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Let (f2, W, ~ ,  Xt, 0t, px) be a standard process with state space E (locally com- 
pact with a countable base) and (V~)z> o its resolvent. It is known and easy to 
check that the following relation holds: 

(1) lim 2V~f(x)=f(x) ,  for each f~gc(E) and each xeE. 

If (Kn) is an increasing sequence of compact  sets such that K , c / s  1 and 
U K,=E,  it follows from the quasileft-continuity of the process that the se- 
n 

quence of hitting times TCK n converges to ~. Therefore if we denote by F x the 
family of all 2-excessive functions s which satisfy the inequality V~ 1 < s on the 
complement  of some compact  set K = K(s), depending on s, then from Hunt 's  
balayage theorem one easily deduces the following relation: 

(2) infFx = 0, for each 2 > 0. 

The aim of this paper is to prove a partial converse. Namely Theorem 4.3 
in the text states that each sub-Markov resolvent (V~)~> o satisfying the proper- 
ties (1), (2) and the following one 

(3) V~Cgc(E)cqYb(E ) for each 2>0 ,  

produces a Hunt  process. This result generalises the classical theorem which 
associates a Hunt  process to each Feller semigroup (see [1] or [41). 

The paper is divided into five sections. The first section recalls a result about 
convex cones of functions. Then in Sect. 2 we study the excessive functions 
under the assumption that the resolvent has a finite potential kernel. This as- 
sumption is also kept through Sect. 3 and 4 because it produces much simplifi- 
cation in the exposition, although it is not necessary for the proof  of the main 
result. Two essential properties are presented in Proposition 3.2 and Corol- 
lary 3.4. They state that each continuous function with compact  support  can b e  
approximated in a suitable sense with continuous excessive functions. These 
properties are substitutes for the fact that each continuous function with com- 
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pact support  could be uniformly approximated with continuous excessive func- 
tions in the case of a Feller semigroup. 

Section 4 contains the construction of the process. First we use a general 
theorem about  Ray resolvents on locally compact  spaces in order to produce a 
semigroup of kernels; Then the construction of the process follows the lines of 
Meyer 's  proof from [4]. Therefore the details are omitted. We emphasise only 
two points that are different from the classical situation. The first point con- 
cerns the existence of right and left limits near 3. The second point is quasileft- 
continuity at 3. Section 5 is somewhat independent of the preceding sections in 
the sense that  it does not use any of the previous results. However  the main 
result of this section is essentially used in Sect. 4. It retakes the construction of 
a semigroup from a Ray resolvent in the case of a locally compact  space. 

While the probabilists were satisfied with the construction theorem which 
associates a Hunt  process to each Feller semigroup, other authors working in 
potential theory were interested in constructing semigroups and processes from 
resolvents which act on spaces of functions having a more complicated be- 
haviour near infinity. So our paper follows the works of Boboc-Constantines- 
cu-Cornea [8], Hansen [9] and Taylor  [7]. 

We note that J.C. Taylor was the first to study Ray resolvents and Ray 
processes on locally compact  spaces and two of his results (namely Theo- 
rems 1.7 and 3.4 from [7]) are generalised here. 

Thanks are do to K. Janssen who pointed out the error from E6], which was the starting point 
of this paper. 

1. Prel iminaries  on Cones of  Functions 

Let E be a locally compact  space with a countable base and let Y be a convex 
cone of lower semicontinuous nonnegative numerical functions on E such that 
the constant function 1 belongs to 5 p. Denote by 5 p* the family of all uni- 
versally measurable non-negative numerical functions f such that /~ ( f )<f (x)  
for each xEE and each measure # which fulfils the inequalities #(s)<s(x) for all 
s e 5  p. Obviously 5 ~* is a convex cone stable under infimum. Further let Y be 
another  convex cone such that 5 p c Y c Y * .  If f :  E ~ R  is an arbitrary function 
we use the notation 

1R f =  inf{sEY/--/f < s}, 

provided the set in brackets is not empty. The function J R f  is called the re- 
duite function. If  f < 0  we have FRf=O. We shall denote by D ( J )  the family of 
all continuous functions f which have the following properties: 

- there exists s e J -  such that If] < s  and 

- inf{9-R()~cKIfl)/K compact  set}=0.  

