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Summary. A renewal theorem of the elementary type for some stopping 
times which arise from some statistical estimation problems has been estab- 
lished. It is applied to prove the asymptotic risk efficiency for the problem 
of estimating the mean when the loss function is a weighted sum of the 
squared error and the sample size, and the variance is unknown. It is also 
applied to verify a conjecture of Robbins and Siegmund (1974) on the eval- 
uation of the variance of the estimator of the logarithm of the odds ratio 
for a sequential procedure. 

1. Introduction and Summary 

Let (X, Y), (X1, I11) . . . .  be independent and identically distributed (i.i.d.) ran- 
dom vectors with E X = # ~ ( 0 ,  oo) and EY=O. Let {~n,n>l}  be a sequence of 
uniformly bounded random variables. Assume that a, and b, are constants 
with b ,=o(1)  and n-~a,=l+o(1) as n tends to infinity for some e > 0 .  For 
some real constant c assume that h(t) is a function continuous in some neigh- 
borhood of c. For  each n__> 1, put 

U,=X,+h(c+ f~,~,) Y,2 +b,, (1) 

where J ( , = n  -1 (X1 + . . .  + X , )  and similarly for f-,. For each 2>0 ,  define 

N=N~=inf{n>=nz: Un>=(an)c)-l}, (2) 

where nz=O(2 -~/~) as 2 ~ 0 .  
The formulation of (1) and (2) has been motivated by a sequential pro- 

cedure for estimating the mean when the variance is unknown, and the work of 
Lai and Siegmund (1977, 1979) on the nonlinear renewal theory. The main 
results, Theorems 1, 2 and 3, will be summarized in this section and their 
proofs will be given in the next two sections. 
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Theorem 1. Assume that E(X-)P<oo and EIY l"<oo  for some p > l .  Then 
{()~I/~N)', 1> 2>0}  is uniformly integrable. I f  moreover lira sup 21/~n; < #  -t/~, 
then as )L ~ 0 ~ o 

ElR1/~ g - # - l / ~ l P  ~O. 

Corollary 1. Under the same conditions as Theorem 1 and assume that Y=O, b n 
=0  and nz = 1. Then {()L 1/~ N)', 1 >=)L> 0} is uniformly integrable and as 2 ~ 0 

EI21 /~N-#- l /~ I"  ~O. 

For 0 < ~ < 1 Corollary 1 has been established by Siegmund (1967) and Gut 
(1974). Their method does not seem to be able to handle the case when ~> 1. 

Corollary 2. Let Z, Z1, ... be independent and normally distributed with a com- 
mon mean 04=0 and variance 1. For a>0 ,  r>0 ,  define 

T=in f  {n > 1: (Z I + ... +Z , )  2 >=2a(r+n)}. 

Then for every p > 1 {(a-1 T)p a ~_ 1} is uniformly integrable, and as a ~ oo 

E(T/2a) p ~ I01- 2p. (3) 

Proof Notice that Z ~ = ( Z , - 0 ) e + 2 0 ( Z ~ - 0 ) + 0 2 .  Put X , = 0 2 + 2 0  (Z , -O) ,  Y~ 
- 2  = Z , - O ,  a~=ne/(r+n), b~=0, 2=(2a) -1 and h ( t )= l  for all t. Then Z , = J ~  

+ f-2 and T is simply N in (2) with nz= 1. {(a -1 T) p, a> 1} is uniformly integr- 
able by Theorem 1, or alternatively by Corollary 1, noting that 
T<inf{n>l:J~ ,>=(2a~)- l} .  Since T / 2 a ~ O  -2 a.s. as a ~ o o  (Lai and Siegmund 
(1977)), (3) follows. 

When p =  1, Corollary 2 is established by Lai and Siegmund (1977), using a 
different method. 

Corollary 3. Let Z , Z  1 . . . .  be i.i.d, random variables with mean 0~(0, 1) and 
ElZIP<oo for some p > l .  Put S ~ = Z I + . . . + Z  ~. For c~>0, 2 > 0  define 
N = i n f { n >  1: S,(n-S , )>n(2-~) /2} .  Then {(21/~ N) p, 1 ~)~>0} is uniformly inte- 
grable, and as fl ~O. 

