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Summary. Random dynamical systems arise naturally if the influence of 
white or real noise on the parameters of a nonlinear deterministic dynamical 
system is studied. In this situation Lyapunov exponents attached to the 
linearized flow replace the real parts of the eigenvalues and describe the 
stability behavior of the linear system. If at least one of them vanishes then 
it is possible to prove the existence of a stochastic analogue of the determinis- 
tic center manifold. The asymptotic behavior of the entire system can then 
be derived from the lower dimensional system restricted to this stochastic 
center manifold. A dynamical characterization of the stochastic center mani- 
fold is given and approximation results are proved. 

1. Introduction 

Consider the following ordinary differential equation 

5:=F(x), x~P,_ a , F(xo) =0,  (1.1) 

where F: Ne ~ N e  is assumed to be sufficiently smooth and to have a steady 
state at Xo. For  convenience we take x0 = 0. 

We ask whether the asymptotic behavior of (1.1) and in particular the stability 
of the zero solution may be derived from a lower dimensional system. In the 
case of a linear system the real parts of the eigenvalues describe the stability 
behavior of the system: If for example all the real parts are negative then the 
zero solution will be asymptotically stable for t ~  + 0% i.e. initial values will 
finally tend to 0 forwards in time. 

In the case of a nonlinear system we first investigate the eigenvalues of the 
Jacobian matrix DFlxo=O. If all the real parts of eigenvalues of this linearized 
system are negative (resp. positive) then already Lyapunov E26] proved that 
the stability properties of this system carry over to the original nonlinear system. 
However, this does no longer hold true if one of the real parts vanishes. This 
situation is the usual one encountered in bifurcation theory which deals with 
nonlinear systems that depend on a parameter. For  a certain parameter value 
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the zero solution may lose its stability and new nontrivial stable solutions may 
branch off. 

Center manifold theory allows to decouple the system and to separate that 
part which corresponds to the vanishing real parts of the linearization. The 
heuristic reason for doing so is that the stability behavior of the part of the 
system corresponding to negative resp. positive real parts is well-known. In 
fact it can be shown that in order to determine the stability behavior of the 
original system it is sufficient to investigate the asymptotic behavior of the 
lower dimensional system obtained as the restriction of the original equation 
to the center manifold. In bifurcation theory this system will usually be of dimen- 
sion 1 or 2, independently of the dimension of the original system. Details may 
be found, e.g., in Carr [9], Iooss [21], Marsden and McCracken [-28] or in 
Vanderbauwhede [33]. 

In this paper we would like to examine what happens to the questions 
sketched above if a system like (1.1) or a difference equation (i.e., a discrete 
time system) is influenced by noise which might either be white noise or any 
stationary ergodic process. We will thus have to deal with random dynamical 
systems, a notion which will be made precise in Sect. 2. The aim will be to 
establish a stochastic center manifold theory for these random dynamical systems. 
Due to the fact that the elements of the probability space f2 are related by 
a so-called shift operator, the deterministic proofs can, however, not be carried 
over trajectory-wise. Nevertheless we will be able to show that the basic objects 
of such a theory, the stochastic center manifolds, share all the nice properties 
of their deterministic counterparts. In particular they enable us to restrict the 
investigations concerning the asymptotic behavior of the system to a reduced 
system of lower dimension. As in the deterministic context a stochastic center 
manifold theory will be a cornerstone in the construction of a stochastic bifurca- 
tion theory because it will justify focussing mainly onto low dimensional prob- 
lems and it tells us how to reduce higher dimensional systems. 

The paper is organized as follows: 
After having recalled the notion of a random dynamical system and its 

linearization in the beginning of Sect. 2 we will introduce the notion of Lyapunov 
exponents and Oseledec spaces associated with the linearized system in order 
to replace the real parts of the eigenvalues and the eigenspaces in the determinis- 
tic situation. We will explain why they describe the dynamical behavior of this 
linear system. In various different contexts these objects have already been suc- 
cessfully used by many authors, e.g., by Baxendale [3], Bougerol and Lacroix 
[6], Carverhill [10], Crauel [14], Ledrappier [25], Marl6 [27], Oseledec [29] 
and Ruelle [31]. There also exist several proofs of the multiplicative ergodic 
theorem originally due to Oseledec which ensures the existence of Lyapunov 
exponents and Oseledec spaces Ei(co) and describes their main properties. In 
contrast to most of these authors we will, however, consider random dynamical 
systems on the entire time axis, i.e. T=IR or T=Z, because both directions 
of time are necessary to construct stochastic center manifolds. 

Usually the influence of noise on an ordinary differential equation can be 
modeled either by considering a stochastic differential equation (white noise) 
or an ordinary differential equation with random coefficients (real noise). In 
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the case of a difference equation products of random diffeomorphisms will be 
a suitable stochastic model. It is the purpose of Sect. 3 to explain under which 
conditions these models are covered by the general set up of Sect. 2 and how 
the extension to the entire time axis may be obtained. 

If all the Lyapunov exponents are negative then the stochastic stable mani- 
fold theorem (see Ruelle [31] and Carverhill [10]) tells us that the stability 
behavior of the linearized system will carry over to the original nonlinear system. 
As in the deterministic case this will, however, no longer hold true if one of 
the Lyapunov exponents vanishes. For  this reason the notion of a (global) sto- 
chastic center manifold is introduced in Sect. 4 to cope with this situation. Its 
definition reflects the fact that stochastic center manifolds may be viewed as 
the nonlinear version of the space Ec(co) corresponding to the zero Lyapunov 
exponent. We will construct them in Sect. 5 as maps between measurable bun- 
dles. The structure of these spaces takes into account that it is not possible 
to repeat the deterministic construction pathwise. In fact, in order to obtain 
the stochastic center manifold for one fixed co~t2 the entire probability space 
has to be used. For  this reason the main task of Sect. 4 consists in finding 
suitable spaces to work in. The crucial step is to introduce random norms 
on the fibres of the bundle, i.e. on the spaces Ei(~o), and then to make the 
bundle a metric space. 

Section 5 is the heart of the paper and contains the proof  of the existence 
of global stochastic center manifolds, provided that the nonlinear part of the 
random dynamical system is sufficiently small. The influences determining the 
required smallness will be figured out explicitly. The main step in the proof  
is an application of the contraction mapping theorem to an appropriate operator  
acting on a subset of the bundle defined in Sect. 4. Hence as in the deterministic 
case the proof  that stochastic center manifolds exist follows lines which are 
entirely different from those which lead to an existence proof  for stochastic 
stable manifolds. 

The smallness of the nonlinear part required in the existence result is rather 
restrictive. We can, however, get rid of this assumption by restricting ourselves 
to a suitable (random) neighborhood of the origin. Thus we obtain local stochas- 
tic center manifolds which are just the right tool to handle applications especially 
in bifurcation theory. The existence of local stochastic center manifolds is ensured 
under very weak conditions. 

In Sect. 7 properties of the (global) stochastic center manifold are collected. 
It is shown that it is attracting, i.e. that in case of a nonpositive (resp. nonnega- 
tive) Lyapunov spectrum solutions starting away from the stochastic center 
manifold will approach it exponentially fast for t ~ o o  ( t ~ - o e ,  resp.). This is 
particularly important  for numerical purposes. In contrast to the geometrical 
characterization of a stochastic center manifold given in Sect. 4 we may also 
deduce a dynamical characterization as the set of all those initial values in 
N / w h o s e  exponential growth rate is smaller than a certain ~ > 0 in both direc- 
tions of time. This dynamically characterized stochastic center manifold is unique 
which is not the case for the geometrically characterized one. Finally we prove 
that it is in fact sufficient to examine the asymptotic behavior of the system 
restricted to the stochastic center manifold to derive the stability properties 
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of the entire system. The error committed by considering this restricted system 
is shown to decay exponentially fast. 

The last section deals with approximation results. First we show by means 
of a nonconstructive existence proof that, in principle, the stochastic center 
manifold may be approximated by polynomials up to any degree of accuracy. 
Since this result is not very helpful for practical purposes we also explain how 
an explicit approximation may be derived. This procedure is illustrated by means 
of two examples which also show that the stochastic center manifold is not 
just the deterministic center manifold plus noise but that completely new stochas- 
tic effects occur. 

2. Stochastic Framework 

Let (~ ,~ ,  P) be a probability space. For  T = N  or T = Z  consider a group of 
bimeasurable measure preserving bijections (i.e. a flow) {OtltET} on O. In the 
sequel {Or} is supposed to be ergodic. 

Definition 2.1. A map ~0: N x ~2 x IRa ~ IRa, (t, co, x) --. cp (t, co, x) is called a random 
dynamical system (or a cocycle) of cgk (resp. cgk'l)-diffeomorphisms (k> l )  on 
IR d over the flow {0t: t e T} if the following properties are satisfied: 

(i) ~,o(t,-, x) is ~,  N(Na)-measurable for any teT, xe lR  d. 
There is a Ot-invariant set Oo c f2, P (~2o)= 1, such that for all co E Qo: 
(ii) (p(t, co, x) is continuous in (t, x ) e r x l R  d. 

(iii) q)(t, co, ") is a Cgk (resp. cgk. 1)_diffeomorphism for any tE T. Here cgk. 1 means 
that D k ~o(t, co, .) satisfies a global Lipschitz condition. 

(iv) (p(t+s, co, x)= ~0(s, 0tco,-)o~o(t, co, x) for any t, seT, xMR a (cocycle prop- 
erty). 

Remarks. 
(i) For  notational convenience we will also write (p(t, co)x instead of 

q~(t, co, x). 
(ii) The cocycle property implies that for all co~f2 o and for all t ~ T  q)(O, co) 

= Id and q~- 1 (t, co) = ~o ( - t, 8t co). 
The random dynamical system q0 gives rise to a skew-product flow 

O~: ,.QxiRa-+OxiR a, 

(co, x)--, (,9, co, q~(t, co, x)). 

Let # be a O,-invariant probability measure on O xlR a (i.e. O t g = #  for all t e T )  
satisfying n e # = P ,  where n~: ~2 x l R a ~ O  denotes projection, and suppose that 
# is ergodic. 

Denote by TxiR a the tangent space to IRa at xe lR  a and by TIR a the tangent 
bundle. Consider the map TO(t, co): TIRa~  TIR a where TO(t, co, x): T~N a 

T~o(~ . . . .  )iRa is the linearization (derivative) of (p(t, co) at x. For (t, co, x) fixed 
this is a well-defined linear isomorphism which constitutes, by the chain rule, 
a linear random dynamical system on g2 x IR a over the base flow O,, i.e. 

T~o(t+s, co, x)=T~o(t,O~(co, x))oTcp(s, co, x) for all &seT, x MR  a, coco o. 
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Definition 2.2. The Lyapunov exponent associated with the linearized cocycle 
Tq~(t, co, x) at xeIR a under coe~2 in the direction v e n  d, v+O, is defined by 

1 
)~---(o), x, v)..=lim sup log I1T(p(t, co, x) vii 

t-~ -t- oo 7 

The next theorem will ensure the existence of the limits defined above. It will 
also elucidate that the Lyapunov exponents are the stochastic counterparts of 
the real parts of the eigenvalues and it will provide us with stochastic analogues 
to the generalized eigenspaces. These objects completely describe the asymptotic 
behavior of the linearized system. Before stating the theorem we will, however, 
need some preparations: 

Let G,(TNa), he{l ,  ..., d}, be the Grassmann bundle of n-dimensional sub- 
spaces of tangent spaces to IRd (see, e.g., Boothby [-5], p. 63) endowed with 
the following topology: a set U c G , ( T I R  a) is open if the set of all vectors con- 
tained in some subspace belonging to U is an open set in the tangent bundle 
T N  a. 

A mapping E: (2 xiRa--~G,(TIR a) is measurable if the preimages of Borel 
sets of G , ( T N  a) are measurable subsets of f2 x IR a. 

Theorem 2.1 (Oseledec's multiplicative ergodic theorem). Consider a random dyn- 
amical system (p on IRe and an invariant ergodic probability measure # on f2 x IRa. 
Assume the following integrability condition: 

S [-l~ + sup IlTqo(t, co, x)ll + log  + sup ]l[-Tq0(t, co, x)l-lLI] d/z(co, x)< oo. 
Q x R a  0<t__<l 0_<t_<l 

Then there are r real numbers 2r< ... <21 (1 <r<cO with multiplicities di, ~ di=d, 
i=1  

such that for a Or subset F c f2  x N a, #(F)= 1, there is a family of 
measurable mappings Ei: F--* Ga,(TIRa), 1 < i N  r, such that for each (co, x ) e F  : 

TxlRa= El (co, x) O ... O Er(co, x), dim Ei(a~, x)=di ,  

El(Or(co, x)) = T(p(t, co, x) Ei(a~, x) for all te  T, 

2• x ,v )=  lim l logHrcp(t,o~,x)vH=2i iff veEi(co, x ). 
t--, + ~o t 

In order to prove this theorem one starts by slightly modifying Carverhill's 
[-10] proof for t>0 .  Carverhill's assumption of a compact manifold instead 
of IRa is replaced by the integrability condition. Furthermore he supposes /z 
to be a product measure but an examination of his proof shows that this is 
not crucial. The statement of the theorem follows now as in Ruelle [31], Theo- 
rem 3.1, p. 35. 

