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Summary. Let {XG, G bounded Borel subset of IR ~} be a subadditive spatial 
process with finite constant 7. It will be proved that as G ~ o o  (in some 
sense), the average (1/[GI). X G converges in L 1, and if in addition the process 
is strongly subadditive, it converges almost surely towards an invariant 
random variable with expectation 7. 

O. Introduction 

In [7] general multidimensional spatial processes were investigated; under 
reasonable conditions mean and individual ergodic theorems were obtained, 
many applications were given. This paper is concerned with multidimensional 
subadditive spatial processes of the type recently considered by other authors. 

Our work provides a full generalization of the results of Kingman. The main 
results are Theorem (3.10) and (4.6). For almost sure convergence we assume 
strong subadditivity. The LX-convergence theorem is proved in an analoguous 
way to that of Kingman; with the strong subadditivity assumption it can also be 
proved in another way. The almost sure convergence is proved by a different 
method; this turns out to be a special case of a more general theorem in our 
joint paper [7] (Theorem (4.10)). The decomposition theorem is obtained, in 
contrast to Kingman, as a by-product of the almost sure convergence theorem. 

A structure which is specific to spatial processes is the covariation. This 
means that, if we translate the realisation (=  configuration) co and the domain G 
at the same time, then the process does not change its value: X~+~,(T, co) 
=XG(co ). This property, which until now has not been taken into account, will 
be exploited to overcome certain difficulties (see, for example [10]). Note that 
the ordinary one-dimensional stochastic processes have in the canonic repre- 
sentation the same property: Xs+l,,+l (co)=x,,,(Tco), where T is the shift trans- 
lation. 

The underlying space is IR v, but the results remain valid for the case of the 
integer lattice ~v. In this case the subsets G have the usual form, being 
parallelepipeds, and IGI denotes the cardinality of G. 
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At the end of the paper we discuss some subadditive but not strongly 
subadditive processes, namely the cluster processes in discret and continuous 
cases, and prove the ergodic theorems. 

1. Preliminaries 

To avoid unnecessary repetition, we use the same definitions, notations and 
assume knowledge of the fundamental facts of Sects. 2 and 3 in [7]. 

A spatial process is a family X = {XG, G~Cg} of integrable random variables. 
X is said to be covariant if 

(1.1) (Covariation) XG+u(Tu)=XG(.) a.s. 

It is called subadditive is, for any disjoint sets A, Gc~ 

(1.2) XA~G<XA+X~ a.s., 

and strongly subadditive if it is subadditive and if 

(1.3) XAwG-~-XAc~G~XA-~X G a.s. 

for any A , G ~  with Ac~G4=O. 
We define the random variables XG, A as follows 

(1.4) XG, A:XAuG--X A 

when A~G=O and A, G s ~  (with the convention X6, ~ =XG). 
Then one can easily check that the strong subadditivity is equivalent with 

the property that: 

(1.5) for any G ~ ,  the family {XG, a , A ~ , A ~ G = O  } is decreasing: 
XG, A,~XG, A~X  G a.s. when A' ~ A, AnG=O. 

(1.5) yields a practical criterion to find out quickly whether the process is 
strongly subadditive or not. 

We can define the strong superadditivity analogously by chainging, in (1.2) 
and (1.3), " < "  to "=>", and in (1.5) "decreasing" to "increasing". 

2. Subadditive Set Functions 

A set function is a real valued function D defined on cg. We write D 
={D a, G~Cg}. We can analogously define subadditivity or strong subadditivity 
for set functions as above. 

If we set for any spatial process X 

D~ = IEX o (G ecg) 

then D has the same property of subadditivity or strong subadditivity as X. If X 
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is covariant, D is translation invariant, i.e. 

(2.1) D~+,=D G for any u~S 1 and G~Cg. 

(2.2) Lemma. I f  D is a translation invariant subadditive set function, then 

D~ . D~,, D~. 
G~ inf (2.3) lim ~ = h m l G , [ =  , [Gn[ 

d(G)~  c~ 

for any sequence {Gn} in ~ with d(G,) ~ ~ .  The limit may be - ~ .  