E()~t/~N) p --+ (0(1 - 0)) -p/~. (4) 

Proof Put X , = O 2 + ( 1 - 2 0 ) Z ,  and Y , = Z , - O .  Then N can be written as 
inf{n> 1: ) ( , -  Y~ >(n~2) - 1}. By Theorem 1, {(,~I/~N)P, 1 > 2 > 0 }  is uniformly 
integrable. By a standard argument using the strong law of large numbers and 
the definition of N, as 2 ~ 0 

21/~N ~(0(1--0))  -1/~ a.s. 
Hence (4) follows. 

When Z has a Bernoulli distribution and c~= 1 or 2 N is the stopping time 
studied by Robbins and Siegmund (1974). 

Corollary 4. Let Z, Z~ .. . .  be i.i.d, random variables. For each 2>0,  put 

N = i n f { n > n z :  n - l  ~ ( Z i _ Z " ) 2  +b >__(a,,2) -1 , 
1 
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where a, and b, are constants such that b , = o ( 1 )  and n -~a ,= l  +o(1) as n+oo 
for some c~>0, and nx=O(2 -1/~) as 2--*0. Then for all p > 0 ,  {(21/~N) p, 1=>2>0} 
is uniformly integrabIe. I f  moreover EZ =0,  Var  Z =  0 -2E(0, oo) and 
limsup 21/=nx < a -2/~ then as 2--+0 

E ( , ~ / ~  N )  ~ -- ,  ~ -  ~ / ~  (5) 

Proof. Put  X . = ( Z . - 0 )  2, Y . = Z . - 0  and h ( t ) = -  1 for all t. F o r  G > 0  put  Z'. 
E ( Z . - E Z . )  >0.  By a result of = m a x ( - G ,  min(G,Z,)) and choose G so that  ' , 2 

Chow and Studden (1969) 

n 

R , - y 2 = n - l ~ ( Z i - 2 , ) 2 > n  -1 (Zi'--Zn)-t 2 

1 1 

= n - 1 2 ( z i - E z ' f  - n - 1  Z ' ~ - E Z ' ~  
1 

Put ' ' , 2 X .  = (Z. - EZ.) , g'_.= Z ' . -  EZ'. and 

, �9 > N = l n f { n _ ~ :  X '~- (Y ' )2  +b,=>(a~2)-*}.  

Then N ' < N  and since X '  and Y' are bounded,  by Theo rem 1 {(21/~N')v, 
1 > 2 > 0 }  is uniformly integrable for any p > 0  and hence so is {(21/'N)V, 
1 > 2 > 0}. F r o m  the definition N < m and N ~ Go a.s. as 2 ~ 0 .  And also 

N 

N - 1  2 (El - -ZN)  2 ~ (aN2) -a  ( 6 )  
1 

On A - { N > n x }  
N - 1  

( N - l )  -a  ~ (zi-2N_l)2<=(as_i2) -1. 
1 

Since n-~a ,= l  +o(1)  (6) and (7) give 

lim ((N" 2) - 1 _ a2) IA = 0, a.s. 

Since l imsup 21/~n~< o --2/~, it follows that  
). 

(7) 

l im21/~N ~- 2/~ = . (8) 

Hence  (5) follows. 
i 

Corol la ry  4 is ra ther  surprising since the uni form integrabil i ty of  {(2YN) p, 
1 __> 2 > 0} does not  require any m o m e n t  conditions. 

Theorem 2. Let Z, Za . . . .  be i.i.d, random variables with mean 0 and variance 
~72~(0, oo). For each 2 > 0 ,  put 

n 

N = N~ = i n f  {n>nz: n -1 ~(Zi-2.)2>=(n2/a2)-1}, 
1 

(9) 
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where 6 > 0  and limsup2a/2n~<a-a. Then as 2--+0, for any r > 0  

)~/2N--+a-a a.s. and E().a/zN)r--+~-ra. 

