [ be a complex-valued function defined on U™, and suppose f has

ﬂ§K for all aecU™ Let C
dey

=[] [a;, b;] be a subcube of U™. Then for all o, fe C we have
j=1

continuous partial derivatives. Suppose

1BISIT@+2K T (by-a).

Proof. The proof is by induction on m. The case m=1 follows from the mean-
value theorem, and the induction proof is straight forward. We omit the
details. [

Now fix an m-cube C= H [a;, b1 such that C does not contain a root of

7>

unity of U™ of order <2m. We have

Lemma 6. lim sup =0.

Noow aeC

RIRCRI

Proof. Let [x] denote the greatest integer <x. For each positive integer N,
partition C into [N#]™ subcubes by partitioning each interval La;, b;] into [N= 3]
subintervals of equal length. Choose a point o, from each subcube and define

S R
Then we have
[Nz]'" N 1
0 % P % S|z
[N3}m m 1 N 4m
2 NE (|5 Y e sien|) (3.5
k=1 Jj=
by the Cebysev inequality. Now let iqb(cxo)l-—max max |q$(j ). Then by hy-
acC j=1,

pothesis | ()] <1. Now we may apply Lemma 3 and (3 5) to obtain

3m m

N2 N# N2m22m(4m)!
N (=[P

=0 (%) ' (3.6)

PAy) =
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Now define By = {w| sup

C Ly s <N k=1
Jo. Nj§1<[x’ j(CU)>: ,k=1,...,m».

k

Then it follows from Lemma 4 and the Cebydev inequality that

. O(N) 1
Py ST i =0 (N) (3.7
Combining (3.6) and (3.7) we have
P{(4AynBy)F}=0 (#) . (3.8)

If we Ay By and o€ C then « is in one of the [N2]" subcubes of C. Suppose
« is in the subcube corresponding to «,. Then

[~ PIRCEY

- b;—a;
Z e ’w)>1+N4 £ TR

< L [131_] 0(%) (3.9)

The first inequality follows from Lemma 5 and the second is obvious. We
conclude that for we Ayn By we have

Z AN \ (Nl_) (3.10)

From (3.8) we have

é

Sup |—
xeC

él P{(Ayie Bye) <00 (3.11)

and we use the Borel-Cantelli lemma to conclude that P{Q}=1, where Q,
={w|w is in all but a finite number of AysBys}, and clearly for we, we
have

lim sup

Now aeC

Ni6 ‘

1
FERCEIONE

Now a well-known argument shows that the same holds along the entire
sequence proving the lemma. [

It is easily seen that we may write U™—{roots of unity of order =2m}

= |J Cy. where each C,, is a cube of the type in Lemma 6. Consequently for
M=1

00 o0
we Ol Qc,, and oceMUo C,, the averages converge to zero.

If o is a nonzero root of unity of order =<2m let

1
AN= (D| N—

N

Z (w)>. NlG}

j=1
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Using Lemma3 with n=1 and the CebySev inequality we obtain
1 1 . .
P{A{} <N%0 (N) 0 (F) Using the same technique as in Lemma 6 we

obtain the almost sure convergence for each such a. Combining this with the
previous paragraph concludes the proof of the theorem.

4. Applications

In this section we give several applications of the main result. Let {S,(w)}2,
be a random walk in Z™ satisfying the hypotheses of the theorem. Let
{p,{+, w}}> | bethe sequence of random measures on Z™ obtained by placing mass
I/nonS,(w ), S, (w) for each n. Then the Fourier transform of g (-, w) is given

by 4,(x ) Z (o, S;(w)>. The theorem tells us that for weQ, we have

lim g, (o, w)= 0 for e U™, o#0. Therefore the sequence {4, (-, w)} >, is an

ergodic sequence of measures, as defined in Sect. 1. Now let I, be an arbitrary p-
set in Z™ as defined in Sect. 1. Then it follows that

1
hm :un(Ipa Cl))—llm - Z XIP ))sz

n— oo n— o J

Le. the limiting proportion of time that the random walk {S,()};2, spendsin I,
is p. We summarize this in

Corollary 1. Let .# be the class of all p-sets in Z™ with 0<p=<1. Let {S, (0)}*_,
be a random walk in Z™ satisfying the hypotheses of the theorem. Then there exists

Qo€ with P{Q.}=1 such that for weQ, and I,€. we have

1
hm; Z X, S(CU)) p.

H— 30

For a second application let H be an arbitrary Hilbert space and let
{Uj,JeZ™} be a group of unitary operators indexed by Z™ ie. U, 7, Us,
=Uj .3,- Let P be the orthogonal projection on the subspace of H defined by
{feH|\U,f=f, JeZ™}. Let {u,(-, a))}n . be the random ergodic measures

defined above. Then f Usdu,(J, ) Z Us, - By applying the results of [2]
and the theorem we obtam

Corollary 2. Let {S,(w)},>. | be a random walk in Z™ satisfying the hypotheses of
the theorem, and let {U;,Je U™} be a group of unitary operators on a Hilbert
space H, indexed by U™. Then there exists Qo= Q with P(Q,)=1, such that for

weQ, we have strong
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12
limit — ' U, =P,

noow B j=1

L.e. for every feH,

lim

n— o

1 n
R
n j=1
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