Proof. It is easy. See for example Ruelle 1-9], Proposition (7.2.4). It is enough to 
require that D is defined on ~. [] 

We define DG, A for A, Gc~,  Ac~G=~, by 

(2.4) DG, A=DA~e--DA, 

with the convention De, 0 =De" The following lemma is helpful and will be 
used later in the proof of the almost sure convergence theorem. We first remark 
that because of the strong subadditivity the limit 

(2.5) I= lira DFo, A 
A~F+ nc~ 

A ~ F +  

always exists (but may be - oe). 

(2.6) Lemma. Let {D~, GeCg} be a translation invariant, strongly subadditive set 
,function, with spatial constant ~, defined by 

1 
(2.7) 7 = i n f - - "  D~ . 

IF.I ~ 

Then 7 is finite if and only if l is finite, and we have 

(2.8) 1 = 7 .  IF01. 

Proof We suppose that l is finite; the case when l is infinite can be proved in an 
analoguous manner. 

Then, given e > 0, there exists an integer m =re(e) such that 

(2.9) DFo, A<=l+e for all A=F,,c~F+, AcF+c~cg. 

Let F ~  and define F 1 to be the subset of Fc~S~ consisting of those points x 
whose distance to the boundary of F is at leat equal to r e+ l ,  and F 2 

= F c ~ S I \ F  1. Then, if x~F  ~, we have F~(F+ +u)~Fc~(F,,c~F+ +u); hence by 
(2.9) 

(2.10) D(F ~)~ro,(F_~)~F+=DF~(Vo+~),W(F~F++,) 
<=l+e; 

otherwise it holds from the strong subadditivity property 
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(2.11) DFo, A<DFo for all A~F+ c~cg. 

The decomposition, for F ~ ,  

(2.12) De= ~ D(F_u)nFo,(e_u)nF+, 
u~ F c~SI 

which is similar to (2.8) in [1], leads, by means of (2.10) and (2.11) to the 
inequality 

1 .D < I~.(~F1).(I+e)+~F].(#eF2).Dvo. 
IFI ~=lFI 

1 
By Lemma (3.1) in [7], the first term on the rhs tends to IF~0l'(l+e) and the 

second to zero when d(F)~ oo. Hence 

1 1 
7 = lim �9 (l + e), 

which implies 7 < l/Ifol. 
The direction " > "  is simple: the decomposition (2.12) and the definition o f /  

imply 

1 ~(Fc~S1) 
If~ " DF> I" Ifl ' 

hence, by Lemma (3.1) in [-7], 7>l/[Fo[. The lemma is proved. [] 

Note that if the basis in IR ~ is orthonormal or if S =Tz', we have IF0] = 1 and 
the limit in (2.5) is just equal to y. Recall that the limit in (2.5), supposed to be 
finite, with (2.8) means that 

(2.13) given ~>0 there exists an integer m=m(e) such that 

[Dvo, A--7' [F0I[<e for any 

With the help of Lemma (2.6) 
subadditive set functions. 

(2.14) Proposition. Let D be a 

A=FmaF+, AeF+ n~. 

we now prove a limit theorem for strongly 

translation invariant, strongly subadditive set 
function with finite constant 7. Suppose that 

(2.15) sup I D a l = K <  ~ .  
G ~ F o c ~  

Then 

De 
(2.16) lira ] ~ = 7  

as d(G)~ oo, Gej~f ~ (i.e. convex). 
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.Proof Firstly, because of the strong subadditivity we have for G~Fo~Cg and 
A E F + ~  

Do, a<=Do 

and 

Do, a = Da~o--Da = DAufo --DA-- (Da~o -- DA~o) 

>- DFo, A -- Dvo\O 

hence by (2.8) and (2.15) 

(2.17) [OG, Al<__b,l.lFoJ+g=K'< +oo. 

Secondly, by virtue of Lemma (3.1) in [73, 

number {u: u~Sl~G}  
(2.18) V' ]Fo]" ---'T 

161 
when d(G)~ 0% GEX. 

