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Summary. The setting for this problem is a (single-server) service facility which is “time-
shared” by m customers. 4 processing schedule, &, is introduced to prescribe the times at
which the facility is available to each customer. The processing schedule determines the random
order with which customers exit from the facility. The waiting time of the jt* customer, W’y, is
defined as the difference between his exit time and service time; the total waiting time, W o, is
then defined by

m .
Wy = Zlﬁl W
j=

where the {f#!} are positive real numbers. The weights {#¢} reflect the cost per unit time of
delay and indicate an a priori customer preferrence. In this paper we shall characterize the
processing schedules &* which realize

(%) min E(We) .
&

Our main result is that the schedules which minimize B (W &) in the m customer problem can
be “put together” from the corresponding schedules in the 2 customer problems.

§ 1. Introduetion

In this paper we continue the investigation of time-sharing (or queueing)
disciplines initiated in [1]. The setting for this problem is a (single-server) service
facility which is “time-shared” by m customers. A processing schedule, 7, is intro-
duced to prescribe the times at which the facility is available to each customer.
The processing schedule determines the (random) order with which the customers
exit from the facility. The waiting time of the j-th customer, Wi, is defined as the
difference between his exit time and service time; the fotal waiting time, Wy, is
then defined by

m .
Wo=72 Wy,
i=1
where the {ft} are positive real numbers. The weights {f!} reflect the cost per
unit time of delay. We shall characterize the schedules &* which realize

(*) min E(W ).
: &
Our main result is that the schedules which minimize E (W ) in the m customer

problem can be “put together” from the corresponding schedules in the 2 customer
problems. In § 2 we introduce the processing schedule and give a precise formula-

* This research was partially supported by the United States Air Force under Contract
No. AT 49 (638)-1682.
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tion of the problem (*). The case m = 2 is treated in § 3. We will show that (¥)
(for m = 2) is equivalent to finding a “shortest path”” and will determine this path.
In § 4 we show how the paths may be “put together” and prove in § 5 that this
leads to the solution of (*).

§ 2. The Proeessing Schedule
We shall study a (single-server) service facility which is to serve m customers.
The facility may serve only one customer at a time. The i-th customer requires
service from the facility for a period of time of length 7. We shall assume that
the (service times) {T'"} are independent random variables (on some probability
space (2, 4, Pr)) and that 7% assumes (with probability one) values in the set
{1,2,..., Ni}. We set
Qi(k) = Pr{w: Ti(w) >k}
pi(k) =Pri{w: Ti(w)=1Fk}.
We define a processing schedule inductively ;
Definition 2.1, (m = 1)

Fisa [‘Z} processing schedule will mean that

o if 4=0
=164, ....5) (A times) if 4> 0.

(We use the symbol § to denote the empty schedule.)

{m > 1).
) i1 i... zm} -processing schedule (A = Ay + Ao + -+ + Ap) will
Fisa
Ay As... Al m
mean that
[0 if A=0
T U, L) (4, La)) i A>0,
where

(1) ’I’]]'E{i:l,?;g, ,Zm}
(2) If 2 denotes the number of times the symbol “‘i;” appears in the list
N1, G2, -5 N, then afy = A; (1 <§ < m).
(8) If y; = ¢g, then Fpis a
1 ig cee g1 ig+1 R
{Al — x} Aq ——x?...Aﬂ_]_ —xf“l Aﬁ+1 —xf“...Am ——-x;” m—1

processing schedule.

Let & = (1, 1), -» (i, F3)) (¢ = N1 N2 -+« + Nm) be a

1 2 m
N1 N2 ... Nm|,
processing schedule. Define

t .
e () =1 "}‘kZlX(o,t](Tj(') —ap) ! (2.1)
Asi=m)
To(*) =minty(j, ). (2.2)
1=js=m

1 45 denotes the characteristic function of the set B.
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Note first that
75 (), w) = k if and only if 2} _, < TV (w) = }.

The processing schedule ¥ imposes the following time-sharing discipline. If
i < 7%, the service facility serves the customer whose “name” is “z;” in the
interval ¢ — 1 < ¢ < 4. At time 7., the facility has just completed the service
of one of the m customers 2. Thereafter the facility serves the remaining m — 1
customers according to the processing schedule &%. We call 7, the first eit
time according to & .

The processing schedule & thus determines a random order of exit i1, 4z, ..., in

from the facility. Let ngp denote the exit time of “7;”
0=Ty<7:9:<"'<‘[5p= T1_|_T2+...+ Tm

We measure the effectiveness of the processing schedule in terms of the waiting

“ y»

times or delays it imposes on each customer. The waiting time of customer ““i;
is defined by

W% = v — T
and the fotal waiting time by
m .
= > B Wy
i=1

Our objective is to characterize the processing schedules which minimize
2

§ 3. The Case m = 2
We start with the formulae

W (o Z & 20.0(T1(0) — 2}) y10,0(T?(w) — 5) (3.1)

% (@) = z Elzc )C(o,t](T2 (w) — xlzc) 9([0,:](T1 (o) ~ xlla): (3.2)
k=1

where

Ei__ 1 if ')1]‘;=t=1:
ETV0 if =i (1Sk=ti=12).

