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Summary. Let {Z(t)} be a supercritical Bellman-Harris process with off- 
spring distribution {Pk} and lifetime distribution G. It is shown that the 
finiteness of the offspring mean guarantees the existence of norming con- 
stants {C(t)} such that lira Z(t)/C(t)= W a.s. for some nondegenerate ran- 

dom variable W. C(t) is the/~-quantile of the distribution function of Z(t), 
where q < #  < 1, q being the extinction probability of the process. As a by- 
product of the proof, {Z(t)/C(t)} is shown to be "asymptotic" Markov. The 
theory of weakly stable sums of i.i.d, is used to get characterizations of W 
and {C(t)}. 

1. Introduction 

Let {Z(t)} be a supercritical age-dependent branching process assuming li- 
fetime distribution G and offspring distribution {Pk}. We shall assume that G is 

non-lattice, G(0)=0, Z(0) -1 ,  Pk@ 1 for all k and m = ~ kpk< oo. According to 
k=O 

the Bellman-Harris model each particle lives a random length of time having 
distribution function G and upon death gives rise to a random number of 
offspring according to distribution {Pk}. The lifetimes of the particles and their 
number of offspring are supposed to be mutually independent random vari- 
ables. We assume that we deal with a right continuous separable version of 
{z(t)}. 

It has been noticed by Harris [9] that the vector process {2(0 } of the ages 
of particles alive at time t, i.e. Z(t)=(xl(t), ...,Xz(o(t)) is a Markov process. Z(t) 
is a function of 2(0, being the number of components of 2(0. This function is 
measurable, but obviously not one-to-one and {Z(t)}, unlike {2(0}, is not, in 
general, Markovian. If the lifetime distribution G is exponential, {Z(t)} turns 
out to be Markovian and such a property makes its investigations easier to 
carry out. In the general case the underlying Markov process can be used to 
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190 H. Cohn 

derive properties of {Z(t)}. The study of {2(0 } involves the ages variables 
{x/(t)} which satisfy a kind of law of large numbers: if Z(x,t) denotes the 
number of particles alive at time t whose ages do not exceed x and A(x) is 
defined by 

i e-~"[1 - G(u)] du 
A(x) o - ~ o  , (1) 

e-~u[1 - G ( u ) ]  au 
0 

then [ Z ~ - J  converges almost surely to A(x) for any x>O. A(x) is called 

limiting age distributions and c~ is the so-called Malthusian parameter defined 
as the unique solution of the equation 

oo 

m y e-="dG(u)= 1. (2) 
0 

This property of the ages has been derived by Harris [9] under some re- 

strictions on G and assuming ~, kZPk<OO, by Jagers [11] assuming only 
~,, k = l  

k2pk <oo, by Athreya and Kaplan [3] in the case ~ k logkPk<CO, by 
k ~ 0  k = l  
Athreya and Kaplan [4] under some restriction on G and assuming 

~ k P k <  o% and finally by Nerman [14] and Kuczek [12] assuming only the 
k=0 
finiteness of the offspring mean. 

The object of this paper is to investigate the asymptotic behaviour of 

{Z(0 }. It was proved by Harris [9] that if ~ k2pk < oo, then {Z(O/e ~t} con- 
k = 0  

verges almost surely to a random variable W. Athreya and Kaplan [3] have 

relaxed Harris' condition to ~ k log kG<oo.  Harris' proof is based on re- 
k = l  

newal arguments, while Athreya and Kaplan's proof uses the convergence in 
distribution of {Z(t)/e ~t} and {Vt/e ~} as well as the martingale property of 
{ VJe ~t} where 

z(t) 
Yt = 2 V(x i ( t ) )  ( 3 )  

i - 1  

oo 

V(x) = m ~ e dGx(u ) (4) 
0 

and 
G(x + y) - 6(x) (51 

Gx(y)= 1 - 6 ( x )  

If ~, k log k G = 0% Athreya [1] has proved that {Z(t)/e ~} converges in proba- 
k = l  

bility to 0. Thus {e at} is not the right normalization in this case and the 
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problem of finding constants {C(t)} such that {Z(t)/C(t)} converges to a non- 
degenerate limit has been known as "the Seneta problem". We shall prove 
here that such constants exist and that {Z(t)/C(t)} converges almost surely to a 
non-degenerate random variable W. This result parallels the Seneta-Heyde 
theorem for the simple Galton-Watson process (see [16] and [10]) where the 
constants {C,} were obtained analytically. Such an analytical approach, how- 
ever, does not seem to carry over to the age-dependent branching processes. 

Our result will also provide a unified approach of the cases 

~klogkpk<oo and ~ klogkp k=oo, 
k = l  k = l  

since in the former case it will follow that C(t )~e  ~t. The idea of the proof 
consists in defining the norming constants as the quantiles of {Z(t)}, proving 
convergence to a non-degenerate limit for subsequences and then extending 
this convergence to the whole process. The main ingredient of the approach is 
the convergence of the empirical age distribution. The method used will also 
reveal the fact that while {Z(t)} is not in general Markovian, it is always 
"asymptotical Markovian", in view of the behaviour of the age process. 

The Laplace transform ~b of the limiting distribution function of {Z(t)/C(t)} 
is shown to satisfy the functional equation 

oo 

4)(0 = ~ f(~b(te-~X)) dG(x), (6) 
0 

where f is the generating function of the offspring distribution {Pk}. Characte- 
rizations of the tail of the distribution of W and of {C(t)} are also obtained. 