Remark. The collection ('~i, di)i= 1 ...... is called the Lyapunov spectrum of q~ with 
respect to # and the spaces Ei(co, x) are called OseIedec spaces. 
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3. Particular Cases 

In this section we will explain under which conditions the usual models describ- 
ing the influence of noise onto a deterministic dynamical system are covered 
by the stochastic framework developed in the last section. 

3.1. White Noise 

Since stochastic differential equations are in general only defined for t >0  we 
will first have to extend the probability space to obtain a random dynamical 
system in the sense of Definition 2.1. 

For this we consider two independent copies (f2 +, ~-+, P+) and (f2-, ~ - ,  P ) 
of canonical Wiener spaces with time IR+, IR-, resp. and put (f2, ~,, P):=(f2- 
xf2 +, ~ - - |  P - |  Then W(t, co):=co(t) will be a Brownian motion 

with time parameter teiR. 
There is a canonical flow {0tl t~iR} of shifts on I2 defined by 

Otco(s),=e)(t+s)-co(t) for all o)~f2, t,s~lR, 

with respect to which the Wiener measure P is invariant and ergodic. Invariance 
follows almost immediately for (suitably generalized) cylinder sets whereas the 
proof of ergodicity may be carried out along the same lines as the proof of 
ergodicity of the Bernoulli shift in Marl6 [27], p. 101. For details see Boxler 
[8], Lemma 3.3. 

Let Xi, i = O, ..., m, be vector fields on IR a. For k__> 1 and c~ > 0, X 0 is supposed 
to be a egg'%function (i.e. a k-times continuously differentiable function whose 
k-th derivative is globally H61der continuous of order ~) and Xi, i= 1, ..., m, 
to be cgk+l'%functions. Moreover the derivatives of Xi, i=0,  ..., m, up to k-th 
((k + 1)-th, resp.) order are assumed to be bounded. 

Consider the following stochastic differential equation on IRd which is defined 
for all telR and is interpreted in the sense of Stratonovich: 

d x t = X o ( x t ) d t +  ~ Xi(x~)odWi(t ), Xo=XeiR a, teiR. 
i=1  

(3.1) 

For each fixed xaiR a the solution ~o(t, co, x) will be ~-+-measurable for t > 0  
and ~ - -measu rab le  for t < 0. The solution (p (t, o), x) for t < 0 has to be under- 
stood as the solution of a backward equation (see, e.g., Kunita [24]). The solution 
of (3.1) defines a cocycle of cgk-diffeomorphisms for which the k-th derivative 
is locally H61der continuous of order fl < c~ (Kunita [24], p. 241). If the vector 
fields only satisfy local Lipschitz conditions then the solution of (3.1) will also 
induce a random dynamical system, provided there are appropriate conditions 
to prevent explosion. For further details see Kunita [24], II.5 and II.7. 
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a c~ /0 c~ji\ . Then the random dynami- If Xi(x)= ~ O~ji(X)- put Ai(x),=~X~k)j,k= 1 - -  j=l Oxj d 

cal system v~.'= TO (t, co, x)v obtained by linearizing along the solution ~o(t, co, x) 
also satisfies: 

m 

dvt=Ao(qO(t, co, x))vt d t+ ~ Ai(qo(t, co, x))vtodW~(t), Vo =v. 
i = 1  

In order to apply Theorem 2.1 we need a O,-invariant measure on f2 x IR e. 
Assume that there is an invariant solution p § of the Fokker-Planck equation 

m 

L* p+ =0, L* being the formal adjoint of the operator L+ , = X o +  1 ~ X 2. From 
i = 1  

this the desired invariant measure on ~2 x IRa may be constructed following 
Crauel [14], 6.3.2, by defining #(rico, dx)'.=lio,(dx)P(dco), where #~.'=lim cp -1 
( - t ,  co)(p +) P-a.s. t~oo 

3.2. Real Noise 

Let {~tJ teiR} be a measurable stationary ergodic process on a probability space 
(9, ~ P) taking values in a measurable space (Y,, Y/). s will be identified with 
the space of trajectories of 4- Furthermore we let ~ f ( ~ , ' )  be a family of 
functions on IRd depending measurably on the parameter ~e Y and satisfying 
global Lipschitz conditions with a Lipschitz constant which is almost surely 
integrable over every finite time interval. Consider the equation 

2o=f(~t(co), xt), Xo=XeiR d, teN,  (3.2) 

which may be understood pathwise as an ordinary differential equation with 

time dependent coefficients. Assume P ] i  ]]f(~t(co),0)[] d t < o o ] = l  for every 
T>0 .  Lo 1 

Then (3.2) has a unique solution which is absolutely continuous for any 
fixed t (see, e.g., Has'minskii [20], Theorem 3.1, p. 10). The uniqueness of the 
solution implies that it defines a cocycle of homeomorphisms with respect to 
the shift Ot co(s),=co(t+s) (see, e.g., Coddington and Levinson [12], remark after 
Theorem 7.1, p. 23). 

If the functions f (~,-)  are cgk, k >  1, then the random dynamical system 
consists of cgk-diffeomorphisms. This follows from Theorem 7.2, p. 25, in Codd- 
ington and Levinson [12] which is stated for k =  1 but which can immediately 
be generalized to the case k >  1. An examination of the proof shows that the 
assumption of continuity of f with respect to the first variable required there 
is not necessary in our case since we do neither claim nor need differentiability 
of the cocycle with respect to t. 
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Of ") ~o" Put A(~, Xo).'=~x (~, Then the linearized cocycle v-* vt:=Tqo(t, co, x)v 

satisfies the equation ~t=A(~t(co), (p(t, co, x))vt, Vo(co, v)= v. 
The integrability condition required in the multiplicative ergodic theorem 

is satisfied if I I A (40 (co), x)l[ ~ L1 (#), # being as in Sect. 2 (see Oseledec [29], p. 214, 
for a proof). 

3.3. Products of Random Diffeomorphisms 

Consider a stationary ergodic sequence {~ln~Z} of random variables on a 
probability space (f2, ~ P) taking values in a measurable space (Y,, ~1). If we 
identify once again the probability space with y z  then we will obtain a measure 
preserving transformation 0, if we put 0, co('):=co(- +n) for any neZ.  

For k__> 1, denote by Diff*(~ d) the group of c~*-diffeomorphisms on N d. Let 
G: g ~  Diff k (IR d) be measurable, write G. (co) ,= G (~. (co)) = G (40 ~ O. (co)) and define 

[ G. (co) o a . _  1 (co) . . . . .  a s  (co) 

q~ (n, co):= ~Id 

tGn-i_ll (co) o Gn+12 (co) . . . . .  G-- 1(co) o Go l(co) 

if n > 0  

if n = 0 .  

if n < 0  

Obviously q~ defines a random dynamical system of c6k-diffeomorphisms over 
{0,}. Assume that there is a O,-invariant measure # on f2 x p d. Combining 
Kifer [22], V, Theorem 1.2, p. 159, with some elementary calculations yields 
that the integrability condition of Oseledec's theorem may be written: 

[log + II TG(~I (co), x) ll + log + II T G -  1 (40 (co), x)l[] d #(co, x) < oo. 

4. Definition of Stochastic Center Manifolds 

We return to the general situation described in Sect. 2. In a first step we reduce 
this situation to the case of a cocycle having an equilibrium point at 0. For 
this we identify T x IR d with IR d itself and introduce a moving coordinate system 
attached to the orbit ~o(t, co, x). Let ~5(t, co, x, v),=(p(t, co, x+v)-cp( t ,  ca, x) for 
any x~lR a, v~ T ~ N ~ N  d. 

We assume that Oseledec's theorem applies to the random dynamical system 
q~. Our aim will be an application of the multiplicative ergodic theorem to 
~. For  this we first take (f2,~ ~, P ) : = ( ~ 2 x l R d , ~ |  d, #) as a new probability 
space. Then a straight-forward calculation shows that ~ is a random dynamical 
system on N. d over {Or} which means in particular that for 05 = (co, x)ef2 x p e = ~, 
(?(t, 05)= O(t, co, x) satisfies the cocycle property with respect to {Or}. 

Furthermore, ~5(t, co, x, 0)=0 for all teT, xeN. e P-a.s. and we may thus con- 
sider the linearization of ~ at 0. This linearization Tq5 is a linear cocycle over 
St, where ~,(05, 0)=(Or 05, ~5(t, 05, 0)) = (Or(co, x), 0). 

Since # is Ot-invariant and ergodic/2 :=P | 8o = #  | 8o will be a St-invariant 
and ergodic measure on O x IR d. 
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The integrability condition is satisfied for T(} as well because of 
TO(t  , (5, O)= TCp(t, co, x, O)= T~o(t, co, x) and thus Oseledec's theorem may be 
applied to the new system (~. Since the linearizations agree it provides us with 
Lyapunov exponents identical with those of ~o and with Oseledec spaces 
/~i((5, 0)=/~i((co, x), 0) for fi-a.a. ((5, 0 ) e ~  x IN a. 

For  notational convenience we will drop the tilde in the sequel and write 
~, and O, instead of O~ and 3,, resp. Finally we put Ei(co),=Eg(co, 0). Thus we 
have shown: 

Proposition 4.1. Without loss of  generality the random dynamical system q) may 
be assumed to have an equilibrium point at x = O. 

In a second step the Oseledec spaces will be used to introduce a random 
coordinate system. For this we define 

Ec(co).'= @ E (co), @ E (co), Eu(co).-= @ E (co). 
Ai=O 2i<0 Ai>O 

Throughout this paper we will always assume that Ec(co) 4= {0}. For any t e T  
Oseledec's theorem yields a decomposition of To IR a-~ IRa: 

]R a = E c (~gt co) �9 E~ (~t co) Q E.  (~t co). 

Projecting the random dynamical system onto E~ along Ec �9 E, and so on and 
denoting the projections by subscripts we obtain for any t6 T: 

q) (t, co)= [(p (t, co)]c + [c_p (t, co)]~ + [Co (t, co)],=." (pc(t, co)+ qos(t, co)+ qo.(t, co). 

Linearize the random dynamical system at the equilibrium point x = 0 ,  put 
}F(t, co).'=rrp(t, co, 0) and ~(t, co, x),=~o(t, co, x) -}g( t ,  co)x. Hence q~(t, co, x )=  
}P(t, co)x+q)(t, co, x) and by construction we know that ~(t, co, 0)= 
D~(t ,  co, 0 )=0  where D ~  denotes the derivative with respect to x. Since 
}P (t, co)Ei (co)= E i(ot co), }P has block diagonal structure in the coordinate system 
described by the Oseledec spaces we obtain the following decomposition for 
an initial value x = xc(co)�9 xs(co)G x,(co) (the notational conventions being evi- 
dent): 

(pc(t, co, xc(co), x~(co), x,(co))= ~(t,  cO) Xc(co)+ q)c(t, co, x~(co), x~(co), x,(co)), (4.1a) 

~Os(t, co, xc(co), Xs(co), x,(co))= Z(t,  co)x~(co)+ ~s(t, co, xc(co), Xs(co), x.(co)), (4.1 b) 

(pu(t, co, xc(co), x~(co), xu(co))= ~(t ,  co)Xu(co)+ ,/',,(t, co, xc(co), x~(co), x,(co)). (4.1 c) 

To keep notation simple we will write x c instead of xc(co ) although our initial 
values will still be random. 

Let ~ 0 R  d) be the set of all closed subsets of 11/endowed with the Hausdorff  
distance. Then ~:(IR d) is a metric space (see e.g. Castaing and Valadier [11], 
II, w p. 38). A mapping F: f 2 ~ : ( N  a) will be measurable if it is ~,, 
N(~(lRa))-measurable (Castaing and Valadier [11], III, w p. 61). 
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Definition 4.1. A global stochastic cgk-center manifold (k> 1) for the cocycle q~ 
is a measurable mapping M: ~ 2 ~ T ( N  d) for which there is a 0cinvariant set 
~2 o ~ O, P(f2o)= 1, such that for all co~2 o we have: 

(i) M(co) is a cgk-submanifold of Na containing the origin. 
(ii) qo(t, co)M(co)~ M(O~co) for all t s  T (invariance property). 

