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1. Introduction 

The stepping stone model is a generalization of the Wright-Fisher model in 
population genetics, by taking account of geographical structure, [7], [-8], [,12]. 
For  this we are particularly interested in the influence of geographical factors 
on stationary states in the genetical evolution. The model is originally for- 
mulated as a discrete time Markov process with values in an infinite product 
space which describes an evolution of a population consisting of a number of 
colonies, having non-overlapping generations. However we here treat a dif- 
fusion model which, obtained by taking a diffusion approximation, is an 
infinite dimensional diffusion process. 

In the absence of mutation and selective force one of the authors obtained 
in [,13] a complete characterization of stationary states in terms of migration 
rates as geographical factors. In the present paper we consider the stepping 
stone model involving mutation and selection, and investigate stationary states 
and their stability paying our attention to the mutual influences of mutation, 
selection and migration. Furthermore we also discuss regularity of finite di- 
mensional marginal distributions of the stationary states. 

For  the discrete time model it is to be noted that analogues to some of our 
results are recently obtained by Itatsu in [,6], but our method can essentially 
cover the discrete time case. 

Before stating the present problem and our results we here give a de- 
scription of the discrete time model and briefly survey the diffusion approxima- 
tion of it. 

Let S be a countable set. Each element i of S corresponds to a sub- 
population, which is called a colony. Assuming that there are two alleles A 1 
and A 2 in each colony, we denote by 0 < x i < l  the gene frequency of the A 1- 
allele in the colony i. We assume that a genetical evolution is caused by 
migration among colonies, and mutation, selection and random sampling drift 
within each colony. 
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Let N be the population size of each colony, and let 

XN= (0, 1/N, 2 /N, . . . ,  1} s 

= {x = {xi}: xie {0, 1/N, 2/N . . . .  ,1} for all ieS} 

be the totality of configulations of gene frequencies of the population size N. 
Then the time evolution is defined as a discrete time Markov process 
{x(N)(n), Px} taking values in X N with the following transition probability: 

(1.1) Px [xlm(n + 1)= kilN, ieAlx(m(n)] 

= H (N)plU)(x(U)(n))k,(l_ plN)(X(N)(n)))N_k, 
lEA \ i / 

for any finite subset A c S  and O < k i N N  (leA). Here p(m(x) involves genetical 
factors, which is assumed to be determined in the following way: 

(1) Let ulm>0 (vlm>0) be a mutation rate from A 1 to A 2 (from A 2 to A1) 
in the colony i, and set 

p l (x) -- {pr (x) = (1 - ul m) x, + vl N) (1 - x,)}, 

(2) let ~ij-(N)=>0 be a migration rate from i to j satisfying Fz., q!.m,j = 1 for any 
ieS, and set ~s 

fl 2(x)= {P 2(x)= 2'~(N)v /~'  "~(N)I and Lift ~ j /  .d.a "lki ) ~ 
j eS  keS 

(3) let - 1 < sl N) < oe be a relative fitness of A 1 in the colony i, and set 

p3 (x) = {p} (x) = (1 + sl m) x][(1 + sl m) x, + (1 -x ) ]} .  

Then p(m(x) is defined by their composition, namely 

;(~) (x) = p ~ (p ~ ( ; '  (~))). 

In order to get a diffusion approximation we assume that 

(1.2) ulm=ui/N +o(1/N), 
q(N) ij = qlj/N + o (1/N) 

q(N)_ 1-- ~ ~(N) and ii - -  t t i j  
j~=i 

vl u) = vl/N + o (l/N), 

(i *j), 

slU)=si/N +o(1/N). 

In addition, we impose the following technical assumption: 

(1.3) sup( ~ qji + ui + Ui- t - I s i l )  < -[- 00. 
ieS j*i  

Then it is not hard to show that if XN~XeX as N--+og, {X(N)(t)----x(N)([Nt]), PxN} 
converges to a Feller diffusion process {x(t),P~} taking values in X=[0, i] s 
= {x = {xi} : 0__< x~_-< 1 for all ieS} and governed by the generator L, 

02 
(1.4) L =�89 Z a,(x) ~_.z + Z b,(x) ~ 

i~S OXi  i~S ~ X i  ' 
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where 
a i ( x ) = x i ( 1  - x  i) 

b i (x  ) = ~ mj i (x  j - x,) + v, - (u i + vi) x i + s i xi(1 - xi) 
j , i  

with rna. i = qj]  ~ qki" 
k*i 

Now we state our model and results about it. Let C(X) be the Banach 
space of all continuous functions on X with the supremum norm II II (X is 
equipped with the product topology), and let C~(X) be the totality of C"- 
functions on X depending only on finitely many coordinates. 

Let L be the operator formally given in (1.4) and defined on C}(X). Under 
the assumption (1.3) it is known that there exists a unique semi-group {T~} of 
contraction operators on C(X) such that 

(1.5) T ~ I = I , T ~ f > 0  f o r a n y f > 0  of C(X), and 
t 

T,f=[TsLfds for any feC}(X), 
0 

which is associated with the above diffusion process {x(t), P~} (cf. [14], [2]). 
Let N(X) be the totality of probability measures on X, equipped with the 

topology of weak convergence. Denote by T,* the adjoint operator on P ( X )  
associated with T,, and denote by 5 p the totality of stationary states of {T,}, 
that is 

5 " = { # e ~ ( X ) :  Tt*#= # f o r  all t_>_0}. 

Then 5" is a non-empty, convex and compact set. We denote by ~xt the 
totality of extremal elements of 5<. 

In this paper we restrict our consideration to the following class of parame- 
ters: 

(1.6) S = Z  a (d-dimensional integer lattice space); u~, vi, and s~ are 

independent of ie S; and mji = mj _ i, o. 

Accordingly, we write u~ = u, v~ = v, si = s, and m~, o = my Furthermore we assume 
that {m~} is irreducible, namely { i e Z d : m i > O }  generates Z a as an additive 
group. 

Let J zd be the totality of Za-translation-invariant probability measures on 
X =  [0, 1] zd. Then # e J  zd is extremal in j z~  if and only if # is ergodic with 
respect to Za-translations. 

According to values of the parameters u, v and s, let us introduce the 
following classification, which exhausts all possibilities: 

Case 1. u = v = s = O ,  
Case 2. u > 0, v > 0, and s is arbitrary, 
Case 3. u > 0, v = 0 (or u--0, v > 0) and s is arbitrary, 
Case 4. u = v = 0, and s 4= 0. 
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Let M={mi j  } with m i / = m o = - ~  m j, and set P t=exptM*,  where M* 
j * 0  

stands for the transposed matrix of M. Then Pt is a transition matrix of a 
continuous time random walk on Z a. For x e X  6 x denotes the Dirac measure 
at x. In particular 61 and 60 are called genetical uniform states, where e 
= { x i = c } ~ X  for 0_<c< 1. Then the following theorem is known. (See [13].) 

Theorem l.1. Assume Case 1. I f  d = l  or 2, then 5~xt={6o,61}; moreover for 
#E~(X),  lim Tt* # = 261 + (1 - 2) 60 holds if and only if 

t---~ o9 

lira Z Pt(i,j)~x~g(dx) =2 for all i~Z e. 
t ~  jeZ a 

I f  d> 3, then ~ext----{vc:O--<c<l} where vc=lim Tt*6 c. Moreover for # e ~ ( X ) ,  

lira T~* # exists if and only if lira ~zt#(=#~ ) exists, where 
t---~ c~3 t ~ oo 

j e Z  a 

and ~t# denotes the image measure of # by ~t; in this case, # ~ [ x = c  for some 
0 < c < 1 ] = 1  and 

lim T~* # = ~ v c # | (de ) .  
t~ ~ [0, 1] 

Our main results of this paper are the following theorems: 

Theorem 1.Z Assume Case 2. For every s there exists a unique stationary state v, 
and lim Tt*p=v holds for all g e ~ ( X ) .  

t--* o3 

Theorem 1.3. Assume Case 3. I f  u > 0 and v = 0  there exists a critical parameter 
0 < s c < o o  such that if s<s~, 3 o is a unique stationary state and lira Tt*#=3 o 

t ~ c o  

holds for every #E~(X) ,  while if s > s~ there exists another extremal stationary 
state v and (SPc~Jz~)~t={3o, v}. Furthermore, if S>Sc, v is stable and &o is 
unstable in the following sense: 

lim Tt* # = v holds for every #e.,r satisfying # [{0}] = 0. 
t.-.~ oO 

I f  u = 0 and v > 0 the same statement is valid by replacing 0 by 1. 

Theorem 1.4. Assume Case 4. Then (SP~.,Cz~)~xt= {30, 31}. Furthermore, under an 
additional assumption: ~ Ill mg< o% if s >0, 31 is stable and 6 o is unstable, while 

i e Z  a 

if s<O 3 o is stable and 61 is unstable in the sense of Theorem 1.3. 

Next, we will discuss regularity of finite dimensional marginal distributions 
of stationary states. 

Let #eN(X).  We write A ~ Z  a if A is a finite subset of Z a. Denote by #a the 
marginal distribution of g on X A on X a = [0, 1] A. Then we obtain 
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Theorem 1.5. Let v be any extremal stationary state other than c5 o and c~, 
appearing in Theorems 1.1 to 1.3. Then for every A ~ Z  d, V A is absolutely con- 
tinuous with respect to the Lebesgue measure on XA, and admits a probability 
density PA(XA) that is strictly positive and of  C~ in J(A = (0, 1) a. 

