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Summary. Estimators of the Palm measure of a stationary point process on 
a finite-dimensional Euclidean space are developed and shown to be strong- 
ly uniformly consistent. From them, similarly consistent estimators of re- 
duced moment measures, the spectral measure, the spectral density function 
and the underlying probability measure itself are derived. Normal  and 
Poisson approximations to distributions of estimators are presented. Appli- 
cation is made to the problem of combined inference and linear state 
estimation. 

O. Introduction 

"Frequency domain" statistical inference for stationary point processes has a 
reasonably lengthy but also somewhat sporadic history. Such early papers as 
Bartlett (1963, 1964, 1967) proposed methods of estimation for spectral density 
functions that are analogous to techniques used for ordinary time series; 
asymptotic properties, however, were often only incompletely described. With 
the exception of Brillinger (1972, 1975) relatively little development has occur- 
red since. At the same time, enormous strides have taken place in the theory of 
stationary point processes, most notably concerning the fundamental role of 
Palm measures. In addition, recently derived spatial ergodic theorems permit 
one to obtain new kinds of consistency results. 

One purpose of this paper is to apply these recent developments in order to 
establish strong uniform consistency and asymptotic normality of estimators of 
spectral measures and spectral density functions of stationary point processes 
on IR d. These we obtain as consequences of results that extend and refine 
consistency properties of estimators of Palm measures demonstrated in Kricke- 
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berg (1982). Our more powerful consistency theorems also allow estimation 
of the law P of the point process, rather than only the Palm measure P*. 

Organization of the paper is as follows. Section 1 contains background 
material on stationary point processes, Palm measures, and ordinary and 
reduced moment and cumulant measures, together with a spectral representa- 
tion theorem for stationary point processes. In Sect. 2 we present a variety of 
strong consistency theorems: for Palm measures, reduced second moment 
measures, spectral measures, spectral density functions and the probability law 
of the point process; the first four of these establish strong uniform con- 
sistency. The setting is completely nonparametric and the underlying space, 
while Euclidean, is of arbitrary finite dimension. Normal and Poisson process 
approximations to (scaled) stationary point processes are described in Sect. 3. 
Our central limit theorem generalizes that of Jolivet (1981). Finally, Sect. 4 
applies consistency theorems to the problem of combined statistical inference 
and linear state estimation. 

1. Preliminaries 

Let E=IR d, where the dimension d is arbitrary but fixed and for each xeE let 
z x be the translation operator y ~ % y  = y - x .  Lebesgue measure on E is denoted 
by dx or 2, as convenient. Let the sample space f2 be the set Mp of locally 
finite, simple point measures on E, endowed with the Borel a-algebra N 
engendered by the vague topology (see Kallenberg 1983); let N be the coor- 
dinate point process N(e))=c0. For each x define 0~: f2~f2 by 

NoOx=NZx I ; (1.1) 

note that Oo=I, the identity mapping on f2, and that 0x0v=0~+ v for each 
x and y. Given a probability P on (f2, N), N is stationary with respect to P 
if the flow (0~) is measure-preserving for P: PO21=P for all xeE. The for- 
mulation is due to Neveu (1977), to which the reader is referred for details; 
equivalently, N is P-stationary if and only if N z 2 t = N  in P-distribution for 
each x. An event FeN is invariant if 021F=F for all x; the probability P is 
ergodic if P(F)= 0 or 1 for every invariant event F. Our consistency results are 
proved within the statistical model N of ergodic probabilities under which N is 
stationary. For asymptotic + normality we require further assumptions - finite- 
ness of reduced cumulant measures - that bring about only weak dependence 
of distantly separated portions of N. In all cases our asymptotics pertain to 
single realizations of N observed over increasingly large compact, convex 
subsets of ~a. 

For each probability P under which N is stationary there exists (Neveu 
1977, Theorem II.4) a unique a-finite measure P* on f2, the Palm measure of P, 
satisfying 

e [  S H (O~ o~, x) N (o~, dx)] = E* IS H (o), x) dx] (1.2) 

for every bounded, measurable function H: ~ x E~I t . ,  where E* denotes "ex- 
pectation" with respect to P*. When P*(Q)<oe the probability Po(') 
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= P*(.)/P*(Y2) is the Palm distribution; its heuristic interpretation is that P0(') 
=P{-[N({0})=I} ,  i.e., Po is the distribution of N conditional on the (null) 
event that a point is located at the origin. 