(iii) T o M (co) = Er (co), where T o M (co) is the tangent space of m (co) at 0. 

Remark. (ii) actually implies that (p(t, co)M(co)= M(Or co). 
In fact: (ii) also holds for the arguments - t  and 0~co instead of t and co. 

Then the application of (p (t, co) to both sides together with the cocycle property 
yields the result. 

A key step in the construction of stochastic center manifolds consists in 
introducing new random norms. For this we start with some estimates: 

Lemma 4.1. For each fl>O there exist measurable functions Cc, C~, C~: f2 
[1, oo[, which depend on fl, such that the following estimates hold: 

(i) C~- 1(co) e(i~-r ][x[I < l[ ~(t,  co)x[[ < Cs(co) e (z~+p)t [Ix[[ for all x~E~(co) and 
t>=O a.s. 

(ii) C~- ~(co) e -BIll [[xl] _-< ]1 ~(t,  co)xl[ _-< C~(co) e ~H/Ix[[ for all x~E~(co) and t~ T 
a . s .  

(iii) C~ 1 (co) e(~ + p)t I] x[I =< [] ~ (t, co) x]] __< C, (co) e (z~ p)* [] x[] for all x ~ E, (co) and 
t<=O a.s. 

Here we have put: 

2~ :=max 21, ~ :=min 2i, 2, :=min 21, ,~, :=max 2i. 
2 i < 0  ~ , i < 0  2 i > 0  2 i > 0  

Furthermore, H" ]l denotes the norm induced on the subspaces by the usual Euclidean 
norm in IR d. 

If T = Z  a proof may be found in Pesin [30], Theorems 1.1.1 and 1.2.1. If 
T=IR the estimates can easily be derived from Oseledec's theorem. The fact 
that the random dynamical system 5 u is continuous and measurable by definition 
ensures the existence and measurability of the functions C~, C~ and C,. 

For  a given fl > 0 consider the condition 

(LE) 2 s + 4 f i < 0 ,  2 , - 4 f i > 0 .  

Lemma 4.2. For each fl > 0 which satisfies condition (LE) we put in case T= ]R: 

oo  

Ixl~o -'= 5 e-(Z*+2~)~ r] ~(z,  co)x]l dz  
0 

for any x ~ Es (co), 

[xl~,= ~ e  -2~M]l~(r ,co)xl[d~ 
- c o  

for any x~Ec(co ), 

co 

]xl~:= ~ e (a~-z~)* [I ~ ( - ' c ,  co)xll dz forany  xeE,(co). 
o 
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In case T= Z the integrals are replaced by sums. Then 1. [~, 1. [~, and 1. [~ define 
measurable norms on E,(co), E~(co) and E~(co), resp. which are almost surely related 
to the norms induced by the usual Euclidean norm on IRa by the following estimate: 

c 2  * (co) c~ (co) 3fl+~.s-~sliXll~ixl s<= fl Ilxll, 

and similarly for l" I~ and I" I"~. Furthermore we obtain: 
(i) l~( t ,  co)xl~to,<e (xs+ e~)t [xlS for all xeE~(co) and t >O a.s., 

(ii) [~(t ,  co)xlCo~,o~e 2flltl Ixl~ for all xeE~(co) and te  r a.s., 
(iii) ]~( t ,  co)x["~,o<e(*=- 2e)t ]x[~ for all xeE,(co) and t <O a.s. 

Remark. The usefulness of these random norms is due to the fact that the esti- 
mates above do no longer contain constants which depend on chance, in contrast 
to Lemma 4.1. This is possible because all the knowledge about  the long term 
behavior of the random dynamical system is incorporated into the definition 
of the norm. 

Proof Since the discrete time case is completely analogous we restrict ourselves 
to the case T=IR. Lemma 4.1 together with the fact that ]]" [] is a norm and 
that ~(t ,  co) is an isomorphism imply that ]-[~o defines a norm on E~(co). Since 

is measurable in co and continuous in t the N | Y-measurabil i ty of the 
integrand and thus the ~-measurabi l i ty  of the norm will follow. 

The estimate relating both norms follows immediately from Lemma 4.1. Esti- 
mate (i) holds because for t > 0 we obtain: 

oo 

[Z(t, co)x]~o,= j" e -tz'+2~)* II ~s(~, Otco) ~(t ,  co)x][ d~ 
0 

=e{Z~+2~)' ~e  -(~s+2~)('+') II ~s(t+ ~, co)xll d r  
0 

< e  (z*+z~)t ; e  -r L[ ~(r ,  (o)xlL d r = e  (~*+2e)' [xl~,. 
0 

The proofs of (ii) and (iii) are completely analogous and are thus omitted. []  

We wish to obtain a stochastic center manifold as a graph and thus we 
will need suitable spaces to work in. In order to define them we recall that 
the Oseledec spaces are considered as random variables Ei: f2-+ Ga~(IRa). Hence 
we may define: 

E.'={(co, x)es x IRa IxEEc(CO)}, 

~r:={h: E--+ iRa meas.lh(co, .): 

Ec(co) --+ Es(co ) | E,(co) a.s. continuous and bounded}. 
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Boundedness of h(co, .) is understood with respect to the norm 

Ih(co, ")l~o,o:= sup Ih(co, x) lo= sup l-lh~(co, x)[~o-t-lh.(co, x)l~] 
xeE~(o) xeE~(~) 

where hs..(co, ") denotes the projection of h(co, ") onto Es.u(co). 
�9 S , U  Furthermore let [h~..(co, )[o0,o~:= sup [h~,.(co, x)[~;" and put for any h, #m~r: 

d(h, #),=d(h~, #~)+d(h., ~.) where ~r 

I hs,.(co, " ) -  ~s,u(co, ") I~",o~ P(dco). 
d(h .... ~s,,,)"=S 1 + I h~,u(co, " ) -  ~s,.(co, ")I~", ~ 

x 
The fact that x ~ l + x is an increasing function for x > 0 implies the inequality 

[bl l a + b l  < lal +lb[  <_ lal + - -  which enables us to check that d 
l +la+bl  = l +lal+lbl  = l +lal l + l b l  
defines a pseudometric. Let X be the space of equivalence classes of 5f with 
respect to almost sure equality. It is therefore endowed with the metric of conver- 
gence in probability. 

Lemma 4.3. (X, d) is a complete metric space. 

Proof. In a first step a straightforward adaptation, the details of which will 
be omitted, of a proof of Federer [18], p. 79, shows the convergence of a Cauchy 
sequence with respect to the metric 

d,,(h, h),=inf{elP[K~(co)IIh(co,')-fi(co, ")ll~ >e]_-<~}, ~c= 1, 2, 

where Ilh(co, ")l]oo -'= sup [[h(o, x)[[ and K~: O--*]0, oo[ is any measurable func- 
xeEc(o)  

tion. Let (hn) be a Cauchy sequence with respect to d. An application of the 
cAco) 

C~- 1 (co) K 2 (co)-'= yields because of Lemma 4.2 first step to Ka(co). '=3fl+2s_2L, 

that dl(hm, hk)<d(hm, hk)<d2(hm, hk). For this reason it remains to be shown 
K2(co) 

that (h.) is a Cauchy sequence with respect to d2 as well. Putting K ( c o ) . - - -  
this follows if for c > 0 we combine the estimate K1 (co) 

c [hm(co,')-hk(co,')]o P(dco)+P[K(o)>c] 
d2(h.,, hk) < S l + c  Ihm(co, ")--hk(co, ")[o 

[K(~) <= cl 

<=d(c hm, C hk)+ P[K(co)> c] 

with the fact that d(ch,,, Chk)<=max{d(hm, hk), cd(hm, hk)} and with the Cauchy 
property of(h,). []  

Let k > 1 and L >  0 be given constants. Consider the following properties: 
(1) D)h(co, .) exists for a l l j=O . . . . .  k; 
(2) h(o ,  O) = O; 
(3) D ~ h(co, 0)=0;  
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L 1 ..., (4) [DJh~,,(o~,.)l~'2~<~foralj=O, k; 

(5) I Dg hs,,(co, x ) - D  k h~,,(~o, ~)l~;" ____ 2 Ix-Xl~ for all x, 2sEa(e)); 

where D~h(co, .) denotes the j-th order derivative with respect to the second 
argument. Let 

Ak(L):={hEXI3f2ocf2,  P(f2o)= 1, V co~f2o: (1)-(5)hold}. 

Lemma 4.4. Let (h,) be a sequence in Ak(L ) which converges to hEX. Then there 
is a set (2cg2, P ( ~ ) = I ,  such that for any co~(2, h has the properties (1)(3) 
and (5). 

Proof. Let (h,) be a sequence in Ak(L ) such that d(h,, h )~O for n ~ o e .  Since 
the metric d describes convergence in probability there is an almost surely con- 
vergent subsequence (h,k), i.e. h,k(co,-) ~ h(co,-) P-a.s. For  notational simplicity 
we will, however, write h, instead of h,k. 

(2) is obvious, and the proof  of the other assertions is now a purely analytic 
task: 

k = 1 : The Lipschitz condition ensures equicontinuity and thus Ascoli's theo- 
rem (see, e.g., Dunford and Schwartz [-16], Vol. I, IV.6.14, p. 269) implies the 
existence of a uniformly convergent subsequence of ((D 1 hJs,,(o~, ")). If we com- 
bine this with a lemma concerning the derivative of the limit function (see Dieu- 
donn6 [15], VIII, w Theorem 8.6.3, p. 163) then the desired properties will 
follow. 

k = 2: We apply the same reasoning as above to (D 1 h,~) instead of (h,). 
For  k > 2 the result follows by induction. []  

5. An Existence Theorem for Global Stochastic Center Manifolds 

Let 7 j be a linear cocycle, e.g., the linearization of a random dynamical system 
q), and assume the situation described in Sect. 2. Choose fl > 0 such that condition 
(LE) is satisfied, i.e. such that 22 + 4 fl < 0, 2,,--4 fi > 0. Since the long term behav- 
ior of 7 ~ will not necessarily carry over to rp := !P + ~ if �9 is of arbitrary size 
it will be important  to determine the class of nonlinearities which do not destroy 
the asymptotic behavior of the linear system. For  this we need some notations: 

C(co):=max {Co(co), C~(co), Cu(co)}, 

C ..... as in Lemma 4.1, 

[[p(co)N ,=max{Ippc(co)H, rlps(~O)N, [[p,(co)H}, 

p ..... (c~): IRa~ E ..... (co) the projection map. 
Let e j, j = 0 , . . . ,  k, be positive constants and define the following random 

variables: 

eJ(c~ C(~o)lip(co)l[ ei, j = O  . . . . .  k. 
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Consider the following property:  
For  any x, y ~ N f  and any te  T such that - 1 ___ t < 1 let 

(NL1)(eo, ..., ek) liD j ~(t,  co, x)ll __<~j(0,CO) for all j = 0 ,  ... ,  k; 

(NL2)(eo, --., ek) I Iok ~(t, CO, X)-- O k ~ (t, co, y)[I ----< C- 1 (CO) ~(0r CO) l I x -  Y lr- 

Denote by N L  ........ k the class of those r andom dynamical  systems ~o..=kv+~ 
for which ~ satisfies (NL1)(eo, ..., ek) and (NL2)(eo . . . . .  ek) for any x, y ~ p a  
and any te lR such that  - 1 < t <  1. 

After these preparat ions we are now able to formulate the key result of 
this paper. Its proof  will occupy the rest of this section. 

Theorem 5.1. There is a constant L o such that for any L, 0 < L < L o ,  and any 
fl, 0 < f l < � 8 8  2u), there are constants to(L)> ... > ek(L) > O, which depend 
on fl, and for any random dynamical system of class NL~o(L ) ...... ~(L) which consists 
of cgk, ~-diffeomorphisms there exists a global stochastic egg, ~-center manifold for 
P-a.a. CO@g2. It may be written in the form 

M(CO)= {(x, h~(co, x), h~(CO, x))Ix~Ec(CO)} 

with a function h~Ak(L). 

Before entering into the proof  we are going to express conditions 
(NL1, 2)(eo . . . .  , ek) in terms of the r andom norms introduced in Lemma 4.2. 
For  this we combine the continuity of the projection map  with the inequality 
relating the new norms and the original Euclidean norm. Hence we obtain 
as an equivalent formulat ion that  for any x, ye lR e and any t ~ T  such that  

- 1 < t_< 1 we have: 

(CM1)(eo . . . .  , ~k) [ Dj ~ ..... (t, CO, x)l~'~u<ej, j = 0 ,  ..., k; 

�9 ' ' ,  , , X l C , S , U ~  (CM2)(eo, e,) IDkq)cs,(t, CO, x ) - -Dk~  ..... (t, co, Y)l~,o =~eklx-ylo, ,  

where we have put 7 = 3  (3 fl + 2~-2~). 