2. Results 

Theorem 1. Let {Z(t)} be a Bellman-Harris process with lifetime distribution G, 

G(0)=0, offspring distribution {Pk} and 1< ~ kpk< ov. Then there exist some 
k = 0  

norming constants {C(t)} such that lira Z(t)/C(t)= W a.s., where W is a random 

variable assuming distribution function F. F is continuous on (0, ~ )  and F(O)= q. 
O, the Laplace transform of F, satisfies the functional equation (6). 

Before giving the next result we need introduce the notion of slow varia- 
tion' a function L will be said to be slowly varying if for any 2>0, 
lim L(2x)/L(x) = 1. 

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. 

(i) I f  ~ k logkpk<oo  , then E(W)<ov and C(t )~e  ~t, ~ being the Mal- 
k = l  

thusian parameter defined by (2). 

(ii) I f  k log kpk= ~ ,  then L(x)=~ P(W>u)du is a slowly varying func- 
k = l  0 

tion, E (W)= o% E(W  ~) < oo for any fi < 1, and C(t)~ e~tL(e~t). 
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3. Proofs 

The proofs of the above given results are based on eight lemmas. 
We define the norming constants {C(t)} to be the #-quantiles of the 

variables {Z(t)}, i.e. C(t) is a number with the property 

P(Z(t) < C(t)) <= 12 < P(Z(t) <= C(t) + 1) (7) 

# will be assumed to lie in the interval (q, 1). Because {Z(t)= 0} is an increasing 
sequence of events and 

lim P(Z(t) =0) =q  = 1 - P(l im Z(t) = oo) < 1 
t ~ o o  t ~ o o  

we conclude that lim C(t)= oo. 
t ~ o o  

Lemma 1. From any subsequence of {Z(t)/C(t)}, say {Z(t~)/C(tO} , with lira t~ 

= oo one can extract a further subsequence, {Z(t'~)/C(t'~)}, converging in distribu- 
tion to a proper, non-degenerate distribution function F, with F(0)=P( l im Z(t) 
= 0). O, the Laplace transform of F, satisfies the functional equation t ~ 

oo 

c~(u) = S f(@(ue-~')) dG(x). (8) 
0 

Proof By the well-known weak compactness theorem, from any subsequence 
t ! t t ! {Z(t,)/C(t,)} one can extract another subsequence {Z(t,)/C(~)} converging 

vaguely to a limit F. 
Making use of the decomposition of the Bellman-Harris process according 

to the first split time 1 we get 

Z(t)/C(t)= ~ Zi(t-l)/Zz(t) Zi(t)/C(t) (9) 
i = 1  

where {Zi( t - l )}  and {Zi(t)} are, conditional on v, independent, identically 
distributed random variables, distributed like Z ( t - l )  and Z(t) respectively, v is 
an integer-valued random variable with distribution function {Pk} and / i s  a 
random variable assuming distribution G, and independent of Z~'s and v. 

According to a result by Kuczek (Theorem3.5.2 of [13]) for any s>0 ,  
l i m Z ( t - s ) / Z ( t ) = e  -~s a.s. on the set of non-extinction {lim Z(t)=oo}.  This 

t ~ o o  t ~ o o  

implies that l imZi ( t - l ) /Z i ( t )=e  -~l for almost all o~e{lim Zi(t)=ov}. Taking 
t ~ O O  t ~ O O  

now the Laplace transform of (9), employing the total probability formula and 
then taking the limit over t', as n ~ oo we get (8). 

Letting uS0 and u Too in (8) we get 

F(O)=f(F(O)) and F(oo)=f(F(oo)). (10) 

It is easy to see that 
t t F(0)= lim P(Z(t,)/C(tn)<=x)= lim P(Z(t')/C(t'n)<=l)<#<l (11) 
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where x is a continuity point of F with 0 < x < 1. Also 

F(co) > Jim P(Z(t'n)/C(t'n) < X) 
n ~ o o  

>lira inf P(Z(t~,) < C(t',) + 1) 
n ~ o o  

> ~ > o  (12) 

where x is a continuity point of F with x > 1. Since by a well-known result (see 
[9]) the equation s - - f  (s) assumes only the solutions s = q and s = 1 and because 
/~>q we get from (10), (11) and (12) that F(0)=q and F(co)=l ,  which proves 
that F is a proper distribution function. 

To prove that F is non-degenerate notice that if ~ k l ogkpk<oo  F was 
k = l  

proved to be absolutely continuous on (0, co) and therefore non-degenerate (see 

[1]). If k log kp k = co, by a result of Athreya [2] asserting that ~ x F(dx)< co 
k = l  c~ 0 

if and only if ~ klogkpk<cC~, F being a solution to (8), we deduce that F 
k = l  

corresponds to a random variable with infinite mean which is therefore non- 
degenerate and the proof is complete. 

Lemma Z F is continuous on (0, co). 

Proof. Choose t', > t for a given t. By the Markov and branching property of 
{2(0} we get 

/ z(t) ) 
Z ' ' < ~lZ(t ' , ,  xi(t)) < C(t'~) x[~  t (13) P(( t . ) /C( tn )  = x l~,)  = n ~i 

where Z(t'., xi(t)) is the number of individuals at time t~ in the line of descent 
of the individual aged xi(t ) at time t and ~t=o-(Z(i)). Z(t'.,xl(t)) .. . .  ,Z(t'.,Xz(o(t'.) ) 
are, conditional on Z(t), independent random variables. 