Moment  measures are also important. For  each k, let N k be the k-fold 
product measure 

Nk (dxl  . . . .  , dxg) = N (dxl)  . . . N (dxk) ; 

then N admits a moment  of order k with respect to P if the measure 

#k(dxl  . . . .  , dXk)= E[Nk(dx~  . . . . .  dXk) ] (1.3) 

is locally finite, in which case #k is termed the moment  measure of order k. For  
z e E  k-1  let 2 z be the image of Lebesgue measure 2 under the mapping x--* 
(z 1 + x, . . . ,  z k_ 1 + x, x) of E into E k. By stationarity, each extant moment measure 
#k admits a disintegration (see Krickeberg 1974, 1982) 

# k =  S 2~#k.(dz), (1.4) 
E k- 

where #k,, a measure on E k-~, is the reduced moment  measure of order k. In 
particular, for k = l ,  U - * = { 0 }  and p ' , = v % ,  with the scalar v known as the 
intensi ty  of N. 

Cumulant and reduced cumulant measures are defined analogously. If N 
admits a moment of order k then the measure 

~k \J=(~I1 f j )= E (--1)k~[-l([J[ - 1)' H ].Z gg (jl~jyfj) (1.5) 

is the cumulant  measure of order k. In (1.5), ( l~fJ)(x)= lqfj(xy) and the sum- 
mation is over all partitions J =  {4,  ..., Jjr of {1 . . . . .  k}. The reduced cu- 
mulant measure 7k, satisfies 

7 ~= 5 2=2k,(dz); (1.6) 
E': i 

it is a signed measure in general, but whereas moment measures, reduced 
moment measures and cumulant measures are not finite except in trivial cases, 
reduced cumulant measures may be finite, in the sense of having finite total 
variation; this finiteness (which is analogous to integrability of the covariance 
function of a stationary process on IR) implies that distant parts of N are 
nearly independent. 

The covariance measure p is the reduced cumulant measure of order two; 
for it the disintegration (1.6) becomes 

_ _  2 p ,  (dx) - # ,  (dx) - v 2 dx ,  (1.7) 

so that estimation procedures applicable to reduced moment measures yield - 
by substitution - estimates of the reduced covariance measure; these are 
applied in Sect. 4 to the problem of combined inference and linear state 
estimation. When N is a Poisson process with intensity v, then p , = v % ,  a 
manifestation of the independent increments property of N. 
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The crucial relation between Palm measures and reduced moment measures 
is that the latter are ordinary moment measures with respect to the former. 

Lemma 1.1. Let N be a stationary point process admitting moment of order k > 2. 
Then 

k * ~ ,  = E I N  k -  1]. (1.8) 

The proof is given, for example, in Krickeberg (1982), as is that of Lem- 
ma 1.2 below. Under the convention that E~ so  that # . - r e  o , * -  (1.8) 
obtains for k = l  as well, becoming v=P*(~?). Thus P*(f2)< oo if and only if N 
admits a moment of order 1. 

Frequency domain analysis of a stationary point process is based on the 
spectral representation. Denote by @ the class of infinitely differentiable func- 
tions on E with compact support and denote the Fourier transform of OeN by 

~(v) = j e i<v'~> 0(x) dx, (1.9) 

where ( . ,  .5 is the inner product on Ra; ~ belongs to the class 50 of rapidly 
decreasing functions on E (see Rudin 1973, or Yoshida 1968). The inverse 
Fourier transform of ~ , e ~  is 

~(x) = (1/270 j e-i<v'x> 0(v)dr. (1.10) 

If N is a stationary point process admitting moment of order two, there exists 
(see It6 1955, and also Daley 1971 and Vere-Jones 1974) a unique complex- 
valued random measure Z on E, with orthogonal increments, such that for 
Oe~, 

N(O) = j ,~(0 Z(dv); (1.11) 
E 

this is the spectral representation of N. The measure 

F(dv) = E [IZ (dv)l 2] (1.12) 

is the spectral measure of N. 
As might be anticipated, the spectral measure and reduced second moment 

measure are linked intimately; this link is used in order to estimate spectral 
measures. 