Remark. If we compare  these two formulations we see that two stochastic effects 
have to be taken into account:  

The random variable C is due to the fact that Oseledec's theorem only 
describes the long term behavior  of the system whereas the system may behave 
very irregularly until a r andom time t(CO). The bigger the maximal  value which 
may be reached before time t(CO) the smaller ej(CO) has to be. 

The random coordinate system described by the spaces E ..... (CO) is not fixed 
but moves according to the multiplicative ergodic theorem. I f  the coordinate 
axes come close together in the course of time the r andom variable p will take 
big values. Once again ej(CO) has to be shrunk to cope with this phenomenon.  

Proof of Theorem 5.1. We will construct the stochastic center manifold as the 
fixed point of an appropr ia te  operator  acting on Ak(L ). The following lemma 
will enable us to define this operator.  
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Lemma 5.1. Given L > 0 and fl > 0 satisfying (LE). Then there is an eo (L)= 8o (L, fl) 
such that for any (p of class NL~o(L ) and any h~Ak(L) there is a set (2 c f2, P(D)= 1, 
such that for any toE(2 the map 

s~(co): E~(co) --, E~(O co), 

x --, (pc(l, co, x, h(co, x)) 

is a cgk, l_diffeomorphism" Here we have put 0 co:=Ol co. 

Remark. An analogous statement holds for the map x ~ (Pc(- 1, co, x, h(co, x)). 

Proof Since (p and hence ~o c is a cgk'l-map by assumption it remains to be 
shown that Sh(co) is a bijection. But Sh(co)(X)= ~(1, co) X+4~c(1, co, X, h(co, x)) 
where ~ is a linear isomorphism. By construction ~c has an equilibrium point 
at 0. Thus, if we choose eo(L ) sufficiently small, the smallness being measured 
in a norm which depends on/3, the inverse mapping theorem applies and yields 
the result. See, e.g., Abraham et al. [1], Theorem 2.5.2, p. 102. [] 

As a consequence of this lemma we derive some estimates which will be 
extensively used in the sequel. For  a fixed L > 0 we choose eo .'=eo (L) sufficiently 
small such that Lemma 5.1 holds and such that 7(1 + L)e o e2e< 1. 

Lemma 5.2. Assume the situation of Lemma 5.1. Let h, ~ A k ( L )  and y, yEE~(O co). 
(i) Choose x, 2~E~(co) such that Sh(CO)(x)= y, Sh(C0)(2)= y. Then we have: 

e2B 
Ix--2 I~_- < 1 --7(1 +L)  % e 2p lY--~IG~,, (5.1) 

(ii) Choose x, 2 e E~(co) such that Sh(CO)(X)= y = Sh(co)(2). Then we have: 

I x -  21~ < ~ ~~ e2p I h(co, ")-h(co,  ") I ~,~, (5.2) 
= 1 --7(1 +L) e o e 2~ 

Proof. Lemma 5.1 enables us to write 

x =  ~-1(1,  c o ) y - ~ - 1 ( 1 ,  co) ~c(1, co, x, h(co, x)) 

and similarly for 2. We take into account that ~c - l (1 ,  c o ) = ~ ( - 1 ,  0co) and 
make use of Lemma 4.2 and assumption (CM2)(e0) to obtain: 

I x -  21; <e2PElY-yl;o~+ y ~o(lX-21% + lh(co, x)-h(co,  2)1o,)]. 

h satisfies a Lipschitz condition since h~Ak(L). Together with our choice of 
8o this yields the result. 

The second case follows by similar arguments from the fact that 

Ix-2l~o= 1~-~(1, co)(~(1, co, x, h(co, x))-4~(1, co, 2, ~(co, 2)))1; 



524 P. Boxler 

if we make use of 

I h(co, x)-/7(co, 2)1,~ < I h(co, x) - ~(co, x)I~ + [ ~(co, x ) -  ~(co, 2)1o~ 

<lh(co,')-~(o~,')loo,o~+L[x-2[~,. [] 

Next we define an operator T: Ak(L) ~ X ,  h ~ Th, where we put for any yeEc(co): 

(Th)(co, y)..=~os(1, 0 -  1 (-D, X _ l ,  h(O_ 1 09, x_ 1))+ ~Ou(- 1, 0r Xl,  h(Oco, xO). 

Here x_ 1EEc(0_ 1 co) and xl  sEc(O co) are chosen such that 

q~c(1, ,9_ 1 co, x_ 1, h(O_ at.o, x_ 1))=Y = (Pc(-1, 0 co, xl ,  h(O co, xx))~E~(co). 

Various proofs of the deterministic center manifold theorem (see, e.g., Marsden 
and McCracken [--28], p. 30, or Iooss [,-213, p. 146) will serve as a guideline for 
the proof we are going to carry out now. It is structured as follows: 

(1) For  fixed fl, L > 0  and h~Ak(L ) choose go(L) according to Lemma 5.1. 
We show that there are constants go(L)>so(L)>...>ek(L)>O, which depend 
on fl, such that T(Ak(L))cAk(L) for any random dynamical system ~o of class 
NL~o(L) ..... ek(L)" 

(2) We prove that there is a constant L o > 0  such that for any L, 0<L_<Lo, 
and any cocycle ~o of class NL~o(L ) ...... k(L), T is a contraction on Ak(L). For 
these values of L (1) provides us with the required constants e~(L), j = 0  . . . . .  k. 
Hence the contraction mapping theorem ensures the existence of a unique fixed 
point h which is an element of the completion of Ak(L ) with respect to d. Thus 
h has the required properties because of Lemma 4.4. 

(3) We show that the graph of h is invariant, i.e. that q~ (t, co) M (co) = M (Ot co) 
for any tET. In terms of h this means that we have to prove that for any 
t ~ T  

~o~,,(t, co, x~, hs(co, x~), h.(co, x~))=h,,,(O, co, q~(t, co, x~, h~(co, x~), hu(co, xc))). 

Step (1) 

(i) Th is r162 gx-measurable: 
Here NAk(L):=YdxC~Ak(L), where g x  denotes the Borel sets of the metric 

space X. The assertion follows since h and the random dynamical system ~o 
are measurable by assumption and q) depends continuously on the initial values. 

(ii) (Th)(co, "): E~(CO)~ E~(CO)G E,(CO) is P-a.s. continuous and bounded: 
By definition (Th)(co, y)EE~(co)| for all y~E~(co). The continuity fol- 

lows from the continuity of h and cp together with Lemma 5.1. An application 
of Lemma 4.2 and assumption (C M 1 ) (So (L)) yields: 

I (Th)(co, y)lo,___< 1%(1, 0_~ co) h~(O_~co, x -  ~)l~ 

+ [ q,s(1, 0_~ o,  x_~, h(O_~ co, x -  O)l~ 

+ [ ~,(--1, Oco) h,(Oco, xe)lU+] ~ u ( -  1, Oco, xt ,  h(Oco, Xl))[~o 

< e  (x~+2p) [h~(,9-1co, x -  ~)l~_~ +e -(x~-2p) ]h,(Oco, xO]~o + 2go(L ). 

Thus the almost sure boundedness of h(co,-) implies the result. 
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(iii) (Th)(co, 0)=0 :  
This is a consequence of the facts that (p has a fixed point at 0, ~0~ is a 

bijection by Lemma 5.1 and h(co, 0)=0.  
(iv) DJ(Th)(co,.) exists for all j = 0, ..., k P-a.s.: 
The assertion follows if we take into account Lemma 5.1 because the random 

dynamical system consists of (dk-diffeomorphisms and heAk(L ). 
(v) Dt(Th)(co, 0 )=0  P-a.s.: 
For  a given y~Ec(CO), Lemma 5.1 enables us to consider x -1  and Xx as 

functions of y. Hence we may write: 

Dy x_ l (y)= [-~(1, 0_ 1 co) +D~_, ~c(1, 0-1  co, x _ .  h(O_ 1 co, x_ 1)))] -1 

and similarly for "Dy xl (y). On the other hand we have 

Dy(Th)(co, y) = [~(1,  0_1 co) D~ ~ hs(O_ 1 09, X_ 1) 

+D~_~ @s(1, 0 _ 1 o ,  X _ I ,  h(0_l co, x - 0 ) ]  Dyx-l (y)  

+ [ ~ ( - - 1 ,  Oco) D~, h,(Oco, X1) 

+ D ~  @,(--1, 0co, Xl, h(O co, x0)  ] Dy X 1 (y). 

The same reasoning as in (iv) will thus enable us to conclude. 

(vi) IDJ(Th)s,,(co, .)[~;~.~_< L for all j = 0 ,  k P-a.s.' 
' - 2  " '  

j = 0: Since h e Ak(L ) the estimate established in (ii) yields 

s L e(& + 2t~) q_ [ (Th)~ (co, y)[o, <~-  go(L). 

Assumption (LE) ensures that e (~'s+ 2fl)< 1 and thus the right-hand side becomes 
L 

< - -  if we replace go(L) by S(ol),=e(ol)(L)<go(L) sufficiently small if necessary. 
= 2  = 
An analogous argument holds true for (Th),(co, ") and yields an S(o 2). Hence we 
may choose So = So (L):=S~o 1)/x S(o 2). 

j = 1 : For  any 81 < So Lemma 4.2 and assumption (CM 1)(So, sl) imply that 

[ Z - t ( +  1, O+lco) Dx• 1 ~c(_+ 1, O_+ I(D, X_+I, h(,-,q+lco, x_+ 1))1~1o~e2/~ el. 

For  any c < 1 choose el(L, c) such that e z~ el(L, c)<=c < 1. Using an argument 
from the theory of matrix algebras (see, e.g., Dieudonn6 [15], VIII, w p. 154) 
we obtain: 

~r 1 = 1 
[[Id+~-l(')D~ (J~c(')]- 1[ = ,~1 ( -  ~ - I ( ' ) D ~  1--e2~ s,(L, c) " 
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If we combine this with the estimate derived in (v) and Lemma 4.2 then we 
will find that under the assumption (CM1)(So, Sl(L, c)) 

[Dy(Th)~(co, y)l~<a[Le(zs+4l~)+e (L,c)e 2~] a:= 1 
- [ 2  1 ' 1 - c "  

An analogous estimate holds for the unstable part  and assumption (LE) enables 
us to choose c and thus el .'=sa (L, c) sufficiently small such that both expressions 

L 
become < - - .  

- 2  
j > 1 : The calculations are completely analogous and are thus omitted. Once 

the estimations have been carried out for j = 0 ,  ..., k the desired constants 
s o > . . .  > e k are determined in dependence on the given L. 

s ,  g (vii) [Dk(rh)~.u(co, y)-Dk(Th)s,.(co, Y)I ;  _-<-~ l y - Y I ~  for all y, 3~eE~(co) P-a.s.: 

The proof  follows the same lines as the proof  of (vi) and will thus be omitted. 
Instead of making use of assumption (CM 1) we apply (CM2)(Sk), Sk <= Sk sufficient- 
ly small. For  a given L > 0  we will thus work in the class NL~o ..... ~ but for 
notat ional  simplicity we will drop the tilde in the sequel. 

Step (2) 
W e  have to prove the existence of a constant L o > 0  such that for any L, 
0 < L < L o ,  T is a contraction on Ak(L ). For  this we start with an arbitrary 
L > 0 and consider h, ~eAk(L). We are going to show the existence of a constant 
c, 0 < c < l ,  such that d(Th, T~)<cd(h, ~). In a preliminary step we will thus 
estimate 

I Th(co, ")- T~(co, ")l~,o~ = sup I Th(co, y ) -  Th(co, Y)l~o, 
x~E~(o~) 

where 

Sh(O-lco)(X-1)=y=Sh(Oco)(X1), Sh(O-lco)(ffc-1)=y=Sh(Oco)(.~). 