For coe{Z(t'~)>0} we can write 

/ Z(t) \ / Z(t) \ 

' < ' | ' t t' P ~ ~. Z( t . ,  x,(t))= C(tn)xlN,) = P  \ ~. Z( t . ,  x~( ))/Z( n)Z(t' .)/C(t' .)<xl~t . (14) ) 
i = 1  i = 1  

Notice that the i-th individual alive at time t was born at time t -x~( t )  and by 
time t' n his line of descent has evolved for time t 'n+(t-xi(t)).  Using this and 
again Theorem 3.5.2 of [13] when passing to limit in (14) we get that for any 
continuity point x of F 

/ z(t) ) 
lim P(Z(t;,)/C(t'.) <= x 1~i) = P ~ ~ ec~(xi(t)-t) [/Vi i ~ X l~t (15) 

n ~ o o  \ i = 1  

for almost all ~ { Z ( t ) > O } ,  where {W~} are, conditional on ~ ,  independent, 
identically distributed random variables, distributed according to F and inde- 
pendent of {xi(t)}. 
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Assume now that F has a jump point x o. Then there exist positive numbers 
{En} with lira en = 0 such that 

r l~oo 

l imP(Z( t ' n ) /C( t ' )~ (Xo-e , ,Xo+en) )=F(xo) -F(xo- )=6>O.  (16) 

By (15) we get 

\=l/Z(t) ) �9 ' ' ~ xo+e,,)]~t)=p [2e~(~(*)-oWi=xol~t  (17) hm P(Z(t,)/C(t,) (x o-e,, ,  
n ~ o o  i 

for almost all coe{Z(t)>0}. 
Notice that we can always find some constants {B(t)} with l imB(t )=  oo 

such that lim P(Z(t)~(1, B(t)))=0. Then (16) and (17) yield t -~  
t~OO 

t~oo {Z(t)>B(t)} \ i - 1  e z 

We shall prove that (18) with 6 > 0  is impossible by using some properties of 
the concentration functions of sums of independent random variables. Write 
Q ( X , x ) = s u p P ( y < X < y + x )  for the concentration function of X. It is well 

Y 
known that 

CL 
Q (S., L) < I- n q 1/2 

2 | 2 (1 - Q (X,, 2 2)/ 
t - i=  l J 

where S , = X ~ + . . .  +X~, {X~} being independent random variables, C is a 
universal constant and 2 an arbitrary number in the interval (0, L) (see e.g. 
1-15]). It is easy to see that for Q(S, ,L)  to be bounded away from 0 it is 
necessary that Q(Xi,22) goes to 1 as i--*oo. However this is not the case for 
the sums that appear on the right hand side of (18). Indeed, if we assume that 
q>0 ,  then Q(e ~(~(~176 W~,L)_<max(q, 1 - q )  in view of the fact that e~(X(~ 
If q = 0  we can take the logarithm of e ~(~(t)-t) W/which turns out to be a sum of 
two independent random variables c~(x(t)- t)+logWi.  It is known that the 
concentration function of a sum of independent variables is smaller than the 
concentration function of one of its components, say log W v Since by Lem- 
ma 1 W~ is a non-degenerate random variable, this property implies that the 
concentration function of log{e ~(x(~ T)W~} stays away from 1 and so does the 
concentration function of e C~{r)-t)~ W~. Thus 

',=l/z(t) ) 
lim P 1 2 e  ~(~'(''-'' Wi=x0[~, =0  a.s. 
$~OO = 

and (18) is invalidated. We have got a contradiction that finishes the proof. 

Corollary. Suppose that {pk}~,  where ~ is the class of finite mean offspring 
distributions for which the functional equation (8) assumes a unique solution up to 
a scale factor. Then {Z(t)/C(t)} converges in distribution to F. 
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Proof. By Lemma 1 any sequence {t,} contains a subsequence {t',} such that 
{Z(t',)/C(t',)} converges in distribution to a distribution function F satisfying 
(8). By Lemma2,  F is continuous and this property in conjunction with (7) 
implies lim P(Z( t )<l )=# .  Thus the limits in distribution of subsequences 

t~OO 

{Z(t',)/C(t',)} cannot differ by a scale factor and the proof is complete. 

Remark. It has been proved by Harris [9] that E contains the {pk}'s for which 

~ k Z p k <  oo. Athreya [1] has shown that this restriction can be relaxed to 
k=l 

~ k logkpk<  o% but it has remained an open problem whether such a result 
k = l  

holds in the case ~ k logkpk=oo  and ~ kpk<o�9 We shall circumvent the 
k = l  k = l  

uniqueness problem by proving in a different way the convergence of 
{Z(O/C(t)}. Our result seems to lend additional credence to the conjecture that 
uniqueness extends here as well. 

Lemma 3. For any s > 0, lim C(t + s)/C(O = e ~. 