I f  moreover EIZIZP < oo for  p = 1 + 6 ,  then as )~--+0 

E2-a/2(2 u _  0) 2 ~ az+Q 

Consequently as ). --+ 0 

(lO) 

(il) 

0-- 2 - 2 a(aN -- 0)2 q- 26 S ) 
E a --+ 1. (12) 

22~a -a 

Theorem 2 and Corollary 4 give the performance, in terms of the asymp- 
totic risk efficiency, of the following sequential procedure for the estimation of 
the mean 0 with a loss func t ion  Ln=a2'e-2(as-O)2q-cn for some known con- 
stant fl=t=0, and c which is often allowed to go to 0. The optimal sample size 
when o- is known is n0= in f{n> l "  n ~ c - 1 / 2 0  -//} or  n o + i  , and the minimum risk 
is approximately 2c l /20  -/~ which is the denominator of (12) with 2 = c  1/a and 6 = 
- f i  for the negative fi case. The sequential procedure derived from the replace- 
ment of an unknown a by its estimator, as suggested by Anscombe (1952) and 
Robbins (1959), has a sample size (9) and the numerator of (12) as its risk. 
Thus (12) gives the asymptotic risk efficiency. The case fi> 0 has been settled in 
Chow and Yu (1981). See their article for further references about this problem. 

Theorem 3. Let Z, Z ,  . . . .  be i.i.d, random variables with Pr[Z = 1] =p  = 1 - Pr [Z 
=0],  0 < p < l  and q = l - p .  For each n > l ,  put S , = Z I + . . . + Z  .. For 
c~ >0, ).> 0, put 

N = N a = i n f { n >  1" S,(n-Sn)>=,~-ln2-e}, (13) 
and 

U= Ui=(pq){=-i)/2~)~-i/Z=(log(Su+a)/(N-Su+a)-logp/q) (14) 

where a is a nonnegative constant. Then for any r>0 ,  {IUI r, 1 > 2 > 0 }  is uni- 
formly integrable. Furthermore if m r is the r-th absolute moment of a standard 
normal distribution, then 

(i) as 2--,0, ElUlr--,mr, and E(log(SN+a)/(N--Su+a)--logp/q)k=o(2k/2% 
for any positive odd integer k, and 

(ii) E I(P q)(=- 1)/2~).- 1/2~(SN/N _ p)[r ~ mr ' and E(Su/N - p)k = 0()3/2 % for any 
positive odd integer k. 

Consequently as 2--+ O, 

EU--+O and V a r U ~ l ,  (15) 

2 -UZ~E(SN/N-p )~O and 2-1/~Var(SN/N)-+(pq)(1-~)/5 (16) 

When c~=1, (13) and (14) have been studied by Robbins and Siegmund 
(1974), who have conjectured (15). They have also remarked that the asymp- 
totic behavior of (13) for the case when c~=2 can be treated with analogous 
results. 
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2. Proof of the Main Result 

We shall need the following lemmas for the proof of Theorem 1. 

Lemma 1. Let {Z,, n>= 1} be a sequence of i.i.d, finite-dimensional random vec- 
tors and F, be the a-algebra generated by {Zi, i<n } for each n> l. Let t be a 
finite F,-stopping time and (1), t(2), ... be the copies of t. Put t o=0  and t ,= t  (~) 
+ . . . + t  ("), and V,=(t ("), Ztn_l+l , . . . ,Z J .  Then {V,,n>=l} are i.i.d, random vec- 
tors. 

The proof of this lemma follows standard arguments. For details see Chow 
and Teicher (1978), p. 136. 

Lemma 2. Let Y,, }71 . . . .  be i.i.d, random variables, S, = Y1 + . . .  + Y, and p > 1. 

(i) Assume that EY>O, c>__O and T = i n f { n > l :  S,>c}.  Then ETP<oo if 
E(Y-)P < oo ; and {(c- I ST) p, c> 1} is uniformly integrable if E(Y+)P< c~. 

�9 (ii) I f  EY=O, E]YIP<~  and t is a stopping time with Etp/2<oo and Et<oo,  
then EISt[P < o:3. 

(iii) I f  EIYIP < oo and t is a stopping time with EtP < o% then EIStlP < oo. 