Our basic tool for the proof of these results is the dual process, which has 
been used very successfully in the theory of interacting particle systems. It 
would be worthwhile to note that our dual process indeed is a branching 
random walk with an interaction, of which extinction problem leads us to the 
proof of Theorem 1.3 and 1.4. Readers unfamiliar with such field we refer to 
Liggett's book [-10]. 

2. Dual Process 

In what follows we may assume that the selective fitness s <0, because the case 
s > 0  can be reduced to this case by interchanging the roles of Ax and A z. In fact 
changing all the variables x~ according to x , ~ l - x ~  transforms the operator L 
and this transformation simply amounts to replacing s, u and v by - s ,  v and u, 
respectively. 

Let I be the totality of multi-indices on Z d, that is 

I={c~={c~i}i~z~:Tie{O, 1,2 . . . .  }, and Ic~l= ~ ch<oo}, 
i ~Z  a 

If c~i=0 for all i E Z  d, r is denoted by 0 and if ~ = 1  and c~j=0 for j # i ,  ~ is 
denoted by e,. We write e> f i  if c~i>fii for all i e Z  d. For e and fl of I we define 
a+ f l  and a - f l  (if e>__fi) by componentwise addition and subtraction. For ae I  
set f~(x)= [ l x ~  ~ and f 0 ( x ) - l .  Then the linear hull of {f~(x)}~ I is dense in 
C(X). ~z~ 

Let (~(t), P~)~ be a continuous time Markov chain generated by the infini- 
tesimal matrix {Q~,e}, 

(2.1) Q . . . . . .  =�89 

Q . . . . . .  + ~j = o~ i mji = o: i mj_ i (i :t=j), 

Q~,~=0 for all the other fl(~c0. 

(Here and below Q~,~ is understood to be - ~  Q~,~.) Noting that Lf~(x) 

=ZQ=,p(f~(x)-s by the Feynman-Kac formula we have the 

following relation of duality between {Tt} and (c~(t), P~). 

Lemma 2.1. 

<Tt*lJ, f=>=E~[<g, f~(o>exp(- -u i l~(s )[ds)] .  
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Thus we see that the dual process (e(t),P~) has a complete information of 
Tt*/~. It also is interesting to understand the dual process (ct(t),P~) in the 
following way. Ignoring the quadratic term of Q . . . . .  ,, it is nothing but a 
branching random walk with a binary branching rate y = - s ,  a death rate v 
and a transition rate {m~}. In addition, an interaction works on it so that 
multiple occupancies may make the death rate increase rapidly. Thus we may 
say that it is a branching random walk with an interaction. 

Now the proof of Theorem 1.2 follows immediately from this lemma. Let 
o o be the extinction time: % = i n f { t > 0 :  ~(t)=0}. Since [ct(t)[__>l for all t<Oo, 
we see that 

lim (T~*#,f~) = lim E, #,f~(~)) exp - u  c~(s)] ds ; t<ao 
t - -+  oO t---~ oO 

t 

+]imE~[@,f, tt))exp(-u![c~(s)[ds);t>~ 

=E,[exp(-ui~ 
0 

which completes the proof of Theorem 1.2. 
It is well noted that the positivity of v is not used in the proof given above. 

Since O-o=~ a.s. if v=0, we actually proved that lim Tt*/~=6 o (resp. 61) if 
t - - ~  O0 

u>0,  v=0  and s < 0  (resp. u=0 ,  v>0  and s>0). 
For the remaining cases it suffices to discuss under the assumption, 

(2.2) y ( = - s ) > 0 ,  v>0  and u=0.  

Then the duality relation turns into 

T.* (2.3) ( t ~,f~)=E~[(P,f~(o))] for c~I. 

For two stochastic processes (c~(t),Pt) and (c~(t),P 2) taking values in I we 
write (,(t), p1) > (c~(t), P:), if 

( 2 . 4 )  El[f(c~(t))]>=Ee[f(ct(t)) -] for all t>__0 

for all bounded and monotone non-decreasing function f defined on I. Here f is 
called to be monotone non-decreasing iff(c0 >f(fl) holds whenever c~ > ft. 

The following lemma is intuitively clear from the form of the generator of 
the dual process (for the proof see Corollary A.1 and Corollary A.3 in Appen- 
dix. 

Lemma 2.2. 
(i) (c~(t), V~) <(c~(t), V~)/f  c~ < fl, 

(ii) (c~(t), P~+ 8) =< (at(t) + c~2 (t), P, | P~), 
where (ek(t), P~), k = 1, 2, are copies of (e(t), P,) and P~ | P~ stands for the product 
measure of P~ and P~. 

Let Sk be the translation operator by kEZ a, i.e. Sk~={Cq+k}, SkX={Xi+k}, 
S~f(x) = f (S  k x) ..... etc. 



Stepping Stone Model 93 

L e m m a  2.3. For t > 0  and m>_>=2 and for fDf2  . . . .  ,fro from C(X) 

I I Tt ((S,~ fa)(S,= fz) . . .  (S,m fro)) - (S,j T t f l  )(Sa 2 Tt f2) - �9 �9 (Sa., Yt f,,) l] 

vanishes as min la i -a;]~oo.  
l<i4- j<m 

Proof  Since the p roof  is essentially the same for all m => 2 we will prove the 
lemma for m = 2 only. It is enough to show it for f~ = f~ and f2 = f~ with every c~ 
and fl from I. Let  z = i n f { t > 0 : c q ( t ) > 0  and f l i ( t )>0 for some i s Z  ~} be the 
collision time of two independent  processes c((t) and fl(t). Not ice  that  SaT  t 
= Tt Sk, Sk f~ = f s  ~ and (~(t), Ps~)=(Sk  c~(t), P~). Then  for t >  0 we have 

]T~(f~S_kf~)(x ) - T,f~(x) TtS_kf~(x)I 

= IT~f=+s~a(x ) - T~f~(x) T~fs~a(x)l 

= I E~.  s.~ [L(,)(x)] - E~ | g s ~  [L(,). ~(~(x)]l 
< P ~ |  as Ik]--,o~, 

because the sum of the two independent  processes c~(t) and fl(t) is identical in 
law to the single process starting from ~(0)+ fl(0) until the collision t ime r. 

For  ~ s I  we write supp ~ =  {i~Ze: ~ > 0 } ,  and denote  by ]supp el the cardi- 
nality of  supp c~. 

L e m m a  2.4. For any N >_= 1 

lim lim Pn,o[isupp e( t ) l> N]  = 1. 
t $ 0  n -o re  

Proof  For  a ~ Z  d satisfying ma>0,  we int roduce a simpler Markov  chain 
(a(t),]~) on I, governed by the following infinitesimal matr ix {(~,,r 

(~ . . . .  ~ = � 8 9  ~ mj), 
j~O,a 

(~, ~ = 0 for all the other  fi with fl # ~. 

By Corol lary  A.2 in Appendix  it is easily seen that  (c~(t),P~)>(~(t),P~) for all 
c~eI. Let  us in t roduce a sequence of s topping times {zu}2=o; % = 0 ,  z~ 
= inf {t > O: ~, (t) = ~, (t - )  + 1 and ao (t) = ~o (t - )  - 1} . . . . .  zu + ~ = ~ ~" 0~,,, where 0 t 
stands for the shift operator .  

We first claim that 

(2.5) lim P,~o [~N < t] = 1 for all t > 0 and N > 1. 
R - - + ~  

Using the strong Markov  proper ty  we have for N > 1 

c~(n) ~(,_ 1)~o [exp (_VN)] ~;,,o [exp ( -- ZN)] -- 1 + q (n) 

n m a 

1)~o + ~a [exp ( - z N -  1)], 
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where 
q(n)=�89 ~ mj) and 6(n)=q(n)-nm~. 

j * o  

Set u s (n) = E,,o [exp ( - zs) ]. Since u N (n) = ~;,~o +~o [exp ( - zs)], 

1 +nm~ (u~_ 1( n - 1 ) - u S ( n  - 1 ) )  (2.6) u N (n) - u N (n - 1) = 1 ~  
(,) q 

1 
u S - l ( n - 1 ) .  

1 + q (n) 

We observe that  the sum of the left-hand sides and that  of the second terms of 
the r ight-hand sides over n are bounded  and that  u s .  ~(n)>uN(n) to obtain 

~ l+nm, [uS_l(n_l)_uS(n_l)[<o% 
,= i  1 +q(n)  

oo l + nm a 
which together  with ,=1 1 +q(n----~ = oe implies that  ,~lim (uS-l(n)-uS(n))=O. 

Since u~ 1, by induct ion lim uS(n)= 1; hence we have (2.5). 
n--* ~x? 

Next,  we show that  

(2.7) lim I-~neo[~a(ZN) = N ]  = 1 for all N > 1. 
n ~ o  

It is trivial for N = I .  Assume that  (2.7) holds for some N. Using (2.5) and 
L e m m a  2.2 we see that  for all m > 1 and t > 0, 

lim P,~o [~o(ZN) > m] 
n ~  0(3 

>limlS,~o[~o(S)>m for all se[O, t], and z s < t  ] 
n---* Go 

>Pm~o[~o(S)>m for all s~[O, t]]. 