To establish (3.1) to (3.2) we need only note that
57; X(O,t](Ti(w) - 95%) X[o,z](T3_i( ) — 9013; z)
is equal to 1 if
(1) ne=*i,
(@) Ti(w)>zxi, and
(3) T3-(0) Z 2}~

“ ”

2 The ‘‘name” of the customer who first exits from the facility is where

Ty (w) = Tl (i1, ©) = min 7% (j, w) .
lsj=m



A Note on Time Sharing with Preferred Customers 115

and zero otherwise. Thus (3.1) (resp. (3.2)) counts the number of intervals up to
7%, during which the server is occupied with customer “2” (resp. “1”). The
independence of 7" and 72 thus yields

Lemma 3.1,
2 ¢ . . . . . -
B(Wy) =2 p 2 & @ @h) (@ @}~ + p2~4 (2] (3.3)
i=1 k=1
We may view (3.3) as defining a path integral. Let
Z={x=(@L2?): 0=t <N (i=1,2)}
and
) 1 . 1 if j=1
— (gl o2 —
uh = (uh% w9 (uz’j— {O otherwise)'
We take the usual partial ordering on Z.

Definition 3.1. Let x, y € & with x < y. By a path n from x fo y we shall mean
a sequence

T {xk} ;C =0
which satisfies the conditions:

(3.1.1) =xp=x,
(3.1.2) a;=9, and
(3.1.3) for 1 =k <t xp — x3_1 € {u!,u?}.

A point xy is a verfex of x provided
(8.14) k=0, or
(8.1.5) k=t, or
(3.16) 1=k<t and =xp— xp-1=+ X1 — 2.

The vertex x; is an r-vertex of s provided
(3.1.7) k=0, or
(3.1.8) k=t or
(3.1.9) 1=k<t and u’ = xp — xp_1+ Xpr1 — Xk
1l (x, y) will denote the family of paths joining x toy. If x; Sxs <+ < xy
and s;ell(x;, x441) (1 <4 < n) then we shall denote by
T = 7Ty % Tog kvt kMg

the path joining x; to a, formed by the juxtaposition of the paths {7;}.

Definition 3.2. If 7r: {xx}; _ o€l (%, ¥) we define the integral along the path m by
-

1
[ =2, (}) @2(=}) [B2 04 + p1 O]
4 k=0
where
@i-—- 1 if xk+1-—xk=ui
E= 10 otherwise.
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2
The total waiting time for the [ 1\171 NZL -processing schedule

L=, %1),.... (v, Fw))  (N=N1+N?)
is equal to [ where () e I1(0, N) (N = (N1, N2))

% (%)
7 {0
0 if k=0
(#) . ) k )
a0 S el — EYul + (g — 1) (1 — E)u?) if k=1
r=1

We thus have the equivalence of the problems
min B (W &)
&

and
min{f:neH(O,N) .

To compare f along two paths it will be convenient to introduce the notion
14
of the “area’ of a rectangle.

Definition 3.3. Let x, y € & with x < y. The rectangle spanned by x and y is
the set
Rx,y)={s=0L)eZ: <2<y (i=1,2)}.
The area of R(x,y) is defined by
p{Bx )= > [P +1) @22 — f2p2@2 + 1) @ (D).
ze R(x,¥)
This definition of “area’ leads to the following discrete analogue of SToxms’
Theorem.
Lemma 3.2, Let x,y € Z& with x <y and y = x -+ gl ul + o2 u2. Define the
paths mpell(x,y) (1=1,2) by
et (D) x4+ kul if 0k=p!
my (I 4 = {x+ olul + (k—pl)u? if ol <k <o!+ 02,
L (g L@ _ |8 T kUl if 0=k<g?
ma: (AW ) = {x+ ou? + (k— p2)ul if o2 <k <!+ g2,

Then, [— [ = u{R(x,y)}.

Proof.
njv—_nj‘:
ﬁl[Ql(erel)Jr 2, pl(z1+1)J 2, @@+
= <alt ot 22 < 2% < 2202
B2 Q2 (x2 + 02?) z Q1(z!) —
=2 <glgt
BRI@ 0% + 2, p2<z2+1)] 2, @eEH—
2= 22 <2402 L2l < gt

Brot+eo) 3 Q) =p{R(xy)}.