(iv) I f  E Y= O, EI gl z p < oo and {T(2), 1 > 2 > 0} is a family of stopping times 
such that {(21/~T(2)) p, 1 > 2 > 0 }  is uniformly integrable where c~>0, then 
{2p/~ [ST(x) [ 2 p, 1 > 2 > 0} is uniformly integrable. 

(i) and (ii) are due to Gut (1974). (iii) follows from (i) and (ii). (iv) is due to 
Chow and Yu (1981). 

Lemma 3. Let (Y,Z), (Y1,Z1) . . . .  be i.i.d, random vectors with EY=O, Z>O and 
EZ>O. Let W , = Y I + . . . + Y  . and V , = Z I + . . . + Z  .. Define M=inf{n=>l" 
IW, I=< rn}. Assume that EpYIP < oo for some p> l. Then EMP < oo. 

Proof Let r = i n f { n > l '  W,<V,}. Since E ( Z - Y ) > O  and E ( Y + ) P < ~ ,  ErP<oo  
by Lemma 2(i). Let z (1), r(z),.., be the copies of r, % = 0 ,  z ,=z(1)+. . .+r  ~"), W~ 
= Y ~ . _ , + ~ + . . . + ~ .  and V,'=Z . . . .  + I + . . . + Z ~ .  Then by Lemma 1, {(W~', I/,'), 

- -  t t p  n > l }  are i.i.d, with E W ' = E Y E z = O  and EVs Also EIW, I <oo by 
Lemma 2(ii) or (iii). Put 

t = i n f  n > l :  141//'>- V/' . 
1 

Since E(W~+ V')>0 and E((W~) )P< oo, again by Lemma 2(i) EtP< oo. And 

t 

�9 t ~  t _ _  - v ,  = - y v , _ Z  w, = _< v t. 
1 1 

Therefore M < r  t. By Lemma 2(iii), E(zt)P< oo and it follows that EMP< oo. 
Lemma 3 is the key to our proof of Theorem 1 and is interesting itself. 

Proof of Theorem I. We break the proof into the following six steps. 

Step 1. Since b,=o(1)  and n-~a ,= l  +o(1), and #>0 ,  there is a positive integer 
K such that Ib,l<~(4 and n~<2a, for all n>K.  Put n'z=max(K, nx) and X', 
=X, - I z /4 .  Then n'~=O(2 -1/~) as 2--*0, EX'=311/4>0 and N<inf{n>n'~: X', 
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+h(c+ f',{,) Y,2>2/n=2}, where -' -1 , X,=n  (X,_+... + X,). Hence we can assume 
that b , = 0  and a,-n- =, i.e. N=inf{n>nx: X,+h(c+Y,~,)f~2>l/n=2}. By nor- 
malizing we can assume tha t /~=  1. 

Step 2. Put t = i n f { n > l :  Igl+...+t,l<n*l} for some t/>0. By Lemma 3, 
EIYIP< o0 implies that EtP< oo. Let t (i), r . . . .  be the copies of t, to=0,  t ,=t (~) 
+. . .  + t ("), W, = Yt,_l + ~ + - "  + Yt, and V, = Xtn_, + i + . . .  + Xt,- By Lemma 1, 
{(t ("), V,, W,), n > l }  are i.i.d, random vectors with EWi=EYEt=O and 
E( V1- )P < E(X F + ... +Xt-)P< oe by Lemma 2(iii), and E V i = EXEt = Et. 

Step 3. Put z=inf{n_>l:  Vl+...+V,>(t(1)+...+t("))/2}. Since E(Vi- t /2  ) 
=Et/2>O and E((Vl-t/2)-)P<oe, by Lemma 2(i) EzP<oo. It can easily be 
seen that ~ is a (t ("), V,, W,)-stopping time and t= an (X,, Y,)-stopping time. As 
before by Lemma 2(iii) EtP~< co. 