Lemma 1.2. Let N be a stationary point process with moment of order two. Then 
the reduced second moment measure and spectral measure fulfill the Parseval 
relations 
and /~2,(0) = F(~ ) (1.13) 

F(0) =/~2,(~) (1.14) 
for t)~@. 

We conclude the section by describing the nonparametric estimators whose 
properties are developed in the remaining sections. Let N be a stationary point 
process with unknown probability law P, and suppose that a single realization 
of N has been observed over a compact, convex subset K of IR a. The funda- 
mental estimators are those (see Krickeberg 1982), of the Palm measure: for 
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H: ~2~IR+, P*(H)= fHdP* is estimated by 

e ) (1.15) 

While a "method of moments" justification stems from (1.2): 

E [P* (H)~ = 2 (K) -~ E [ ~ H(No 0~) N(dx)3 
K 

= 2(K) -~ E* [H(N) ~ dx] = E* [-H(N)] -~ P* (H), 
I( 

in other words these estimators are unbiased, a more compelling justification is 
based on the conditioning interpretation of P*. For each x6K that is a point 
of N - and only such x contribute to the integral in (1.15) - Nz~ ~ has a point 
at the origin, and therefore P*(H) is just a weighted average of H-values of 
translations of N placing each point in turn at the origin. In (1.15) and 
throughout the paper we suppress dependence on the "sample size" K, but this 
interpretation is only rather loose because P*(H) may not be measurable with 
respect to the a-algebra N~(K)= ~(N(B): B c K) representing observation of N 
over K. In many specific cases, there is a bounded set A (depending on H) such 
that H(#)=/-/(1~), where #A is the restriction of/~ to A, which renders /~*(H) 
measurable with respect to ~'N(K+A). This is not true, however, of the 
estimators/~ and s below. 

The remaining estimators are derived from P* by substitution. For esti- 
mation of the intensity, taking H=-1 in (1.15) yields the (obvious) estimator r 
=N(K)/2(K), which is ~U(K)-measurable. For estimation of the reduced sec- 
ond moment measure, choosing H(N)= N(f), where ,re C+ (E) (the set of posi- 
tive, continuous functions on E with compact support), gives 

fi2, ( f)  =-77Ld~ ~ N(dx) ~ f (y - x) N (d y) (1.16) 
K 

as ,~-u ((supp f )  - K)-measurable estimator of ~2, (f) = j f  d#Z,. Using (1.14) and 
(1.16) we then obtain 

= ;T4F) N(dx) x) N(ay) (1.17) 

as estimator of the spectral measure F. 
The appropriate spectral density function is not that of F, but rather that of 

the covariance spectral measure Fv, which satisfies the Parseval relation 

p,(@)=Fp(~). (1.18) 

It follows that the covariance spectral density function fp(v)=(dFp/ds satis- 
fies 

fp(v) = ~  E* [5 e-'<~ (N - v 2) (dy)3, (1.19) 
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and therefore we have substitution estimators 

1 
~(v) = 2re 2(K) ! N(dx)~ e-'<~'Y-~>(N - v  2)(dy). (1.20) 

A shared shortcoming of the estimators /7 and s is that they cannot be 
calculated from observation of N over compact sets. One method of approxi- 
mation by estimators requiring only observation over compact sets is trun- 
cation. For example, the estimator/7 would be replaced by 

Since 

*, 1 

<l-L- I N(dx) 16(y-x)[ N(ay), IF(q,)-/7'(0)1 =2(K) 

and since ~ is rapidly decreasing, asymptotic properties of the /7' will - 
possibly under mild additional assumptions - be those of the/7. 

Finally we investigate estimation of P itself, using estimators 

P(u) N(dx) u(N 
vxt~) K K 

For these and all of the other estimators, we establish strong consistency. 

(1.21) 

2. Strong Consistency Theorems 

For K bounded and convex, let 6(K) be the supremum of the radii of Eu- 
clidean balls contained in K. In order to have the "infinitely much" data 
necessary for consistent estimation we shall require that 6(K)-~oo; the crucial 
geometric consequence of convexity is that convex sets grow more rapidly than 
their boundaries: for every e>0, 2((SK)~)/2(K)~O, where (OKy is the set of 
points within distance ~ of the boundary of K. 