I =22 < x2tp?
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The following lemma plays the central role in characterizing the shortest paths.

Lemma 3.3. Let R(x. y) and R (v, w) be two rectangles satisfying the conditions:
(3.2.1) x,yeZ, x<y, y==x+ olul + o%u?
3.2.2) v,weZ, v<w, w=v+ clul 4 o?u?
(3.2.3)
(3.2.4)
Given (1, (2 such that — § < {1 << (2 + o = N1 there exist Ay, Az, A3, g all
positive real numbers such that
i p{R (%, y)} + lspu{R(v + {tul,w + (2ul)} =
Jop{R (v, w)} + Aap{R(x + Clul, y + (2ud)}.

Proof. A straightforward calculation verifies that the choice
M=A"B, l=A"B, ls=AB, Ww=A48

ot = ol = g(say)
zl = vl = J(say)

(3.4)

where
A= > @i, A = > Q1 (z1)
d=z2t<d+te S+l <O4g+ 02
B= > @), B= > @)
$2§22<$2+92 ’02§29‘<’02+0’2
satisfies (3.4).

Lemma 3.3 will be used in the sequel to determine the sign of the area of
certain rectangles. Define {£;} by writing (3.4) in the form

A+ 2303 =225+ 244

and put w; = sgnf2;. In the Table we give the value of w4 determined according to
(3.4) for certain values of (w1, ws, w2).

Definition 3.4. The path z* € I7 (0, N) represents an

T

optimum schedule if able
f:mjn{_f:neﬂ(o, N)} (@1 w3, ) 4
= i 0, 0, 0) 0
Two paths n1, 72 € I1(0, N) are equivalent if { = | . (0,0, 1) -1
P 71, 702 ( ) quivalent i n{ n{ oo, !
Henceforth we assume that sz: {x}i_, represents an go, i: 0) b }
optimum schedule. Let ( O: - 1,0) 1
0 = x,, < x,, <%y, <+ <%, =N ©, —1,1) —1
(1,1, 0) 1
denote the 1-vertices of 7. (=1, —1,0) —~1
(—1L, —-1,1) —1
Theorem 3.4. If 0 =¢=j<t, 0<a<< (25, —22), (1,1, —1) 1

0 < B < (x,,, — n,) then
IM{R (x’ln —,_ 0’.u2 + (x’llij - QZ'%]) ul’ x’01+1 + (x'l];j - x1]51+1 _{_ ﬁ) ul)} g O ‘ (35)
IfO<Sj<i<t,0<a=(ah,, —a),0<p < (z,, —al) then

lu’{R (xm + (x"])-j - x’ll.;t + ﬂ) u15 X + ccu? + (x’l}]i-l - xi:}a) ul)} g 0 (36)
(see Figs. 1 and 2).

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 9
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2
——————————— o —— e (N N?)
i)
al %R%
e —
L~ Y
|
i
|
1
le
1

= - | CIP Y
R-R(gvisv(x\,j-xvi +Bu Ly, +ay +(xvj+‘ 2y )

Fig.1

R 2 0l byl
R=R(xy; +au "‘(xvj "vi)L‘.-_’Svh_l

Fig. 2

1 |
* oy ¢ B0

Proof. Suppose ¢ = § and on the contrary
,U«{.R (xvi _l_ ocu27 xw+1 + (x’l%s — x%tu + ﬁ) ul)} > 0
for some pair («, B) with 0 < o < (22, — 22) and 0 < § < (x,, — «}). Write

JT == J71 % 7T % T3
where

7r1 is that part of # joining O to x,, + au?,
7z is that part of z joining x,, + wu? to x,,,, + (— «l,, + 23 + ful,
7t3 is that part of z joining x,,, + (— xp,,, + #5, + p)ul to N.
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Define the path 7 by 7 = 711 * 72 * 73
o . ~ ﬁ+(xg‘+1—ng)—a
7o . {xk}k=0
~ [y Fau? - kul if 0k<g
BT o ful + @k —Put if p<k<p—oa+ (@h,—a3)

Lemma 3.1 now shows that

fff fuwm+wxm+%—mﬁmwb0

which contradicts the minimality of |.

A similar argument establishes (3.6) for j = ¢ — 1.

To prove (3.5) for general (i,4) (1 =<4 < j <t) we proceed by induction.
Suppose therefore that (3.5) has been established forj — ¢ << 4. We use Lemma 3.3
setting

x = x,, + qu?

Y = Xy,

v ==, + (@5, — 25)u?
w=x,, -+ (aci+z — miﬂ) u?
(1= x%, - w%.-

é 71_1 v1+1 + IB .