Now let e > 0  and m be as in (2.13) and let h be a number greater than the 
diameter of F m. Using the decomposition 

(2.19) DG= ~ O(G-u)nVo, (G-u)nF+ 
u~S1 n (G\G h) 

"~ 2 D(G-u)c~Fo, (G-u)nF + 
u~Sl c3G h 

(Fo + u)~G ::# 

we obtain for G ~ d  the estimate 

I~l 1 ~G} (2.20) ' DG--7" rF~ [G[' number {u: u~S i 

1 1 
< e . i -  ~ - number {u: uESlc~(G\Gh)} + ( K ' +  e) �9 I-G~. number {u: u~Sc~ Gh}, 

due to (2.17) and (2.13). 
1 

As d(G) ~ oo, the first term on the rhs tends to e. ~ while the second tends 

to zero. Thus, by (2.18), the thereto is proved. [] 

(2.21) Remarks. The statement (2.16) is in fact true when the convergence 
"d(G)--, oo" and the convexity of G are replaced by van Hove's convergence. 
The proof is the same. What we need is the negligibility of the boundary effect, 
which is already assured by van Hove's convergence. 

Proposition (2.14) generalizes slightly a result of Robinson and Ruelle ([8], 
Proposition 2) in connection with mean entropy in statistical mechanics. In [8] 
D was assumed to be nonpositive. 
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3. L~-Convergenee 

Let us now consider a subadditive and covariant spatial process X = {XG, G ~ } .  
We limit ourselves in this section on 2, instead of cg. We call the number 

(3.1) y = i n f  IEXF" 

the (spatial) constant of the process. By Lemma (2.2) we have 

(3.2) 7= lim IEXG=lim IEXF" 

Ge.~ 

For special processes we obtain the following. 

(3.3) Proposition. Let X be a subadditive spatial prozess with finite constant 7. 
Suppose 

(3.4) XG+u=X G a.s. for any Gs.~. 

Then there exists an invariant random variable 3, ~ELI(P), such that 

1 1 
(3.5) ~= lim . X G=lim . X G in I2 

Ge2~ 

for any sequence {G,, n~N} of subsets in .~ with d(Gn)~ Go. r has the form 

(3.6) ~= lim 1 1 a(o)~oo ~ " XG=infa ~Gl" XG a.s. 
Ge.~ 

1 . 1 
= lim - - .  ~ �9 X o Ia, I XG'=ln f ' l ( i , I  a.s. 

for any sequence (G,, n~N}, G , ~ ,  and d(G,)~ ~ .  

Proof. Note that (3.4) is stronger than the covariation, and that if we have 

1 
(3.7) ~ = l i m - - . X  G in 12 

L ~ . l  ~ 

for any sequence {G~}n, Gne~, d(G,) ---, o% and ~ independent (up to null set) on 
{G~}n, then 

1 
(3.8) ~=- lim . X  G in L 1 

d ( G ) ~  no 
G~.~ 

in the sense (2.14) in [7], that is, given e>0,  there exists a positive number d 
= d(c), such that 
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~--i~l  " XG < e  

holds for all Ge~  with d(G)>d. 
Now, since ~ is countable, it follows from Lemma (2.2) that a random 

variable ~ is well defined by (3.6). 
As will be proved in the theorem below (in the first step of the proof), for any 

regular sequence {G,, n~N}, Gne~, d(G,)---, 0% the limit 

1 
(3.9) lira ~ , 1  �9 XG =s  

exists in L 1 and 

1 
s = lim sup ~ �9 XGn a.s., 

hence, by (3.6). 

s = ~ almost surely. 

To complete the proof it remains to prove (3.7) for any sequence {G,, neN}, 
GnE~, and d(Gn)--, oo. This will be done in the last step of the proof below. We 
have only to use the fact that the limit in (3.9) does not depend on the choice of 
the sequence {Gn} .. [] 

We now state the mean ergodic theorem. 

(3.10) Theorem. Let X={XG, G ~ }  be a covariant subadditive spatial process 
with finite constant 7. 

Then there exists an invariant random variable ~ such that 

1 
(3.11) ~= lira . X~ in L 1 

d(G)~ ~ 
GE,.~ 

IE~=~:, 

and moreover, 

1 
(3.12) ~ =l im sup ~ X~, almost surely for any regular sequence {Gn}" in ~. 

