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Summary. We consider a class of reflecting Brownian motions on the non- 
negative orthant  in R K. In the interior of the orthant,  such a process behaves 
like Brownian mot ion with a constant  covariance matrix and drift vector. 
At each of the ( K -  1)-dimensional faces that form the boundary  of the orth- 
ant, the process reflects instantaneously in a direction that is constant over 
the face. We give a necessary condition for the process to have a certain 
semimartingale decomposition, and then show that  the boundary  processes 
appearing in this decomposi t ion do not charge the set of times that the 
process is at the intersection of two or more faces. This boundary  property 
plays an essential role in the derivation (performed in a separate work) of 
an analytical characterization of the stat ionary distributions of such semi- 
martingale reflecting Brownian motions. 

1. Introduction 

Let K be a positive integer, F=(F/j) be a K x K non-degenerate covariance 
matrix (symmetric and positive definite), and 0 = (0i) be a K-vector.  (All vectors 
should be envisioned as column vectors.) Let R be a K x K matrix, and let 
S denote the non-negative or thant  RK+. 

In this paper, we are concerned with certain semimartingale reflecting Brow- 
nian motions,  called SRBM's,  associated with the data (S, 0, F, R). By an SRBM 
we mean a continuous, adapted K-dimensional  process Z together with a family 
of probabil i ty measures {P~, z~S} (one for each starting point in S), defined 
on some filtered space (~2, ~ {o~}), such that for each z~S, under P~, 

Z(t)=X(t)+RY(t)~S, t>=O (1) 
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where 

(i) X is an {Ytt}-adapted, K-dimensional Brownian motion with covariance 
matrix F and drift vector 0, and P~- a.s., X starts from z, 

(ii) Y is a continuous, {o~t}-adapted, RK+-valued process that P~-a.s. satisfies: 

(a) Y(0) =0  

(b) Yis non-decreasing 

(c) for each k~{1 . . . . .  K}, the k-th component Yk of Y increases only 
when Z is on the face F~= {x~RK' x~=0}, i.e., 

1 s\~k ( z  (s)) d ~ (s) = 0. 
o 

For brevity, we shall use Z to denote the SRBM determined by Z and the 
probability measures {Pz, z~S}. In the language of stochastic differential equa- 
tions (s.d.e.'s), Z is a weak solution of the s.d.e." 

dZ(t) = dX(t) + RdY(t), (2) 

together with the auxiliary conditions (i)-(ii) and Z(t)~S for all t__> 0. Loosely 
speaking, Z behaves like the Brownian motion X in the interior of the orthant 
and is reflected at the boundary, the direction of reflection on the face Fk being 
given by the k-th column of the matrix R. Although we shall not need it here, 
it can be shown that the amount  of the time that Z spends on the boundary 
has zero Lebesgue measure and hence reflection at the boundary is instanta- 
neous. 

A necessary and sufficient condition on the data for existence and/or unique- 
ness of an associated SRBM is not known. However, in studying diffusion pro- 
cesses arising as the heavy traffic limits of open queueing networks, Harrison 
and Reiman [3] have shown that when R has ones on the diagonal and R - I  
is non-positive and has spectral radius strictly less than one, then there is a 
unique path-to-path mapping from any (0, F) Brownian motion X starting at 
zeS to a pair of continuous processes (Y, Z), adapted to X, such that (i) and 
(ii) hold. This yields a sufficient condition for a unique strong solution to the 
problem defined by (1) and (i)-(ii). Other sufficient conditions for existence of 
a solution to this problem can be gleaned from [-6]. In contemporary work, 
Mandelbaum and Van der Heyden [8] are investigating conditions for the 
existence/uniqueness of pathwise solutions to this problem. In Sect. 2, we prove 
that the following natural feasibility condition is necessary for the existence 
of a (weak) solution to (1) and (i)-(ii) for each z~S. Here a principal submatrix 
of a square (k x k) matrix A is a matrix obtained by deleting all rows and 
columns of A with indices in some (possibly empty) subset of {1, ..., k}. Inequali- 
ties are to be interpreted componentwise. 