Thus, letting t ~ 0 ,  we have 

(2.8) lira P,~o [~o (rN) > m] = 1. 
n ~ o o  

Using (2.5) again it follows that  for all k > 1 

(2.9) lim P,~o+k~o[~a(zl) = k  + 1] 
n ~ o o  

> l i r a  P,~o| for all se[0, 'c l ) ]  
n ~ a o  

=1,  

where zl stands for the corresponding one to z~ for the copy ( ~ ( 0 ,  P,~o)" 
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Combining these with the assumption of induction we obtain 

lira P,~o[5,(zu+ 1) = N  + iI  
n ~ o o  

= lim ~ P.~o[-5~(Zu) = g ,  5O(ZN) =m] Prn~o+N~,,[Sa("Cl)=N+ 1] 
n ~ o 9  m = 0  

=1, 

which proves (2.7). 
Furthermore, using (2.5) and (2.7) we see that 

t'.~o [5~ (t) __> N] 
>P,~o[5,(t)>N, z s < t  and 5~(zu)=N ] 

>P,~oEzu<t, 5 , (zu)=N] f'N~oES,(s)>N for any se[0, t]] 

> exp ( - q (N) t) [',~o [zu < t, 5,(zu) = N]. 

Hence we have for all N > 1 and t > 0 

(2.10) lira P,~o [5, (t) > N] > exp ( - q(N) t). 
n ~ o o  

Finally we claim that for all k > 1 and all N_>_ 1 

(2.11) lim lira P,~o [5,( 0 :> N, ~2,(t) > g , . . . ,  5ka(t ) > N] = 1. 
t~O n ~ c o  

If k = l ,  it follows immediately from (2.10). Assume that (2.11) holds for some 
k > l .  Then for t>0 ,  s > 0  and n >n  o 

P,~o[Sa(t +s) > N, 52,(t +s)> g . . . . .  5(k+l),(t +s) >=N] 

_--> Pn~o [5,(t) >_- no, 52 , ( t+s)>N,  ..., 5(k+ 1),(t+s)>=g] 

-P ,~o[5 , ( t+s)<N]  

--> P,~o [5 (t) > no] P,o~o [52, (s) > N .. . .  ,5(k + 1), (S) > N] 

-f'.~o[ 5o(t + s) < N]. 

Letting n--+oo, t$0, no~OO and s+0 in this order, and using (2.10) and the 
assumption of induction we obtain 

lim lim lim P,~o[8,( t + s) > N, 52,(t + s) > N , ...,5(k+ l),(t + s) > N ] =1. 
s $ 0  t $ 0  n ~ o o  

Therefore, (2.11) holds for all k > 1, which completes the proof of Lemma 2.4. 

Lemma 2.5. Suppose that # e J  zd and #[{1}] -~0. Then, for all t > 0  

lira sup ( T , * # , s  
n ~ o o  I suppe l  > n  
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Proof It follows from Lemma 2.3 that for every t>0 ,  t />0  and k > 2  there 
exists L > 0  such that if min ]a~-@>L,  

l < i # j < k  

II T~L~ +,o= +... +~,~ - T,L~ T,L,~ ... T , L . ]  < n .  

Using the HSlder inequality and the translation invariance of T t we have 

Z* 

Hence for all k > 1 

lim sup (Tt*#,f~)<S(TJ~o(X))kt~(dx). 
n ~ c o  [ suppa ]  > n  

If x4=l and t>0 ,  then Ttf~o(X)=E~o[f~(t)(x)]<l, since P~o[C~(t)=c~]>0 for all 
~ I .  Therefore, letting k--+ 0% we obtain Lemma 2.5. 

Theorem 2.6. Suppose that w ~ c~ J z~ and v[{1}] =0. Then v [ xi < i for all i e Z d] 
=1. 

Proof For m > 1, t > 0 and t o > 0 we have 

v[x o=1 ]  lim(v,f,~o ) lim * = = ( ~ + , o V , L ~ o )  
n ~ oo n--Coo 

= lim E,~o [(Tt* v,L.o)>3 
n ~ o o  

< sup (T~*v,f~)+limP,~o[Isupp~(to)l<m]. 
[suppal >m n--, ov 

By Lemma 2.4 and 2.5 the last line vanishes in the limit as to+0 and m ~  oo (in 
this order), so that v [ x o = l ] = 0 .  This proves Theorem 2.6 by virtue of the 
translation invariance of v. 

3. Proof  of  Theorem 1.3. 

Let us consider the subcase: u = 0  and v>0.  The other subcase is reduced to it 
by exchanging the role of A 1 and A 2. Furthermore, we assume that 7= - s > 0 ,  
for it has already been shown that lira Tt*#=61 for any /~eN(X) if s > 0  (see a 

t--+ oO 

remark made after the proof of Theorem 2.2 given in the previous section). 
Recall that a 0 is the extinction time of c~(t). From v > 0  it follows that 
P ~ [ a o < o o ] > 0  for all ~eI.  Lemma 2.1 implies that l imTt*#=61  for all 
# e ~ ( X )  if and only if t~oo 

(3.1) P ~ [ a o < C ~ ] = l  for any ~ I .  

On the other hand we have the following: 

Theorem 3.1. Suppose that 

(3.2) P ~ [ a 0 < o o ] < l  for some ~ I ,  

and define v e J  zd by the relation (v , f~)=P~[ao < ooJ ( = l i m  Ttf~(O)) for all c~eI. 
t--+ oO 
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Then, 
Z a (i) ( ~ c ~ J ) o x , = { ~ .  v}, and 

(ii) lim Tt*#=2b ~ + ( 1 - 2 ) v  for all ~ j z ~  with 2=#[{1}].  

Lemma 3.2. If the condition (3.2) holds, then 

P~[lim Ja(t)l = oo [ ao = ~3 = 1 forall a~I. 
t--* oo 

Proof. Lemma 2.2 implies that 

P~ [Go < oo3 > P~o [~o < oo]l~l. 

Since P=(t) [% < oo-I is a bounded martingale we see 

limP=(t)[ao<OO]=0 a.s. on [ao=OO]. 
t--~oo 

Hence by the condition (3.2) we get the equality in the lemma. 
Now, let us prove Theorem 3.1�9 Let # ~ j z d  satisfy #[{1}]=0.  It follows 

from Lemma 2.5 that for every t , > 0  and t />0 we have some m=>l such that 
sup ( T  t* # , f~)< t/. By Lemma 2.4 there are some t o > 0 and n o => 1 satisfying 

] supp  al ~ m  

P,,o[ISuppa(to)[_>_m]>l-t / for all n>=n o. 

Hence, 

(T,*+,~ #,f,~o} =E,~o [(Tt* #,L(,o)}] <2t/ 

for all n > no. Also, 

E~ [(r.*to+t, #,L~o); t < ~ 
< E~ [(Tt* + t, #, f~(t)} ; [supp a(t)[ > M] 

+ E= [(Tt* + t, #, f~(t)) ; [supp e(t)[ _<_ M, la(t)[ > nM] 

+ Eff(Tt*+t, #,L(o); Ic~(t)l <=riM, t< ao] 
T* T,* < sup ( to+t,#,L}+( ,o+t,#,f,~o} 

Isupp aJ >M 

+ P~ D~(t)l __<nM, t < ao]. 

First letting t~oo,  and then M o o o ,  we get by Lemma 3.2 and Lemma 2.5 

�9 T *  lim E=[(T*to+t, #,f~(t)} , t < a o ]  < (  ,o+t, #,f.~o} < 2t/, 
t ~ o O  

which shows that the left-hand side equals zero. Hence, 

lim (T~* # ,s  = lim (~*,o+,,  #,f~} 
I ~ o o  t ~ c o  

= lim (E= [(Tt*+t 1 #, s ; t < ao] + P~ [a o _-< t]) 
t -+co 

=(v,L>. 

Thus the part (ii) has been proved, and (i) follows from (ii). 
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By virtue of Theorem 3.1 the proof of Theorem 1.3 is reduced to the 
extinction problem of the dual process. Since the extinction probability is 
monotone in 7, it suffices to prove that (3.2) holds for a sufficiently large y >0. 
Note that if we neglect the quadratic term of Q . . . . . .  , the dual process is 
nothing but a branching random walk. This shows that (3.1) holds if 
~(=  -s)<=v. 

Let us introduce a simpler Markov process (e(t),P,), taking values in [ 
={c~eI: eie{0, 1,2} for any ieZa}, with the infinitesimal matrix {(~.,}: Choose 
a e Z  d satisfying a:t:0 and ma>0 , and set 

(~ . . . . .  , = c5I (ai  > 0), 

(~,~+~, =7I(~/=  1), 

~. . . . . .  ~+ . . . .  =maI(~  i =2, ~i§ =0), 
(~ ,~=0 for any other /3(4~), 

where 6 = 1 + 2v + 2 ~ m j, and I(A) stands for the indicator function of A ~ [. 
jmo 

Since, as easily seen from Corollary A.2, (~(t), P~)>(~(t), P~), our problem is 
reduced to showing that P ~ [ % = ~ ] > 0  holds for some ~e [  for a sufficiently 
large 7. 

T h e o r e m  3.3. There exists 7o > 0 such that if 7 > Yo, P~ [~o = ~ ]  > 0 for all ~ + 0 
from [. 

Proof. It is enough to show the theorem for d = 1 and a = 1. For each 0 < q < 1 
let us associate a set-valued Markov process {B(n)}~=l, which is called a 
branching process with interference, to be compared with (~(t), t'=). It is defined 
by simply setting 

B(0)=B, and B(n)= ~ B~ for n > l ,  
i~B(n-- 1) 

where {BT}~z~,__> ~ is a system of set-valued random variables which are mu- 
tually independent and have a common probability law given by 

Prob [B~ = {i, i + 1 }] = qe, Prob [B~' = q~] = (1 - q)a, 
and 

Prob [B~ = {i}] = Prob [B7 = {i + 1}-1 = q(1 -q).  

We need the following lemma (see 1-1] for the proof). 