Proof I. Without loss of generality we can assume that X non-positive, since if 
not we consider the auxiliary process X' defined by 

x;=xG- Z XFo(r- ), 
u~S1 n G  

which is non positive and subadditive, with finite constant, the asymptotic 
behavior of the second term on the rhs is well-known by Theorem (3.7) in [7]. 
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For any fixed kaN, we define the lattice. 

S k =  {(x  1, . . . ,  x~)alRV: x i = n  i .  k, n~e 7Z, i =  1, . . . ,  v}. 

Then for any k e n  the limit 

1 
(3.13) Yk = l i r a -  ~ XF~(T,) 

(Fk + u) c G~ 

exists almost surely for any regular sequence {G,}, in .~, and 

1 
(3.14) IEYk= ~ IEX~. 

(One needs to replace in Theorem (3.7), [73, S1 by Sg and F 0 by Fk). Let {G,}, be 
now a regular sequence in .~ and define 

1 
(3.15) s = l i m s u p ~ . X G .  

1 X 6 ,  ' --*0. We prove that s - [ ~ , [  �9 1 

Using the subadditivity, covariation and non-positivity of X, we have for any 
fixed k e n  

1 1 ~ X~k(T_,)" 

(Fk -k u) c Gn 

It follows from (3.13) and (3.14) that 

1 
IEs_<--  �9 ]EXF. 

-IF~l 
Hence 

(3.17) 1Es_< V. 

On the other hand, applying Fatou's lemma for the sequence -1~,1 

obtain with the help of (2.3) 

w e  

lEs >_ IE (lim sup X~_G~) IEXG > lim sup - "= 7- 
- [ G , I  

Thus, together with (3.17), 

(3.18) lEs= 7. 
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The random variable s is integrable. This allows us to apply Lebesgue's 
dominated convergence theorem to the sequence { - Z , } , ,  with 

Z~=sup~  1 Xo'n } 

and this leads to 

(3.19) IIs-/.lll--,0 
1EZ.--*7 

1 
Now, since Z.  > - -  - X~ and =IG.I  ~ 

Z~ - ]GI~ - X~. 
1 

= I E Z n - - -  IEXG ~7 - -7= 0  , 
1 IG.I 

it follows from (3.19) that 

1 XGn 1 (3.20) s - - - .  40 .  

It is trivial that s is invariant. 
II. We prove that s as defined in (3.15) is independent (up to a null set) of the 

sequence {G,},. This is simple. Proposition (3.3), applied to the process 
{X~, G ~ }  with 

yields an invariant random variable 4, ~L~(P),  and, for any regular sequence 
{G.}., 

1 X' i n L  1, (3.21) ~= l im[~ , [  G, 

by (3.5). 
Thus, in view of (3.20) and (3.21), we obtain. 

S=~ a.s. 

III. Finally we prove the convergence in (3.11). This convergence does not 
depend on the position of the sets G in 2, but only on the inner radius d(G). This 
is plausible, since X G and XG+ . have the same distribution and for the mean 
convergence this fact is decisive. Suppose that the convergence in (3.11) does not 
hold. Then we can find a sequence {G~}. in ~ with d(G.)--+ oe and 

I XG. 1>8> 0 (3.22) ~ -IG~T.I " - 
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for some & We may clearly assume that the sets G, are choosen in such a way 
that they can, in a suitable manner, be translated into sets G' n with 

GI ~G'2 c .... 

Then the sequence {G',} is regular, however we have 

4 - 1  X ~  ~ 1 XG"I 

This is imposible, by steps I and II. 
The theorem is completely proved. [] 

(3.23) Remark. It results from step II and Proposition (3.3) that the limit ~ in 
theorem above has the form 

(3.24) ~ = inf IE ([G--~ "XGIJ) = G ~  d(a)~lim~ IE ([-~ �9 XG [J  ) 
G~.~ 

almost surely. 
In the next part we will give another form of r if X is strongly subadditive. 

In that case, the Ll-convergence theorem can be proved in another way. 

4. The Almost Sure Convergence Theorem 

We now go on to the individual ergodic theorem for strongly subadditive spatial 
proceses. Before stating and proving it, we recall a fundamental result in [7], 
Theorem (4.10). 