It is easy to see that D ( J )  is a vector lattice which contains the space cgc(E ) 
and that JR f <  oe for each f eD(J ) .  
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The next result was proved in [6 p. 76J in the case J = 5  ~*. The proof 
given there is still valid in the more general case stated here. 

Theorem 1.1. Let f: E--+R be an upper semicontinuous function such that there 
exists a function g~D(J-) with f <=g. Then for each point x~E there exists a 
nonnegative measure # such that 

g(s)<s(x) for each s~5 P and XRf(x)=g( f ) .  

2. The Cone of Excessive Functions 

Further let (V~)a> o be a sub-Markov resolvent of kernels on E satisfying the 
following two conditions: 

(2.1) 

(2.2) 

A 

10 
2 0 
3 0 

V~Cde(E)=Cdb(E), for each 2>0 ,  where Vo=sU p V~ and 

lira 2 V~f(x) =f(x) ,  for each f~cdc(E ) and x~E. 

function s: E ~ [ 0 ,  oe] will be called excessive provided: 

s is universally measurable, 
2V~s<s, 2 > 0  and 
s(x)= lira 2V~s(x), for each xsE. 

).~oo 

It follows from (2.2) that each lower semicontinuous function s: E ~ [ 0 ,  oo] 
satisfying conditions 1 ~ and 20 is in fact excessive. The family of all excessive 
functions is a convex cone that will be denoted by #. The subcone of all real 
valued continuous excessive functions will be denoted by go. Following G. Mo- 
kobodzki [5 Chap. III] we next present some basic properties related to the 
cones 5 ~ and Co. We have V 0cdc+(E)=# c. The monotone class theorem shows 
that Vofeg* for each Borel nonnegative function f and hence the same is true 
for f universally measurable and nonnegative. By standard arguments on ex- 
cessive functions it follows # = 4*. 

Theorem 2.1. 1 o I f  f is a lower semicontinuous function, then the reduite ~Rf is 
also lower semicontinuous and excessive. 

2 o I f  f is an upper semicontinuous function and there exists a function 
geD(Ec) such that f <=g, then 

~cRf = ~Rf 

Particularly the function gR f is upper semicontinuous. 
3 0 I f f  belongs to D(#~), then ERf is continuous. 

The proof of the theorem uses Theorem 1.1 and the method of proof of the 
similar results from [5 Chap. III]. 

Further we shall use the following simple lemma. 

Lemma 2.2. Let #,v be two finite measures such that #(Vof)=v(Vof ) for each 
f~cgc(E). Then #=v. 
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Proof. Let g ~ b ( E ) ,  g > 0  be such that Vog is bounded. Then clearly /~(Vog ) 
=v(Vog ). Therefore if fecge(E), f > 0  on account of the resolvent equation we 
deduce that V o Vaf is bounded, and consequently ~t(V o VJ)=  v(V o VJ). Then we 
deduce l a (V j )=v(VJ)  for each ) ,>0  and letting )~-0o9 from (2.2) we deduce 
la(f)=v(f). Since f was arbitrary the equality # =  v follows. 

Consequence 2.3. The measures Vz(x , .) are nonzero for each 2 > 0  and xsE. 

3. Approximation of Continuous Functions with Excessive Functions 

In this section we assume that the resolvent satisfies the conditions (2.1), (2.2) 
and the following one: 

(3.1) Vof~D(g ) for each fe~(E) .  

Lemma 3.1. Let f~c~b(E ) be such that f > 0  and Vof~Cgb(E). 

I f  U is an open set and x~ U, then 

~R(Zcv Vof)(x) < Vof(X ). 

Proof. First we note that Vof~D(E ). Indeed let y~E and e>0 .  We can choose 
geCgc(E), 0_-<g<l such that Vof(y ) -  Vo(gf)(y)<~/2. From (3.1) we get a com- 
pact set K and s~g such that s(y)<e/2 and V(gf)<__s on CK. Putting t=s 
+ Vo((1-g) f )  we have t(y)<e and Vof<t on CK. Therefore VofsD(g ). Then 
from Theorem 1.1 we get a measure g on E such that l~(s)<s(x) for each seg 
and la()~c v Vof)=h(x), where we denote by h the re6uite function 

h= r Vof). 