L e m m a  3.4. There exists a critical value 0 < q~ < 1 such that if q > qc 

PBq1-B(n):t=q5 for all n>__l]>0 for all B:t:~), 

and if q < q~ 

PBq1-B(n)=4 for some n > l ] = l  for all B. 

Therefore, the proof of Theorem 1.3 is reduced to the following. 
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Lemma 3.5. Let a= 1 and set m = m ,  in the definition of 0_~,~. For every m>0,  

~>0,  and q>q~ there exists t o > 0  and 7 > 0  such that if B r  ~ and ~> ~ ei, then 
ieB 

(B(n), P~)__< (supp e(nto), ['~). 

Here the order relation is defined according to the understanding that a 
set-valued process is considered as a process on I by identifying B r  ~ with c~ 

~2~i- 
ieB 

Proof Fix B ~ Z  ~, B+dp, and introduce a modified Markov chain (c~(t), P*) on [ 
associated with B, with the infinitesimal matrix -* {Q~,~} as follows: decomposing 
B into intervals of Z ~ such that 

with 

we set 

B = [a 1 , bl]  u [a2, bz] ~ . , .  w [a k, bk] 

al < b l , b l  + l <a2 <-_b2 . . . . .  bk_l + l <ak <=bk, 

Q . . . . . .  =bI(e~>0)  if ie{b~,., bk}, 

= ~51(c~ i > O) + mI(c~i = 2) otherwise, 

"* 7I(~ i = 1), 

~* . . . .  + . . . .  =mI(a  i =2, a~+ ~ =0) if i~{b~ . . . . .  b~}, 

= 0 otherwise, 
~~ 

Q~,~=0 for any other fl(+c0, 

where m = m 1. Then it holds that 

(3.3) (c~(t), P~) _> (e(t), - * P~) for all c~e[, 

(3.4) (c~(t),P*)=(~ai(t),@t'~) for e = ~ e  i. 
ieB ieB i~B 

For i e B \ { b  1 . . . .  ,bk} set c(m, 6,7, t)-=['*[ai(t)>l] and for ie{b 1 . . . . .  bk} 
set d(m, 6, 7, t)=I'*[ai(t)>>_ 1, ai+ l( t)> 1]. The both c and d are independent of 
B and of particular choice of i. 

For a fixed t > 0  we write B*(1)={ieZa:  ei(t)__>l} and * - ' *  P~ - P ~  w i t h ~ = ~ %  
ieB 

We note that {B~i}  and { B ~ i +  1} are independent events for each i and n, 
showing that the events {B(1)~i}, i e Z  1, are mutually independent. Then, taking 
this fact together with (3.4) into account, it is easy to check that if 

(3.5) c(m, 6,7, t ) > = l - ( 1 - q )  2 and d(m, 6,7, t ) > = l - ( 1 - q )  3, 

it holds that 

(3.6) (B (1), P~q) < (B* (1), P~*). 

(The meaning of " < "  would be clear.) 
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Thus  we obtain by (3.3) that  if c ~ = ~  ~i, then (B(1),PBq)__<(c~(t),I',). By Corol-  
ieB 

lary A.1 in Appendix we also have (~(t), D~)<(e(t), [~) if ~<f l .  Finally we apply 
the Markov  proper ty  to conclude that  (B(n), PB q) <(c~(nt), [~). 

To complete  the proof  of L e m m a  3.5 we have to check (3.5) for some t >0 ,  
7 > 0, and q > q~. Let  m > 0 and 6 > 0 be fixed. We claim that  

(3.8) lim P* [ch(t ) >__ 1] = 1 
7---~ oO 

uniformly in t of  any compact  interval and in i e Z  a. Let  i~{b  1, . . . ,bk} .  u l ( t )  
= P* [~i(t) > 1 ] and u2 (t) = I 'L,  [ei(t) > 1 ] satisfy the following system of differen- 
tial equations:  

du~ 
d-t- = 7 (u2 - u l )  - ~ul,  

d u 2  = 5 (u 1 - u 2 )  -I- m ( D ~ + e  + 1 [(~i > 1] -u2) ,  
dt ~ ' = 

with u 1 (0) = u 2 (0) = 1. F r o m  these equat ions and the inequality 
P* [ c h ( t ) > l ] > u l ( t ) ,  we can easily deduce an integral inequali ty for Ul(t), ~i+Ei+l 

and by passing to the limit as 7--> ~) we get (3.8). (The details are omitted.) For  
i r  . . . ,  bk} the same proof  is valid. 

Let  i ~ {b l ,  . . . ,  bk}. We will next show that  

(3.9) lim d(m, 5, 7, t )>  1 - e x p ( - ( m + 5 )  t). 
g--~ o0 

Note  that  v 1 (t) = d(m, 5, 7, t) and v2(t ) = P2*~, [ei(t) > 1, el+ 1 (t) > 1] satisfy 

dv 1 
dt  = 7(v2 - v l ) -  5v1' 

dv2 - ( ~ ( v l - v 2 ) + m ( P * + ~  + [ai(t)~_l,o~i+ l(t)>= l ] - v 2 )  , 
d t  " ~ ~ - 

with vl(0) =v2(0) =0.  

Not ic ing that  by (3.8) lim P*+ . . . .  [~(t)  > 1, ~i+ 1 (t) > 1] = 1 uniformly in t of any 

compact  interval, (3.9) is obta ined in the same process as taken for (3.8) and 
briefly sketched above. 

Consequent ly ,  for every m > 0, 5 > 0, and q > qc there exist t > 0 and y > 0 
that  satisfy the condi t ion (3.5). 

Final ly Theorem 3.3 follows immediately from L e m m a  3.4 and L e m m a  3.5. 
Fur thermore ,  we obtain Theorem 1.3 by combining this with Theorem 3.1. 

4. Proof of Theorem 1.4 

In this section we will prove Theorem 1.4. So we assume that  u = v = 0 ,  7 (=  
- s ) > 0 .  Then  the dual process (a(t),P~),~ I is a branching r andom walk with an 

interaction, which does not  extinct. 
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We first show the following: 

Lemma 4.1. (SP~ JZ~)e~t = {60, ~1}" 

Proof Let v ~ S P ~ j  z~. For every t > 0  and aEZ d it holds that 

P~o[e(t)=2eo]>0, and P~o[e(t)=%+e~]>0, 

because of the irreducibility of {m~}. Using the translation invariance of v, we 
s e e  

<V,Lo>=E~o[<V,L(.>] 

< <v, f2~o> P~o [c~ (t) = 280] + < v, f~o + ~o5 P~o [.(t) = e o + e.] 

+ < v,f~o> P~o [~(t)r {2eo, e o + ea}], 

which implies that <v,f~o>=<v,f2.o> =<v,f~o+~o>; hence <v,f.> = <v,f~o> for all 
# 0. Thus we have 

v=26~ + ( 1 - 2 ) 6  o, where 2=  <v,f~o>. 

Remark. If d = l  or d=2,  and if ~ im~=O together with the certain moment 
ieZ a 

condition, we can show that ~ext = {~0, C5~}, by making use of the fact that a n y  
excessive function of a recurrent random walk is constant. 

T h e o r e m  4.2. Assume, in addition, that ~ [il ml < co. Then 
i~Z a 

P~[limlsuppc~(t)l=co]=l for all c~#=O. 
t--* oO 

Once we have shown this theorem the proof of Theorem 1.4 follows 
immediately. In fact by the duality together with Lemma 2.5 and Theorem 4.2 
for all # e j z d  with #[{1}] =0  

T *  m lim <Tt* #,f~ ) = lim (T~*,#,f~) = lira E~[< ~ #,f~(,)>] -0 .  

The idea of our proof of Theorem 4.2 is to define arbitrarily many one- 
particle processes which are embedded in e(t) and move with mutually distinct 
asymptotic velocities so that they eventually occupy different sites of Z d. Fix a 
--0 of Z d satisfying m a >0. For 0_<c < 1 arbitrarily given let us introduce a 
Markov chain (fl(t),[~) taking values in I 0 = { ~ I :  c~=ei, or c~=2~i for some 
iEZe}, with the infinitesimal matrix {(~, a}' 

Q-~,, 2 ~  -= ~, # e ~ , e j  = m i -  j (i #j), and 

(~,,.p=O for any other/~(#ei); 

Qz~i , e= l+2  ~ m j - 2 c m , ,  Q2 ....... =2cma, and 
j t a  

(~2~,, e = 0 for any other fl ( # 2ei). 

It is easily seen that fl(t) can be embedded in ~(t). (See Appendix for the proof.) 
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Let ~ be the first jump time of {fi(t),['~}, namely ~= in f{ t>0 :  fl(t)+fi(0)}. 
And let a 1 = in f{ t>~ :  Ifl(0l =1} and a , = a , _ l + a  1.0~, ~ for n>2.  

Note that for j :t: i 

(4.1) -c mj-i 4 7 2cm~ 6y i+,, 
P~'[fi(al)=eJ]=y+m 7+m l + 2 m  

_ ? l + 2 m - 2 c m ~  
P~ [/~(~ = eli 7 + m  l + 2 m  ' 

where m=  ~ my. 
j , 0  

Denoting by X~(t) the (unique) site which is occupied by a particle of/~(t), 
we see that Xc(G) is a spatially homogeneous Markov chain (a random walk) 
with values in Z e and with the transition law (4.1) so that by the law of large 
numbers we get 

l imXC(a")-~(c)eR e a.s. (P~), 
n ~ c o  /~ 

(4.2) 

where 
~c c 1 [ ~ "" 27cm~ a). 