(4.1) Theorem. I. Let {X G, GeCg} be a covariant spatial process. Suppose there 
exist random variables Y, ZeLI(p) with Y>O such that 

(4.2) ]Xa, al<Y a.s. forany AEF+c~cg and G~FoC~:K; 

(4.3) lim Xeo ,A=Z 
A ~ F +  

A~F+ c ~  

almost surely (in the sense of(2.12), [7]). 
Then 

1 1 
(4.4) lira - - ,  Xo,  = IE(Z ]J) a.s. 

1G.I Ifol 

for any regular sequence {Gn}n of subsets in X.  

II. I f  (4.2) is replaced by the weaker form 

(4.2') [Xvo, A] < Y a.s. for any AeF+ c~cg, 

then (4.4) holds for any regular sequence {G,}, in 2. 
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The random variable Xo, A is defined in (1.4). 
A consequence of (4.4) is the decomposition of the process. Let X be a 

spatial process satisfying (4.2') and (4.3). If we write 

(4.5) X ~ =  ~ Z ( T , ) + W  G ( G ~ )  
u~Sl c~G 

then, by (4.4), WE [G~ will tend to zero almost surely when G becomes large. Hence 

the essential part of X is an additive process. 
We will use Theorem (4.1) to prove the almost sure convergence theorem for 

strongly subadditive processes. 
To avoid inconvenience we assume that, concerning the covariation and 

strong subadditivity, (1.1), (1.2) and (1.3) are true, independently of u6Sa, A and 
G in ~, pointwise on a set of measure 1 and therefore without loss of generality 
on the whole propability space, although the result is true without this assump- 
tion. We now formulate the result. 

(4.6) Theorem. Let X be a covariant, strongly subadditive spatial process with 
finite constant 7. 

I. Then there exists an invariant random variable ~ such that 

IE~=y 

1 
(4.7) lim IG~] " x~n=  ~" almost surely 

for any regular sequence {Gn} n in ~. 

II. I f  moreover the process is non-positive, or if, more generally, there exists a 
random variable Yo, Yo ~L1 and Yo>O a.s. such that 

(4.8) [XG[<Y 0 a.s. for any G~Foc~Cf, 

then the convergence in (4.7) is valid for any regular sequence {Gn} in X. 

(4.9) Remark. Condition (4.8) just says that the essential supremum of 
{X~, GeFo~qf} is integrable. 

Proof of Theorem. The strong subadditivity implies the following decreasing 
property 

(4.10) XFo, A ~ X F o ,  G ~ X F o  for A=G, A,G~F+c~. 

Therefore the limit 

(4.11) Z =  lira Xeo, A= limXem~ro, F,.~v. 
A~F+ m~ c~ 

A~F+ c~ 

exists almost surely and defines a random variable. It holds for any AeF+ 
that 

~cg 

(4.12) IXro, Al~max{lX~ol,[zl} a.s. 
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Thus conditions (4.2') and (4.3) of Theorem (4.1) will be satisfied if Z~L~(P), and 
in view of the monotone convergence theorem, this is the same as having 

(4.13) inf IEXvo, a < oo. 
A ~ F  + nq~ 

But Lemma (2.6) applied to the set function 

D~ = IE X o (G ~ )  

just yields 

(4.14) lira IEXvo, A= inf IEXFo, A='y. IFo[, 
A ~ F +  A~F+ ncg 

A ~ F  + c ~  

hence, by the monotone convergence theorem, 

I E Z = 7 .  IFo[ (4.15) 

and 

(4.16) NXFo, A-ZH~O as A~F+ 

(in the sense of (2.13) in [71). 
Thus, statement I of the theorem follows from Theorem (4.1), part II. We 

have 

1 
(4.17) r  �9 IE(Z l J )  a.s. 

1 
Er = i~0  I 'y' IF01 =~. 

To prove part II we have to verify condition (4.2). The strong subadditivity 
implies for A~F+c~cd and G~Fo~Cd 

Xo, A < X~, 

X G, A = X Fo, A - -  ( X  A u F o  - -  X a u G )  

= Z -- XFo\~, 

hence 

(4.18) [X~,A[<IZL+Y o a.s. 