Now let us suppose that h(x)= Vof(X ). Then we have 

Vof (X ) = ~t()~cv Vo f )  <= ~t( Vof) < Vof (X ). 
and hence 

#(Vogf)~= Vogf(x ), #(Vo(1 -g)f)~= Vo(1 -g ) f (x )  
and 

tt( V o g f )  + #(Vo(1 - g) f ) =/z(V o f )  = Vof (X ) = V o g f  (x) + Vo(1 - g) f(x). 

We deduce #(Vo g f ) =  17o gf(x)  and on account of Lemma 2.2, we get t t=~ x. 
Since ~cv(x)=0 it follows h(x)=0. 

On the other hand Consequence 2.3 shows that Vof(X )>0. The assumption 
Vof(x)=h(x ) fails and this finishes the proof. 

Proposition 3.2. Let U be an open set and K a compact set such that U c K and 
denote by T o the subspace of ~b(E) consisting of all functions of the form 

r A VoA A . . .  V o A - q  A Vog~ A . . .  Vog~, 
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with r, qsR, r, q>-_O, f~, gFCgc(E), f~>0, gj=>0, i<n, j<=p. Then the subspace T of 
Co(U ) defined by 

T={f lv / fEro , f=O on K \ U }  

is dense in ~o(U). 

Proof. The space T o is a sub-vector lattice of cgb(E ) having the property that if 
f~To, then f A  I ~ T  o. Therefore T is a sub-vector lattice of c~0(U ) with the same 
property and the Stone-Weierstrass theorem will imply the proposition pro- 
vided we prove that T separates the points of U. 

Let x ~ U  and let W be an open neighbourhood of x such that W c  U. We 
shall construct a function f ~  T O such that f (x)  > 0 and f =  0 on K \  W. First from 
condition (2.1) we deduce the existence of a function geC~b(E), g > 0  such that 
Vog~b(E ). Put u =  V0g and choose a compact  neighbourhood M of x such 
that M c IV. The function 

v =- gR(XcM u) 

has the following properties: v=u on CM, u(x)>v(x) on account of Lemma 3.1 
and v is lower semicontinuous and excessive on account of Theorem2.1.1 ~ 
Then we have the following relation: v=sup{2V~h/O<h<v, h~c(E), 2>0}.  If 
we fix e > 0  such that u(x)>v(x)+8, since v is continuous on CW, we can 
choose h~C~(E) and 2 > 0  satisfying O<h<v on E and v<2V~h+~/2 on K \ W .  
We also have 2 V~ h __< 2 V~ v < v. Further the relation 

22 V o V~ h = s u p  {22 V o h' V~h/h'~c(E),O<h'< 1} 

shows that we can choose a function h'~C~c(E) such that Voh'<22Vo V~h and 
22 V o V~ h <= V o h' + e/2 on K. Then we have 

2 V~h=2 Voh-22Vo Vxh<2 Voh-  Voh' 
and 

Further we deduce 

2Voh-Voh'<2V~h+e/2 on K. 

u=vG2Vxh+~/2<2Voh-Voh '+~/2  on K \ W  
and 

2 Vo h ( x ) -  Voh'(x)+#2<=2V~h(x)+~<=v(x)+~<u(x). 

The function f = u - u  A (2 V o h -  V o h ' +  ~/2) posseses the asserted properties. 
Thus T separates the points of U. 

Corollary 3.4. Let U be an open set, K a compact set and f~C~c(E) a function 
such that suppf ~ U ~ K .  For each point xcE and each ~>0, there exist s, tcE c 
such that 

[s--t--f l<~ on U, s=t  on K \ U  
and 

CU(I s - t - f I ) ( x )<a  
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Proof. First we choose a function geCgb(E ) such that g > 0  and V0 gecgb(E). Since 
Vog>0 we may suppose that I f [<  Vog. Then we choose a compact set K' such 
that K c K'  and 

~R(Zc~, Vo g) (x) < ~/2. 