~(c) = eo[X (~1)] = ~  ~j~zzdrnjj + l - ~ m  

Also, the distribution of (al,P~,) obviously is independent of iEZ ~. Hence 
{G},~ 1 also is a random walk with the mean increment 

1 
1+ 

Accordingly, using the law of large numbers again, we have 

(4.3) lim a~=~;;,[a13 a.s. (P~). 
n ~ o ~  n 

From (4.2) and (4.3) it follows that 

where 

limXC(t)=~(c) a.s. (t'~), 
t ~ o 0  t 

~c (c) = {(1 + 2m) ~ myj + 27 c m a a}/(1 + 2m + y). 
J 

This implies that if 0_<c<l ,  then with probability one we can trace among 
particles of the configuration process c~(t) a specified particle that moves with 
an asymptotic velocity ~:(c). Such tracing can be made simultaneously for 
countably many values of c, completing the proof of Theorem 4.2. 

In below the state 0 is discarded from the state space of the dual process 
cfft), since it does not communicate with the other states at all. 
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Theorem 4.3. Suppose that ~, [jlZmj< oo and 
j~Z a 

(4.4) sup ~0" 0 < 0, 
101= 1 

where 

= 2 re,J+. ( E re,a) (m= Y m,). 
jeZa l - f - A m  j . o < o  j:~o 

the dot �9 indicates the inner product in R e and the supremum is taken over all unit 
vectors in R e. Let ~ be the first jump time of e(t) and z* the first passage time 
through the set {c~ e I: % > 0} after the first jump: ( =  inf {t _>_ 0: ~ (t) * c~(t - )}  and 
z* = inf {t > ~: % (t) > 0}. Then E~o [z*] < oc ; in particular {c~: % > 0} is a positive 
recurrent set for {g(t), P~; r i.e. 

(4.5) l i m P ~ [ % ( t ) > 0 ] > 0  for c~#O. 
t--~ oO 

If {c~: % > 0 }  is a recurrent set, then every non-increasing bounded har- 
monic function for the process c~(t) is constant. In fact for such a harmonic 
function f (~) we have h (~) = E~ [h (c~(zj))] where zj = inf {t > 0: c~j(t) > 0}. Taking c~ 
=e  i and using monotonicity of h we see that h(ei)<h(ei). Since i and j are 
arbitrary, h(e~)=h(eo) for all i~Z e. This shows that the maximum value of h is 
attained at e 0. Therefore h is constant, for every point of ! other than 0 can be 
reached from e 0 with positive probability. 

Since v ~  implies that h(c~)=(v,s  is a harmonic function for the dual 
process, we have the following Corollary of Theorem 4.3. 

Corollary 4.4. Under the assumption of Theorem 4.3, ~ext = {(~0' ~1}" 

Proof of Theorem 4.3. Let N be a (large) positive integer. Define a Markov 
process ~(t) on I o as in the proof of Theorem 4.2, but this time the infinitesi- 
mal matrix {(2,,~} is not spatially homogeneous; it is given by 

Q~,~=mi_ j for all i and j with iq=j, 

9--~i, 2ei~-~ ' Q2 ..... = 1 + 2  ~ mj if [i[>N, 
j . i > o  

Q2el . . . .  j=2mj  if l i l>N and i . j<O, and 

(2~, ~ = 0 otherwise (c~ #: fi). 

By tracing the (unique) site that is occupied by at least one particle along the 
successive times ~r, at which the occupancy changes so that 1~2(~,)l = 1 we have 
a Markov chain X~ on Z e (see the proof of Theorem 4.2 for the formal 
description). We can take N so large that X,  is irreducible. By the same 
computation as before we have 

1 
E[X~+~--X~hX,=i]  y + m  c'~/l~l if li]>=N, 
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and 
.. ~ 1 + 2 m + 2 7  ~, mj[jI2=-M, 

supEi~zd []Xn+ 1 - - X n l Z [ X n  = lJ ~ ( 7 ~ m ~ - m )  j~za 

so that if til ~ N 

E EIx.+ 112IX. =i3 = Iil 2 -t-EE[X.+ 1 - x . 1 2  [ x .  =i3 

2 
+7  +-m i. ~/1~1 

21il < l i l 2 + - -  sup 40" 0 + M. 
7 + m 101=1 

If N is large enough, the last member above is less than [i[ 2 --1. Clearly we also 
have E[IXI[ZIXo=i] < oo for [i[<N. These together imply that X,  is positive 
recurrent (see Tweedie [17], Theorem 6.1). Set T=inf{n  > I : X ,  = 0} and let 7" 
be the first time for ~(t) to arrive at the set {c~sI o" c%>0} after its first jump. 
Then 

E [g* I ~(0) = e~ -<-- k}~l E =  L,= 1 ( a " - ~  r=kl~(O)=e~ 

< E [ T  I X o=0] s u p E [ a  a IX 0=i ]  
i 

< ~ (ao =0). 

Here the second inequality is verified by using either of the strong Markov 
property of ~(t) (after changing the order of the summation) or the fact that the 
distribution of the minimum of independent exponential holding times is not 
affected by knowing which one attains the minimum. Since ~(t) can be embed- 
ded in ~(t) so that the first jump of c~(t) precedes that of ~(t), we have 
E~o[Z* ] < oo. Now (4.5) follows from an application of the renewal theorem. In 
fact by Lemma 2.2 (i) u(t)=P~o[%(t)>0] satisfies 

t 

u(t) > P,o[( > t] + S u ( t - s )  P~o[z* ~ds] 
0 

so it is bounded by the solution of the corresponding renewal equation, which 
by virtue of the celebrated renewal theorem converges to a positive constant 
E~o [~]/E~o [z*] as t approaches infinity. The proof of Theorem 4.3 is complete. 

Remarks. 1) The condition (4.4) is far from being necessary for (4.5). One can 
improve it by allowing the multiple occupancy in each site for the embedded 
process defined in the proof of Theorem 4.3, but still stays off critical criteria. 
(4.4) is trivially fulfilled if ~ mjj = 0 and ? > 0 (under the irreducibility of {m j}). 

j e Z  a 

If ~ mjj+-O and the cumulant generating function of {m j} is finite in a 
j~Z  a 

neighbourhood of the origin of the parameter space, then there is a positive 
such that for any ~ I  

P~ [~o (t) = 0 for all sufficiently large t] = 1, 
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as is easily seen by comparing e(t) with a branching random walk (see e.g. 
[18], ii) of Sect. 7). 

2) If the state space of the process c~(t) is I~ = {c~: Isupp c~l = o% ei < oo for all 
ieZ d} rather than I, it has an stationary distribution, say ~, which is the direct 
product measure of the Poisson distributions on {0,1,2 . . . .  } with common 
parameter 2 7 (providing ~ mjljl < Go as well as u=v=0) .  This fact implies that 
for any c~I  j~z~ 

(4.6) lim sup P~ [c% (t) > N] = 0. 
N~co t > 0  

3) The relation (4.5) together with (4.6) has an important implication to the 
stepping stone model. Let x be an element of X such that 0__<x~<l if i~B and 
x i= 1 if ir for some nonempty finite subset B of Z e. Then from (4.5) and (4.6) 
it follows that for e~I, a=t=0 

0 < lim (Tt* c5 x , s  < lim (Tt* c~x, s  < 1. 

It is quite plausible that (Tt*6~,f~) would converge to S f~(x)n(d~), but we do 
not known how to prove it. ;~ 

5. Regularity of Stationary States 

In this section we will discuss regularity of finite dimensional marginal distri- 
butions of stationary states of a certain class of infinite dimensional diffusion 
processes which includes the stepping stone model. The subject of this sort is 
studied by Holley and Stroock [4], (their results do not (at least formally) 
apply to our processes), but our method is much simpler and more elementary 
than theirs. 

Let us consider the following stochastic differential equation (5.1) restricted 
on the space X = [0, 1] zd under the conditions (5.2) to (5.4). 

( 5 . 1 )  dxi(t)=]/a(xi(t))dBi(t)+bi(x(t))dt (i~Za), 
with x(0) = {x~} ~X, 

where {Bi(t)}~zd is an independent system of standard Brownian motions on a 
complete probability space (f2, ~,  4 ,  P), 

(5.2) a(0)=a(1)=0,  a(u)>0 for 0 < u < l ,  and ]/~(u) is 1/2 H61der continuous 
on [0, 1], 

(5.3) {bi(x)}i~zd are functions defined on X, and there exists a matrix (2 
={Qij}i,~zd satisfying that Qij>O for all i and j, sup ~ Qij< oo, and 

i ~ Z  d j e Z  d 

Ibi(x)-bi(y)[< ~ Qulxj-yj] for x and ycX, 
j e Z  d 

(5.4) bi(x)>O if xi=O, and bi(x)<O if x i=  1. 
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Then it is known [14] that (5.1) has a pathwise unique solution, which defines 
a diffusion process (x(t), P~) taking values in X, governed by the generator L, 

O 2 6 
L=�89 ~ a(xi)~x2.. + ~ bi(x) ~- x . 

iEZ a i i~Z i 

We furthermore assume that 
1 du 

(5.5) a(u)e Coo(O, 1) and j / ~ V Z . < o v ,  
0 Vatu) 

(5.6) bi(x)eC~ for all i eZ  a. 

(The definition of C'}(X) is given in the introduction.) Under these conditions 
(5.2) to (5.6) we obtain 

Theorem 5.1. Let v be a stationary state of the diffusion process (x(t),P~) that 
satisfies 

(5.7) v [ 0 < x i < l ] = l  for all i eZ  e. 