Thus condition (4.2) is fulfilled, and the theorem is proved. [] 

(4.19) Decomposition. As mentioned above, any spatial process, under assump- 
tions of Theorem (4.1), can be decomposed into an additive process plus a 
process W= {W~, Gc~} whose asymptotic behavior is negligible. What more do 
we know about W if X is strongly subadditive? According to (4.5) W is strongly 
subadditive. Moreover all terms in the sum on the rhs of 

XG= ~ X(G-.)~o,(G-.)ov+(T-.L G ~ ,  
u~St c~G 
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have the form Xvo ' A or XFo, hence by (4.10) 

E 
ue& c~O 

so that W G > 0. 
Those are exactly the properties which Kingman (1968) obtained in the one- 

dimensional case. Here the decomposition theorem is a by-product of the almost 
sure convergence theorem, while Kingman used it to prove the latter. 

We see, thanks the covariation property, that the decomposition of X has a 
nice form and the individual ergodic theorem for X is practically reduced to 
Birkhoff's ergodic theorem. The random variable Z as defined in (4.11) plays the 
same role as fo in Kingman (1968), but here, due to the strong subadditivity, it is 
simply obtained. 

(4.20) Processes of Finite Range. Each random variable Xo, a, for Ac~G=ft, 
can in general be interpreted as the value of the process in G, given the external 
condition in A. A wide class of processes has the property that, given any area 
GeCg, there exists a "boundary" domain, say ~?G, bounded, disjoint from G, such 
that 

(4.21) Xa, A=X~,aG VAeg  with A~OG, A~G=fJ. 

This means that the influence on G remains unchanged if the external domain 
increases over the boundary ~?G. Such processes are called of finite range. In 
these cases Z has the following form 

(4..22) Z =XOFor~Fo, OFonF+" 

Hammersley's example (1974, Sect. 10) about the specific volume covered by 
spheres or figure processes in Minlos (1967) fall under this category. 

If X is strongly subadditive and of finite range, then the spatial constant is 
necessarily finite, by Lemma (2.6). In fact, it follows from (4.12) and (4.22) that 

inf IEXFo,A > -- 00. 
AeF+ c~  

We can also apply Theorem (4.1) directly. We resume this in 

(4.23) Corollary. Theorem (4.6) is true for strongly subadditive covariant spatial 
processes of finite range. 

(4.24) Remarks. In the situation of Theorem (4.6), say part II, the L 1- 
convergence theorem can be proved as follows. It results from (4.18) that 

(4.25) sup {IE [XG, a[: AeF+ c~cg, F eFonCg} < + oo. 

But this and (4.16) are exactly the conditions of Theorem (4.1) in [7], thus 

1 1 1 
(4.26) ~.XG--+~,  ~ =|F~-0l - IE(Z I t?), 

as d(G)---,oo, GEX. 
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If in (4.26) the set G is limited to be a parallelepiped in 2, we don't need (4.8), 
since from (4.12) we have 

sup {IE IXe0, al: AcE+ ~cg} < oe, 

and this, together with (4.16), is sufficient for (4.26) (see Remark (4.28) in [7]). 
Theorem (4.1) in [7] is much earlier to prove than theorem (3.10). 

(4.27) Results valid for parallelepipeds in ~ are also valid for their translates by 
(1/2, ..., 1/2); we need to translate F+ and Fo by the same vector and repeat all 
the proofs. They are also true for open or closed parallelepipeds. We have only 
to use Lemma (3.1) and Theorem (3.7) in [7] to remove the boundary effects. 

Conclusion. Our approach to the multidimensional subadditive processes is 
different from that in the one-dimensional case of Kingman. It shows that 
subadditive processes in fact fall under a wider class of processes, for which the 
ergodic theorems, under weaker conditions, are valid. 

However, Kingman's idea to prove the almost sure convergence theorem in 
fact works if one takes the property of covariation into account. One first proves 
the decomposition theorem, as done by Smythe, 

(4.28) X G = Y G + W  G (GE~) 

where {YG, G ~ }  is an additive process with the same constant and {WG, G ~ }  
is a non-negative strongly subadditive process with constant zero. But by [7] 
(Corollary (4.20) or statement (3.9) of Theorem (3.7)), 

1 - Y ~  a.s. (4.29) 

for any regular sequence {G,} in 2. Moreover (3.11) and (3.12) of Theorem (3.10) 
imply 

1 
(4.30) i ~ , L . W a ~ 0  a.s. 