Then
= u{B (%, +oau? x,,,)} <0 (by (3.5) with j =1 and §=ua,,, — ;)
= lu{R (xﬂt + (x%(+1 - x?%z) uZ? Xoii1 + (x%t-m - x’%ﬁ-l)} =0
(by (3.6) withireplaced by i + 1,j =4, f = Oand a = (23, — 22,)).
‘Q3 = ‘u{R (in+1 _l_ (xil;J - x%ul) ul’ x'l)i+2 + (xil)j - x711}+2 + ﬁ) ul} é 0
(by the induction hypothesis on (3.5)).
We may therefore conclude from the Table that
94 = /u{R (xva + auZ + (x'l]}-] - x%{) ulﬂ x’l)i+1 _l— (xvj 7)1.)-1 + ﬁ) ul} < 0
completing the induction.
A similar induction proves (3.6) and we shall omit the details.

Equations (3.5) and (3.6) provide, a priori, only sufficient conditions for the
minimality of [. The next theorem provides a sharper characterization of the

“shortest path”.

Theorem 3.5. If 7 represents an optimum schedule then there is an equivalent
path which satisﬁes (3.5), (3 6) and the following two conditions:
If0<i<t al,—a>0,and 0 < B < (2%, —al) then

AR (% %y, + (@5, — @, + fub)} < 0. (3.7)
Ifosi<t—1, 22, —25>0,and 0 <o < (22,, — 2, then
/u{R xvi+1 (xvi - x%“—l) ul’ x7Ji+1 O('uz } > 0. (38)

g*
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Proof. Let v; (j = 1, 2) denote the following paths:

N oy B if 0=sk=N

vis (Y=o Y@ = Niwi + (k — N3-7)u3~ if NI<k<N!+4 N2
The proof is by induction on the number, ¢ + 1, of 1-vertices of z. Note that
t =1 and if £ = 1 then w = »; or ya.

Case 1: m=v;.
In this case both (3.7) and (3.8) are trivially satisfied.

Case 2: = vs.
If »; and vy are equivalent we take v, as the path equivalent to = which
satifies (3.7) and (3.8). Thus we may assume that
f— f=u{R(O. M} <0.
If u{R(O, (x, N2))} < 0 for every &, 1 < < N1, the path x itself satisfies
(3.7) and (3. 8) Othermse define x* to be the largest value of z, 1 <x < N1, for
which u{R(O, (x, N2))} = 0. It follows that

p{R((x*,0), (z, N2))} <0
x* < ¢ < N1,

The path m* = af * n¥ % 7¥ where

¥ joins (0, 0) to (2%, 0)

7§ joins (x%,0) to (x*, N2)
74 joins (%, N2) to (N1, N?2)

is equivalent to »z and satisfies (3.7) and (3.8).

Next we assume that the theorem has been proved for optimal paths with
fewer than ¢ + 1 1l-vertices. We assert that we may assume y{R(x,, x,,,)} <0
if 0 <4 <tand 2  —a% > 0. Forif

#AR %0y Xoig 1)} =0
for some 4o, 0 < ip < ¢ with a2, — 2% > 0 there is an equivalent path with
fewer than ¢ -+ 1 l-vertices. Thus for each 4, 0 <¢ <t with 22, —af >0
there exists a f;, 0 < f; < (x3,,, — ¥»,) such that

H{R (xw x’Ui+1 + (xmu x’lJt + ﬁi ul} == 0
”{R (xm + (x’l];i+1 - x%i + ,32 u x121+1 (x?hn xvz + ﬁ u’l)} < 0

ﬁl < 13 x’UHl x%i) ’

It follows, as in Case 2, that we may find an equivalent path satisfying (3.7). Thus

we may assume f§; = 0.
We assert that we may assume

”{R (xvz+1 + (90%1 - x%;u) u1= Losi1 + (75%“2 - x12)¢+1) uz)} >0

for all ¢, 0 < i <t — 1 for which 2%, — 2% > 0. For if we assume the contrary
then there is a path equivalent to s with fewer than ¢ - 1 1-vertices to which we
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may apply the induction hypothesis. Thus there exists for each 7, 0 <¢ <t — 1
for which (z2,, — 22) > 0 an «;, 0 < a; < (22, — @5,,) such that

lu{R (xvi + (x’llli - x%ﬂ—l) ul’ x?J£+1 + &g uZ)} = 0
/u{R (xvt+1 —I— (x%¢ - x%i-H) ul + o uz’ x’vt+1 + O(‘uz)} > 0

2 2
o < g (x’l)u-z - xﬂin) .

Again there is an equivalent path for which (3.8) holds. (It is necessary to verify
that (3.7) still is valid for this equivalent path. This presents no problems and we
omit the details.)

A closer examination of the proof of Theorem 3.4 reveals that we have proved
a somewhat stronger statement; if 7 satisfies conditions (3.5) and (3.6) then there
is an equivalent path which satisfies conditions (3.5)—(3.8). Since, as we shall
shortly prove, this latter path is uniquely determined, we will have proved.