Using the above proposition we get s', t 'egr such that s '=t '  on K ' \ U  and 
t s ' - t ' - f l < e / 2  on U. Further putting s = s ' A ( V o g + t '  ) and t= t 'A (Vog+S '  
A(Vog+t')) we get s = s ' = t ' = t  on K ' \ U  and s - t = ( ( s ' - t ' ) v ( - V o g ) ) A V o g ,  
which implies Is- t l  < No g. Since If[ < Vo g we have I s - t - f ]  <e/2 on U. On the 
other hand we have 

eR(ls - t - f [ )  < gR(z K, Is - t - f l )  + eR(ZeK, Is -- tl) < ~/2 + gR(ZcK, Vo g). 

The Corollary is proved. 

4. Construction of the Process 

In this section we are going to associate a Hunt  process to the resolvent (V~)a> 0 
satisfying the conditions (2.1), (2.2) and (3.1). First we are going to associate a 
semigroup (Pt)~>__o of sub-Markov kernels by using Theorem 5.3 proved in the 
next section. Condition (A1) of Theorem 5.3 follows from Corollary 3.4 and 
condition (A2) is a consequence of (3.1) (the assumption (3.1) shows that for 
each f~cgc(E), Vof  belongs to the cone ~o defined above Theorem 5.3). From 
Theorem 5.3 we have the semigroup (Ptt)t>_o satisfying for each feCgc(E ) and each 
xsE,  

- the map t~Pt(x) is right continuous 
Oo 

- Vz f (x )= ~ e x p ( - 2 t ) P J ( x ) d t ,  2>0.  
o 

From condition (2.2) follows Po = 1. 
Now we begin the construction of the process. We set Ea = E u {A}, where A 

is the Alexandrov point if E is noncompact or an isolated point adjoined to E 
if it is compact. As usual we extend the semigroup (Pt)'to a Markov one on E~, 
which will still be denoted by (Pt). Furthermore we make the convention that 
each numerical function f defined on E is tacitly extended on E~ taking f (A)  
=0. Now we prove the analogous of Theorem 3 from p. 27 in [4]. 

Lemma 4.1. Let (Xt) be a Markov process on a complete probability space 
(f2, ~ ,  P) having (P~) as transition function. Let S be a countable dense subset of 
(0, o~). Then almost all o9~f2 have the following properties: 

(1) there exists Xt+(co)= lim Xs(co),for each t~R+, 
S~s?> t , S ~ t  

(2) there exists X,_(co)= lim Xs(CO),for each t>0 ,  
S O S < t , s ~ t  

(3) X~(co)=A i f s e S  and s>{(co), 

where ~(oo)=inf{teS/Xt(og)=A or Xt+(co)=A or Xt_(co)=A } and the limits in (1) 
and (2) are taken in E a. 
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Proof. For each excessive function f ( f e Y )  the process (f(Xt))t>=o is a super- 
martingale with respect to the family (~t)t~o where ~tt is the P-completion of 
a(Xs, s<t  ) in ~ .  

For  a compact set K c E  we know from Proposition 3.2 that the space {fK 
-glic/f, geEc} is dense in Cg(K). If we define Trc=inf{tES/X~eEA\K}, the classi- 
cal arguments used in the construction of standard processes (see [11 or [41) 
can be used to show that almost all coef2 have the following properties" 

(4) there exists lira Xs(co ) for each t < T K, 
S ~ s  > t ,  s ~ t  

(5) there exists lim X~(co) for each t < T  K. 
S ~ s  < t, S ~ t  

Now let (K~) be a sequence of compact sets such that K ~ / ( n +  1 and E 
= U K n  and put T~=inf{teS/X~eE\K~} and T=supT~. We choose a con- 

n n 

tinuous function f~Cgb(E ) such that f > 0  on E and Vofecgb(E). Then we have 
Vof>0  on E and if Yt=Vof(X~), then X,(co)=A if and only if Yt(co)=0. Since 
(Yt)t~0 is a supermartingale and t-~E[Yt] is right continuous there exists a right 
continuous version of (Y~)teo which we denote by (~)~_>o. 

Let us suppose that g is an excessive function satisfying the inequality 
Vof<g on CK,, for some fixed n~N. Then we are going to show that 
E[Yr,/T . < oe I <E[g(Xo) ]. In order to prove this inequality we take an increas- 
ing sequence (Sk) k of finite subsets of S such that ~)Sk=S and define R k 

k 

=tnf{teSk/XteEA\K,}. Then T,=infRk and XR~(CO)~EA\K . if Rk(co)<c~. 
k 

Therefore 

E[YR~/Rk < ~3 - -  E[YRJRg < c~1 -~ E[g(XR~)1 <--_ E[g(Xo)]. 