Hence 

1 
IG, I " X G " ~  a.s. 

Note that the condition of regularity of sequence {G,}, in the almost sure 
convergence theorem is very important and can not be omitted. If this condition 
is not satisfied, the almost sure convergence theorem does not hold. Counterex- 
amples can be found in Tempel'man (1972), Chap. 9. Our regularity condition is, 
for the sake of simplicity, stronger than the original by Tempel'man. 

All the above considerations and results remain valid without change when 
S is the v-dimensional integer lattice ~v, instead of IR ~. In this case S=S1 and }G] 
denotes the counting measure of G. The sets G, in all limit passages are the usual 
parallelepipeds 

= 1,<=x = l ,+a , ,  =1 . . . . .  v}, (4.31) G, {x~S: i i< i i 
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with l~, aln~;g and ain>O. All sequence {Gn} are countable. A sequence {G,} is 
regular " " lfmmnan~oe and GncGn+l foranyn; orif �9 i mm a, ~ oQ and there exists a 

i i 

positive constant c such that 

(4.32) IG,[~c. [/(G,)] * for any n, 

where I(G.) = m a x  ai,. 
i 

5. Cluster Processes 

The Lattice Case. Grimmett  (1976) has considered independent processes on the 
two-dimensional integer lattice which are constructed by randomly and inde- 
pendently coloring each site of the lattice with a given probability p(O<p< 1). 
He proved the mean and almost sure convergence theorems for the cluster 
number per site. We now describe the situation in arbitrary multidimensional 
integer lattices and prove his theorem in a more general form. 

Let S=7Z v, ~ =  {0, 1} s be the configuration space (=phase  space), equipped 
with the product a-field ~,  and let c~ be the collection of all finite subsets of S. A 
point xeS is occupied in o) iff co x = 1. An coEf2 is a configuration with occupied 
(black) and vacant (white) sites. We join two occupied nearest neighbors by a 
bond. In this way each co induces a graph in S. A cluster of co is a connected 
component of this graph. 

Let T,(ueS) be the usual translation operator in f2, and P be an invariant 
probability measure (=  state) on ~ We now define, for any finite subset G of S 
and coEO, 

(5.1) XG(co)=number of clusters in G, induced by the restriction of co to G. 

Then X={XG, G~C~} is a subadditive covariant process, but not strongly 
subadditive 1. Indeed we have for any disjoints sets A, GE~ 

(5.2) X~,a(co)= ~ {clusters of COA~ a in A~G having occupied vertices in G} 
- 4~ {cluster of coA in A which can be extended to some occupied sites in G}. 

Both terms on the rhs are naturally equal to zero if each point of A has no 
neighboors in G, or if none of the sites in G is occupied. 

The function A~--~XG.A(co), defined for A~C~ and Ac~G=~, is not monotone, 
as one can easily check (see Fig. 1). 

A'-..., A-..... 
| �9 [ 0  �9 �9 

�9 ! i i i t  

" !' 'iilO" "i 
" I" " " " " " " " 

�9 �9 -- �9 �9 �9 �9 

Fig .  1 

The author thanks G.R. Grimmett for his indication to this point 
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However the process X satisfies the hypotheses of Theorem (4.1). We have 

(5.3) Theorem. Let P be an invariant probability measure on ~ Then there exists 
an invariant random variable 4, ~ ~L1, such that, firstly 

1 1 1 
(5.4) L - l i m ~ - X G  =r 1E~ = inf j-F~,l - IEXe, 

for any sequence of parallelepipeds with min ai,~ oo; and secondly 
i 

1 
(5.5) lim ]G~,I " XG"= r 

almost surely for any regular sequence {G,} of paralleIepipeds. 

Proof. The statements (5.4) follows from Theorem (3.10), since the process is 
subadditive and the spatial constant is finite. In the expression (5.2), the first 
term on the right hand side is at most equal to the number of occupied sites in 
G. Furthermore, any occupied site in G can be linked with the other ones in at 
most 2v ways, therefore 

(5.6) [XG, a(co)[ < nG(co) + 2v nG(co), 

where n G denotes the number of occupied sites in G. In particular, if G = F 0 (in 
this case, = {0} and hence IF01 = 1), (5.6) gives 

(5.7) IXvo, a(co)[<2v+l,  for any AeF+~Cg. 