Here is our main consistency theorem, for the estimators/~*. 

Theorem 2.1. Assume that P is ergodic and that the intensity v is positive and 
finite, and let 2/( be a uniformly bounded set of continuous functions on ~2 that is 
compact in the topology of uniform convergence on compact subsets. Then almost 
surely with respect to P, 

lira sup[P*(H)-P*(H)l=0, (2.1) 
6 ( K ) ~  oo H E , . ~  

where ff*(H) is given by (1.15). 

Proof. We combine appeal to the spatial ergodic theorem of Nguyen and 
Zessin (1979) (as in Krickeberg 1982) with arguments adapted from Karr 
(1985). First let H be a fixed element of C(f2); then the random measure 

M(A) = ~ H(N z f  1) N(dx) = ~ H(No Ox) N(dx) 
A A 
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is covariant with respect to (0~), i.e., M(%A)oO~=M(A) for all A and x. It 
follows that Proposition 4.23 of Nguyen and Zessin (1979), which even though 
the argument provided there requires minor emendations, is correct, applies, 
with the consequence that 

lim fi*(H)= lim M(K)/2(K)=E[M([O, 1]d)J=P*(H) (2.2) 
~ ( g ) ~  oo ~ ( K ) ~  oo 

almost surely (and in LI(P) as well, but we do not pursue this aspect). In 
particular, from the choice H - 1  we infer strong consistency of the estimators 
f = N(K)/2(K): 

lira q=  lira N(K)/2(K)=v (2.3) 
J ( K ) ~  oo ~ ( K ) ~  oo 

almost surely with respect to P. 
Turning to the set ~ ,  given e > 0  there exists by finiteness of P* (recall that 

P*(f2)=v) a compact subset F of f2 such that P*(O\F)<e; we may without 
loss of generality suppose that F is a P*-continuity set, i.e., P*(•F)=0. More- 
over, there exist /]1 . . . . .  H c e ~  such that to each He~/g there corresponds 
/ (H)e{1 . . . . .  L} for which IrH-Ht(mrlr (=sup{lH(c0)-Ham(o) l :  co~F})<e. 
Then assuming, as we may, that (2.2) holds for/41, ...,/4L, and that (2.3) holds 
as well, in the decomposition 

sup [P* (H) - P* (H)[ < sup [P* (H) - fi* (/]e(m)[ 

+ max IP* (~/~) - P* (/4/) [ 

+ sup [P* (/l~(m) - P* (H)t, (2.4) 
H e W  

the second term converges to zero almost surely by (2.2). Concerning the third, 
for each H, 

IF* (/4~(m) - P* (U)l < I P *  ( / i t  (m lr)  - P* (H lr)l 

+ IP*(IZl~(s) lr~ ) -  P*(H lro)l 

< e P* (F) + P* (r") sup rJ HII co 
H e . ~  

__<~(v+ sup IIHII o~), (2.5) 
He~Cg 

so that this term can be made arbitrarily small by proper choice of e. Finally, 
by straightforward arguments (Karr 1979), (2.4) implies that almost surely 
P* ~ P *  vaguely as Radon measures on f2, and hence also weakly, by appeal to 
(2.3). Because F is a P*-continuity set, almost surely P*(U)<e for all suf- 
ficiently large K; consequently 

sup Iff* (H) - P* (/4e(m)[ =< e t3. (r) + P* (U) sup/I H II oo 
Heo%~ ~ HENF 

__<c(2v+ sup Ilgll ~) 
HEar  ~ 

once 6(K) is large enough, which completes the proof. [] 
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Strong consistency of the estimators fiz, of (1.16) of the reduced second 
moment measure will be shown in two forms, the first more intrinsically useful 
for estimation of #2, and the second directed at estimation of the spectral 
measure. 