Definition. A square matrix A is called completely-6 ~ if for each principal 
submatrix A of A, there is 37__> 0 such that A 37 > 0. 

Condition (SF). We say the matrix R satisfies the semimartingale feasibility condi- 
tion (SF) if R is a completely-~9 ~ matrix. 
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Remark 1. It is easy to see that in the definition of completely-5 ~ j~ may be 
chosen such that ~ > 0 and .4 ~ > 1. 

Remark 2. In the literature [2], a matrix for which there is a y__>0 such that 
A y > O  is called an 5 P (after Stiemke) matrix. Following Cottle [1], we have 
used the prefix "completely"  to indicate when this property is inherited by 
all principal submatrices. 

The geometric interpretation of condition (SF) is as follows. For  an SRBM 
Z starting from the smooth part Fj \  U Fk of some face Fj, the j- th component  

k * j  

Yj of Y is the only one to increase until the random positive time z at which 
Z first reaches one of the other faces Fk, k +j.  Thus, for 0 < t < z, the projection 
of Z(t)  onto the direction ej normal to Fj is given by 

Zj(t) = ej. (X (t) + R ~ Y~(t)) = X j(t) + Rj Yj(t), 

where R ~ is the j- th column of R and Rj is the element in the j-th row and 
column of R. It follows that a necessary condition for Z to remain in S (and 
hence for Zj to remain non-negative) is that R~ be strictly positive, i.e., the 
inward normal component  of the direction of reflection R j on the j-th face 
is strictly positive. But this is precisely the condition that each 1 x 1 principal 
submatrix (each diagonal element) of R is an ~ matrix. (Indeed, one can norma- 
lize the directions of reflection R j such that all of the diagonal elements of 
R are 1.) Similarly, by considering Z starting from any (K- j ) -d imensional  edge 
formed by the intersection of j distinct faces (2 =<j< K), we see that a necessary 
condition for Z to remain in S is that there is a non-negative linear combination 
of the directions of reflection for those faces such that its projection onto each 
of the inward normals to those faces is positive. This is precisely the condition 
that each j x j  principal submatrix of R is an ~9 ~ matrix. Combining these neces- 
sary conditions, one obtains condition (SF). The preceding informal argument 
is formalized in Theorem 2 of Sect. 2. 

As a preliminary to the proof  of the main result of this paper, it is shown 
in Sect. 3 that the completely-~9 ~ matrices are the same as Cottle's [1] completely- 

matrices which are the same as the strictly semi-monotone matrices, and 
that this class is closed under transposition. This result (Lemma 3), which seems 
to be new, has also been discovered independently by Mandelbaum and Van 
der Heyden [7]. 

In Sect. 4, we establish the main result of this paper. Assuming there is 
an SRBM Z associated with (S, 0, F, R), and hence that the transpose of R 
is completely-S '~, it is shown that the "boundary  processes" Yk (also sometimes 
called boundary local times or control processes) do not "charge"  the set of 
times that Z is at the intersection of two or more faces. More precisely, if 
for any J c { 1  . . . .  , K}, Z j  denotes the process whose components are those 
of Z with indices in J, then we prove the following. 

Theorem 1. For each J c { 1, . . . ,  K}  satisfying J J] > 2, and any k s J ,  we have P~-a.s. 
for each z ~ S: 

~ l~z~s) : o~ d Yk (s) = 0. (3) 
o 
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Remark. Since Yk can increase only when Z k is zero, the case k s J  is the only 
important one. 

The above result is not only of intrinsic interest for the understanding of 
semimartingale reflecting Brownian motions, but also plays an essential role 
in the derivation of an analytical characterization of the stationary distributions 
for such processes [4]. This is of relevance to applications in queueing and 
storage theory where SRBM's arise naturally in the heavy traffic limit, as shown 
in Reiman [9]. 

2. A Necessary Condition 

The main result of this section is the following. 

Theorem 2. Suppose Z is an SRBM associated with the data (S, O, F, R). Then 
the semimartingale feasibility condition (SF) must hold, i.e., R is a completely-S: 
matrix. 