Proof. Notice first that by Lemma 2, 1 is a continuity point for F and if we 
take into account that the reasoning for F is valid for any subsequence {t,} we 
get by (7) that limP(Z(t)<=C(O)=#. We next show that it can always be 

assumed that ( F ( I + O - F ( 1 ) ) ( F ( 1 ) - F ( 1 - O ) > O  for all ~>0. Indeed, if this is 
not the case, by Lemmas 1 and 2 there must exist a point w such that (F(w + ~) 
- F ( w ) ) ( F ( w ) - F ( w - O ) > O  for any e>0.  Let {C'(0 } be the constants defined 
by (7) for #=F(w). By Lemma 1, F(o)=q and F ( ~ ) = I  and therefore one must 
have 

0 < lira inf C(O/C'(t) <= lim sup C(t)/C'(t) < ~ .  

Thus we can choose a subsequence of {t',}, say ~t"~ such that L n J '  

t" ' t" lira C( n)/C ( n)=b for some positive b. Then 

. . . . .  < ' P Z . . . . . . . . .  lim P(Z(t , ) /C ( t , )=x)= hm ( ( t , ) / C ( t , )  C(t,)/C (t~)<=x)=F(x/b). 

Putting x = l  in this equality we get F(1/b)=F(w), where from 1/b=w. Thus, if 
necessary, by a change from F(x) to F(xw) we can always arrange to have a 
limit distribution F for a subsequence of {t,} such that ( F ( 1 ) - F ( 1 -  e))(F(1 + e) 
- F ( 1 ) ) > 0  for any ~>0, 

Fix now s > 0  and denote O(t)=C(t+s)/C(t).  We shall complete the proof 
by showing that for any subsequence {t,} one can extract another subsequence 
{t~'} such that O(t;')---,e ~s as n~oo .  

By Lemma 1 and Theorem 3.5.2 of [13] we get 

lim P(e- ~ Z(t', + s)/C(t',) < x) = lim P(e- ~ Z (t' + s)/Z(t') Z(t',)/C(t',) < x) = F(x) (19) 
t ~ CYO t ~ O0  
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for any x > 0 .  However by L e m m a l  one can extract from {t'.+s} another 
t I/ subsequence, say { .+s} ,  such that {Z(t'.'+s)/C(t'n'+s)} converges in distribu- 

tion to a proper non-degenerate law H. By (19) and a well known property 
by Khintchine concerning the uniqueness, up to an equivalence, of norming 
constants of this kind we get that C(t ' . '+s)~Ke ~s C(t'.') where the symbol 
links numbers whose ratio tends to 1 as n ~ oe. 

This implies by (19) that F(K-1)=H(1).  However by (7), F(1)=H(1)  and in 
view of the properties of F at 1 we conclude that K = I .  Thus limO(t'. ')=e ~s 
and the proof  is complete. "~ ~ 

Lemma4.  Suppose that ~ is the ~-algebra generated by {2(s): s<t}.  Then for 
any continuity point x of F 

lim P(Z(t'n)/C(t',)<x[~;)=P(~l(t ) ~ + ... +~z(,)(t) ITVz~t)<xe~t[q~,) (20) 
n + o o  

almost surely, where {~(t)=e -~yi(t), Yi being the excess life of  the i-th particle 
alive at time t, i.e. the time elapsed from t to the death of  the particle aged xi(t) 
at time t; 17fx, ..., 17Vz(t) are identically distributed random variables assuming the 

distribution Fx, where F 1 (x) = ~ F* (k)(x) Pk, F* (~ = 1 and F*(k)(x), for k > 1, is 
k ~ O  

the k-th convolution of  F. lTV 1, ..., lTVz(t) are, conditional on ~,, independent 
random variables. 

Proof Choose a number n such that 

t'.> max (xi(t)+yi(t)) 
l <_i< Z ( t )  

max (x~(t)+yi(t)) is random, but since G is a proper distribution function it 
l <_i<-Z(t) 

must be finite with probability one. By the Markov and branching properties 
of {Z(t)} we get 

P(Z (t.)/C(t.) = x[~t) = P(Z(t . ,  )q (t)) + + Z (t., Xz( 0 (t)) 

<C(t',)x]~t) a.s. (21) 

where Z(t',, xi(t)) is the number of objects at time t', in the line of descent of the 
particle aged xi(t) at time t, Z(t',, xl(t)), ..., Z(t',, Xz(t)(t)) are, conditional on ~t, 
independent random variables. 

Denote now by l 1, ..., Iz(t) the death times of the Z(t) particles alive at time 
t. Then we can write 

P(Z(t ' ,  x~ (t)) +.. .  + Z(t'~, Xz(o(t)) < C(t'~) x[ ~,) 

( ~ )  Z(t',,xi(t)) C(t'n-(li+t)) C(t' ,-li)_<x[St). (22) 
= v ~=, c ( t ' . -  (l, + t)) c ( t ' . -  l,) c(t' .)  - 

Taking in (22) the limit as n~oo ,  using Lemma 20) and (ii), and (21) we get 
(20). The distribution function F~ of the limiting random variable of 

. 

C(t'. - (l i + t))J 
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is accounted by the fact that upon death, at time l~ + t, the i-th particle gives 
rise to a number of offspring according to the distribution {Pk} and each line 
of descent of these particles accounts, in the limit, for a distribution equal to F. 
This completes the proof. 