Then, for A ~ Z  a, denoting by v A the marginal distribution on XA= [0, 1] A of V, V A 
is absolutely continuous with respect to the Lebesgue measure on X A. Further- 
more, its probability densitYoadmits the continuous version pA(XA) that is strictly 
positive and of C~176 in XA=(0, 1) A. 

Proof We first show that v A has a Coo-probability density in )(A- By (5.7) it 
suffices to show that the restriction of v A on each compact subset of X A has a 
Coo-density. Let 

x~ du 
~i(X) = ! ]//a(u) '  ~A(X) = { ~ i ( X ) } i E A ,  and set 

e.(x) = exp 2re ~ -  1 M (~A(x), n} for each n = {ni}i~AEZ A 

1 du 
(Z a -  {0, _+ 1, _+ 2, ...}A), where M =  ! V~(u). 

Let DA={4sC~ for some compact set K of (0,1) A, ~b(x)=0 /f x A 
= {xi}i,ACK }. For ~bED A 

8 8 
( 5 . . 8 )  L(~)en)=(L~)e,, + E a ( x l ) ~ -  c) ~-~ e. 

i eZ  d G X  i uxi 

8 2 8 

2~2 2 
= (L~b)e.-~5-lnl  4 e , + ~ n i ( K i c k ) e , ,  
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where 
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Kiq~(x)= 
M a ( x i )  ]/~(xl) 4 ]Sa (x~) 

m 

Thus L ~ D  a and K i ~beD A for all l ea  if ~beD a. Since v is a stationary state of 
(x(t), P~), it holds that 

(5.9) (v, L 4 ) = O  for all 4cC~(X). 

By (5.8) and (5.9) we have 

= ~-~2 M2 ([n~ ~2- (  v , n~ ) (5.10) (v, ~be.) (v, (L~b)e.) + ~ (K i ~)en> . 

Apply this relation with L~b and Ki ~9, leA, in place of q5 and substitute those 
obtained thereby into the right-hand side of (5.10). By repeating such procedure, 
it follows that for every p > 0 there exists a constant Cp = C(p, A, ~o) satisfying that 

(5.11) ](v, ~be.)[ <]n~ for all neZ  A. 

Let VA be a signed measure on [0, 13 A defined by 

( ~ A , f ) = ~ f ( ~ )  ~(x) v(dx) for any f~C([0 ,  I~A). 

Then by (5.11) we obtain 

[ 5 exp ( 2 ~ 1 / -  1 (YA, n))fa(dyA)l < I ~''I- 
XA 

Hence, va has a density ~A(XA) of C ~ ((0, 1)/)-class with respect to the Lebesgue 
measure on Xa, which is given by 

~A(XA) = y, exp (-- 2~ ]//-- 1 (XA, n)) 5 exp (2n ]//-- 1 (YA, n)) ga(dya). 
n XA 

Therefore, v A also has a probability density of C~ in J(a, because 
XA~{x(x)/M is a C~-diffeomorphism from (0, 1) a onto itself. 

We next claim that Pa(Xa) is strictly positive in JfA. Otherwise, pA(~A)=0 
for some X a = {Ri}i~xe2 a. Since PA is smooth in XA there are positive constants 
a 0 and C 1 such that 

p A ( X A ) ~ C l l X A - - . ~ A I  if [x i -~ / i<a  o for all ieA. 

This implies that for some C 2 > 0 

(5.12) VA[U~(~2A)J<CzelAI+I if e<e  o, 

where U~(YcA) = l-[ (Yq -- ~, 2i + a). 
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We choose 6 > 0  so that U~o(NA)~(6,1--6) "4 and va[(6,1-6)A]>O. Let 

andset 

exp{ ,.,,, t o ]/a(xi(s/x z)) i~A 0 a(xi(s/~ z)) " 

Then it is easy to check that if 6 < x i < 1 - 6  for all ieA, M t is a Px-martingale 
with E x [Mt] = 1, and for some constant C 3 > 0 depending on 6, t > 0 and p > 1 

(5.13) ex[M~] <-5 C3. 

For x ~ X  satisfying that 6__<x~__<1-6 for all ieA, we define a new probability 
measure ~ on (O, ~., ~3v and new processes {/~i(t)}i~ A by 

P~(dm)=M,(~O)Px(dco ) on ~ for each t>0 ,  and 
t 

B,(t)=Bi(t)+ ~ bi(x(s A z)) ds. 
o 1/~(~,(s ~ ~)) 

(f2 ft. ~ and {/~i(t)}i~ A Then /3 x is well-defined as a probability measure on , , , tJ 
turns into an independent system of standard Brownian motions with respect 
to P~. Let us consider the following system of stochastic differential equations: 

t 

(5.14) y , ( t ) -  x~ = ~ ]//a(y~(s))dB,(s) leA. 
0 

By the condition (5.2), (5.14) has a pathwise unique solution, so that {Yi(t)}ieA is 

mutually independent. Moreover, setting ~ i = i n f { t > 0 :  y i ( t ) e ( ~ , l - ~ ) }  for 

isA,  we see that z=min{z i :  leA} and yi(t)=x~(t) for O<_t<_z. Accordingly, if 
~ < x i <  l - 6  for all l e a  

(5.15) Px [xA(t)~ u~(~A), t < q 

=~[[Yi( t ) -~i l<~,  t < z  i for all i~A] 

= I-[ P~ [ ly , ( t ) -~ , l  <~,  t<~ , ]  
isA 

> C IAl 

where C 4>0  is a constant depending on t and 6. Here the last inequality is 
deduced from the fact that the stopped diffusion yi(tAz~) has a transition 

density p(t, x, y) which is positive and continuous in (x, y)e , 1 - 

On the other hand, if 6__<xi__<1-6 for all ieA, we have by H61der's 
inequality 
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= ex [ n , ;  x,,(t)e u~(~A), t < q 

_-< Ex [M,q ~/"& [x~(t)e U~(nA)]'/~, 

where p > 1, q > 1 and lip + 1/q = 1. 
Combining (5.15) and (5.16) with (5.13) we have some constant C5>0 

satisfying that if 6__<xi< 1 - 6  for all leA, 

(5.17) Vx[xa(t)e U~(#A) ] _--> C 5 e qlal. 

Using the stationarity of v and (5.17) 

( 5 . 1 8 )  v~[u~(~A)]- -> S v(dx)P~[~(t)eU,(~)] 
6<xi <- i - 6 ,  i~A 

C 5 e q[Al v a [-(6, 1 - -  6 ) A ] .  

Choosing q such as 1 <q  <([A[ + 1)/IA], we see that (5.18) and (5.12) contradict 
each other. Therefore it holds that pA(XA)>0 for any XAe2  A, and the proof of 
Theorem 5.1 is complete. 

Remark. Although bi(x ) of the stepping stone model does not satisfy (5.6) if m~ 
+0  for infinitely many i, the above argument is valid with a slight modifica- 
tion so that Theorem 5.1 holds for it. 

Theorem 5.2. Let v be a stationary state of the diffusion process (x(t), Px) corre- 
sponding to (5.1) under the conditions (5.2) to (5.4). For ieZ  a we set 

b/(0)=min {bi(x): x e X ,  x i=0  }, and 

bi(1) = max {bi(x): x e X ,  x i = 1}. 

Ifb_i(O)>O, then v[x i>0  ] = 1, while/ f  bi(1)<0, then v[xi< 1] = 1. 

1~2 du 
Proof We will show it only in case that bi(0)>0. Since o a ~ =  oo by (5.2), 

there exists a sequence {e,} satisfying that e , > e , + x >  . . . 4 0  as n~oe ,  and 

du 

~n+l 

Let g,(u) be a continuous function on [0, 1] such that the support of g, is 
contained in [e,+ 1, e,], ~g,(u)du = 1, and 

1 
gn(U)<a(u~ for F,n+INUNe n. 

u 1 

Set On(U)= ~ ~ gn(S)ds dr. Then a(u)O"(u) converges to zero boundedly as n ~  0% 
and o t 

lira bi(x)4)',(xi)=O boundedly in xi>O, and 
n~oo 

bi(x)(a',(xi)>b_i(O)>O if x i = O .  
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Hence, applying (5.9) for 0,(x)-qS,(xi), we get 

0 = lim (v, L 0 , )  >_bi(0 ) v [xi = 0], 
n ~ o o  

which completes the proof of Theorem 5.2. 
Now, we are in position to prove Theorem 1.5. Let v be an extremal 

stationary state distinct from 61 and ~o, appearing in Theorems 1.1 to 1.3. By 
Remark of Theorem 5.1 it suffices to check the condition (5.7). We first notice 
that if 6 1 e ~  then v[{1}]=0, since v has a non-trivial decomposition unless 
v[{1}]=0. Indeed, the conditional distribution v[ ' l  {1} c] is stationary and v 
=,~81+(1-)~)v[.  I{1} c] with 2=v[{1}].  In particular, if the selection parame- 
ter s is non-positive, by virtue of Theorem 2.6 it holds that v Ix i < 1 for all i] 
~ 1 .  

Hence (5.7) is verified for v=v  c (0<c<1)  in Case 1, because ~xt 
={vc:0_<c_<l}, Vo=6 o and v ,=61 (by Theorem 1.1), and the process is in- 
variant under the transformation {xl}---,{1-xi}. In Case 3, if u=0 ,  v>0,  and 
S<Sc(<O), (5g~Jzd)ext={v, 61} (by Theorem 1.3), so by the above observation 
we have v Ix i < 1 for all i] = 1. Moreover, we note that Theorem 5.2 is applica- 
ble in this case, because bi(0)>0 for all i, and we get v [ x i > O f o r  all i] = 1. Thus 
the condition (5.7) is verified in the subcase of Case 3: u=0 ,  v>0  and s<sc.  In 
another subcase of Case 3 is also fulfilled the condition (5.7) since it is reduced 
to the former subcase by the transformation {x~}--*{1-x~}. In Case 2 there 
exists a unique stationary state v by Theorem 1.2, and both b~(0)>0 and 
b~(1)<0 hold because u > 0  and v>0. Hence by Theorem 5.2, the condition 
(5.7) is verified. We complete the proof of Theorem t.5. 