Proof. For a proof by contradiction, suppose R is not completely-~. Then 
there is a principal submatrix /~ of R such that for all y > 0, /~y:} 0. Let J c 
K - { 1  . . . .  , K} be the indices of the rows and columns of R that are retained 
in forming /~ from R. Let z e S  such that z j=0  for j e J  and z~>0 for j ~ K \ J .  
Define 

= inf{t > 0: Zj (t) = 0 for some j e K \ J } .  (4) 

Then since z6 ~) F~ and the paths of Z are continuous, we have 
jeK\J 

P~(t<z)T1 as t,LO. (5) 

Let Z, J~, and Y denote the processes obtained from Z, X, and Y by retaining 
only those components with indices in J. Then by (1) and (ii) of Sect. 1, we 
have P~-a.s.: 

: 2 ( t ) = ~ ( t ) + ~ ( t )  for 0 < t < z ,  (6) 

since the components of Y indexed by K \ J  do not increase before the time 
z. Under P~, )~ is a [J [-dimensional Brownian motion with non-degenerate co- 
variance matrix and drift O, and )7 starts from the origin. Thus, there are b0 > 0 
and e > 0  such that PdJ~(t)<0)>~ for all 0 < t < 6  0. Combining this with (5), 
we see that there is to > 0 such that 

P~ ( s  (to) < 0, t o < z) > 5/2. (7) 

Thus, by (6), (7) and the fact that P~-a.s., ~(t)>__0 for all t, we have 

P~ (/~ Y(to) = 2 (to) - )~ (to) > 0) => P~ (P~ (to) < 0, t o < z) > ~/2. 

But this contradicts the facts that /~ is not an 2: matrix and Y(t)_>O P~-a.s. 
for allt=>0. [] 
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3. Completely-Af Matrices 

In this section we establish some preliminary results needed for the proof of 
Theorem 1. In particular, we equate the completely-SP matrices to the complete- 
ly-~ matrices associated with solvability of the linear complementarity problem. 
We also prove this class is closed under transposition. 

Definition. A square (k x k) matrix A is called compIetely-~ if for eachje {1 . . . .  , k}, 
each j x j  principal submatrix A of A, and each vector 2 s R  J, there is at least 
one solution 0 7, z') of the linear complementarity problem: 

(LCP) ~5 > O, 37 > 0 
/ 

t~.y=0. 

Definition. A square matrix A is called strictly semi-monotone if for each principal 
submatrix .4 of A, the system 

3#<0, #>0 

has the unique solution # = 0. 

Lemma 1. A square matrix is completely-~ if and only if it is strictly semimonotone. 

Proof. See Cottle [1, Theorem 1]. [] 

Lemma 2. I f  a square matrix is completely-~, then it is completely-5 P. 

Proof This follows easily by taking solutions of the (LCP) corresponding to 
2 i = - 1 ,  i = l , . . . , j .  [] 

Lemma 3. A square matrix is completely-5 p if and only if it is completely-~, 
and this class is closed under transposition of matrices. 

Proof  Suppose A is a square matrix that is completely-St. Then, for any principal 
submatrix A of A, there is ~ > 0  such that A)~>0. Suppose # > 0  such that 
A ' # < 0 ,  where the prime denotes transpose. Then # - 0 ,  for if not, we have 
the contradiction: 

0 <,V. (A~) = (A'~).y __< 0. 

Since .4' was an arbitrary principal submatrix of A', it follows that A' is strictly 
semi-monotone. But then by Lemma 1, A' is completely-~ and hence completely- 
~9 ~ by Lemma 2. Repeating the argument with A' in place of A completes the 
desired circle of implications: 

A ~ 5 7 ~ A '  ~ A '  ~ 5 7 ~ A ~ A ~ 5 7 ,  

where 5 7 denotes the set of completely-5 ~ matrices and ~ the set of completely-~ 
matrices. [] 
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4. Proof of the Boundary Property 

The following notation will be used in this section. If J cK_={1 ,  ..., K}, then 
for any x e R  ~: and K x K matrix A, xa will denote the vector whose components 
are those of x with indices in J, and A a will denote the principal submatrix 
of A obtained by deleting those rows and columns of A not indexed by elements 
of J. 