Lemma 5. Let tl(t ) be a random variable defined by the equation 

~l(t) VIZ 1 At-... "Jr ~Z(t)(t) ITVz( 0 = tl(t)(17Vt + . . .  + 17Vz(,) ) (23) 

Then 

where 

O<r/ ( t )< l  and limE(q(t)]~t)= n~ a.s., 
t ~ o o  m 

n t = e-~"(1 - G(u)) du/m ~ u e - ~  dG(u). 
0 0 

Proof Since ~l(t), ..., ~z(t)(t) are positive and smaller than 1, the Eq. (23) must 
be satisfied for a certain variable q(t) with 0 < tl(t)_<__ 1. 

Consider now the ratio 

~1(t) G + . . .  + ~z(t)(t) G ( t )  (24) 
Wl +...  + Wz(,) 

which will be defined as equal to 1 in the ease when the denominator equals 0. 
Such a situation occurs if and only if W1 . . . .  = Wz(t)=O, in which case the 
numerator is also 0. Thus (24) equals ~(t) and its expectation turns out to be 

If we take into account the symmetry of the sequence of, conditional on ~t, 
i.i.d, random variables {17V} we get 

" +~..-+Wz(,) -Z( t )"  
Thus 

E(n(t) I i~t) - m Z(t)" 

Corollary 2 p. 47 of [3], in view of the a.s. convergence of {Z(x, t)/Z(t)}, applies 
v~ 

and yields lim - - =  c 1 a.s. and this completes the proof. 
t~ooZ(t) 

Lemma 6. Suppose that { X n i  , 1 < i < n, 1 < n < oo ; Wj, 1 <j < oo} are nonnegative 
independent random variables, Xn~ < l for any n and i, and {Wj} are i.i.d.. Write 

S~-=~Wi,  T ~ = ~ X ~ i W  i, V ~ = ~ X ~ i  and A(n)={V,>n2} 
i=1 i=1 i=1 
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for a certain ).>0. Then there exists a constant a with O < a < 2  such that for any 
x>O, P({Tn> x}lA(n))> P(aScn,l> x), where v = ( 2 - a ) / ( 1 - a ) > O .  

Proof Write F,= {i: X,~>a} and let fin be the number of elements in F,. Notice 
that F~ is a random set and fin is a random variable. The obvious equality 
~ X,~+ ~ Xn~=V n yields that for coeA(n), ( n - f i n ) a + f l , > n 2  which entails 

i~Fn i~Fn 

f i n > n ( 2 - a ) / ( l - a ) > [ n v ] .  Thus, if (5  is the a-field generated by the random 
variables {Xni, 1Gi<=n}, for o)eA(n) and x>O we get 

P(Tn> x[(Sn)> P( a ~ Wi> xlNn)> P(aS~,~> x) �9 
iEFn 

(26) 

The proof can now be finished on integrating (26) on A(n). 
The following result, under the slightly more restrictive assumption that 

{Xni } are constants, was given in [6]. The'proof, essentially extracted from [6], 
will be included here for the sake of self-containedness. We use the same 
notations as in Lemma 6. 

Lemma 7. Suppose that {Xni , 1 <iNn ,  1 < n <  oo; W~, 1 < j <  oo} are nonnegative 
independent random variables, X,~ < K for any n and i, K being a positive 
constant, and {W~} are i.i.d. Assume further that there exist a sequence of 
integers {nk} and a positive constant c such that V, Jnk & c as k-* oo and that for 
a sequence of norming constants {bk}, Sn~/bke~,l ~ as k--*oo, # being a positive 
constant. Then Tn~/bkP-*ct ~ as k ~ o o  uniformly with respect to the class of 
random variables {X,i } defined above (i.e. P(ITnJb k-cl~] > e) tends to 0 uniformly 
for any e > 0.) 

Proof Consider the ratios Wi/S.~, 1 < i <  n k which for Sn~ =0  will be defined to 
equal 1. This happens if and only if W 1 . . . .  = Wnk = 0, so that the symmetry of 
the joint distribution of { WJSn~, i= 1 .. . .  , nk} known for strictly positive vari- 
ables {Wj} is preserved by this definition. Thus 

nk nk 

E(T, Jc  S J  = 1/c Z E ( X , ~ i ) E ( W J S J  = 1/c n k ~, E(Xn~i). 
i = l  i = 1  

Since {Xnl } are uniformly bounded and assumed to have the property V,,Jn k 
P)c as k--*oo we get that 

Notice now that 

lira E(TnJc Sn~ ) -- 1. 
k ~ o o  

nk nk 

r, Jsn~= E Xn~i(WJS,~) < Y', WJSn~=K" 
i = 1  i = 1  

Thus {T, JcS,k} is a uniformly bounded sequence of random variables and 
therefore Tnk/cSn--~ P 1 if and only if E(T~/cSn~-  1)2--,0 as k-+oo. 

Write now cSn=E(W1/Sn) = and )'n=E(W1 W2/$2,). Then 

[ ok )] 
e(T.Jc 1) 2 c) 2 + E Z c) e(X. j- c 

i4:j 
(27) 
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Since l=E(SnJS,k)2=nkCSnu.+nk(nk--1)F,k and all the quantities in this 
equality are nonnegative we get 7,~ < 1/nk(nk--1). Further 

Z Z E(X. j-c)l 
i*j 

~ E2 (i~_ l(Xnki--c)) /nk(nk--1)+ E (i~l(Xnki--C)2) /nk(nk--1) 

which because Vnk/nk~C as k-* oO and the bounded convergence theorem 
tends to 0 as k-~ oo. 