Step 4. Let fi(1), /~(2) . . . .  be the copies of t~, /3o=0 and ]~n=/~(1)~-...-~/~ ("). 
Choose M > I ,  1 / 2 > e > 0  such that h(x) is continuous and [h(x)[<M for Ix 
- c l < s ,  and t~ . [<m for all n > l .  Choose ~<e/M. Then ]~J<E/M, 3;~ >1/2 
and 

J~ +h(c+ fz ~.) ~ > ) ~  _M~2> 1/4. (17) 

Step 5. Let T=inf{n_>_l: 2 /~>(4+B)},  where Bi/"=sup(2t/"n~). Then 

2~/"fiT>B~/">2t/~n~. Therefore /~T>nX and it is clear from (17) that /?T>N. By 
Lemma 2(i), {(21/"/3r) e, 1>2>0}  is uniformly integrable and hence so is 
{(21/~N) p, 1 >2>0} .  

Step 6. As in the proof of (8) by the strong law of large numbers, 2~/"N--* 1 a.s. 
By uniform integrability E [2i /~N-l lP~0.  

Remark 1. The f'. in h(c+ ~'.~.) can be replaced by a more general 2 .  with EZ. 
=0  and EIZ.lV< 0% where {(X., Y., Z.), n >  1} are i.i.d. 3-dimensional random 
vectors. The whole argument in Theorem 1 modified to treat this case will go 
through by introducing an additional stopping time inf{n> 1" [Z.[ <t/} and its 
copies. The technique here can also be used to handle the case w h e r e  gn 2 in (1) 
is replaced by Y./n. 

Remark 2. The formulation of the class of stopping times is partly motivated 
by the following problem of the nonlinear renewal theory studied by Lai and 
Siegmund (1977, 1979). Let {Z., n >  1} be i.i.d, random variables with mean 0. 
Let g be a function positive at 0 and twice continuously differentiable in a 
neighborhood U of 0. Lai and Siegmund (1977, 1979) have investigated the 
asymptotic behavior of the stopping times 

T= T b = inf{n > 1 : ng(Z.) > b} 

as b ~ ~ ,  by linearizing g(Z.) through the Taylor expansion as follows: 

g(Z.) = g(0) + (2. - 0) g'(0) + ( 2 . -  0) 2 g"(W.)/2 

for 2 .eU,  where W. is between Z.  and 0. If we put X.=g(O)+(Z.-O)g'(O), Y. 
=Z. -O,  c=O, h(t)=g"(t)/2 and ~.=(W.-O)/(2.-O) if Z . + 0 ,  and 0 otherwise, 
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then g(N,)=N,+h(c+ ~.~.)f~2, with EX,=g(O)>O, EY,=O, and I~l ~1, and T 
then is just a special case of N in (1) with nz= l ,  b,_=0, 2 = b  -x and a,=n.  Our 
method for treating the negligible term h(c+ f~,~,) y2 is by introducing the first 
passage times rather than the last times as in Lai and Siegmund (1977, 1979). 
Hence the moment conditions required are weaker. 

3. Applications to Sequential Analysis 

We shall apply the main result to prove Theorems 2 and 3 which arise in two 
problems in statistical sequential analysis. Here Lemma 4 is a result about the 
uniform integrability of Sr /T  ~. 

Lemma 4. Let Y, Y1 .. . .  be i.i.d, random variable with EY=O, EIyI2p<oo for 
some p>= l and let S ,=  YI +. . .  + Y .. Let {T(2), 1 > 2 > 0 }  be a family of stopping 
times such that {(~.l/~rOc))P, 1 > 2 > 0 }  and {(21/~T(2)) -(a+~)2pr/(2p-r), 1 > 2 > 0 }  
are uniformly integrable, where c~>0, f l>0  and 0 < r < 2 p .  I f  21/'T(2) converges 1 
to some positive constant c in probability as 2 ~ 0 ,  then {I(27T(2))-PSr(z)/T(2)~I', 
1 > R > 0} is uniformly integrable. 

1 
Proof We decompose (27T(2))-aSr(~)/r(2) ~ into 

1 
2~Sr(~)/c (p+~) + 2~ST(~)((27 T)-(~ +~) -- c-(~+ ~)) - V+ W, say. 