Theorem 3.6, The necessary and sufficient conditions that the path : {xg}i_,
(with l-vertices O = x,, << &, << *-» << x,, = N) represent an oplimum schedule
are (3.5) and (3.6).

We now turn to the uniqueness question.

Lemma 3.7. A necessary and sufficient condition that vi represent an optimum

schedule is
min u{R((z,0), (N1, y)}=0. (3.9)

0=2<N', 0=y N?

Proof. (Necessity) Suppose on the contrary that
p{R((x, 0), (N, )} <0.

Define the path & = 73 * 73 % 73 by
w1 joing (0,0)

=]

(z, 0)

()
73 joins (z,y) to (N1, y).

[~
(=]

7z joins (x, 0)

By Lemma 3.2

k24

[— [=u{R((=0), N, y)} <0

which provides a contradiction.
(Sufficiency)
Suppose that z represents an optimum schedule and let
O=x, <x, < <x,=N
denote its 1-vertices. Equation (3.9) implies that
u{R (2, %)} =0 (0=i<)
from which we conclude that | = |.

Similarly 1

Lemma 3.8. A necessary and sufficient condition that vy represent an optimum
schedule 1s
max #{B((0,y), (x, N?))} 0. (3.10)

0<z<N1,0<ys N*
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Theorem 3.9. There is a unique path m in % joing O to N which satisfies con-
ditions (3.5)—(3.8).

Proof. It evidently suffices to show that the first vertex (different from 0) is
uniquely determined. Define

> ={a=(422)eZ: u{R((0), V1, 2)} < 0}
1

; = {z =(21,22)e Z&: ,u{R((O, 22), (=1, NZ)} > 0}
({zeg; min p{R((@z0), (4 y)} Z0} i 3 +0
1

et
O0=sy<2?

N it S =0
\ 1

({zeZ: max u{R((0,9), (@, 22)} <0} if > +0
2

2 0<az=<2t

NV
I

0=sy=s2?
2

NM *
l

Let =; and =; denote the (lexicographic) orderings on &
(€1, &2) =1(m1, me) if either
(i) So<me or
(i) Eo=n2 and & <.
(1, &2) <a (1, ) if either
i) &1<m1 or
(i) &1 =m and & = 7.
By Lemmata 3.7 and 3.8 we have

> =0 if and only if v; represents an optimum schedule;
1

Z = § if and only if vy represents an optimum schedule.
2
Let (£*, n*) denote the maximum element of Z (under <;) and (&**, 5*¥%)
1

*

the maximum element of Z (under <j3). We assert that the first non zero vertex
2
of m, £ = (£1, £?) is given by
g% 0 if E5>0
=10, n*¥) if & =0
We must examine several cases.
Case 1: The first non-zero vertex of 7 is a 1-vertex. The second non-zero vertex
is (z, 22). By (3.5)—(3.8) we have (z},, 23,) € > so that (a,, v5,) =1 (&%, n*).
1
‘Case 1.1: 2, < n*, =, > &*. We have

p{R((E*%,0), (@, n*)} =0 (by (3.6))
so that
w{R (@5, 0), (N1, 7*)} <0
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showing that (xL, 7*) ez. Moreover since
1

min  u{R((v, 0), (3, v))} =0

0=ussl
Susay

0=v<n*
(by (3.6)) we have (z,, n*) > . This contradicts the maximality of (£*,7*).
1

Case 1.2: zl, =n*, x,, < E&*.
Condition (3.7) yields
p{R (3, 0), (§% %)} <0

*

which contradicts the membership of (&%, *) in Z
1
Case 1.3: 2, < n*, xs < &%,

Condition (3.7) yields
IM{R((‘%‘%U O)’ (5*1 x’l%z))} < O

*

which contradicts the membership of (£*, #*) in Z Thus in Case 1 we may con-
1
clude that x, = (&%, 0).

A similar treatment of the second case (the first non-zero vertex of 7 is a
2-vertex) yields 22 = #*.

One final remark; let |7| denote the number of vertices of . The proof of
Theorem 3.5 implies.

Theorem 3.10. If n* is the (unique) path satisfying (3.5)—(3.8) then

|7|* <14 min{|z|: x represents an optimum schedule}.

This fact is of practical interest since we desire schedules which minimize the
number of “‘switchings”. Theorem 3.9 displays a curious asymmetry. This is due
to our choice of a preferred coordinate (the “1”” coordinate) which is evidenced in
conditions (3.7)—(3.8). There is a dual set of conditions (favoring the “2” coordi-
nate) which yields a unique path z**. It is easy to show that

min |7*|, |7**| = min {|z|: 7 represents an optimum schedule}.