Thus, by (27), to complete the proof it will suffice to show that cSnk n k-*0 as 
k ~ oo. To that aim let us choose a particular sequence {X~}, say {X'~I}, defined 
as X'~i=2 or 0 according as i is even or odd. Write Ts for T,,~ with X'~,. in 
place of X,k~. It is easy to see that c '=1 and that T / ~ / S ' ~ I  as k~oo.  
Therefore E(TnJS'~k--1)2-~O as k-*oo. Finally if we write (27) for T_' we 

nk 

necessarily get that c~,k nk-*0 as k-*o0 and the proof is complete. 

Lemma 8. (i) (nl/m) (!7r + ... + lFV[c(ol)/e~t ~--~ l as t-*oo, where 16 is the probabili- 
ty measure corresponding to a sequence of i.i.d, random variables {W/} assuming 
distribution function F 1. 
(ii) {Z(t)/C(t)} converges in distribution to F as t~oo.  

Proof. We choose two arbitrary sequences of positive numbers {t,} and {s~} 
with lim t ,=  lira s~= oo and then extract a subsequence of {t~}, say {t'~}, such 

n ~ o o  n ~ o o  

that {Z(t'~)/C(t')} converges in distribution to F, and a subsequence of {s~}, say 
{s',}, such that {Z(s',)/C(s'~)} converges in distribution to H. We shall prove that 
F -  H and this will clearly imply (ii). Since the proof of (ii) involves expressions 
of the type considered in (i), (i) and (ii) will result simultaneously. 

Let us recall that F and H are proper non-degenerate distributions (by 
Lemma 1) and continuous on (0, oo) (by Lemma 2). Choose now a number y > 0 
with the property H(y+61) -H(y -c~2)>0  for any C~l, 62 >0  and write 

A~ = {Z(u)/C(u)~(y-c~2, y + 31) } and Tz(,)= ~l(u) 17V 1 +.. .  + (z(~)17Vz(,3. 

By Lemma 4 we get for any x > 0. 

t '  t I lim P({Z( ,)/C( , )>x} ~A~;)= J P(Tz(s;,)>xe~S;,l~s;)dP (28) 
tl~ O0 As ~ 

and 

lira P({Z(t',)/C(t',)>x} ~A~L+s)= j P(Zz(s.+s)>Xe~(S'~+~)l~.+s)dP. (29) 
n~oo As~+ S 

Lemma 2 and the continuity of H imply 

lira P(As~ AAsi + s) = 0 (30) 
k ~ O O  

for any s > 0, A being the symbol of symmetric difference of two sets. 
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(28), (29), (30) and Lemma 5 yield 

lim [ S P(Tz(~)>x e ~  [ ~s~) dP 
k~  oo AS k 

- ~ P(tl(s'k+s)Szc~;,+s)>xe'(~+~)l~,+~)dP]=O (31) 
ASk+S 

where S~ = 1~ 1 + . . .  + IYV. 
Extract now from {s~} a further subsequence, say {S'k'}, such that 

{Stc(~,)j/e~ "} converges vaguely, under /5 to a limit distribution D. From (28) 
through (31) one gets 

lim P({Z(t',)/C(t') > x} ~ As,,) i 
n ~ o o  

_ ~ P(~(s~ +s) ~ '  ~ _ " Stc(~,+~)(y_~m/e e >xl~s,,+~)dP (32) 
As~" +s 

(32) will help us prove that D is a proper distribution and assumes finite mean. 
Indeed, by Lemma3,  C(s2+s)(y--60~e~sC(s'k ')(y-60.  If we choose s such 
that e ~ is an integer the limit in distribution of ~tc~,+~)(y_~)v~~ /o~S~'e ~ as k ~  oe, 
under t3, turns out to be S t~_~)~ / e  , where S, is the sum of n i.i.d, copies of 
a random variable assuming distribution D. Since s is at our disposal we can 
take s ~ o o  and get by the law of large numbers that { S ~ / ~ }  converges almost 
surely to a (possibly infinite) constant v. This implies that {Sf~(y_o~w~,~ } con- 
verges almost surely to ( y - f O r .  We show next that v is finite. Since 
limE(rl(S'k'+S)l~,~,+~)=n 1 a.s. and the variables {q(S'k'+S) } are positive and 

k ~ o o  

bounded by 1 we deduce that there must exist fl with 0 < f l < n  I and 7 > 0  such 
that 

liminfP(~(s'k' + s ) > f l [ ~ ,  +~)> 7 a.s. 
k ~ c ~  

Indeed, this is a simple consequence of the elementary inequality E(X)<=z 
+ P(X  > z) for any random variable X with 0_< X -< 1 and 0 < z__< 1. 

It follows that 

, s , ,  ~s ( 3 3 )  lim inf P(tl(S'k' + S) Stc%, + s)(r_alJe ~ e >xl~s~,+,)>7 a.s. 
k ~ o o  

If v=  0% (32) and (33) imply that for any x>O 

t t t I lira inf lim P({Z( , ) /C(.)  > x} c~ As;;) > 7 (H(y + 62) - H ( y -  fit)) (34) 

and this inequality contradicts the fact that F is a proper distribution function. 
We shall next prove that D is the distribution of a positive constant v. 