The estimates derived in Lemma  4.2 combined with assumption (CM2)(so(L)) 
yield: 

(rh)(co,.)--(rh)Aco, ")l%,~oN sup Ee (zs+2p~ Ih~(0-1 co, x - 0  
xeEo(~o) 

- -  ~ s ( 0 -  1 CO, :Z- d I~_ 1 o, 

+ 7  So(IX-1-2_~1;_,o~+ Ih(0_ 1 co, x - 0  

- ~ ( s _  1 co, ~z_ ~) I~_ ~ ~)] 

and similarly for the unstable part. For  simplicity we have written So instead 
of So (L). Because of assumption (LE) there is a 6 > 0 such that 2s + 4 fl < 6 < 0 
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and - ( 2 , - 4 f i ) < 6  <0.  Using this together with the same reasoning as in the 
proof of Lemma 5.2 we obtain after a straightforward calculation: 

�9 S I(Th)s(co,')-(Th)~(co, )l~,~ m �9 s -<e (o-2a) Ih~(O_aco,')-Bs(O_~co, )1~.~_,~o 

+ K Ih(O_, co,�9 co,.)l~,~ ~ ,  

A similar estimate holds for the unstable part. 

x 
is an increasing function with the invar- 

K Ih(co, ")-B(co, �9 

where K . -  
1 - ?  eo(1 + L )  e 2/~" 

Combining the fact that x--+ 
l + x  

lance of P with respect to 0 we may write: 

e ~o-2e~lhAco,') - �9 -hs(co, )[~,,o 
d(Th, T~)<E 2E 

- -  �9 $ 

l + e  ~a-/~) ]hs(co,')-~'~(co, )lo~,~ ~- 

e (a-2e) I h.(co, �9 �9 
+ E  

1 +e (a-z~) Ihu(co, ")-~u(co, ")1~,~, " 

I + K  I h(co, ")-h(co, ")l~o,~o 

In Step (1) we have seen that the dependence of eo on L implies that if 
we shrink L then eo will automatically be shrunk as well. Since e(a-2/~)< i we 
may thus choose K > 0  such that e (a -2~)+2K< 1. 

Furthermore we have: 

H.'=lhs,,(co,')-~s,u(co,')l~,,o ]hs,u(co," s,, - .~ls,u < L + L = L  s,, )l~,o,+lhs,.(co . . . . . . .  2 -  2 -"  

Since an application of H61der's inequality yields 

E tlH [ l + r l H + H ] < r l + r l L  H 
l + r l H - E  E - -  + ~ H  1 = I + ~ L  I + H  

for any constant t/, 0 < q < 1, we obtain: 

<l-e(a- 2~)(1 +L)  K(1 +L)  
d(Th, Th')=[ i+eTS=_2~ ~2 i+KL].a tn , ' "  ~)=:c(L).d(h, ~). 

We have already chosen K such that c(O)=e(a-2P)+2K<l. For  this K we 
determine L o > 0 and the continuity of c( ' )  ensures that c(L)< 1 for any L which 
satisfies 0 < L__< L o. 

As explained earlier, the contraction mapping theorem, which is now appli- 
cable, yields the assertion of Step (2). 

Step (3) 
By construction we know that Th = h, and this means that 

q)s(1, 0-1  co, x - l ,  h(0-1 co, X_ l))= hs(co, q)c(1, 0-1  co, X-l,  h(0_l  co, x -  0)), 

(pu(--1, Oco, X1, h(Oco, Xl))=hu(co , q)c(-- 1, ,,q co, Xl, h(0og, xt))) , (5.3a, b) 
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In order to prove the desired invariance property we will thus proceed in several 
steps: 

(i) We are going to prove that for any y~Ec(oJ) we have: 

~o~(-- 1, co, y, h(co, y))=h~(O_ ~ co, ~oc(- 1, co, y, h(o), y))) 

(p.(1, e), y. h(co, y))=h.(Oo), qoc(1, co, y, h(co, y))). 

We restrict ourselves to the proof of the second assertion. From Eq. (5.3b) we 
know that 

(p,(-- 1, 8co, x, h(8 co, x)) = ~ ( -  1, 0 ~ )  h.(Oo~, x) 

+ ~ , ( - 1 ,  Oco, x, h(Oco, x))=h,(co, y), 

where y =  (pc(- 1, 0co, x, h(O co, x)). 
Now let yeEc(co ) be given. After having determined x~Ec(O co) such that 

y =  (p~(-- 1, Oco, x, h(Oco, x))= ~ ( - 1 ,  Oco) x + q~c(-1, Oco, x, h(Oco, x)) 

we may write: 

qo.(1, co, y, h(co, y))= ~(1, co) h.(co, y)+  ~.(1, co, y, h(co, y)) 

= ~(1, co) ~ ( -  1, 0co) h,(Oco, x) 

+ ~(1, co) q~,(-1, 0 co, x, h(O co, x))+ ~b,(1, co, y, h(co, y)) 

= ~ ( t - 1 ,  8co) h,(Oeo, x)+ ~ , ( 1 - 1 ,  0o), x, h(0c~, x)) 

= ~o,(0, Oco, x, h(Oco, x))=h,(Oco, x). 

Here we have made use of the fact that the cocycle property implies that 

T(t-t-s, co)z+q)(t+s, co, z)= cp(t, O~co, (p(s, co, z)) 

= 7t(t, O~co) T(s, o~)z+ T(t, ,9~o0) r o), z)+q~(t, O~co, q~(s, co, z)). 

It remains to be shown that x = (pc(l, co, y, h(co, y)). But this follows by the same 
arguments if we write (pc(l, co, y, h(co, y))= ~(1, co)y+~c(1, co, y, h(co, y)) and 
insert the expression for y above. 

(ii) Applying the cocycle property several times a straightforward induction 
proof, the details of which are omitted, yields: 

q~s,,(n, co, x, h(o), x))= hs,,(0, co, q0c(n , co, x, h (co, x))) for all n e Z. (5.4) 

(iii) In case T= Z we are already done; thus assume T=IR in the sequel. 
We are going to prove that the invariance property (5.4) will also hold true 
for all telR. Because of (i) and (ii) it is sufficient to consider t such that 0 <  t < 1 
since an arbitrary t > 0 can be written as t = n + ( t -  n) where n__< t < n + l, i.e. 
0 = < t - n < l .  
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Since (CM1,  2)(so, . . . ,  ek) are assumed to be satisfied not  only at t ime t = _+ 1 
but  for any t = + ~, 0 < ~ < 1, we may  repeat  steps (1) and (2) of the p roo f  for 
such a ~ and obta in  a fixed point  h~ which satisfies 

(p~(z, co, x, h~(co, x))=h~,s(O~co, ~oc(z, co, x, h~(co, x))), (5.5) 

and similarly for  the unstable part.  Thus  we have to show that  h~=ha = h  for 
any r such that  0 < ~ < 1. Since the arguments  remain  the same for the general 
case we will assume for no ta t iona l  simplicity that  E,(co)= {0}. 

Case l " z = �89 

The cocycle p roper ty  together  with p roper ty  (5.5) applied several times yields: 

(p~ (~ + ~, co, x, h~ (co, x ) )=  (p~ (z, 0~ co, (Pc (~, co, x, h~(co, x)), 

h~(O~co, q~ c(z, co, x, h~(co, x)))) 

~o~(z, O~co, (pc(z, co, x, h~(co, x)), h~(O~co, q~c(z, co, x, h~(co, x))))) 

= ~Os(Z, ~o ,x ,h~(o ) , x ) )  

=h~(Oco, ~oc(1, co, x, h~(co, x))). 

Thus,  h~ and h are bo th  invariant  with respect to q~(l, co) and the uniqueness 
of the fixed point  of the ope ra to r  T implies that  h~ = h. 

Case 2: "c =P-, p, q ~ N  
q 

Working  with ~os(p, co) instead of ~Os(1, co) we may  repeat  the same reasoning 
as above if we take into account  (ii). 

Case 3." ~ N , ,  0 < ~ <  1 

We approx imate  ~ by a sequence (t,) of  rat ional  numbers.  
F o r  any t such that  - 1  _< t_< 1 we define TtS'u: Ak(L ) --+X, h--* Tt~'"h, where 

for any y~Ec(Ot co) we put:  

. . . .  h(co, x)), (Tt h)(Otco, y).=~os,u(t, co, x, 

x~Ec(co) being chosen such that  y = (pc(t, co, x, h(co, x)). 
Tt ~'" is unders tood  as an opera to r  on X which we endow with the following 

metric:  

II h(co, " ) -h(co ,  911 
d(h, fi)..=E 1 +  Ilh(co, " ) -h(co ,  ")Uoo ' 

where II-II ~ denotes  the supremum no rm derived from the Eucl idean norm.  
In order  to show invariance we have to make  sure that  T~'"h = h~,, for any 

heAk(L).  Up to now we know that  T.S '"h=hs,  for any h e N .  This implies: tn 

d(T~S," h, h~,,) <=d(T~," h, Tt~,U h) + d(T~," h, h~,,)=d(T~," h, TS," h). tn 

F o r  n ~  0% t, tends to ~ and since the r a n d o m  dynamical  system is cont inuous  
in (t, x) we obta in  that  ][~Os, u(t~, co, xt~, h(co, xt~))-~Os,u(~, co, x~, h(co, x3)l l~0 P- 
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a.s. and thus also with respect to the metric d. This yields d(T~'"h, hs,,)=0, 
and this was to be shown. 

Since the invariance property is completely established now the theorem 
is proven. [] 

Remark. We see from the proof  that the class of possible nonlinearities may 
become smaller if fl grows. However, if a nonlinear part is admissible for different 
values of fi then the corresponding stochastic center manifolds will remain the 
same. 

6. Local Stochastic Center Manifolds 

As we have already mentioned in the last section the conditions that we have 
to impose to obtain global stochastic center manifolds are quite restrictive. It 
is, however, possible to deduce the existence of local stochastic center manifolds 
from the global results. As we learn from the deterministic case they are just 
the right objects for applications, for example in bifurcation theory. We start 
with some definitions which will enable us to localize the entire construction: 

Recall that we have denoted the set of closed subsets of IR d by ~(Nd) .  
Then we consider set-valued maps U: ~2 ~ s ( N .  d) and W: Y 2 ~ ( T x l R  d) with 
solid values, i.e. O(co)..=int U(co)=~ 0 for almost all e)ef2, and similarly for W. 

The graph of these maps is defined as Gr U .'= {(co, x)EI2 x N.d[x E O(co)}, and 
analogously for W. If we are only interested in co~2oC~2 then we denote this 
by Gr Uo. 

As in Engl [17], Definition 2, measurability of a map %oc: Gr  W--rN-d with 
stochastic domain is understood in the sense that for any (t, x ) E T x N  d and 
any BeN(Nd),  {coef2l(t, x)~ l~(co) and q)loc(t, (D, x )~B}~ .~  

Definition 6.1. Let U and W be given measurable maps as above. Then the 
map (Ploc: Gr W ~  I I  d is called a local random dynamical system (or a local cocycle) 
of ~k-maps ( k > l )  on the random neighborhood U over {8t l t~T} if there are 
a 8,-invariant set f2ocf2, P(f2o)= 1, and maps t• Gr  Uo ~ r c~N 2  where N ~  
=(lR-+\{0})u {_+ oe}, such that ~01o ~ is measurable and such that the following 
properties hold for any co ~ ~2o: 

(i) 0(~o) is a neighborhood of the origin in IR d which satisfies 
~Olo~(t, co, x)~ U(~tco) for any (t, x)~ lIV(co). 

(ii) W(co) = {(t, x) e Tx  N ~ ] t -  (co, x) __< t < t + (co, x), x e U (co)}. 
(iii) ~Olo~(-, co,-): lIV(co) -*P ,  e is continuous. 
(iv) ~Olo r is a cgk-map with respect to x. 
(v) If(s, x)e l?V(co) then t• ~Olo~(S, co, x))=t• x ) - s ,  and for any t such 

that t -  (co, x) < t + s < t + (co, x), (Plot (t + s, co, x) is defined and satisfies: 

91oc(t + s, co, x) = qhoc(t , 0sCO , (Plot(S, co, x)). 

Let Dr(co) be the domain of definition of the map ~Oloo(t, co): Dt(co)c lRd~lR a, 
i.e. Dt (co),= {x slRal(t, x) ~ ~(co)}. Then we can show: 

Lemma 6.1. For any t~ T and co~f2 o, Dt(co) is an open set and q)loc(t, CO): Dr(co) 
--* D_~(8~ co) c U (Ot co) is a diffeomorphism. 
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Proof If we make use of (i) of Definition 6.1 and take into account that (v) 
implies (p~l(t, co)=q01oc(-t, 0tco) then we may proceed along the same lines 
as in the proof of Theorem (3.12), p. 127, in Boothby [5]. Since this is straightfor- 
ward we omit the details here. [] 

Assume that we are given a random dynamical system ~o on IR e as in Defini- 
tion 2.1. Then we define: 

Definition 6.2. A local stochastic cgk-center manifold (k > 1) for the random dyn- 
amical system ~0 is a measurable mapping Mloc: O -~ ~s(IR d) for which the follow- 
ing property holds: 

There are measurable maps U, W as above and measurable maps qS: T• O 
xIRd"~IR d, J~1: ~__>~f(IRd) such that on a Ot-invariant set f2oCf2, P(Qo)=I ,  

we have: 
(i) q5 [arw is a local random dynamical system on U which coincides with 

~o on ~. 
(ii) M(co) is a c~k-submanifold of IRd containing the origin. 