Letting k~Go we get the desired inequality. Further we deduce 
limsup E[YT~/T ~ < ~]  <=E[g(Xo) ]. 

n ~  oo 
g 

Now taking g~= R(ZcK ~ Vof), on account of relation (3.1) one can show 
that l img~=0 (see the first part of the proof of Lemma3.1), and hence 
lim E[gn(Xo) ] =0, which implies that ~ ' r ~ 0  almost surely. 

A well known result on supermartingales implies that almost all co have the 
property that Yt(co)=0 for each t~S, t> T(co), which is equivalent to 

(7) Xt(co)=A for each tES, t>T(co). 

On the other hand the properties (4) and (5) imply that almost all 03 have 
the following properties: 

(8) there exists lira X~(co) for each t <  T and 
S ~ s  > t~ s ~ t  

(9) there exists lira X~(co) for each t <  T and even for t =  T(co) provided 
S ~ s  > t ,  S ~  t 

co U T}. 
n 

It remains to study the left limit of the process (Xs)~ s at T on the set 
~ { T n < T } .  Since almost surely ~=Yt  for all teS from the relation Y T ~ 0  

n 
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follows lim Yt=0 a.s. on ~ {T~<T}. On the other hand for each compact 
S ~ t <  T , t ~ T  n 

set K there exists a constant e > 0  such that Vof~C on K, because Vof is 
continuous. Thus Yt(co)>__c provided Xt(co)~K. This implies that 

lira Xt=A a.s. on ~{Tn<T} .  
S ~ t  < T ,  t ~  T n 

Now it is easy to see that the assertion of the lemma holds with ( =  T. 

Theorem 4.2. There exists a Hunt process ((2, ~ ,  Yt, Xt, Or, px) associated to the 
resolvent (V~);o> o- 

Proof. On account of the previous lemma the method of P.A. Meyer [4, pages 
30-51] can be applied in our situation in order to construct the process 
(f2, i f ,  ~ ,  Xt, Otl W) having all the properties of a Hunt process, except possible 
the quasileftcontinuity. We shall check here that this process is quasileftcon- 
tinuous. 

Let (Rk) be an increasing sequence of stopping times having a finite limit R 
= l i m R k <  ~ .  For  each function fE~b(E ), f>O such that Vof< o% we have 

[i ] ] EX[Vof(XR)]=EX f(X~)dt = lim E ~ f(Xt)dt  
k ~ cc  I - R k  

= lim E~[Vof(XR~)], 
k ~ o o  

which implies that Vof(XR~)~ Vof(X R) a.s. 
As in the proof of the preceding lemma we consider a sequence of compact 

sets (K~) such that K, cK~+ 1 and E = U K  ~. Then T~=inf{t>O/XteEA\K,}, 
n 

nsN satisfy lim T,=( .  
n ~ o o  

Further using Proposition 3.2 one easily deduces that X R ~ X  R on the set 
{R< T~} for each nEN and therefore on {R<(}.  

Considering a function f > 0  such that Vof~Cgb(E) we see that Vof is bound- 
ed from below by a strictly positive constant on each compact subset of E. 
On the other hand Vof(X~)=O. The theorem is proved. 

Now we state a more general version of the above theorem relaxing the 
assumption that V 0 is a finite kernel. Its proof results similarly by using Theo- 
rem 5.6 from the next section instead of Theorem 5.3 and by other standard 
modifications. 

Theorem 4.3. Let us assume that (V~)z> o is a sub-Markov resolvent satisfying the 
following conditions: 

(2.1') VzC~(E)cCgb(E) for each 2>0,  

(2.2) lim )~ Vzf(x ) =f (x )  for each f~c~(g) and each xsE, 

(3.1') V~feD(g~) for each fec~(E) and each 2>0,  

where C z is the cone of all 2-excessive functions. 
Then there exists a Hunt process associated to the resolvent (Vz)~> 0. 
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Remark 4.4. A version of the above Theorem 4.2 was stated in [6 Chap. VII as 
Theorem 2.4 completed by Corollary 2.8, but the reasoning given there do not 
cover the statements. However the arguments given in [6] work if the condition 
that V o leD(d ~ assumed there (with a different notation) is replaced by the 
stronger condition that V o l~D(g~). An example making evident the difference 
between these two conditions was communicated to the author by K. Janssen. 