The proof  of Theorem 1 is given in several steps. First, the result is proved 
for the case of zero drift (0 = 0) and J = { 1 . . . . .  K}. Then, using backwards induc- 
tion it is extended to all J c {1, ..., K} with [JI ~ 2. Finally, using a Girsanov 
transformation, the result is extended to all constant drifts 0. 

Henceforth it is assumed that Z is an SRBM associated with (S, 0, F, R). 
Then, by Theorem 2, R is a comple te ly-~ matrix, and so by Lemma 3, R' is 
completely-~.  

Lemma 4. Suppose 0 = 0  and J = { 1  . . . .  , K} with K> 2. Then for each keJ  and 
zeS, (3) holds P~-a.s. 

Proof. Fix zeS. Then by the semimartingale representation (1) of Z and It6's 
formula, for any function f that is twice continuously differentiable in some 
domain containing S, we have P~-a.s. for all t > 0: 

f ( Z ( t ) ) -  f ( Z  (0))= i Vf(Z(s))dX(s) 
0 

+ ~ ~ vk'Vf(Z(s))dYk(S)+ Lf(Z(s))ds, 
k = l  0 0 

(8) 

where X is a (0, F)-Brownian motion, v k is the k-th column of the reflection 
matrix R and 

1 ~: 02 

L = 2  i j~" = l~ij Oxi~xj" 

We shall substitute functions into (8) that allow us to estimate the left member 
of (3). Each such function is L-harmonic in some domain containing S and 
for each k, its directional derivative in the direction Vk is bounded below on 
S and is very large positive near the origin. These functions are defined below 
as integrals of Newtonian potentials associated with a well chosen line of point 
sources located outside of S. 

Since R' is completely-5 p, there is 7~RK+ and 6~[1, oo) K such that 

Define 
R'7=6. (9) 

= r ~ .  ( l o )  



Semimartingale RBM's 93 

Fo r  each x e S  and re(0,  1), 

d2(x, r)--(x + r a ) ' F - l ( x  +rcO 

=x '  F -  l x + 2rc~' F -  l x +r2 c~' F -  l c~ 

= x ' F - l x + 2 r T '  x + r 2 ~ ' F - l ~  

=> r 2 ~ (11) 

where c~ = ~' F -  1 c~ = 7' F V > 0, since F is symmetr ic  and positive definite and 2 =t = 0. 
Then, for  each ee(0, 1), 

rK-2(d2(x , r ) )~-dr ,  K > 3  

~b~ ( x ) -  (12) 

1�89 ! ln(d2(x,r))dr,  K = 2  

is twice cont inuously  differentiable in some domain  containing S, and on each 
compact  subset of  S, it is bounded,  uniformly in e. Moreover ,  since the integrands 
in (12) are L-harmonic  as functions of xeRK\{- - rc~} ,  it is readily verified that  
for each ee(0, 1), 

a 0 ~ = 0  (13) 

in some domain  conta ining S. 
Fo r  the verification of the direct ional  derivative propert ies  of 0 . ,  for each 

ke{1 . . . . .  K}, let Uk=(F-1)'Vk . Then  

Uk" Ct = ( R ' F -  i cQ k = ak > 1. (14) 

Combin ing  this with 
1 

VG(x)= S rK- 2 F -  ~(x + r~)(d2( x, r)) -~  dr, (15) 
g 

yields 
1 

v k. V c~ (x) = ~ r K- 2 (Uk. X + r 6k) (d 2 (x, r ) ) -~ d r. (16) 
g 

Let  ~k=6k/llUkll, where II'll is the Eucl idean no rm in R K. Then  for ee(0, 1) and 
x e S  satisfying Ilxll <~ /G  we have luk'xl < ~ G  and for r > e ,  

d2(x, r)<= l i t - i l l  I[x+r~l[ 2 

< Ilr-lll (llxll + IIr~ll) 2 
_-< I j r -  111 (/?k + [[~ll) 2r2 (17) 

where IIF-1IE denotes the no rm of F -1 as an opera to r  f rom R ~ to R K with 
the Eucl idean norm.  Setting 

c~ = ( l i t -  ill ( /~+ I/<1)~) -~/~ ~k 
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and substituting the above in (16) yields: 

for all x e S  satisfying 
line above is large and positive. 