On the other hand, it is easy to check that the limit 

(5.8) l imXvo , a = Z  
A ~ F +  

exists everywhere. In fact 

(5.9) Z(co)= ~ {clusters of coe+ uVo in F+ ~ F  o which contain the point origin} 
- =~ {clusters of coF+ in F+ which can be extended to the origin}. 

For v = 2, Z has the form 

(5.10) 

0 if O9o=0 
1 if coo=l and A(co)=0 

Z(co) = 0 if co o = 1 and A(co) = 1 

- 1  if coo=l and A(co)=2, 

0 
�9 �9 �9 �9 Q 

I -  _ _ . . -  t 

6 �9 �9 �9 I Q 
I 

[ 

I 

I 
I i Fig. 2 
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where A(co) denotes the number of clusters of COF+ in F§ which can be linked to 
the origin. 

With (5.7) and (5.8), conditions of Theorem (4.1), part II, are satisfied, hence 
statement (5.5) is proved and we have 

~=IE(Z I J )  a.s. 
7 = IEZ =(for v =2) P{co: coo = 1, A(co) =0} 

-P{co:  coo = 1, A(co) = 2}. 

The proof is completed. [] 

The probability measure P in the theorem is not necessarily independent. It 
can be, for example, a Gibbsian state with non-zero interaction. For an ergodic 
Gibbsian state the limit ~ is almost surely constant, and equal to 7. In particular 
processes arising from independent colorings are of these type; this is the case 
which Grimmett considered. 

The Continuous Case. 2 Now let S = IR v and O be the space of all countable point 
sets {x> x~eS} which have only finitely many points in bounded subsets of S; f2 
is equipped with the usual vague a-field. The automorphismes {T,, ueS1} are the 
translations, nG(co ) denotes the number of points of co in G. Now let 6 be a fixed 
positive number. Then we join any two points of a configuration co by a bond if 
their distance is not greater than 3. In this way co induces a graph in IR v. Any 
connected component of this graph is called a g-cluster. We define for GeT  

(5.11) XG(co)=number of clusters in G induced by the restriction coG, 

1 
and will investigate the asymptotic behaviour of the average ~G~" XG as G 

becomes large. 
As in the lattice case, X={XG, Geg a} is subadditive but not strongly 

subadditive. For disjoint sets A, GeCg we have 

(5.12) X~,a(co)=q+{clusters of COA~ G in AwG which have points in G} 
- =~ {clusters of co n i n A which can be extended into G}, 

and 

(5.13) ISG,~(co)l~%(co)+k a. nG(co), 

where k 0 is the maximal number of points with pairwise distance not greater 
than a which a sphere of radius a in S can contain. In particular 

(5.14) IXG, A(co)l < (1 + ka) nfo(co )-= Y(CO) 

for any GeFo~(g and A~F+c~(g. 

2 The author thanks R. Lang for his suggestion about this example. 
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The  l imit  

(5.15) lim XFo ' A((D) =Z(o ) )  
A.T F+ 

aga in  exists everywhere  and  has a form ana logous  to (5.9). 
If  the p robab i l i t y  measure  P on O is supposed  to be of  first order ,  i.e. the first 

m o m e n t  measure  is a r a d o n  measure  on S, then the r a n d o m  var iab le  Y in (5.14), 
and  therefore  Z,  is integrable ,  so tha t  the  condi t ions  of T h e o r e m  (4.1), pa r t  I, are 
satisfied, as well as the condi t ions  of  the mean  convergence  theo rem in [7]  (see 
R e m a r k  (4.28)). Hence  we ob ta in  

(5.16) Theorem. Let P be an invariant (w.r.t. Tu, u~S1) probability measure on Y2 
(=point process) of first order. Then there exists an invariant random variable 
such that 

1 
(5.17) L 1 -  l im �9 X ~ = ~ ,  IE~=inflEXF ~IF.l, 

d(G)~ 0o ~[ 
Gegf" 

and 

1 
(5.18) l i m ~  �9 X G = {  

almost surely for any countable regular sequence of convex subsets {G} of S. 
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