1 2
Definition 3.5. Let ds { 21 2 ; denote the minimum value of

gt g2
BB, + %)
where the service times 7’1, 72 have distributions
Lk + 1)
Q1 (=1)
Q2 (k + «?)

Pr{iw: TYw) >k} =

Priw: T?(w) >k} =
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(d is defined for 2 << N as above and is equal to 0 for ! = Nt or 22 = N2.)

1 2
Theorem 3.11. dg 2t 22} satisfies the recurrence
pr B
12 QP?+1) !
dzyal a?; =min Bl T w—dg yal 22+ 1
pr g2 pr B2

3.11
@'+ 1) ! 211" .

B g e+l

izt iz
Proof. We must find a shortest path from (x1, 22) to IV. The first vertex (diffe-

rent from (x1, 22)) must either be a l-vertex or a 2-vertex. If the first vertex
(different from (a1, #2)) is a 1-vertex then the average total waiting time is

2
1

g2 4 él(;) ) gl 1 a2

p p

while if the first vertex is a 2-vertex the average total waiting time is
e 1) 1 2

P+ S TR doqal 2241

gt B

This proves (3.11).

The techniques of this section may be applied to obtain a shortest path joining
x to N. Among all such shortest paths there is a uniquely determined path satis-
fying the analogue of conditions (3.7)—(3.8). We shall say that such a path is a
minimum, path.

§ 4. Consistency Conditions

We begin in this section by establishing certain consistency conditions relating
the minimum paths.
Let 1 = &<y <mand

Zén={(21,22): 0 <21 < N§, 0 <22 < N7},
We shall use superscripts to denote the space (Z'%7) in which a rectangle lies

and its area. Thus Ré 7(x, y) denotes the rectangle in &¢:7 spanned by x und y
(in & 1) and pé (RS 7 (x, y)) will denote its area

pen(REN(xmy)) = > [BEPE(EL + 1) Qn(22) — B pn (22 + 1) QY.

26 RE &(x ,y)

Let 767 denote the minimum path (in 24 %) joining O to (N5, N).

* We assume here that 2f << Nt (s = 1, 2).
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Lemmadl. If 1 ¢ <<l =<m 0=l <yl <N&O<a?<y?<Niand
0 < 23 < y3 < N* then

BELQF (23) — Q4 (y3)] pé 7 {R& 7 (2, 22), (41, y2))}
-+ BE[Q (xh) — Q5 (yh)] pm ¢ { B¢ ((#2, 23), (y2, ¥°))} ¢.n
= Bn[Qn(x?) — Q7(y?)] ué ¢ { RS & ((21, 23), (1, ¥3))} .

Proof. The proof of (4.1) is by direct calculation and we shall omit the details.
Let

& if the first non-zero vertex of 7¢:7 is a &-vertex,
7E ) = {77 if the first non-zero vertex of & % is a 5-vertex.
Theorem 4.2.
If 7 n)=§& and V(n,0)=mn then V(§)=¢& (4.2)
If 7&n)=n and 7(n,0)=0_ then V(£ 1) =1 (4.3)
It v&n=§& and V(50 =0 then V(9 )= (4.4)
If 7V,0)=mn and V(£ 0) =1 then V(&,m)=n (4.5)
If v(&0) =& and ¥ (E,n)=n then ¥ (n,{)=n (4.6)
If (&0 =& and ¥ (9,0)=1C then Y (&n)=E§. 4.7)

Proof. We shall only prove (4.2) since the proofs of (4.3) to (4.7) are similar.
Let the first vertex of mé:7 be (4, 0), the first vertex of #7:¢ be (B, 0) and
suppose on the contrary that the first vertex of #¢ ¢ is (0, C) (with 4 > 0, B > 0,
C>0).In Lemma 4.1 set
l=al=03=0 yl=A y2=B ypB3=0C.
Then
BEIL — Q4(C)] uéom {R&:1((0,0), (4, B))}
+ BE[L — Q5(A)] um & {B™£((0,0), (B, C))} (4.8)
= B1[1 — Q1 (B)] ué ¢ {R&£((0,0), (4, O)}.

The left-hand side of (4.8) is non-negative. Suppose for the moment that we know
@n(B) < 1. Then, the right-hand side of (4.8) must be non-negative and this is
a contradiction to (3.7). But if @7(B) = 1 then @¢(C) = 1 and this contradicts
the fact that 7% ¢ is a minimum path.

Let

FL2om={z=(d,...,2m); 0<A<Ni(l <3

A

m)}

and
) ) ) , . 1 if j=4
wt = (ub L, ut2, ... ubmy ybl— .
(w1, v ) 0 otherwise

By a path from x to y we shall mean a sequence

7 {xali—o
satisfying the conditions;
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(1) xp==x
@) x=y
(3) if 1 =k then xp — 2z € {ul, u?, ... un},
Let E#:? be the projection of Z1,2.---.m onto Z#:». If z is a path in £1,2 - m
joining x to y then F#:7 x is the path in Z'#7 joining (z#, 2%) to (y%, y*).