Theorem 2.2. Assume that P is ergodic and that under P, N admits a moment of 
order two, and let fi~ be given by (1.16). Let 2K be a compact, uniformly bounded 
subset of C+ (E), each element of which is supported in the same compact subset 
K o of E. Then almost surely 

SU ,'2 lim p l # , ( f ) - # z , ( f ) [  =0.  (2.6) 
6 ( K ) ~  oo fe ,Y~ 

Proof. Given f~J~ff, define HI: t2~lR by Hs(#)=#(f ) .  Then Hs is continuous, 
and the proof will be effected by showing that the mapping f ~ H ~  of C+(E) 
into the set of bounded, continuous functions on ~ is itself continuous, for then 
~ = { H ~ :  f e ~ ( }  is the continuous image of a compact set, and is hence 
compact; at this point, (2.6) follows from (2.1). Let F be a compact subset of ~2; 
then a---sup {#(K o): #eF} is finite, and consequently for f, g~ 

sup LHI(# ) - Hg(#)l = sup Iv(f) - # (g)l < a II f -  g [I oo, 
#eF #EF 

which verifies the requisite continuity. [] 

Theorem 2.3. Assume that P is ergodic and that N admits a moment of order two. 
Let X be a compact subset of ~,  all of whose elements are supported in the 
same compact subset K o of E. Then almost surely 

S ^ 2  2 __ lim u p l # , ( ~ ) -  # , ( ~ ) [ - 0 .  (2.7) 
6(K)~ oo 0eo~ 

Proof Since ~ does not have compact support, (2.7) does not follow from (2.6). 
Instead, we follow with minor modifications the reasoning used to prove 
Theorem 2.2. In view of (2.3) we first replace ~2 = M v in the proof of Theorem 
2.1 by Mp(ff)={#: lim#(K)/2(K)=v}. As in the proof of Theorem 2.2, define 
H0(#)=#(~)  , OeoY'; then it suffices to show that the mapping ~ H  o is con- 
tinuous, for then we may appeal to a minor alteration of Theorem 2.1 in order 
to conclude the proof. By compactness of J~# and continuity of the inverse 
Fourier transform (Rudin 1973, Theorem 7.7), given e > 0  there is a compact 
subset K 1 of ~a  such that 

sup ~ I~(x)] dx<e. (2.8) 

Given a compact subset F of My(v), for all 0, 4 ~e~Y~ 

sup IH0(~) - Hr = sup I# (~) -  #(6)[ 
~EF ~ e f  

<sup[ y ifid#-- y (fid#[ 
/~eF K1 K1 

+supl  S C d # -  I 4~d#l 
~ r  K~ Kf 

< [sup ~(K~)] 116-q~lL~+2~ 
u~F 
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(by (2.3) and (2.8)) 
__< [sup #(K1) ] I[ 0 - ~b II1 + 2g 

#eF 

(Rudin 1973, Theorem 7.5) 
< [sup ~(K0]  II~-q~l[ ~ 2(Ko)+2e,  

#eF 

which gives the necessary continuity since K 1 depends on neither ~ nor q~. [] 

Corollary 2.4. Let ~ be as in Theorem 2.3 and let P be the estimator of the 
spectral measure given by (1.17). Then almost surely 

lira suplF(~9)- F(~)[ =0.  (2.9) 
6(K)~ ~ O e ~  

By the same pattern of reasoning, that is, because the mapping of velR a 
into the functional 

Hv(#) = ~ e-'<v'Y>(# - v 2) (dy) 

on M~(v) is continuous, we obtain the following consistency theorem for the 
estimators a~(v) of the spectral density function. 

Theorem 2.5. Assume that P is ergodic and that under P, N admits covariance 
spectral density function fp satisfying (1.19). Let s be given by (1.20); then for 
each compact subset K o of E, almost surely 

lim supls (2.10) 
6(K)~ o3 veKo 

It is instructive to compare the estimators J~ with periodogram estimators 
commonly used in statistical analysis of stationary point processes (see for 
example Britlinger 1975; or Cox and Lewis 1966). In our setting the per- 
iodogram is given by 

1 
f(v) -2re 2(K) I~ e-'<~'x> N(dx)l 2. 

Even for E = R and K = [-0, T] with T-+ 0% the periodogram is not a consistent 
estimator of the spectral density function, which is related to second moment 
properties of the periodogram. By contrast, the estimators fo of (1.20) are 
strongly uniformly consistent in the sense of (2.10) - but at the price (even if 
truncation is imposed) that their computation is quadratic in N(K), rather than 
linear. Thus neither estimator seems clearly superior. 