(iii) To M(co)=Ec(co), where To M(co) is the tangent space at O. 
(iv) Mlo~(co ) = h)(co) c~ U(co). 
(v) (p(t, co, x)eMloc(Otco ) for all (t, x)elYV(CO)c~(T• Mlo~(co)). 

Theorem 6.1. Let (p be a random dynamical system on IRd which consists of 
cgk-diffeomorphisms (k >-_ 2) and satisfies the assumptions of Sect. 2. I f  one of the 
Lyapunov exponents of the linearization vanishes then there will be a local stochas- 
tic cgk-1_center manifold for 9. 

Remark. If the local stochastic center manifold is described by a map h then 
D k- 1 h(co, ") will P-a.s. satisfy a local Lipschitz condition by construction. This 
means that there is not really a loss of smoothness. Our construction would 
also yield the existence of a local stochastic Cg~ manifold (i.e. described 
by a continuous map h which satisfies a local Lipschitz condition) for a 
(gl-diffeomorphism but since we have only defined cgk-center manifolds for k > 1 
we will not go into detail here. 

Proof We proceed in several steps: 
(1) Fix fl > 0 and determine Lo and constants ej(Lo), j = 0 . . . . .  k -  1, according 

to Theorem 5.1. Then we show that there are constants z, 6o>0 such that the 

transformed random dynamical system ~o*(t, co, x)..= ~ (p(t, co, z x) has the same 

Lyapunov exponents as q~ and satisfies (CM1, 2)(co(L0) . . . . .  ek-l(Lo)) for any 
x, y~lRd=Ec(co)GEs(co)| such that Ixl~<60, lyl~,<60. 

It is easily checked that the cocycle property is satisfied for q; and that 
the Lyapunov exponents remain unchanged because the linearization is invariant 
under this transformation. 

In order to prove the assertion we make use of the following lemma which 
is interesting in its own right: 

c ~ s , u  Lemma 6.2. For almost all e ~  ~ the map (t, x)-* [~ ..... (t, co, x)la,~ is jointly con- 
tinuous. 
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Proof The cocycle property enables us to write: 

oo 

X s m Iq~s(t, co, ) l ~ o , -  j" e -(z'+2~)~ II~(z, O, co)~( t ,  co, x)ll dz  
0 

oo 

= ~ e -(a'+2p)* ] l ~ ( v + t ,  c o ) [ ~ - x ( t ,  co) ~ ( t ,  co, x)]l[ dz.  
0 

Hence the statement follows from the joint continuity of ~o and hence of 7 ~ 
and ~ i n  (t, x). []  

Now we are ready to establish what we have claimed in step (1) above. 
Let us consider condition (CM1) first: 

For  j = 0, 1 Lemma 6.2 (which, by analogous arguments, also holds true for 
the derivatives of ~) combined with the fact that ~(t, co, 0 )=D  1 ~(t, o9, 0 )=0  
ensures that condition (CM1) is satisfied for any x in a suitable neighborhood 
of the origin and for any t such that - t o  < t < to for some to > 0. After a change 
of time scale, if necessary, we may assume without loss of generality that to = 1. 

For  j > 2 ,  D j q~(t, co, 0) will usually be 4:0. But since the chain rule implies 
D j q~*(t, co, O)=z(J-1)DJ ~(t, co, 0) we may argue as in the first case if we choose 
z sufficiently small. 

If, besides the arguments above, we make use of the mean value theorem 
then the assertion concerning (CM2) will follow as well. 

(2) In order to construct the map q5 ~ we generalize the cut-off procedure 
described in Sell [32], p. 381, to higher order derivatives by means of a Taylor  
series expansion. Taking into account Lemma 6.2 this procedure provides us 
with constants 6 and 5 such that 0 < 6 < ~<  6o and with a cgk-1, ~-map ~ which 
has the following properties for any t, [ t] < 1 : 

(i) $*(t, co, x )=  ~ ( t ,  co, x) for any xEB~(co), 
(ii) $*(t, co, x ) = 0  for any xCB~(co), 

(iii) $~..=7~+ $* is of class NL~o(L ) . . . . . . . .  (L)" 
Here we have put B~(co),={x[[xl~<6 P-a.s.}. 
(3) In this step we determine the maps U and W required in the theorem. 

For  any s t  T we consider the set 

U (0s o))..= {x ~/~  (Os co) [ ] ~ (t, 0s co, x)[~ . . . .  < 6 for all t such that [ t[ < 1 - [ s [} 

which contains 0 and is closed as an intersection of closed sets. Since ~o depends 
measurably on co we have thus defined a measurable map U. The same reasoning 
as in Lemma 6.2 shows that U has solid values. Note that for [s[___l, ~(~s~o) 
= B~ (0~ o)). 

For  given co~(2, x~U(c9) let t - (o ,  x),=sup{t<O[(o~(t, co, x)r and 
t+(co, x):=inf{t>OJ(o~(t, o~, x)r co)}. If 0r(t, co, x)~o(O~co) for any t < 0  
(t > 0, resp.) then we put t -  (o, x).'= - oo (t + (co, x),= + ~ ,  resp.). By construction 
we know that [ t • (co, x) [ > 1. 

Define the map W as in Definition 6.1, i.e. 

w(o)) = {(t, x) ~ T•  IR~I t -  (o), x)__< t ___ t + (~o, x), x ~ U (o)}. 
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Let ~0~o~..=~5[a~w and let (2oCf2 be the set of full measure for which ~o ~ satisfies 
the cocycle property. If (s, x) e l?V(co) and [ s[ < 1 then 
I c~(t, 0sco, c~(s, co, x))[o . . . . .  --Icp~(t+s, co, x)lu . . . .  <6  for all t such that ]t+s[__<l 
and this implies that (o~(s, co, x)s~J(Osco). If I s ] > l  then (o~(s, co, x)eB~(Osco) 
= r co) and thus (i) of Definition 6.1 is satisfied. 

The properties of (p~ obviously yield (iii) and (iv) of Definition 6.1. Further- 
more it is an immediate consequence of the cocycle property that for any 
(s, x)e IV,, t + (Os co, (Plot(S, co, x))= t ++- (co, x ) -  s, and that (v) of Definition 6.1 holds. 
Hence (P~oo is a local random dynamical system which coincides with ~o ~ on 

because inside U (') c Bo (.) the system has not been altered. 
(4) After these preparations we may repeat the first two steps of the proof 

of Theorem 5.1, for which the coeycle property is not needed, for the transformed 
system ~ which is defined on all of N J, satisfies (CM1, 2) but does not have 
the cocycle property. 

This procedure provides us with a map ~eAk_~(L) the graph of which 
describes a set M( . )  satisfying properties (ii) and (iii) of Definition 6.2 by con- 
struction. Let 

M~or U(co) and h~(co,')'=~'~(co,')[v(~). 

It remains to be shown that M~o ~( ) satisfies (v) of Definition 6.2, i.e. the local 
invariance property. At present we know by construction that it holds true 
for I t [< l .  But since on ~(-)  q5 ~ coincides with the cocycle q~ step (3) of the 
proof  of Theorem 5.1 may be repeated for any t up to the first exit from B(-). 

Hence we have shown the existence of a local stochastic center manifold 
M~oo(') for ~o ~ described by a map h ~. For  this reason a local stochastic center (1) 
manifold for the original system 9 is described by h(co, x)..=r h ~ co, - x . []  

Remarks. (i) The proof  has thus shown as well that the restriction of a global 
random dynamical system (p to a random neighborhood U which satisfies prop- 
erty (i) of Definition 6.1 up to the first exit from U(co) is a local random dynamical 
system. 

(ii) Theorem 6.1 also applies to the special cases described in Sect. 3, provided 
that the vector fields in 3.1, 3.2, resp. satisfy appropriate Lipschitz conditions 
such that the solution generates a cocycle of cgk-diffeomorphisms. See the refer- 
ences in Sect. 3 for more information. 

7. Dynamical Properties of Stochastic Center Manifolds 

7.1. Global Attractivity 

In this section we are going to investigate what happens if we pick an initial 
value which is not on the stochastic center manifold. For  this we return to 
the situation described in Sects. 2 and 5, respectively. 
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Theorem 7.1�9 Let M(co) be the stochastic center manifold of Theorem 5.1. Then 
we obtain: 

(i) I f  all Lyapunov exponents are <_<_0 then there is a map c~" ]R + ~ ] 0 ,  oo[ 

satisfying l im- l logc~( t )<0  such that for any initial values xceEc(co) and 
4 

x~EE~(co):  ,~oo t 

I~ps(t, co, xc, x~)-h~(Otco, q~c(t, co, xc, x~))l~o,<~c~(t) Ix~-h~(co, x~)l~, 

for any t > 0 a.s. 

(ii) I f  all Lyapunov exponents are >= 0 then there is a map c,: N.- -o ]0, oo I- 

satisfying lim -I logc , ( t )>0  such that for any initial values xceEc(co) and 
4 

x.eE.(co): ~-~-~176 t 

I q~,(t, co, xc, x,)-h,(O~co, (pc(t, co, xc, x,))l~,o~< c,(t) Ixu-h,(co, xc)l~ 

for any t <= 0 a.s. 

Proof Since the proof of (ii) is completely analogous we will only show (i). 
Let xc, x~ be given. Then Lemma 5.1 ensures the existence of an initial value 

xeEc(co) such that q~c(1, co, xc, x~)=y=Cpc(1, co, x, h~(co, x)). Estimating ]xc-x]~ 
as in Lemma 5.2 and making use of the invariance of the stochastic center 
manifold we obtain for ~ chosen such that 2s + 4 fi < 6 < 0: 

[ ~0~(1, co, xc, x~)-h~(Oco, (pc(l, co, xc, x~))l~,o 

< [ ~o~(1, co, xc, x~)-q~s(1, co, x, hs(co, x)) [~o 

+ [h~(~co, ~oc(1, c9, x, h~(co, x)))-h~(Oco, q~c(1, co, x~, x~)) 1~o, 

=< [-e~ [x~-h~(co, xr 

where arguments as in the proof of the contraction property (Theorem 5.1) imply 

the last inequality and where we have put K~ :=  
1-Teo ( I + L )  e 2~ 

The cocycle property enables us to iterate this procedure and yields estimates 
for any neN.  An arbitrary t > 0  is decomposed as t = n + ( t - n ) ,  0__<t-n<l .  
Thus the cocycle property together with an estimate at time t - n ,  which is 
derived like the one for time t-- 1, will imply the result if we take into account 
that e(~-2P)+K1 <1 (see the proof of Theorem 5.1). [] 

�9 C , S , U  Remark. Making use of the inequality relating the norms ] [,o and the Euclidean 
norm we may also express the estimates of Theorem 7.1 in terms of the Euclidean 
norm. In this case the functions %,  are replaced by maps c~,u(',') such that 
for any t > 0  (resp. t-<0) %,(t ,  ") is a random variable. For the Euclidean norm 
it is easily seen that the stochastic center manifold is attracting exponentially 
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fast with respect to the metric of convergence in probability. Moreover, if C~,,(') 
(see Lemma 4.1) is integrable then the exponential attractivity will even hold 
true with respect to the L~-norm. 

7.2. Dynamical Characterization of  Stochastic Center Manifolds 

Instead of describing a stochastic center manifold by its geometric properties, 
i.e. invariance and tangency to a certain subspace, one may also understand 
it as the collection of those initial values which show a certain dynamical behav- 
ior in both directions of time. In the deterministic case such a characterization 
may be found, e.g., in Sell's paper 1-32]. 

Given a random dynamical system ~o as in Sect. 2 and assume condition 
(LE) of Sect. 4, i.e. choose fl > 0 such that 2~ + 4 fi < 0 and 2 , -  4 fl > 0. For  a 
6 > 0 we define the following random set: 

WdOyrI(CO):=~X~'~ d lim sup 1 log [~0 ..... (t, co, llo~o, = x ~l ..... < 6  and 
t -* + oe t 

lim inf 1 l~ I q~ t- .-  o~ t ..... (t, co, x ~lr = - -6} .  