Now, for any x e S ,  

1 

Vk" Vqb~(x)>ck (. r r - 2 ( r - e . ) r - r  dr 
8 

> - Ck [-In e + 1] (18) 

Ilxll <~flk. Note that for e small, the term in the last 

1 
V k " V (9 e ( x )  = - -  O k S rK - 2 (Pk (X)  - -  r ) ( d  2 (x,  r)) - K/2 d r (19)  

where pk(X)----(Uk'X)/Ok. If pk(X)<e, then the right member of (19) is non- 
negative. Thus, to obtain a lower bound for Vk" V ~o~ on S, it suffices to consider 
x e S  such that pk(X)>e. For  such x, 

1 
S rK - 2 (Pk (X) - -  r ) ( d  2 (x ,  F)) - K/2 d r 

8 

pk(x) 
<= ~ r K - 2 ( p k ( x ) - - r ) ( d 2 ( x , r ) ) - K / 2 d r  

Pk (X) -- r 

y K -  2 ] 

�9 max ~?d21xr~U_2)/2 ?. re[e,pk(x)] I.I. ~ , )) ) 
(20) 

Since d2(x, r) is a quadratic in r with positive coefficients, the first maximum 
above is achieved at r = e, and by (11), the second maximum is crudely dominated 
by (~)(2-K)/2 Thus, the last line of (20) is bounded above by 

(p~(x ) -~ )  ~ (c~) (2-~)/2. (21) 
d 2 (x, e) 

Since F -1 is positive definite, there is 2 > 0  such that x 'F - l x>2]]x] ]  2 and so 
(cf. (11)), 

dZ(x, O >  2 llxll2 + ~2 ~ >(2  A ~)(llxll2 + e2). (22) 

On the other hand, by the definition of pk(X), 

(Pk (X) -- e) 2 < 2 ((Pk (X)) 2 + e2) 

< 2(Uukll 2 I[X[I2 0 k  2-]- e 2) 

__<2(llukll2 6~ -2 v 1)(llxl]2 + e2). (23) 
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It follows from (22~(23) that (21) is bounded above by a constant not depending 
on x or e. Hence, there is dk>0 such that for all xeS  and ee(0, 1), 

Vk" V ~b~ (x) > - Ck- (24) 

We are now ready to prove (3) holds ~-a.s. for each k. For  each positive 
integer m, define 

Tm=inf{t>0:  IIZ(t)ll __>m or Yk(t)>m forsome k} Am. 

Replacing f by qS~ and t by T,, in (8), we see from (13) that P~-a.s. : 

Tm 

qS~(Z(T~))--~(Z(O))= ~ VO~(Z(s))dX(s) 
0 

K T,n 

+ ~ ~ v~.Vr (25) 
k = l  0 

Since 4~, and its first derivatives are bounded on each compact subset of S, 
by the definition of the stopping time T,, and since 0 = 0, the stochastic integral 
with respect to dX in (25) has zero expectation. Thus, taking expectations in 
(25) yields: 

K [- T m ] 

E '~ [4,~(Z (r,~)) - 4,~(Z (0))] = Z E ~  [ I v~. v ~ (z  (s)) d Y~(s) ] 
k = l  L O  

>--0ne+l )k~=l  ckEe~ o ~ l(llz(s)lE<"Pk~dYk(s J--k=1 ~ ~kEP~[Yk(T")]' (26) 

where the lower bounds (18) and (24) have been used to obtain the last inequality. 
Now, the left member of (26) is bounded as e $ 0, since ~b, is uniformly bounded 
on compact subsets of S. Also, the last sum in (26) is independent of e. Thus, 
dividing (26) by - ( l n  e + 1) and letting ~ $ 0 yields: 

lim ~ Ck EP~ l(llz(~)ll<~/dYk(S _-<0. 
e,LO k = l  L 0 

Since each term in the above sum is non-negative and Ck>0, it follows by 
Fatou's lemma that for each ke{1 . . . . .  K}, 

Tm 

l/0}(Z(s)) dYk(S) = 0 P~-a.s. 
0 

Letting m--+ oo yields the desired result. [] 

Lemma 5. Suppose 0 = O. Then Theorem 1 holds. 