Finally we consider estimation of the probability law P itself. Even though 
P is uniquely determined by the Palm measure P* and even though, as the 
preceding development confirms, many of the main functionals of P of interest 
in inference are easily expressed as functionals of P* as well, estimation of P 
remains an important problem. Our estimators P(H), given by (1.21), are 
motivated by the identity 

EEN(K) H(N)] = E* [~ H(N v:~) dy], (2.11) 
K 

which follows at once from (1.2). 
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In the following theorem we establish strong - but not uniform - con- 
sistency of the estimators (1.21); indeed strong consistency in Theorem 2.6 
requires the full force of uniformity in Theorem 2.1. 

Theorem2.6. Assume that P is ergodic and that the intensity is positive and 
finite, and let H be a bounded, continuous function on Q. Then for the estimators 

/6(H ): 1 v N(dx)  mN,;L) dy, 

we have P(H)~P(H)= ~ HdP almost surely as 6(K)~oo. 

Proof For each K, by (2.11) 

~ ~ N(dx) f H(N zj[~_,) d y -  P(H) 
K K 

=< P(H)-I EEH(N ) N(K)/A(K)] 

1 I 1 H(Nz2~y)dy. +-  ~ E * [ H ( N z ; 1 ) ] d y - ~  fN(dx)~ (2.12) 

Since N(K)/2(K)--,v in L 1 (see discussion in the proof of Theorem 2.1), 
v-tE[H(N)N(K)/2(K)]~E[H(N)]=P(H), so that the first term in (2.I2) con- 
verges to zero. By Theorem 2.1 applied to the family 3f={p-,H(#zS~)} (we 
omit the straightforward verification of the hypotheses) we infer that 

1 
2(K) ~ H(N z;~) N(dx)~ E* [H(N z-~)] (2.13) 

K 

uniformly in y, which by an analytical argument (for which uniformity in (2.13) 
is crucial) implies that the second term in (2.12), whose components are 2(K) -1 
times the dy-integrals of the two sides of (2.13) over K, converges to zero 
almost surely. [] 

3. Normal and Poisson Approximations 

In this section we present a central limit theorem and Poisson approximation 
theorem complementing the consistency theorems of Sect. 2. For brevity we 
work only in the context of Theorem 2.1, which is, after all, the principal result 
in Sect. 2. 

Our central limit theorem extends the conclusion of the central limit 
theorem of Jolivet (1981) for estimators or reduced moment measures (of which 
the estimators (1.16) correspond to the reduced second moment measure), but 
does not weaken the hypotheses. 

Theorem 3.1. Suppose that P is ergodic, that under P moments of N of every 
order exist, and that each reduced cumutant measure yk. of order k > 2 has finite 
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total variation. Then there exists a centered Gaussian process {G(H): H~C(g2)} 
such that for  each H, 

2(K) ~ [P* (H) - P*(H)] ~ G(H), (3.1) 

where - d , denotes convergence in (P-) distribution. 

Proof. Consider the class A of functions H of the form 

H(#) = L c~ #kj- 1 (fj)dj, (3.2) 
j - - 1  

where the cj are real constants, kj and dj are positive integers and f;~ C(E ks- 1). 
This class A of "polynomials" is a vector space and an algebra (i.e., is closed 
under pointwise multiplication) and evidently separates the points of Q; con- 
sequently by the Stone-Weierstrass theorem, the (uniform) closure of A is C(Q). 
It suffices, therefore, to show that (3.1) holds whenever H has the form (3.2). By 
the continuous mapping theorem, this last assertion holds if for each n, 
k 1 . . . . .  k, and fl ,  "", s  

^k, ^k, kl , (G(H1) . . . .  , G(H,)), (3.3) . . . .  ~ ,  (L) )  - ( # ,  (L) ,  ~ , ~  d 
,~(K) E(~, (A), . . . ,  

where Hi(p)= #kj- l(f;) and where fi~ ( f ) =  2(K) -1 S u k - l ~  Ox(f) N(dx).  Using the 
K 

Cram6r-Wold device we can reduce (3.3) to show that for each k and f 

2 (K) ~ Efik. (f)  - #k. (f)]  d , G (Hr (3.4) 

where H f ( p ) = p k - l ( f ) ,  but (3.4) holds, in the presence of our hypotheses, by 
Jolivet (1981), Theorem 1. [] 

The hypotheses of Theorem 3.1 are rather severe, in part because of the 
generality of the convergence condition that 6(K)~oo.  Another shortcoming of 
normal approximations in general is that they are ineffective for estimation of 
small probabilities. Poisson approximations, by contrast can estimate small 
probabilities and, moreover, have a lengthy history (see for example, ~inlar 
1972) in the context of point processes. Unfortunately, however, in the follow- 
ing theorem the severity of the assumptions in Theorem 3.1 is not mitigated. 