5. Ray Resolvents on Locally Compact Spaces 

Let E be a locally compact space with a countable base and (Vx)~> 0 a sub- 
Markov resolvent of kernels on (E, ~(E)). For each e > 0  we shall denote by 5P~ 
the family of all Borel bounded c~-supermean valued functions: 

~9~ = {s: E~[0 ,  oo),SSBb(E),2Vz+~s<s,(V)2>O }. 

It is wellknown that V~N~(E)cS~ if c~>0, 5 ~  if c~>fl and 1~5 o. We set 

U 
e_->O 

It is also known that the space V, (~b(E)) does not depend on 2>0.  Its 

uniform closure will be denoted by 9,  i.e. 9 =  V~(Bb(E)). The Hille-Yosida 
theorem applied to the resolvent (V~)x> o on the space N gives us a semigroup 
(Qt)t_>_o of operators on N such that" 

(1) Qo=I and the mapt~Qz f is right continuous for e a c h f e ~ .  
o o  

(2) V~f= ~ exp(-2t)QJdt for each 2 > 0  and f e ~ .  
0 

(3) if f ~  is such that 0 < f <  1, then 0 < Q J <  1. 
(4) if fe~c~S~, c~>O, then exp(-c~t)QJ< f 
The properties (3) and (4) are proved for example in [2 p. 252]. 
IffsNb, then V?~fsN, and hence Qt2V~f makes sense. We denote by ~ the 

vector space of all functions f e n  b which have the property that the limit 

(5.1) Qtf(x) = lim Qt 2 v~f(x) 

exists for each t > 0  and each xeE. The operator (~t, t > 0  defined this way 
obviously m a p ~  into Nb(E) and (~I~=Q," It should be noted that (~0 differs 
from I in general. If feSP~ we see that the ma p 2 ~ Qt  2 v~+~f is increasing and 
on account of the inequality 112V~-2V~+~]] =IIV~ V~+~l[<c~/(2+c~) it follows 
fE/5. Therefore we have 5~oo c/5. 

I f f~ /3  and xsE we have 
o o  o o  

e-~tO_tf(x)dt= lim ~ e-~tQ.~2V~f(x) 
0 . ~  0 

= lira 2 V~ VJ(x)= Vj(x). 

Therefore relation (2) still holds for the operators (~,, t > 0  and f~/) .  It is easy 
to see that relation (3) also holds for (~t. Further properties are presented in 
the next two lemmas. 
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Lemma 5.1. I f  feS~ and x~E, then the map t--+e-~tQtf(x) is right continuous, 
decreasing and bounded by f (x). 

Proof From the equality V~+~f= V~(f-2  V~+~f) it follows V a + = f e ~ c ~ .  From 
the properties (1) and (4) of the semigroup we deduce that the 
map t--+e-~t Q,, 2 V~+~f(x) is right continuous, decreasing and bounded by f(x) .  
The family of all these maps is increasing with respect to 2 and its supremum 
is t-+e -~' Qtf(x). It is an elementary lemma of real analysis which asserts that 
the limit of an increasing sequence of right continuous decreasing real func- 
tions on an interval is also a right continuous function. This implies the state- 
ment of the Lemma. 

For  x e E  and a > 0  we define a semi-norm Px~ on ~b by putting for fE~b,  

Px~(f) = inf{s(x)/seSP~, If] < s}. 