Lemma 4.3, There exists a unique path 7 in Z1:2:m joining 0 to (N1,N2,...,
Nmy such that
Ef’nnznfvn 1§§<7]§m

Proof. Lemma 4.3 is an immediate consequence of

Lemma 4.4, There exists a unique i*, 1 < i* < 1, such that
Y, 1%) =14* 1 <4 <o

657 =s 1 &¢ (4.9)

YE*, ) =% F<j=m.

Proof. The proof is by induction on m; for m = 3 we use Theorem 4.2. Suppose
therefore that Lemma 4.4 has been proved for m < n. Thus there exists an
7*, 1 < j* < n such that

V(@ %) =
V(%5 9)
We must consider two cases;

Case 1: ¥V (j*,n) = j*.

‘We then set +* = j* and note that (4.9) holds for m = =.

Case 2: V" (j*, n) = n.

For 1 <7 < j* we have

VG iF) =% V) =n

1<i<j*

7’*
i*or<i<m.

i

and hence by (4.3) 7°(i, n) = n.
For j* < § < n we have

V(i* =% V(*n)=n
and hence by (4.4) ¥'(j, n) = n. We set i* = n and (4.9) has been established

for m =mn.

§ 5. General m
Let o = (21,22, ...,2m) (0 = af << N?¥; 1 =4 < m). We begin by defining a

class of processing schedules F(z, 2%, ..., 2tp) (1 < iy < ig < -+ < ip =< m);
P(x™, z', ..., x'7) is a processing schedule for the p-customer time-sharing problem
in which
(1) The names of the customers are
“il’, Cliz” . “/’:p” . (5.1)

[{Pan2]

(2) The service time distribution of “i;” is

Qulk +29) (i< ). (5.2)

PI‘{(,O: T“(w)>k}=W =71=
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Let m#:7 (z#, 2*) be the unique minimum path (of Theorem 3.9) joining (x#, 7)
to (N#, Nv). We note that m#:¥(x#, 2*) determines a processing schedule, say
&, for the time-sharing problem of (5.1) to (5.2) 3; we shall write st ? (2#, 2?) <> &
to indicate this correspondence. We define (™, 2™, ..., 2%#) inductively;

Definition 5.1. (p = 2)

nil,iz (xil, xiz) ﬁy(xil, w’ia)

(»>2)
S, ..., 2" = ((n1, F1)s -, (2, F%))
y4
t:z(Ni]'—xij)’
j=1
where

(1) mefin,ia,...ipy (Q1=i=1),

(2) If a¥ denotes the number of times the symbol ““4;” appears in the list
N1, M2, .- Ni, then afi = N¥ — 2% (1 < j < p),

(3) If # =g then

_ i1 i1 - P ips i i
Fy= L@ —x’, ..., a% — gl glon —glonr | xtr - plv),

(4) The path z: {Ex}%_,

P
gkz{leﬁiui’}—}— (2, %, ... 2% if 1<k<t

j=1
= (2™, 2%, ..., a) if k=0

Fiets = = (z122 , 2P): 0 <N (1<j<
1=p

w'=(0,0,...,0,1,0,...,0) (1 in j-th coordinate) is the unique path of
Lemma 4.3 joining (z%,z%,...,a%) to (N%, N, ..., N%) whose projection on
Pin's g ppiu iy (xi,,, xi») 1= u<wv = ).

Theorem 5.1. Let
1 2 3 ...m
dm {2l 22 a3 ... gm
propropE .. pm
be the expected total waiting time for the processing schedule

S, 22, ..., xm) 4,

SForp=2,01=pu, ia=v.

4 dpy is defined as above for 0 < 2zt << N? (1 < i < m). We extend the definition of d,, for
0 <o < Nt as follows; if 0 < af < Nt for i€ {j1, 42, ., jp} (1 =1 < - < §p < m) and
at = Nt for ¢ ¢ {1, j2, ..., jp} then

1 2 m 1 Ja ip
dm 12l 22 ... aml =dp il 2 |, air

g g pit piz piv
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Then,

1 2 m nov

dm 2l 22 ... M} = z do Jai (5.3)
BUoB . b g em B B

Proof. The proof of (5.3) is by induction on m; for m = 2 (5.3) certainly holds.