Remark. In the situation of Theorem 1.5 let A={0}. Then, the probability 
density of the one-dimensional marginal distribution po(Xo) of an extremal 
stationary state v other than 6 o and a l, appearing in Theorems 1.1 to 1.3, 
satisfies the following equation: 

(5.19) Po (Xo) = C. x 2~- 1 (1 - X o )  2 " -  1 

xexp 2sxo+ ~ 2 m ( r ( y ) - Y ) d y  , 
1/2 y(1 - y )  

where C>O is a normalizing constant, m=  ~ mj, and 
j*O 

1 

j4-O 0 

Here we note that 0 < r ( y ) < l  for any 0 < y < l .  
(5.19) is deduced from (5.9) or specifically from the equation 

1 

(5.20) 5 (a ~" + b 4)')(x) po(x) dx  = 0 
0 

where a(x) = x(1 - x)/2 and 

b(x) = v -  (u + v) x + s x(1 - x) + m(r(x) - x). 
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In fact the Eq. (5.20) which is valid for all q5 from C ~ [0, 1] is uniquely solved 
among Lebesgue integrable functions on [0, 1] up to a constant factor; a 

solution is given .by C.a(x) -1 exp (b/a)(y)dy , which coincides with the 
expression in (5.19). 

To obtain a more information concerning po(Xo) we need to investigate the 
function r(Xo) in detail, but this problem remains open. 

Appendix 

In Sects. 2-4 we frequently applied certain comparison arguments as a basic 
technique, whereas none of them so far are proved, leaving proofs depending 
on them incomplete. So in this appendix we will establish some criteria upon 
which to test the validity of comparisons which are made in this paper. 

Let (c~(t),P) and (~(t),P*) be two stochastic processes on the state space I: 
={c~=(~i)i~s: cq=0,1,2 . . . .  (ieS), ~ i < o o }  where S is a given countable set. 
For ~,fi~I we write ~<fi  if c~i<=fii for all ieS. Let A={(~,f l)~IxI:  ~<fl}. We 
will say that the process (a(t),P) can be embedded in (a(t),P*) and write 
(e(t),P)<~(~(t),P*), if one can construct a process ((e(t),~*(t)),[ ~) on the state 
space A such that (e(t), [~) and (e*(t), [~) are stochastically equivalent to (c~(t),P) 
and (a(t), P*), respectively. 

Let (a(t),P~)~ be a Markov process on I and Q~,p its infinitesimal genera- 
tor. Here and below it is supposed that all Markov processes are minimal and 
conservative without instantaneous states, so that -Q: , := ~ Q~,~< oo for all 

~, and (a(t),P~) is the unique Markov process on I generated by {Q~,p}. Let 
. (c~(t), P * ) ~  be another Markov process on 1 with a generator {Q~,~}. Set 

I (a)={f ieI :  P~(~(t)=fi)>0 for some (all) t>0} 

and similarly for I*(c 0. Given (~o, a*)sA we also set 

A(o%, c~)= {(~, a*)eA: aEI(c%), a*EI*(a~)}. 

Then for the order relation 

(A.1) (.(t), P~o)~(.(t), P*;) 

to hold it is sufficient that there exists a family of non-negative numbers 
R~,~: ~,t/eA(~o,C~), 34=t7 such that 

,,,el*(e;), ~ > fl 
(A.2) ~ R( .... ),(7,,*) = Q~*,,* 

7s/(~o), "~ _-< fl* 

for all (~, a*), (fi, fl*)EA(ao, ct*) with a4=fi and ~* 4=fl*. In fact {Rr generates a 
Markov process on A which realizes the required embedding, provided that it 
satisfies (A.2). 
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We write a n t  i as a complementary statement of an t i ;  and allow fi~ to take 
negative integers under the convention that Q~*~=0 if fi~0. (The addition, 
inequality etc. are extended naturally.) 

Theorem A.1. Let (ao, a*)eA, i) Assume that for all (a,a*)EA(ao, a* ) and fi ~ a  
(even for fi ~g O) the following condition is satisfied: 

(A.3) Q~,~ >Q*~,~+,  if  - 7 $ f l - a < =  7 

< * i f - 7 < f i - a ~ : 7  Q~,I~=Q~+~,~+~ 

�9 if -TZgf i -a~ ' :7  Q~,:= Q~+,,t~+~ 

where 7 = a * - a .  Then (a(t),P~o)M(a(t),P*;). ii) Assume that Q~,~-O if a~I*(a*) 
and ~ min {fii-ai, 0} < -  2. Then (A.3) holds for all ~ ~0, so that (A.3) restricted 

isS 

to f l s I  (fl # a) implies the same conclusion as in i). 

Proof Given ~=(a,a*)eA(ao, a~) we must define non-negative numbers R~,, 
appropriately. In below positive numbers will be assigned to R~,n only when t/ 
is of the form 

t/=(fl, a*), (a, a* + f i -  a) or (fi, a * + f i - a ) ;  

and zero otherwise. Writing 7 = a * - a ,  we set for fi + a 

Rr =Q,,p t 
R~,(~,/~+ ~) = Q~*,/~+~3 

e~,~,~,) =Q~,~-Q~,~+~ 
R~,(t~,~+ ~) = Q~*,~+ ~ J 

R~,(~,~+,) = O~*,~+ ~-  Q~,~} 
R~,(~,~+ ~) =Q~,~ 

R~,(fl,p+ ~) = Q~,p 

if a - 7 < f i < a + 7  

if a - 7 $ f i < a + 7  

if a - 7 = f l ' t ~ a + 7  

if a - 7 $ f l ; ~ a + 7  

and Rr = 0 for all the other transitions. Clearly the condition (A.2) is satisfied, 
so i) is proved. For the assertion ii) it suffices to check, under its assumption, 
the claim that if fi~0, f l + 7 ~ a  and f i+7>0,  then Q**,~+7=0. But, if one sets 
= f i + 7 - a * ,  the former three relations in this claim are transformed into 6 
+ a ~ 0, ~5 + 7 ~ 0 and 6 + c~+ 7__> 0, respectively, which together imply that 

Q ~ * ,  ~ * +  6 - -  ' ~ m i n { f i i - a i , 0 } < - 2 ;  hence, by the assumption of the part ii), * - 0  
isS 

completing the proof of the part ii). 

Corollary A.1. Let (ao, a~)eA. Assume that Q* =Q and for all (a, a*)eA(a o, a*) 
and fi 4-a, f ieI  the following conditions hold: 

(A.4) Q~,~>0 only if fi is of  the form: 

f l=a+e i  or a+e i+e j  (i:#j), 

(A.5) Q~,~>Q~+~,~+~ ifB<a+7 and f l i<aifor some ir 
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(A.6) Q~,~<Q~+~,p+~ if fl+ 7>c~ and fii>c~ifor some iq~supp7, 

(A.7) Q~,~=Q~+~,p+~ if cq=fli for all iesuppT, 

where 7 = ~* - ~. Then (~(t), P,o)-<(c~(t), P~;). 

Proof If - 7 ; ~ f l - a ,  then either fii<cq for some iCsupp7 or f l i<ai-2  for some 
iesupp 7. Thus by (A.4) and (A.5) we have the first inequality of (A.3); and 
similarly for the second. If - 7 5 f i - e $ 7 ,  then either there are two distinct 
sites i and j outside of supp7 such that fli>ei and fl j<aj or [cq-flil>2 for 
some iesupp ~, proving the last relation of (A.3) in view of (A.4) and (A.7). 

In the next theorem will be compared two Markov processes (~(t),P~)~i 
and (c~(t), P * ) ~  governed by infinitesimal generators Q~,p and Q~*~, respectively. 
We will suppose the stochastic monotonicity for one of them: 

(A.8) (~(t), P*) =< (c~(t), P~*) whenever o~<=fl. 

(See (2.4) for the meaning of the inequality above.) 

Theorem A.2. Let ~o~I be given. Assume that (A.8) holds and that for every 
~I(~o) and for every finite sequence fl~ .... , fl" in I 

(Q~*t~-Q~,p)<o if a~gfl k for all k 
(A.9) 8: f l<flk for 3k 

(Q~,~-Q~,~)>O if a<fik for some k. 
fl: f l~fl~ for Vk 

Then (o:(t), P~)M(0~(t), P~) whenever a~I(eo) and c~ <= ft. 

Remark. i) For the conclusion of Theorem A.2 the condition (A.9) is necessary 
regardless of whether the other assumption is valid. (Observe that if (A.9) is 
violated, then dw/dt in the proof of Theorem A.2 actually attains a positive 
value at t =0  for a non-increasing f )  ii) Instead of the condition (A.8) one can 
assume the corresponding monotonicity condition for (c~(t),P~) without chang- 
ing the rest of the theorem. 

For the proof of Theorem A.2 we prepare two lemmas, which are varia- 
tions of well known facts. 