Lemma 5.2. Let f ~ b  and suppose that for each x e E  there exist ~ = ~ ( x ) > 0  and 
( x  a sequence f~),~N in D such that 

lira p=(f~  - f )  = O. 
n ~ o o  

Then f e ~  and for each x e E  and toeR + we have 

lira Q,f~(x) = Qtf(x)  uniformly for te [0, to]. 
n ~ o o  

Proof First we are going to show that 

Qt2Vx+,g(x)<=e~tp~(g), 

for each geBb(E ). Indeed, if seS~'= is such that [g[ <s, then we have 

< 

which leads to the asserted inequality. 
Further we deduce that for each x e E  and t>O we have 

lira Qt )~ Va + i x ( x )  = Qt 2 v z + j ( x ) ,  
n ~ o o  

uniformly in ,t. Then it is easy to deduce that f e ~ .  The first inequality also 
implies 

Q , ( f x -  f )  (x) < e=' p ~ ( f ~ -  f ) ,  

which leads to the uniform limit relation asserted by the lemma. 
Before stating the main result of this section we introduce some notation. 

We denote by ~ the family of all functions s e ~  having the property that for 
each x~E and each e>0,  there exist f~Cgc(E ) and u~5~ such that f < s < f + u  
and u(x)<e. It is easy to see that each function s e ~  is lower semicontinuous 
and if f, u and e satisfy the above inequalities, then 

p,,=(s - f ) < u(x) < 
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Let ~ '  be a family of functions in ~b(E). We shall denote by p(sd) the family 
of all functions f in ~b which can be approximated with functions from d in 
the following sense: for each x~E there exists e = e ( f , x )  and a sequence (fff) in 
sr such that lim px~(fx-f)=O. With this notation we have ~cp(Cgc(E)). 

n ~ o o  

Theorem 5.3. Suppose that the potential kernel V o = sup V~ satisfies the following 
X > 0  

finiteness property: Vof < oo for each f ~ c ,  f>O. Moreover assume that the fol- 
lowing conditions are fulfilled." 

(A1) ~c(E)cp(SP~o-SP~) and 

(A2) for each f~cgc(E), f>=O, there exists a sequence (s,) in ~o such that lim s n 
n ~ o o  

= Vof and s,< Voffor any n~N. 
Then there exists a unique semigroup of kernels (Pt)~>=o on E such that for 

each f s ~ ( E )  and each x~E the following properties are satisfied: 

(a) the map t--,PJ(x) is right continuous, 
o o  

(b) V~f(x)= ~ exp(-2t)Pt f (x)dt  , for each 2>0.  
0 

Remark. In general we may have Po +I .  

Proof From Lemma5.2 we have p ( S P ~ - 5 ~ ) c ~ .  Therefore the assumption 
(A1) allows us to define a family of kernels (P~)~o on E such that P~f=(2~f, for 
each fe~c(E). The property (b) is obviously satisfied for fecgc and a monotone 
class argument shows that it remains valid for any f~Nb. Property (a) follows 
from Lemma 5.1 and Lemma 5.2. It remains to prove the semigroup property. 
First we prove the following lemmas: 

Lemma 5.4. I f  f ~  b is such that f>O and Vof < o% then the map t ~ P  t Vof(X ) is 
right continuous and bounded by Vof(X ) for each xeE. 

Proof If s e ~  o and geCgc(E ) are such that 0 < g < s ,  then P tg=(~g<(~ts .  Taking 
the supremum over g we get Pts<Qts. Now for a fixed point x~E we choose a 
sequence (f,)ccg~(E) such that 0 < f , < s  and p~0(s - f , )~0 .  Therefore Qts(x) 
= lim O.J,(x)<=P,s(x) and we conclude that O.ts=P~s. 

Further let g~Cgc, g>0 .  From assumption (A2) we have a sequence ( s , ) c ~  o 
such that l ims ,=V0g  and s,<Vog , n~N. Then P~Vog=limPts .. Since the 

n ~ o o  n ~ o o  

maps t ~ P  ts.(x), n~N are decreasing, right continuous and PtSn(X)<S,(X) their 
limit t---,PtVog(x ) is also decreasing, right continuous and PtVog(x)<Vog(x). 
Then a monotone class argument shows that the map t ~ P  t V o g(x) is decreasing 
and PtVog(x)<Vog(X ) for each function g ~ b  such that g > 0  and {g+0} is 
relatively compact. Furthermore for such a function g we can choose another 
function g ' ~ b ,  g '>  0 such that g + g'~Cg~(E). We have two nonnegative decreas- 
ing maps t ~ P  t Vof(X ) and t ~ P  t V o g'(x) and their sum is right continuous. Thus 
both of them are right continuous. Now expressing f as the limit of an increas- 
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ing sequence (g,)=Nb +, with {g,:t:0} relatively compact we deduce that 
t-,P~ Vof(x ) is right continuous and P~ Vof(X)< Vof(x ). 