We now assume that (5.3) has been proved for m — 1. We begin by noting that

1 2 ...m
A st 22 ... am; = z ft 4+
i=1

prop2 ... pm

1—k
2 ... k—1 k k+1...m
al x2 .. kBl ] Lk gRtl | gm (5.4)
gL ope ... pr1 p gr+L . pm
1 2 ...k—1 k+1...m
dm—l

Qa1
T

ﬂ%()iki})_ ol 22 ... k-l gkl m
B g2 ... pr-1 BEiL . pm

where 0 S of << N¢ (1 <4 <m) and

(1) the first vertex (different from (z#, x¥)) of the minimum path z# ¥ (x#, x¥)
isa 2-vertex for 1 < pu < k,

(2) the first vertex (different from (x%, 2*)) of the minimum path a%:?(a#, 2?)
isa l-vertex for k < v < m.

Certainly (5.3) holds for ! + 22 + -+- + 2™ > K for some sufficiently large K.

(We need only take K so that at least one 2¢ = Ni) We assume now that

2l 22 4 oo L am = K. We have

1 2 ...k-—1 k E+1...m
A 42t 22 ... ab~1 14k oF1 | gm; =
Bt B2 ... e pE BEHL ... pm 5.5
uwov U k k Y
Sdo lop ol D delaon 1okt 4+ D da | 14fak a?
1§(72%:;§m B B agh<n BE 0 BE b<vzm | BF B
U, v

(by the induction on K).

1 2 .. k—1 k41...m oo
dmy{at a? ... ak-1 gkl . gmi= > dg gk o (5.6)

gL g2 ... pE1 pERL . pm | B0 lpu g
v EE
{(by the induction on m). Finally we observe that
wo ok v k
do |t ok = pu Lt %l do lan 14 ok (5.7)
pr B pr

I=sp<k
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kv E( 1 2%) k v
do sk ¥ = ﬁ" + Wdz N (5.8)
pE B pE B
k<v=m).

Substituting (5.5) and (5.6) into (5.4) and using (5.7) and (5.8) proves (5.3) for
ol + 22 + .-+ 4 2™ = K and thus completes the proof of Theorem 5.1.
Let

1 2 ...m
Pl a2 ... zxm
gL g2 ... pm
denote the class of all processing schedules for the m-person time-sharing problem
(with customers “17, “2” ..., “m”) in which the service time distributions are
o Q@A k)
Pri{w: T'w)>k}= T
1<i<m).
1 2 m
Theorem 5.2. min EWg)=dm 2l 22 ...2m (6.9)
1 2 ...m gL p2 pm
FePxl a2 ... zgm
pr g2 pm
Proof. Let
1 2 m
em 2l a2 ... am (6.10)
pr gz ... pm

denote the left-hand side of (5.9). Clearly e, = dy for m = 2. We suppose that
(56.9) has been proved for time-sharing problems with fewer than m customers,
Next we observe that (5.9) holds for 2! + 2% 4 --- 4 o™ sufficiently large. We
assume that (5.9) holds for a1 + 22 -} --- 4 2™ larger than K and attempt to
verify (5.9) for 21 4 22 + --- 4 am = K.

But (5.10) satisfies the recurrence relation

I 2 m m
@l 22 .., gmi= min | > f
i=1

€m
pr g pm)  isiem iZh
1 2 E—1 k k41 m
 (k
+ %l em it a2 ... 2kl 1 4ak gkl xm] (5.11)

ﬂl /32 ‘Bk—l ﬂlc ﬂk+1 ﬂm
L @EH) — QR+ ) L2 k—1 k+1 m”

) 1 42 %—1 E+1 m
G () em—1 12t 22 ... 2 x R

ﬂl ﬂZ ‘Blc—l /316+1 ﬂm
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We apply the induction hypothesis in (5.11);

1 2 E—1 k E+1 m
ems2l 22 ... b1 14k ghtl | gm
gt g2 ge-1 B B+l gm
I n ok k v
= D daqar arp+ > dadan k4 1b+ D deqab+1 22V (5.12)
1§;5”<’?]§m Be B} 1si<r \PE BE k<vzm (PP il
", v ¥
1 2 E—1 k+1 m noow
ep19al 2% ... @kl ghtl L gmb= > da dpn g (5.13)
propr pEL pEn Br) 1< isNsm \BE B
n, vk

Finally we note that foreach k, 1 <k < m

nok ey - F
dg xh xk é ﬂ" + Wdz ¢ 1 + xk (514:)
pr pE pe px
I=p<k)
B ¢e ity |f ,
dz zk 2 é ﬁv + —Wdz 1 + xk x (515)
lgk ‘Bv . ﬁk ﬁv
(k<v=m).

by Theorem 3.11. Substituting (5.12) and (5.13) into (5.11) and using (5.14) and
{5.15) we obtain
1 2 m 1 2 m
emxl 22 ... amy =dg it 22 ... am
pr g pm propr g

from which we immediately deduce equality.
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