LemmaA.1.  Let {a~} be a family of real numbers indexed by ~ I  such that 
[a~[ < oo. In order that the inequality ~ aJ(cO < O holds for every non-negative, 

ct~l ot~I 

bounded and monotone non-increasing function f defined on I it is necessary and 
sufficient that every finite sequence ~ksI, k = l  . . . .  , n 

(A.10) E a~<0. 
ct: ~_<_~k for 3k 

Proof Set F( t )=  {a~I:f(cO>t } and h(t)= ~, a~. Then ~a~f(a)= ~ h(t)dt. F(t) 
c~aY(t) a 0 

is a monotone non-increasing subset of I; hence it is a monotone limit of a set 
of the form {a: a<c~ k for some k, l<k<=n}. (To see this make a truncation of 
F(t) and take as {c~ k} all the elements of the truncated.) Therefore (A.10) 
implies h(t)<O, so ~a~f(a)<O. 
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LemmaA.2.  Assume (~(t),P~)<=(~(t),P~) whenever ~<__fi and ~EI(~o). Then 
(~(t), P~)~((~(t), P~) whenever ~ <__ fi and ~EI(~o). 

Proof. We will apply a compactness argument to a sequence of probability 
measures of stochastic processes taking values in I. Let g2 be the space of right- 
continuous step functions from [0, oo) into I which is equipped with the 
Skorohod topology. For two elements co 1 and co 2 from t2 write (DIDO) 2 if 
col(t)__<co2(t ) for all t__>0. This is a partial order relation, which is closed (i.e. 
the order relation "__<" is preserved in the procedure of taking a limit), for the 
convergence in the Skorohod topology implies the convergence at every point 
of continuity of the limit function. Now let the assumption of the lemma hold. 
For simplicity we assume 1(%)=1. For each n there exists a stochastic kernel 
p(")(~, t/), ~, t /e l  x I such that if ~ =(~, fi)EA, then ~ p(n)(~, q)= 1 and the first and 

qEA 

the second marginals of the probability p(")(~,.) on the product space I x I 
coincides with the laws of e(1/n) induced from P~ and P~', respectively (set 
p(")(~,')=5~(.) e.g. if ~6A). The kernel pC,) is constructed by applying an 
allocation lemma as found in Pollard [10] together with a truncation argu- 
ment; also its existence is a special case of Theorem 11 of Strassen [16] (c.f. 
also Theorem 2.4 of Liggett [9]). This kernel determines a discrete time Mar- 
kov chain on the state space I x I. For each (oqfi)EA it naturally induces a 
probability measure pC,) on the product space (2 x s (equipped with the pro- 
duct topology) in such a way that the first and second marginals of pc,) agree 
with the laws on ~2 induced by {c~([nt]/n), t>0} from P~ and Pf*, respectively, 
and pC,) is concentrated o n  A={(COl,(Dz)EQxQ: (-01~(-O2}. {P( )} is relatively 
compact in the weak topology of probability measures, for its marginals are 
relatively compact. Let /5 be a limit point of pc,). By the well-known lower 
semi-continuity property of probability measures evaluated for a closed set the 
probability /5 is concentrated on the closed set A. Clearly the marginals of /5 
are identical to (e(t), P~) and (e(t), P~). Thus 15 realize the required embedding, 
completing the proof of Lemma A.2. 

Proof of Theorem A.2. Let f be a bounded non-increasing function defined on I 
and set u(t,~)=E~[f(~(t))] and u*(t,~)=E*[f(c~(t))]. Let us prove that w(t,~) 
:=u*(t,a)-u(t,~)<=O for c~EI(e0). To this end we can assume f > 0  so that 
u* > 0. In view of the differential-difference equation dw/dt = Q,w + (Q* - Q) u* 
with w(0)=0 it suffices to show that (Q*-Q)u*<O (on 1(%)). But this in- 
equality is immediate by an application of Lemma A.1 with the help of the 
assumptions (A.8) and (A.9), if it is noted that (A.9) is a paraphrase of (A.10) 
with a~-Q,~,~-Q~,~. Now Theorem A.2 follows from Lemma A.2 and the 
monotonicity (A.8). 

The next corollary is intuitive. 

Corollary A.2. Let aoEI be given. Assume that (A.8) holds and that for all 
c~EI(eo) the following conditions are satisfied" 

(A.11) Q*t~>0 only if f i > e - e  i for some i 

(A.12) Q~*~>Q~,~ if f i ~  
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(A.13) ~ (Q*,p-Q~,~) < Q  . . . . . .  - * Q . . . . .  , for all i. 
/~: ~-~5/~$~ 

Then (~(t), P~)~(a(t), P~) whenever ~ I (~o)  and ~<=fi. 

Proof. We must check the condition (A.9) of Theorem A.2. The second in- 
equality of (A.9) trivially follows from (A.12). To check the first we note that 
the sets of fi under the summation sign in (A.13) are mutually disjoint for 
different i's. Let c i denote the left-hand side of (A.13) minus the right-hand one. 
Then by (A.11) and (A.12) the left-hand side of the first inequality of (A.9) is 
dominated above by the sum of c i over those i for which ~ i - 1  >=0 and ilk> 
-~i  for some k. Thus (A.9) is proved. The proof of Corollary A.2 is complete. 

Let (a(t),P~),~,, (~l(t),P2)~ I and (a2(t),  2 P~)~I be three Markov processes 
with their generators Q~,~, Q~,~ and Q~,~, respectively. Let Ii(a) and i2(~) be 
defined in the same way as I(a). Recall the convention that Qi~,~=0 if f i~0.  

Theorem A.3. Let ~o and flo6I be given. Assume that (a(t),P~) satisfies the 
monotonicity condition (A.8) with P. in place of P* and that for every a6I~(~o) 
and fl~I2(fio) and for every finite sequence 7 ~ .. . .  ,7" in I 

1 + 2 <=0 ~ + f l $ 7  k for all k, 
7:7<=7 k for 3k 

1 2 (Q~,~_p+Qp,~_~-Q~+p,~)>O if ~+fi_-<7 k for some k. 
7: 7 ~ ?  k for Vk 

Then (a(t),P~+p)<=(al(t)+a2(t), P~ |  all aEIl(ao) and all fi~I2(fio). 

Remark. The first one of Remarks to Theorem A.2 applies to Theorem A.3, 
while the second one does not (at least as far as our proof is concerned). The 
latter is because the sum of the two independent processes is no longer 
Markovian. 

Proof. We will proceed as in the proof of Theorem A.2. For a bounded, non- 
negative and monotone non-increasing function f on I set 

u(t,a)=E~[f(~(t))], fi(t,a, f i )=E~| 

where the last expression means the expectation by P~ |  Let Or be the 
infinitesimal generator of ((~1 (t), a2 (t)), P~ | P~): 

{QJ,~, i f~Je~ '  and fi=fl' 
O~,p),(~,,B,) = 2 fi, Q~,~, if f i#  and ~=~'  

0 otherwise (but (a, fi) :# (a', fi')). 

w(t, ~, fi): = fi(t, ~, f i ) -  u(t, ~ + fl) satisfies the equation dw/dt = O_w + R, Then 
where 

R(t, ~, fi)= ~ 0(~,~),(~',~')u(t, ~ '+f i ' ) -~Q~+~,7  u(t, ?). 
~',/Y 7 
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But R is rewritten ~h~,~,Tu(t, 7), where 
7 

1 (A.14) h~,~,~=Q~,7_# +Q~,~_~-Q~+#,~ , 

so the assumptions of the theorem verify that R <0  as in the proof of Theorem 
A.2. Accordingly w < 0. 

We can state a corollary parallel to Corollary A.2, but here give another 
version. 

Corollary A.3. Let So, fioeI. Assume that the condition (A.8) with P. in place of 
P* is satisfied and that for all aeP(e0)  and all fieI2(fio) the following relations 
hold 

Q~+#,~>0 only if y~o:+fi+8 i for some i, 

h~,#,,__<0 if y~ct+fl,  

h~,#,~>-h~,#,~+#+~, for all i, 
~, :~+#~,<~+ #+ e~ 

7i=Oti4-flid- ~ 

where h is defined in (A.14). Then the conclusion of Theorem A.3 holds. 

The proof of Corollary A.3 is similar to that of Corollary A.2. 

Remark. We so far restricted the state spaces of processes to elements of I, i.e., 
configurations of non-negative integers on S, because only comparison between 
such processes were concerned in the main body of this paper. When one 
allows configurations to take negative integers too, do Theorem A.1 to Theo- 
rem A.3 remain valid? To make statements precise we set i 
= {aeZS: ~lai] < oo}. Then this is correct for Theorems A.2 and A.3 as well as 

ieS 

for their corollaries without any change except that ] replaces I. To see this we 
must extend Lemmas A.1 and A.2. The extension of the latter together with its 
proof is valid with no alternation. Lemma A.1 also is extended, but for its proof 
we need to think out a suitable manner of truncation: given a monotone non- 
increasing subset F of I, set F " = { e e F '  c~<fi for some f i e f  such that fli~n if 
ieS, and fl i=0 if ieS,}, where S, is an initial segment up to the n-th in any 
enumeration of S, to have that F"I"F, F" is a non-increasing subset of I-and the 
maximal elements of F" is finite (the last of these three statements may be 
proved by induction on n with a little difficulty). As for Theorem A.1 its first 
part is even more naturally stated for I than for I; the second part is rather 
motivated by restricting it to I. Corollary A.1 as well as i) of Theorem A.1 
remains valid after replacing I with I. Finally we add one more remark: in 
Theorem A.1 and its corollary one can replace I by I (") ={~e{0, 1, 2, ...}s: ~lct i 
- n [ <  oo} (n =1, 2, ...). i~s 
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