Lemma 5.5. Ptf=Qtf  for each fE~ .  

Proof Let g ~ b  be such that g > 0  and the set {g:t:0} is relatively compact. 
From the relation V o g = V z g + V o V z g we deduce that V o V~ g < ~ .  Further from 
the preceding lemma we have Pt Vo g < oo and Pt Vo V~ < oe and we deduce that 
the map t--,Pt V~g(x) is right continuous for each xsE. Since the Laplace trans- 
form of this map coincides with the Laplace transform of the map t--,Qt v~ g(x), 
which is also right continuous we get P~ Vzg=Q~ V~g. Moreover we deduce 
from Lemma 5.1 that the map t--,e-~P~ Vzg(x ) is decreasing. 

Now for fENb,f>O we can express this function as the supremum of an 
increasing sequence (g,)=~b satisfying the property that the sets {g,:t:0}, nsN 
are relatively compact. We deduce that the m ap t -~e -~ tP  t V~f(x) is right con- 
tinuous. Again the unicity of the Laplace transform implies that Pt Vzf(x) 
=Q~ VJ(x). Then it is easy to deduce the equality Pt f=Qt f  for each fED.  

Finally in order to prove the relation Pt P~=Pt+s let fccgc. Then we have 

PtP~f=PtQsf= lim PtQs2 V~f= lim Qt+s2 Vzf=Qt+sf=Pt+sf 
A ~ o o  ~ . ~ e e  

Next we give a version of Theorem 5.3 for the case when V o is non-finite. 

Theorem 5.6. Suppose that (V~)~> o is a sub-Markov resolvent satisfying property 
(A1) and the following: 

(A'2) for each c~>0 there exists a sequence (s,) in .~ such that lira s ,=  V.. 1 
n ---~ oo 

and s,< V~l, for any n6N. 
Then there exists a unique semigroup of kernels (Pt)t>_o on E such that: 

(a) the map t--*PJ(x) is right continuous for each f ~ c ,  x~E, 
oo 

(b) Vzf(x)= ~ exp(-2t)Ptf(x)dt ,  for each f ~ c ,  x~E, 2>0.  
0 

Proof Let ~ >0. A slight variation of the arguments used in the proof of Theo- 
rem 5.3 imply the existence of a unique semigroup (Pff)~_>_0 such that V~+~ 

- exp(-2t)Pt~dt. 
0 

Now for 0<fi<c~ we deduce Pt~=e-(~-~)tPf. Then the semigroup (Pt)t~0 giv- 
en by  Pt = eat Pt ~ satisfies the properties (a) and (b). 

References 

1. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York-London: 
Academic Press 1968 

2. Constantinescu, C., Cornea, A.: Potential Theory on Harmonic Spaces. Berlin-Heidelberg-New 
York: Springer 1972 

3. Meyer, P.A.: Probability and Potentials. Waltham-Massachusets-Toronto-London: Blaisdell 
1966 



Construction of Hunt Processes from Resolvents 179 

4. Meyer, P.A.: Processus de Markov. Lecture Notes in Math. 26, Berlin-Heidelberg-New York: 
Springer 1967 

5. Mokobodzki, C.: C6nes de potentiels et noyaux subordonn6s, in vol. Potential Theory. Roma: 
Edizione Cremonese 1970 

6. Stoica, L.: Local Operators and Markov Processes, Lecture Notes in Math. 816, Berlin-Heidel- 
berg-New York: Springer 1980 

7. Taylor, J.C.: Ray Processes on Locally Compact Spaces. Math. Ann. 208, 233-248 (1974) 
8. Boboc, N., Constantinescu, C., Cornea, A.: Semigroups of transitions on harmonic spaces. Revue 

Roumaine Math. Pures Appl. 12, 763-805 (1967) 
9. Hansen, W.: Konstruction yon Halbgruppen und Markoffschen Prozessen. Invent. Math. 3, 179- 

214 (1967) 

Received March 15, 1982; in revised form February 5, 1983 