From (28) and (31) we get 

lim sup lim P( { Z ( t'.) / C( t'.) > x} c~ As~, ) 
k ~ o o  n~o~3 
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<lira sup J P(tl(s' k' + s) Stc(,2 + ~)(y+a=)l/e~*;: e ~ > x[~,;  + s) dP 
k ~  oo As~" + s 

_<__lira s u p  S P(Sw%,+~)(y+o~)l/e~'k'e ~ >  xl~`'k, +~) dP 
k~oo  As,k, +s  

_ "  , ~ > x ) ( H ( y + f i 2 ) - H ( y - 6 0 ) .  - P (  S[e~,~(y + a2)]/e (35) 

Since v* /o=~-----~v as s~oo  with v finite we deduce that * ~s ~.~. Oe=S/~ a , s .  S[e~S(y+az) l / e  - - -~  v(y 
+62). Thus for x>v(Y+62)  the last term in (35) is null and 

lira lim P({Z(t',)/C(t',) > x} ~ As'k, ) = 0 (36) 
k ~ o o  n ~ o o  

for x > v(y + 62). (28) and (36) together imply 

lim j P(Tz%,)/e ~r > Xl~s2) dP =0. (37) 
k~oo  ASk, 

Assume, by way of contradiction, that D(x)>0 for any x>0 .  If we apply 
Lemma6 with 2 = n f f m - s ,  e being a positive number with n l / m - e - a > O  we 
get 

j P(Tz(,;:)/e ~;  > x l~,;:) dP 
As'k* 

5 P({ Tz%,)/e~'k " > x} c~ A(Z  (s~')) ] ~,'k,) dR 
As~" 

> j P(a Stc(~D(y_ a~)~l/e~;: > x) P(A(Z(s'k')I~;: )dP. 
As'k" 

Since E(~i(t)]~t ) = V(xi(t))/m , 

E ([~)1- ~i(t) lSt) /Z( t))= V j m Z ( t ) ~  nl/m 

as t--~ oo. By the law of large numbers 

P ( ;~=)l~(t)/Z(t)-nffm > e l ~ t ) ~ O  a.s. 

(38) 

for any ~>0. This implies that P(A(Z(s'k')I~r )- "s ,  1 as k ~ oo and by (38) 

l iminf S P(Tz(sD/e~*; >xl~s~,) dP 
k ~ ~ As'k. 

> l i m  " ~r k-- co P(aStc%') (y- a~)~1/e ~ > x) (H(y + 62) - H(y - 31)). (39) 

Recalling that {S~c(@/e~S'k "} converges in distribution to D under t5 and since 
the sum S~c(,,,)j consists of i.i.d, random variables we get that D(x)>0 for any 
x > 0  implies ~that the last term in (39) is positive for any x > 0  which con- 
tradicts (37). Thus D has finite interval support and since it is infinitely 
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divisible it has to be constant (see [8] p. 177). We have therefore proved that D 
is the distribution of a positive constant v. 

We shall next prove that v does not depend on the choice of the sub- 
sequence {s,}. To that aim notice first that we can always assume that (F(1 +e) 
-F(1)) ( F ( 1 ) - F ( 1 - e ) ) > 0  for all e>0,  by a reasoning already used in the proof 
of Lemma 2. 

Lemma 4 and the total probability formula yield 

F(1 + 6)= lim SP(Tz(s;,)/e~S'~ ' < 1 + ~l~,,) dP 
k ~ o o  

= lim (~ + y + ~) (40) 
k ~ oO B k  CIz D k  

where 

and 

tt  tt ~s B~ = { Z(sJ/  C(sJ =(vn~/m) (1 + b)- e}, 
tt  i t  

C k = {(vnl/m ) (1 -kb)--e<Z(sk)/C(Sk)=(vnl/m)(1 nab) q-e} 

D k = {Z(Sk')/C(s'k' ) > (V n 1/m) (1 + b) + ~}. 

By Lemma 7 we get 

lira [P(Tz(s;,)/e~S'~ ' < 1 + 6 ]~s;~') 1B~ - 1Bk]  = 0 a.s. (41) 

where 1B~ is the indicator of the set B~, and 

lira [P(Tz(s;,)/e ~;," < 1 + 61~s~,) lv~ =0  a.s. (42) 
k ~ o o  

Notice that by the continuity of H 

D,T /e~Si,'<l +b l~; , )dP=O (43) lim limsup S ~t'z(si,') / 
~ 0  k ~  C k  

and that (41), (42) and (43) used in (40) yield F(1 +6)=H((vnl /m ) (1 +b)). Since 
we can then take b=  +r/ with t/>0, F(1-- t l )<F(1)<F(l+t l )  and because by 
Lemma2,  F and H are continuous we get F(1)=H(vnl /m ). But F(1)=H(1) by 
the definition of {C(t)}. It follows that vn l /m=l .  Thus v=m/nl  and since v is 
independent of the subsequence {s,}, Lemma 8 (i) follows. On the other hand, 
v =m/nl  implies F(x)= H(x) for any x > 0 and this finishes the proof. 