For each r > 0 let B~ be the closed ball of radius r centered at the origin. 

Theorem 3.2. Let  F~, r>0 ,  be decreasing events for  which there exists a f ini te  
measure ~ on (2 such that 

lim rdn*( �9 nF~)= ~.(') (3.5) 
r ~ o o  

in the sense o f  weak convergence. For each r let N~ be the point process on 
Y2 x B 1 defined by 

N r = ~ 1 (N "Cx, l e ~ )  1 (XI~B,.) e(N~;r ' X,/r)" (3.6) 
d If the hypotheses of Theorem 3.1 are satisfied, then as r- ,oo,  N ~ - - - ~ f ,  

where f is a Poisson process with mean measure t/(F • B)= ~(F)2(B). 
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Proof. We verify first that E[Nr]~r I in the sense of weak convergence; indeed 
for F a ~-continuity set, 

E[Nr(F xB)] = E [ ~  I (N z; leF c~F~) l (x~r B) N (dx)] 
Br 

(where r B =  {rx: xsB}) 
= P*(N sF c~F~) )~(Brc~r B) 

(by (1.2)) 
= P* (N ~F c~ F,) r e 2 (B 1 c~ B) 

= P* (N ~ F c~ F~) r d 2 (B)~ ~ (F) 2 (B). 

It follows from this computation (cf. Kallenberg t983, Lemma 4.5) that (N,.) is 
tight and hence it suffices to show that for any "subscquence" (Nr,) converging 
in distribution the limit is Poisson with mean measure ~. For this, it is 
sufficient by (Kallenberg 1983, Theorem 4.7) to verify that 

P {N r (F x B) = 0} ~ e- ~r • m (3.7) 

for F a i-continuity set and B a Betel subset of B~. Under the assumptions of 
Theorem 3.1, in the manner of Jolivet (1981), one may use (3.5) and the 
computational rules of Leonov and Shiryayev (1959) to evaluate the cumulants 
of N~(F x B); with computational details omitted, the result is that for each fth_ 
order cumulant c t of N~(FxB) converges to t/(FxB). Consequently (3.7) 
holds. [] 

4. Combined Inference and Linear State Estimation 

In this section we apply the estimation procedures developed in Sects. 1 and 2 
to construct approximations to minimum mean squared error (MMSE) linear 
state estimators of unobserved portions of N, when the probability P - under 
which N is stipulated to be stationary - is unknown. 

Let us first suppose that P were known, and introduce the centered process 

M ( f ) = N ( f ) - v ~ ( f ) =  ~f d N - v ~ f  d2, (4.1) 

where v is the P-intensity of N. The linear state estimation problem is this: 
given data fiN(A) representing observation of N over a bounded set A with 
2(A)>0 and a function f (without loss of generality, vanishing on A), calculate 
that function f on A for which 

E [(M(f) - M(f))  2] __< E [(M(f) - M(g)) 2] (4.2) 

for every function g on A. Thus M(f) is the optimal (in the MMSE sense) 
linear predictor of the unobservable random variable M(f)  given the obser- 
vations ~N(A), and hence M(f)+ v 2(f) is the optimal linear state estimator of 
N(f). With P known, derivation o f f  is straightforward. 

Proposition 4.1. Assume that N admits a moment of order two under P and let p, 
be the reduced covariance measure. Given f vanishing on A, the function f 
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satisfying (4.2) is the unique function such that 

f(y)  p ,  (dy - x) = ~ f(y) p ,  (dy - x) (4.3) 
A 

for 2-almost all x~A. 