Let the assumptions of Theorem 5.1 be satisfied, which means in particular 
that q) is a random dynamical system of class NL~o(L ) ....... (L)" Before we are 
going to prove a theorem relating W~y, and the stochastic center manifold of 
Theorem 5.1 we will investigate in which way exponential growth rates carry 
over from the linear to the nonlinear random dynamical system: 

Lemma 7.1. Let  7 j be a linear cocycle for  which there is a constant tl > 0 such 
that 

17/(t, co)xl~t~<e "t Ixlo~ f o r a n y  x s l R e a n d a n y t > O a . s .  (7.1) 

Then we obtain for  any random dynamical system ~ o = ~ + ~  of  class 

NEro(L) ..... ~ktL): 

1 
l imsuP t log lq~( t ,  co, x)l~o~< q f o r a n y  x e l R  e a.s. 

t--+ o9 

Remark.  Obviously an analogous statement holds true for l iminf if there is 
an estimate of the linear cocycle for t_<_ 0. t~-~o 

Proof. In order to derive an estimate for I~o(n, co, x)]o.co we make use of (7.1) 
and assumption (CM2) together with the cocycle property and write: 

I q~(n, co, x)l~.o~<e n I ~ ( n - 1 ,  co, x)[s . . . .  +g  I,;o(n-1, co, x)ls . . . .  

<e"  [q~(n-1, co, x)l~ . . . .  +ge"  Iq)(n-2,  co, x)l~._~,o 

+g2 loP(n_2, co, x)la . . . .  
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where we have denoted 75o by g. We go on applying the cocycle property 
and the estimates (7.1) and (CM2) to the last term in this sum and finally 
obtain: 

n - - 1  

I(P(n, co, x) ls .o<g '  ]x[o,+e ~ ~ gk i~o(n_k_ 1, co, x)]~. k-~o~. 
k = 0  

This implies that 

e -v" [ (p(n, co, x) 1~.,,, 

n - - 1  

<e-n"  g' Ixl~+ Z e-"k~(e-n(n-k-1) ]q ) (n -k -1 ,  co, x)l~ . . . . . .  ) 
k = 0  

and if we estimate e -v" by 1 and put y,,=e -~" ]~o(n, co, x)]o.~) we arrive at 

. 1  

Y,<=g'Yo+ ~ gkY, -k - l  <=gyOexp gk , 
k = O  \ k = O  / 

where the last estimate is a consequence of a discrete version of Gronwall's 
inequality (see Beesack [4], Corollary 10.1, p. 96). This leads to 

n - 1  

log ]~o(n, co, x)lo.~,<~ln+logg ]xlo~+ ~ gk. 
k = O  

For a given t > 0  choose n such that n < t < n +  1, i.e. O < t - n <  1. Hence 

I ~o(t, co, x)l~,o~=l~o(t-n, O_,co, ~p(n, co, x))lo~o ~(en('-")-4- eD [qo(n, co, x)la.o) 

and thus the result follows if we take into account that g= 7 So < 1. [] 

Theorem 7.2. Let AB.'=min(--(2s+2fi), 2,--2fl). Then we obtain for any b such 
that 2 f l<b<A~:  

(i) Wry. is invariant with respect to (p, i.e. 

(p(t, (9) Wfy,(co)= Wfy,(Otco) for any tET  a.s. 

(ii) Let M(a~) be the stochastic center manifold constructed in Theorem 5.1 
which depends on fl via the random norms. Then we obtain: 

Wry. (co) = M(CO) P-a.s. 

Remark. The theorem means that Wa6yn may be interpreted as the dynamical 
characterization of the stochastic center manifold. 
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Proof (i) is an immediate consequence of the cocycle property. 
(ii) a) We are going to show that M(co)c Wa~ P-a.s. For this we write 

xeEr in the form x =(x~, h(co, x~)). Since the invariance of the stochastic center 
manifolds yields 

~o~,.(+ t, co, x~, h(co, x ~l~,. ell  1,9, ~ too 

s ,  L X c =[h~,.(O• q~c(+t, co, x~, h(co, x3))l?' ~__< 5- I~0~(_+t, co, x~, h(co, ~))1~,~ 

it is sufficient to estimate the center component. 
Lemma 4.2 yields [~(t, c o ) x c ] c o t o ~ e  21Jlt] ]Xc[o) and thus the assertion follows 

from Lemma 7.1. 
b) In order to show that W2yn(co)cM(co) P-a.s. we need the notions of sto- 

chastic center-stable resp. center-unstable manifolds M~S(co), M~"(co), resp. Since 
these objects may be constructed along the same lines as the stochastic center 
manifold we omit the details. We will make use of the fact that they may be 
written as graphs MC~(co)={(xc~, h~(co, x~))[x~seE~s(co)} (and analogously for 
M ~") where Ec~(co),= @ Ei(co) and h ~ (co,.): Ecs (co) ---, E u (co). 

,~.~ < 0 

We will prove that 2r implies that there cannot be a 5, 2 f l < 6 < A r  
such that x is an element of Wa~ Since M(co)=M~S(co)c~M~"(co), ~r 
implies that )2=(2~,, 2~)r say (otherwise one has to reverse time in the 
arguments below), i.e. 2~ 4= h~"(co, 2~,). 

The same considerations as in the proof of Theorem 7.1 provide us with 
an estimate for [q~s(t, O-tco, x~,, x~)-h~"(co, (oc,(t, O-tco, x~,  x~))[ s for any t > 0  
and any xc,eE~,(O_~co), x~eE~(O_~co). Since the arguments are by now familiar 
to us we will not go into details. 

We apply this estimate to x~,,=cp~,(-t, co, 2~, 2~), xs:=cp~(-t, co, 2~,, 2~) and 
obtain because of the cocycle property: 

[2~-hC"(co, 2~,)l~o<c~(t)](o~(-t, co, 2~,, 2~)- hC"(O_tco, ~oc,(- t, co, 2~,, 2~))[~ t- ,  

where gs(t) converges to 0 exponentially fast for t ~  oo with an exponential growth 
rate of 2~+2fl. After having multiplied both sides of this inequality with 
e - ( & + z f l ) t  w e  see that the left-hand side grows exponentially fast for t ~ o o  be- 
cause by assumption [)2~-hC"(co, 2c,)[~o 4 = 0. Since h~"(O_t co,') is bounded by con- 
struction this implies that qos(-t, co, 2~u, 2~) has to grow exponentially fast with 
growth rate > - (2~+2f l )>A~.  Hence 2q!Wfyn(co), which was to be proved. [] 

Remarks. (i) Once again it is possible to express Wfyn(co) in terms of the Euclidean 
norm (see Boxler [8], p. 117, for details). However, we will have to require 
an extra integrability condition if we wish to write 

W~y. (co)={xelR d limt_~+~sup It log  II ~0s,.(t, co, x)ll __6, 

lim inf -1 log [] g0s,,(t, co, x)l[ > - 5 ;  
t - +  - oo t ~ ~ " 
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(ii) If fl changes this will only imply that the upper and lower bound for 
6 is altered. Theorem 7.2 will still hold true, as long as the random dynamical 
system belongs to the class NL~o~L ) ...... k(L) which may have become smaller (com- 
pare the remark after the proof of Theorem 5.1). 

(iii) As in the deterministic case, geometrically characterized stochastic center 
manifolds M(co) are in general not unique (see, e.g., Vanderbauwhede [33], 
p. 27, for a deterministic example). But among them there is precisely one, 
W~yn(CO), which is singled out by its dynamical behavior. On the other hand, 
Theorem 7.2 also tells us that the set Wd~yn(co) is in fact a manifold. 

7.3. Reduction Principle 

In this subsection we will see that it is sufficient to examine the asymptotic 
behavior of the system restricted to the stochastic center manifold to deduce 
the stability properties of the entire system. Consider 

(Pc(t, co, z~, h(co, Zc))= T~(t, co) zr + q~(t, co, zr h(co, zc)), (7.2) 

where z~ e Ec(co ). Then the following theorem holds: 

Theorem 7.3. a) Let all Lyapunov exponents be <0. Then the zero solution of 
the original system described by (4.1) is asymptotically stable (resp. unstable) for 
t > 0 if and only if the zero solution of (7.2) has this property. 

Let the zero solution of (7.2) be asymptotically stable. Then there are maps 

ks, kc: R + ~ ]0 ,  oo[, lim -1 logk~ c(t)<0, such that for given initial values x~, xs 

there is a z~eEc(co ) for which the following estimates hold: 
(i) [(pc(t, co, xc, xs)-~oc(t, co, z~, h(co, z~))l~,,o<kc(t) for all t >O a.s. 

(ii) I~os(t, co, xc, x~)-h~(Otco, q)c(t, co, Zc, h(co, zc)))l~to~<k~(t) for all t >O a.s. 
b) Let all Lyapunov exponents be >0. Then results analogous to those in 

a) hold true for t <= 0 and for % instead of (p~. 

Proof The proof of b) being analogous, we restrict ourselves to a). 
Obviously the stability behavior of the entire system also fixes the stability 

behavior of (7.2). The other direction of the proof follows from the invariance 
of the stochastic center manifold combined with its attractivity property. 

For  the proof of the estimates (i) and (ii) we consider the following error 
functions: 

c(t, co, Co):=q)~(t, co, Co + Z~, so + hs(co, Co + Zc))-qoc(t, co, zc, hs(co, zc)), (7.3a) 

s(t, co, So).-=(p~(t, co, Co + Zc, so + h~(co, Co + Zc)) 

-h~(Otco, qoc(t, co, Co + Zc, so + h~(co, Co + Zc))) (7.3b) 

where we have put: xc = Co + zc and xs = So + hs (co, Xc). 
We already know from Theorem 7.1 that for any fixed Co in (7.3b), s has 

the desired growth. For given z c and So we will thus have to determine a Co 
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for which c in (7.3 a) has the desired growth. This co will do for both equations. 
This yields initial values x~ and Xs, and we will see at the end of the proof  
why this reasoning enables us to show the assertion. 

Let zr and s o be fixed. Then (7.3a) is solved by applying Schauder's fixed 
point theorem to the operator  V(co, .): Y(co) ~ Y(co), 

V(co, f)(t):=q)c(t, co, f (co, O) + z~, so + h~(co, f (co, 0)+zc))-q~c(t, co, z~, hs(co, z~)), 

where Y(co).'={f(co, .)@c~(~+,lRe)[f(co, t)~E~(Otco), lim [f(o), t) a(t)[~o~=O}, and 
t--* o0 

where we have put a(t) :=c[l( t )  (see Theorem 7.1). For  any coe~2 we endow 
Y(co) with the norm ][f(co,')ll"=sup [f(co, t)a(t)[~o~ and consider the convex 

t > 0  

bounded subset S(co):={f(co, .)sY(co)[ [[f(co,.)[] < K ~  for a suitable constant 
K~}. We are going to show that V(co,-) is a compact operator which satisfies 
V(co, B (co)) c B (co) for almost all co s f2. Thus, let f (co,.) e B (co) be given. 

1) HV(co, f)( ')[[ < K ~  a.s.: 
In order to obtain the desired growth rate we proceed as follows. We put: 

x~'~'.=qoc,s(t, co, f (co, O) + zr so + hs(co, f (co, O) + z~))-qOc,s(t, co, zc, h~(co, z~)), 

~" ".=~ s(t, 0.,co), e.'=~o. r 

The cocycle property together with assumption (CM2) implies that 

I x c ' s l ~ ( l l t ~ n - l ] - 4 - / ; )  ]Xc 11-~-~ [ x s _ l ] ,  c,s 

where we have omitted the indices at the norms for notational simplicity. 
We iterate this estimate for ]x~_ a] and obtain an estimate for ]x~[ containing 

only center terms and the term I x~l. The invariance of the stochastic center 

together with Theorem 7.1 yields [x~[ < c~(t) I Sol + 2 I x~l and thus we manifold 

are able to proceed as in the proof of Lemma 7.1 using a discrete version of 
Gronwall 's inequality (see, e.g., Beesack [-4], Corollary 10.1, p. 96) in order to 
derive an estimate for]V(co, f)(n)]~,~,. For  an arbitrary t the desired inequality 
follows once again as in Lemma 7.1. For  more details see Boxler [-8], Theo- 
rem 8.1. 

2) V(co, .)is a continuous operator:  
This is shown by means of estimates completely analogous to those used 

in 1). For  this, we omit the details. 
3) V(co, B(co)) is compact:  
We apply a theorem that may be found e.g. in Bourbaki [7], X, w 2.5, Corol- 

lary 3, p. 292, and which tells us that the desired compactness will be established 
as soon as we will have proved the equicontinuity of B(co). 