Proof of Theorem 1. We shall first prove that for an arbitrary sequence {6}, 
{Z(t~)/C(t,)} converges almost surely. By Lemma 8(ii), {Z(t)/C(t)} converges in 
distribution to F. This fact allows one to replace t, by t in (28), s~' by s in (40), 
(41), (42) and (43) and to deduce that 

F(x) = lim lim P({Z(t)/C(t) < x} c~ {Z(s)/C(s) <= x}). 
t ~ o o  s ~ o o  

If we use the notation A, (x )={Z(6) /C( t , )<x  }, we realize that we have a 
situation identical to that described in the proof of Theorem 1 of [5], p. 75. 
Thus, we can conclude that there exists an event A(x) such that 

A(x)= lim {Z(t',)/C(t',)<x} a.s. 
tl ~ o(3 
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for a subsequence {t',} of {t,}, where a.s. convergence for a sequence of events 
{Cn} to C is defined by the property P(CAlimsup Cn)=P(CAliminfC,)=O. 

By Lemma 4 and Lemma 7 we get 

lim P(A(x)]~;.)= lira P(m/nl(17V 1 + ... + Wz(,,))/e~'"<=xl~n). (44) 

It is easy to see that by the Markov property of {2(0}, 

P(m/n 1 (17V 1 +... + 17Vz(,,))/e ~" < x I~,,) 

=P(m/nl(17V 1+... + l?Vz(,.))/e=~"< xlN~.) a.s. 

where -5~, is the a-field generated by the random variable Z(t,). Since by the 
martingale convergence theorem lim P(A(x)]~'t, ) = 1A(~) a.s. we conclude that 

l l ~ o o  

lira P(m/nx(I?V~ +... + l?Vz(~,))/e~"<=x[5~,)= 1A(~) a.s.. (45) 
n ~ o o  

We have reached a situation of the kind considered in the proof of Theorem 1 
of [5], (45) being a sort of asymptotic Markov property that suffices to prove 
a.s. convergence. In view of Lemma 8(i) and Remark 1 p. 80 of [5] the con- 
ditions of Theorem 1 of 1-5] are satisfied and we conclude that {Z(t,)/C(t,)} 
converges almost surely. We can take {n3, n>  1} for the sequence {t,} for any 
3>0.  The almost sure convergence of Z(t+s)/Z(t) to e ~ as t---,oo implies 
lim Z((n+ 1) 5)/Z(n3)~ 1 a.s. n ~  oo which in conjunction with Lemma 3 yields 
, ~ 0  

that {Z(t)/C(t)} converges almost surely as t--* oo. 

Proof of Theorem 2. According to a result by Athreya [2], ~ k  log kPk< oo if 
and only if E(W)< 0% W being a random variable whose distribution satisfies 
the functional equation (6). But E(W)< oo implies E(ITV)=mE(W)< oo and 
combining Lemma 8(i) with the classical law of large numbers we get C(t)~ e ~t 
and (i) is proved. 

On the other hand E(W)=oo in the case ~klogkPk=OO is an immediate 
consequence of (6) and the above mentioned result by Athreya [2]. 

Choose now a sequence of positive numbers {t,} with C(t,)=n, n>l.  
Lemma 8(i) implies 

nl/m(ITv 1 +. . .  + l?V,)/e~t"~ 1 as n-~ oo (46) 

property which is usually referred to as relative stability of the sequence {1~}. 
By a result of Feller ([8], Theorem 2, p. 236, see also the footnote) the relative 

~c 

stability of {17~i } is equivalent to the slow variation of La(x)= ~ udFl(u ). But 
0 

x 

Ll(x)= ~ ~udF(*r ~ F[x)kpk iudF(u)-mL(x)  
k = O  0 k = O  0 

on using the Laplace transform. Thus L(x) is also slowly varying and by the 
same result of Feller mentioned above {W~} turns out to be relatively stable. 
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The characterization of the norming constants given by the formula (7.12) 
p. 236 of [8] yields in this case that C(t,)= e't"/L(m/nl e~t"). Since 

C(t + s)/C(t) --, e ~s as t ~ oo 

we conclude that the gaps between t,_ 1 and t n in the definition of C(t) can be 
filled by taking C(t)=e~/L(m/nl e~t)~e~t/L(e ~t) for t>0.  

Finally the proof is completed by noticing that L(x )<x(1 -F(x ) )  implies 
E(W~)<oo for any f l< l .  

The property E(W~)<oo for f i < l  parallels a result given for the simple 
branching processes by Dubuc [7]. An alternative proof can be found in [17]. 
The methods of [7] and [17], however, do not seem to apply in the setting of 
a Bellman-Harris process. 

Remark. Most of the proofs given in this paper were required by the case 
~ k  log kpk= oo. If we assume ~ k  log kpk< o% then a much simpler proof can 
be devised as an alternative to the one given by Athreya [1] and Athreya and 
Kaplan [3]. Indeed, by the Corollary after Lemma2, Athreya's result [2] 
concerning the unicity of the solution to the functional equation (6) combined 
with Lemma 3 yield convergence in distribution for {Z(t)/C(t)}. One can fur- 
ther use Lemma4 to deduce that C(t)~e% since if E(W1)< oo the classical law 
of large numbers implies that {~11~1 + ... + ~llYv~r~,l/e~t} converges in proba- 
bility to a finite constant. Further, Lemmas 2, 5, 6, 7 and 8(i) are no longer 
necessary in this case and (40) can be proved easily. The almost sure con- 
vergence can be proved as in the proof of Theorem 1, or, alternatively, one can 
use the martingale { Vie ~t} as in [3] to complete the proof. 
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