Since EIYI2p<oo and {(2~/~T(2)) v, 1>2>0}  is uniformly integrable (u.i.), by 
Lemma 2(iv), {Irl 2", 1__>;~>0} is u.i. and afortiori  {IVL 1__>,~>0} is u.i. Hence 

EIvINp=o(1). 
Since 2a/=r()O~c and {(21/~T(2)) -(~+~)2pr/(2p-'), 1 > 2 > 0 }  is u.i. 

1 
E 1(2~-r(2)) -(B + ~) --C--(fl+�89 2pr/(2p-r) = O(1). 

Therefore by Holder's inequality with t + s = t s ,  and choose s=2p/r,  then 

1 
E IWI r <= E~/'I21/2~Sr(x)I'SE~/'I(27 T().))- (r + ~1- c-  (a +~)l ~t 

=O(1) o(1). 

Hence {IW[', 1 ~ 2 > 0 }  is u.i., and the desired result follows. 

Proof of Theorem 2. We can assume that a = 1. Put a = 2/5. As in the proof of 
(8) by the strong law of large numbers, 21/~N-~ 1 a.s. By Corollary 4, {(21/~N) s, 
1__>2>0} is uniformly integrable (u.i.) for every s>0,  and E(21/~N)~-*l as 
2-~0. 

From the definition and p = 1 + 3 ,  (put q=p/(p-1)) ,  

(~l/eX)-2q~ (N-I~I (Zi-O)2)P~sup (n-1~1 (Zi-O)2)P. (18) 
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Since EIZI2P< o% by Doob's martingale maximal inequality, 

n p 

1 

Hence  {(2~-N) -2q, 1 > 2 > 0 }  is dominated. 
If _ 1 f l - y ,  r=2 ,  then 2 q = ( f i + � 8 9  and therefore by Lemma 4 with 

N = T(2), 

{2-2(Z N -  0) 2, 1 >_ 2 > 0} is uniformly integrable. 

By Anscombe's central limit theorem, 

{2-~(2N--0)}2-~L{N(0, ~2+~)}2. 

Hence we obtain (11). (12) follows immediately. 

Lemma 5. Let  Z, Z 1 . . . .  be i.i.d, random variables with P r [ Z =  1] = p =  1 - P r [ Z  
=0] ,  0 < p < l  and q = l - p .  For each n > l ,  put S , = Z a + . . . + Z  .. For ~>0,  
2>0 ,  put 

N = N z = inf{n > 1 : S,(n - S,) > 2 -  i n 2 - ~ }  

and 
U = U~ = (p q)(a- 1)/2~ 2-1/2~ {log(S N + a)/(N - S u + a) - log p/q}, 

where a is a nonnegative constant. Then as 2 ~ O, U converges in distribution to a 
standard normal distribution, (denoted by U ~ L  N(O, 1)). 

Proof. Put W N = l o g ( S n + a ) / p N  and V w = l o g ( N - S N + a ) / q N  as in Corollary 3, 
) d / ~ N ~ ( p q )  -1/~ a.s. By the strong law of large numbers, S N / N ~ p  a.s. There- 
fore for small 4, by series expansion, 

W N = log(1 + (S N - N p ) / p N  + a/pN) = (S n - N p  + a) (pN)-  1(1 + o(1)). 

Similarly 

Therefore 

V N = (Np - S N + a) (qN)-  1(1 + 0(1)). 

WN - Vw = (1/p + 1/q)(S N - N p ) / N  + o(IS N - N p  + a I/N). 

Hence by Anscombe's central limit theorem, as 2 ~ 0 

(pqN) l /2 (WN-  VN)~LN(O, 1). 

Now 
U = (pq)(~- a)/2~2-1/2~(W N - -  VN) 

= ((p q)C~- 1)/2~ 2-1/2~/(pqN)l/2)(pqN)l/2(Wu - VN). 

Clearly ((pq)(~- 1)/2a2-1/2a)/(pqN)l/2 --~ 1 a.s. since 21/~N-+ (pq)- 1/~. Hence the 

result follows. 
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Remark 3. When ~= 1, a = 1/2, the asymptotic normality of U has been estab- 
lished in Robbins and Siegmund (1974). The proof here is slightly different 
from theirs. 