Assume that this does not hold true for some toEN +. Then this implies 
by the definition of equicontinuity that there is a ~/> 0 such that for any 6 > 0 
there is a f(co, ")eB(co) such that 

[ f(co, t o + c~) a(t o + 3)--f(co, to) a(to + c~)]~ > r I a(to + ~). 
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But since f(co, ")eB(co) the left hand side is < K o ,  and this cannot hold true 
for all 6 > 0 because a grows exponentially fast. Hence we arrive at a contradic- 
tion and the desired equicontinuity is erstablished. 

The assumptions of Schauder's theorem are thus satisfied and hence the 
existence of a fixed point f(co, .)~B(co) is ensured for almost all co~f2. By con- 
struction, it has the required properties and depends measurably on co. 

It remains to be shown that the map G: (zc, so)~(Zc+f(co, 0), So)=(xc, So) 
is one-to-one because then we will be able to determine Zc for given initial 
values x~ and xs. For  this we assume that z~+f(co, 0) =Sc+jT(co, 0) which implies 
that for any t__> 0 

~oc(t, co, 5~, hs(co, 5~))- q~(t, co, z~, h~(co, z~))=f(co, t )- f(co,  t). (7.4) 

On the other hand we may proceed as in the proof of Theorem 7.2 to derive 
the following estimate in which K (t) grows more slowly than a (t): 

Izc-  5clL < K (t) I (pc(t, co, zc, hAco, Zc))-cpc(t, co, ~,  h~(co, ~3)1;~o~. 

5 This implies that lim a(t) ]~or co, zr hs(co, zc))-cpc(t, co, ~,  h~(co, c ) ) ]~=  oo if 
t~o~ 

�9 t c z~4:5~, whereas the definition of f yields a(t)If(co, ) l~<Ko~  for any t>0 .  
Hence Eq. (7.4) can only be satisfied for zc = 5~. [] 

8. Approximation of the Stochastic Center Manifold 

8.1�9 Existence of  an Approximation 

A stochastic center manifold, which is described by a map h, has to satisfy 
the following equations which, in general, cannot be solved explicitly: 

hs(co, q~c(1, 0-1 co, x - l ,  h(O-t  co, x - 0 ) ) =  q~s(1, O-lco, x - l ,  h(O_l co, x_0), 

h,(co, q)c(-1, Oco, x l ,  h(Oco, x0))= q~u(- 1, Oco, x~, h(Oco, X1) ). 

For a map ~ s Ak (L) we consider an operator V defined by 

(V~)  (co, y ) : =  (ps(1, 0 _ 1 co, x _ 1, ~ ( 0 _  1 co, x _ 2)) - -  (19u(-  1, 0 co, xl,  ~(0 co, Xl)) -- ~(co, y), 

where x_ ~ and xl satisfy 

(pc(l, O-leo, x - z ,  ~(0-1  co, x - O ) = y = q o c ( - 1 ,  Oco, xl ,  ~(Oco, xO). 

Obviously we have (Vh)(co, y)= O. 
Denote by f(co, y)= O(llyll) the fact that f(co, y)<  C(co) Ilyll a.s. for a suitable 

random variable C: s ~ ]0 ,  oo[ and y sufficiently small. Then we can show: 

Theorem 8.1. For a given (CAk(L) assume (VO(co, y):O(llyl] q) for some q > l ,  
almost all cosY2 and all y~Ec(co) sufficiently small. Then we obtain: 

I[h(co, y)-~(co, y)l[ =O(lly[Iq). 
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Proof The proof  is a straightforward adaptat ion of a proof  for differential equa- 
tions in Carr  [9] (Theorem 7, p. 35). A brief description of the arguments will 
thus be sufficient. 

For  a constant Ko > 0 (to be specified later) consider the set 

y,= {v ~ & (L) I 3 Kr, 0 < K r < K o" IF(m, Y) lo, < K r  (I Y I~) ~ a.s. for all y ~ E~ (co)} 

and define an operator  U acting on Y by U(F)== T(F+ O--(, T as in the proof  
of Theorem 5.1. 

Since convergence in the metric d implies that there is an almost surely 
convergent subsequence we see immediately that Y is a closed subset of Ak(L). 

Fur thermore  we can show that there is a constant K o > 0  such that the 
set Y.'= Y(Ko) satisfies: U ( Y ) c  Y For  this we write 

I (VF)(~o, y)I~, = I T(F + O(co, y ) -  ((co, y)I,~ 

= 19,,(1, o_1 ~o, Yc_l,r(O_lco, 2Z_ 0 + ( (0_  1 co, X_l)) 

-~ 9,u(-- 1, 0(D, )~1, I'(O0.), 21)--~ ((0 CO , )~1))--r Y)Io, 

< 19,~(1, 0_leo,  Ye_l,r(o_lco, Yr co, ~-1)) 

--9,s( 1, O-- i O'), X--l, ~(0-- 1 (D, X-- 1))1~, 

+ 1 9 , . ( - 1 ,  0co, & ,  v(oco, 2zl)+ ((0  co, ~1)) 

--9,u(--1, 0(D, Xl, ((0 (D, Xl))lu~ - [(V()((D, Y) lo, 

by definition of V(. Here x+ 1 and 2+ 1 are determined such that 

9,c(1, 0_ 1 co, x_ 1, ( (0 -1  co, x_ 1))=Y = 9,c(-1,  0 co, xl ,  ((0 co, x1)), 

(pc(l, 0 - l e o ,  )~_ 1, F (0_  10), 2~_ 1)--~ ( (0_  I(D, 2~- 1))=y 

= q~c(-- 1, OC0, ~l,r(ooo, 2 0 + ( ( 0 c o ,  2~1))" 

A combinat ion of the estimates obtained in Lemma  4.2 and Lemma  5.2 with 
condition (CM2) and the Lipschitz conditions satisfied by F and ( will then 
yield the result if we take into account that F~  Y. Since this type of arguments 
is now familiar to us we do not have to go into detail (see Boxler [8], Theo- 
rem 9.1). 

Since T is a contraction on Ak(L ) this implies that U is a contraction on 
Y which has a unique fixed point F o. Hence the definition of U yields: T(F o + () 
= Fo + (. Therefore the assertion follows because of the uniqueness of the fixed 
point of T. []  

8.2. Explicit Calculation of an Approximation 

Since the existence proof  given in the last subsection is not constructive we 
will show now how to derive an explicit polynomial  approximat ion up to second 
order. The same procedure works for higher orders as well but since the general- 
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ization does not contain any new ideas we prefer omitting the lengthy calcula- 
tions. 

By construction h(co, y ) = l  D2 h(co, O)(y, y)+O(lLYll 3) for any y~E~(co). In 
order to calculate the second order derivative we make use of the following 
consequence of the chain rule (see e.g. Abraham, Marsden and Ratiu [1], p. 92): 

D 2 (g of) (O)(v, w) = D 1 g(f(O)) D2f(O)(v, w) + D 2 g(f(O))(D 1 f(O) v, D 1 f(O) w). 

Furthermore we take into account that �9 ..... (t, co, 0 ) = D  1 ~ . . . . .  (t, co, 0)=0. The 
expression we obtain is used to calculate D2h~(O_lco, O)(T~(-1, co)v, 
T~(-1, co)v). The cocycle property enables us to iterate this procedure such 
that we may write: 

D 2 h~(co, 0)(v, v)= T~(n, O_,co) D 2 h~(O_,co, 0 ) ( ~ ( -  n, co)v, T~(-n, co)v) 
n- - I  

+ y~ ~(k, 0_~ co)D~o ~(1, 0_~_~ co, 0, 0 ) ( ~ ( - k - 1 ,  co)v, ~ ( - k - l ,  co)v). 
k = 0  

Lemma 4.2 together with assumption (CM 1)(~o, el, G2) implies that 

n - 1  

< L  e(&+z#)n + ~, e2 e(~,+z~)k. IO z h~(co, O)(v, v)lG= 2 
k = 0  

Hence we have shown, after a repetition of the same procedure for the unstable 
part: 

Theorem 8.2. Let h eAk(L ) define a stochastic center manifold (k > 2)for  the ran- 
dom dynamical system ~o. Then for almost all coEf2 and any y~Ec(co) h(co, y) 
may be written: 

oo 
h(co, y) = 1 ~ [~(n, 0_.o9) D~c ~s(1, 0 - , - 1  co, 0, 0) (~(- -n- -  1, co)y, ~ ( - -n - -  1, co)y) 

n=0  

+ T~(-n, 0,co) D2o ~,(--1,  0,+2 co, 0, 0)(T~(n + 1, co)y, T~(n+ 1, co)y)] + 0(lly[13). 

Remark. An  expression which is more closely related to the usual Taylor series 
expansion in the deterministic case may be obtained from an interpretation 
of D 2 ~s,u(---1, Okco, 0, 0) as a real quadratic form described by a symmetric 
linear operator, which can be transformed into a diagonal one. See Gantmacher 
[19], X, w 5, p. 308. 

8.3. Examples 

a) Real noise: 
We consider an ordinary differential equation disturbed by real noise: 

2t = A(r xt), x ( O ) = x o e ~  z, 
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0 
a =  w tU  nte  ab,e 

functions a, b, c and a measurable stationary ergodic process {,('). 
r t 

Put c~(t, co).'= 5 a({~(co))dz, fi(t, co)-'= 5 b({~(co))dr. Then the Lyapunov expo- 
0 0 

nents of the system above are 2 c = E a = 0 ,  2 s = E b < 0  (see, e.g., Crauel [-13], 
p. 244). Since 

(p(t, co, x ) =  7J(t, co )x+  i gJ( t - s ,  co) f (cp(s, co, x)) d s, 
0 

we obtain the following approximation: 

) h(co, y) = e e ~ . , a _ . ~  ee(1 -s,O . . . . .  ) e2=(s,O . . . . .  ) C ( ~ s ( O - n -  1 o.))) d s  
kn = 0 \ 0  

�9 ee~( -n- l ,~  MeEt (co  ). 

b) White noise: 
We consider the following two-dimensional system: 

d u t =  a u, d t+  0., u, odW1 (t), 

d v t = ( b v , + c u  2) d t  +r  vtodWz(t), 

where 0 " 1 > 0  and 0.2>0 describe the noise intensities and where WI and W2 
are supposed to be independent Wiener processes. We require the Lyapunov 
exponents to be = 0 and < 0, resp. This yields a = 0, b < 0. 

It is easily checked that 

qb~(t, co, x~, x~) = c x 2 i eb(t -~) + r e2~ w,(~)(~) d s and  ~r co, xr x~) = O. 
0 

In order to apply Theorem 5.1 we have to make sure that ~s satisfies the bound- 
edness, resp. Lipschitz, conditions required there (alternatively we have to work 
in a suitable neighborhood of the origin and to restrict ourselves to local results). 
This will impose conditions on the size of b, a l  and 0.2, which we assume 
in the sequel without stating them in detail. Hence Theorem 8.2 yields: 

h(co, y ) = c  e b" e -~w~(-")('~ ~ e b~ -~) e "~w~(* -~)(o . . . . .  ) e2~jwa(s-n- D(o~) ds  y2 
n 0 

+o(llyll3). 

This means that in the case of multiplicative white noise the stochastic center 
manifold is also influenced by the noise in the stable equation. If we switch 
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off the noise (i.e. put o-I=o-2=0) then we will get back the expression for the 
approximation of the deterministic center manifold. 

Finally we make use of the independence of 0 - , - 1  W2(1-s )=Wz( -s -n )  
- W z ( - s - n ) ,  Wg(-n)  and W t ( - s - n - 1  ) for 0_<s<l  and apply 
Ee~(W(~+s)-W~s)l=e (~2/z)l'l in order to calculate the expectation Eh(.,y). We 
obtain: 

- - c  
Eh(., y ) -  o-2 Y2 +O(IlyI[3)" 

b + 2 o - 2 + ~  

2 o-22 
The last expression makes sense if b + 2 o-t +~- : t :  0. But it is immediately checked 

that otherwise ~s(t, ", x) is not integrable and in this case the expectation will 
evidently not exist either. 

If the expectation exists we realize that it does not coincide with the determin- 
istic center manifold. This means that the influence of the noise cannot be inter- 
preted as a perturbation of an otherwise deterministic situation. The noise pro- 
duces a new effect which can only be explained within the stochastic framework. 
Hence the approach suggested by Knobloch and Wiesenfeld [-23], who are the 
first to try to include noise into center manifold theory, is not quite satisfactory 
because they replace the deterministic center manifold by a normal distribution 
with mean equal to the deterministic center manifold in order to describe the 
stochastic situation. 

Acknowledgements. The author would like to thank Professor Ludwig Arnold for many fruitful discus- 
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