Proof By standard Hilbert space theory, M ( f )  is the projection of M ( f )  onto 
the linear space spanned by {M(g): g~LZ(A)}, and consequently the unique 
solution of the normal equations. 

E [ (M(f)  - M(f))  M(g)] = 0, g~L 2 (A). (4.4) 

With p the ordinary covariance measure, 

EEM(f )  M(g)] = ~ g(x) f(y)  p(dx, dy) 

= ~ g (x) [5 f(Y) P, (dy - x)] dx; 
A 

consequently (4.4) is equivalent to 

0 = ~ g (x) [ ~ f(y) p ,  (d y - x) - ~ f (y) p ,  (d y - x)] d x, 
A A 

confirming (4.3). [] 

Suppose now that P is not known, specifically that p ,  is unknown; nev- 
ertheless state estimation may be equally as important as when P is known. 
We shall construct "pseudo"-state estimators that approximate the "true" state 
estimators M ( f )  arising from (4.3) and describe their asymptotic behavior. 
More precisely, let f~C(E)  be fixed (recall that f has compact support) and 
suppose that N is observed over compact, convex sets K such that K c~(supp f )  
=0. We then construct, using estimators f i ,= f i2 , -~22  of p ,  based on the 
observations ~-N(K), estimators f of the solution to (4.3) with A = K ,  and 
establish that M ( f - f ) ~ o  (in an appropriate sense) as 6 ( K ) ~  oo. 

The estimator 
fi, = fie, _ ~a 2 (4.5) 

is obtained by substituting into the identity (1.7) the estimators , )=N(K)/2(K) 
and #,,^2 the latter given by (1.16). Given fi,, let f = a ~  be the unique function 
on K minimizing 

[I 5 f(Y) P,  (dy - . )  - ~ f(y) {), (dy - .)II 2- (4.6) 

As pseudo-state estimator based on the observations fiN(K) we then take 

f4(f)-= ~ f dN - ~ 2 ( f  lK). (4.7) 
K 

While the function f in Proposition 4.1 seems to depend on A there, in fact it 
does not: there exists a single function f~L2(E) such that for each A, ~ = f l  A 
is the solution to (4.3). Consequently ]~(f )  is an approximation to the true 
state estimator. 
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M ( f ) :  S f d N -  v )~(fl/0. (4.8) 
K 

Theorem 4.2. Assume that P is ergodic and that the reduced covariance measure 
p ,  has f inite total variation. Then as 3(K)--, 0% 2fI(f)-M(f")-->O almost surely. 

Proof. We begin with the decomposition 

M ( f )  - M ( f )  = [. ( f - f ) d N  + (v - ,~) 2(f l t : )  + ~[)~(flt:) - it ( f  It:)]. (4.9) 
K 

The second term is dealt with most easily; by ergodicity of P, f--,v almost 
surely and hence since f~L2(E)  this term converges to zero as 3(K)~oe .  

We next show that almost surely f - f  converges to zero in L z. Indeed, 

][ [. f (y)  f i ,  (dy - .  ) - [. f (y)  p ,  (dy -.)[I 2 

<= I[[. f (y)  f i , ( d y - " ) - [ ,  f ( y ) f i , ( d y - " ) H 2  

+ ]k [. f(Y) f i , (dy - .) - [. f (y)  p ,  (dy - .)II 2 

" d < I I [ ~ f ( y ) p , ( y - " ) - [ . f ( y ) f i , ( d y - " ) 1 1 2  

+ [I ~ f(Y) ~ ,  (dy - . )  - ~ f(y)  # ,  (dy - ")II 2 

(by (4.6)) 

< II S f(Y) ~, (dy  - . )  - [, f (y)  p , (dy  - .)[I 2 

+ 2 l[ ~ f(Y)  f i , (dy  - .) - ~. f (y)  p , (dy  - .)I[ 2 

= II ~. f (Y)  fi,(dy - .) - ~/(y) p , (dy  - .)H: 

^ d 2~ +2N[. f ( y ) p , (  y - ' ) - [ ,  f ( y ) p , ( d y - ' ) ] L  

which converges to zero by Theorem 2.1 applied to the estimators fi,. 
In view of the preceding paragraph, the third term in (4.9) converges to 

zero almost surely, and so also does the first, which completes the proof. [] 
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