Proof Our proof is by backward induction on I JI. By Lemma 1, the result 
holds for I J[ =K.  Now, suppose it holds for all J such that j <  [JI <K,  some 
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j > 2 .  Fix ,1~ {1, ..., K} such that [J[ =j,  let kEJ  and zES. Then, by the induction 
hypothesis, Pz-a.s., 

of) 

; l(za(~) = o~ d Yk (S) = ~ l(zs(s) = o, zjc(s) > O~ d Yk (S) 
0 0 

where J ~ = K \ J .  Thus, by monotone convergence, it suffices to prove for each 
r/ERK+ - j  satisfying t/> 0, that 

;l(zj(~) = o, za~(s) >,~ d Yk (S) = 0 P~-a.s. (27) 
0 

For this, fix an q and define a sequence of stopping times {Tin} as follows. 

To--0 

T I = inf{s__> 0: Z i (s) < rh/2 for some iEJ c} 

T2 = inf{s > 0: Zj~ (s) > t/} 

and for m > 1, 

T2,.+ I= Tz,. + TI ~ 

r2r.+ ~= T2m+ l + r2~ ~ 

where 0t is the usual shift operator, defined by 

Oz(Z( ' ) )={Z( ;  +t) forf~ tt<~ oe, 

and ~ is a cemetery point isolated from S. By the continuity of the paths of 
Z, Tm --' oe as m ~ 0% and we have P~-a.s. : 

• l{zj(s)=O,Zac(s)>n)dYk(S)<= ~ T . . . .  l(zz(~)=ol dYk(s ). (28) 
0 m = l  T 2 m  

Although it is possible that T 2 < T1, this does not affect the validity of (28). 
Consider m > l .  Then for iEJ c, Y~ increases only when Z i = 0  and so P~-a.s.: 
(Y(t)-Y(Tzm))j~ for all tE[Tzm, T2,,+1]. Thus, on {Tzm< oe}, we have ~-a.s. 
for all tel-0, T1 ~  

Zj  (t + T2 m) -- Z j  (T2,.) = X j  (t + T 2 m) -- X j  (T2 m) 

+ nj(Ya(t + T2m)- Ya (T2,~)). 

Then It6's formula (8) holds on {T2m< ~ }  for fEC2(RJ+) with (X, Y, Z) replaced 
by (Xj ,  Ya, Zj) ((" + T2,.) A T2., + 1) and with 

1 #2 
L = ~  y, r .  gxiOxl" 

i, l ~J  
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The same proof as in Lemma 4, but with the dimension reduced from K to 
J = I J I, shows that 

T2m+l 

l{w2m<~} ~ l{z~)=o}dYk(s)=O P~-a.s. (29) 
T2m 

For this, one uses the strong Markov property of X and the assumption that 
there is ~ERJ+ and 6611, m)J such that R ~ 7 = &  Substituting (29) in (28) then 
yields the desired result. [] 

Lemlna 6. Theorem 1 holds for all O e R  ~:. 

Proof Let J c { 1  . . . .  ,K} satisfying I J l>2 ,  k~J,  and 0~R K. Suppose Z, with 
associated probability measures {pO, zeS}, is an SRBM with data (S, 0, F, R). 
Then for each z~S, since X is a (0, F)-Brownian motion on (~2,~-, {~}, p0), 
by the Girsanov transformation [5,. p. 176], there is a probability measure p o 
on (~, ~-) such that under p 0  X is a (0, F)-Brownian motion starting from 
z and for each positive integer m, Pf and pO are mutually absolutely continuous 
on ~ .  It follows that Z with the probability measures {pO, z~S} on ((2, Y ,  {~}) 
is an SRBM for the data (S, 0, F, R). Then by Lemma 5, (3) holds Pz~ for 
each zeS. But since p0 and po are mutually absolutely continuous on ~ ,  
it follows that (3) holds P~~ with m in place of the upper limit oo there. 
Letting m ~ oo yields the desired result. [] 
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