Proof of  Theorem 3. We first note that 

(p q)(1 - ~)/2 ~ U = 2-1/2 ~ log (S N + a)/Np - 2-  ~/2 cr log(N - S N + a)/N q 

- V + V ' ,  say. 

Put W = ( ( S N + a ) / N - p ) p  -1. Then V=2-1/Z~log(1 + W), and since V' is of the 
same form as V,, it suffices to show that {IV[ r, 1 > 2 > 0 }  is uniformly integrable 
(u.i.). Next we observe that for any s>0 ,  by Corollary 3, {(21/~N) s, 1 > 2 > 0 }  is 
u.i. and 21/~'N--,(pq)-1/~' a.s., and by the same reasoning as in (18) and (19), 
{(21/~'N)-S, 1 > 2 > 0 }  is u.i. Therefore by Lemma 4 

{I2-1/2~'(SN-Np)/NIS , 1 >)~>0} is u.i. (20) 

Now we consider the case when W<0.  Then SN/N< p and since S ~ / N >  1/N~'2, 
it follows that pN~'2 > 1. Hence if W < 0, )~1/2~ I V I =< log pN~'2 < pN~'2. Therefore 
for any r>0 ,  for 0 < e < 1 ,  by Corollary 3 and then (20) and for A = _ [ W < - e ]  

El VIrl A < 2-"/2~E((N~ p)~I A 

< O(2-~/2~) E~/2(N~,2)2~ p1/2 [Np - S N > Npe] 

0 ( , ~  -- r/2cr p1/2 [-j~ - 1/2cr ]N p -- SNI/N > p e A- 1/2 ~'-I 

< O(2-,'/2~,)d/4-~'(pe)-S/2E1/212 - 1/2~,(N p _ SN)/N] s 

= O(2(s- 2 ~)/4~) = o(1) (21) 

if s > 2r. And 

I V(I[_~ < w< o]:  ~ - r / 2 a (  __ log(1 + W))*I[_~< w< ol 

< 0 (2 -  r/2 ~)(IS u - NpI/N)  r. (22) 

By (20), (21) and (22), {IVlrltw<o], 1 > 2 > 0 }  is u.i. For  the case W >0 ,  since 
log(1 +y)<=y for all y>0 ,  for some constant C =  C .... v, 

I Vl"Itw>_ o] =< 12-1/2~x Wl,,itw~ o] 

<= [p- 12-1/2a(S N - -  N p + a)/N]" 

_-< c(I,~- 1/2"(sN - N p)/NI" + 2"/2~'()o~/~ N) - ' ) .  

By (20), {12-11z~ 1 > 2 > 0 }  is u.i. Since {(21/~N) - ' ,  1 > 2 > 0 }  is u.i., 
therefore {[Vl"Itw>_o~, 1 > 2 > 0 }  is u.i. This completes the proof that {IUI', 
1 > 2 >0} is u.i. By Lemma 5, U obeys the central limit theorem, hence 

EIUI"---'m,., and E(log(Su+a)/(N-SN+a)--logp/q)=o(, ,?/2~') ,  

for any positive odd integer. In particular EU--,O and E u Z ~ I  and V a rU  
= E U  2 - ( E U )  2--+ 1. Also by Lemma 4 and Anscombe's central limit theorem, 
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and 

E l 2 - 1 / 2 ~ ( S  N - N p ) / N [  r ~ (pq) (1  -a)r/2amr 

E(SN/N _ p)k = 0(2g/2~), 

for any positive odd integer k. In particular 2 - 1 / 2 ~ E ( ( S N / N ) - p ) ~ O  and 
)~- '/~ E(Sn /N  - p)2 __4 (/3 q)(1 - ct)/~, consequently 2-1/~ Var (Sn/N) ~ (1) q)(1 - e)/~. 

Remark 4. When e =  1, a =  1/2, (15) has been conjectured by Robbins and Sieg- 
round (1974) in sequentially estimating the probability p and the odds for a 
Bernoulli distribution. The case c~=2 has also been mentioned in their work. 
For details about motivation and application, see their article. 
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