Skip to main content
Log in

The role of cell adhesion molecules in cancer invasion and metastasis

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Invasion and metastasis of tumor cells is the primary cause for the fatal outcome of cancer diseases. A striking feature of metastatic cells is the considerable flexibility in their adhesive interactions with other cells or components of the extracellular matrix. This review will describe the involvement of specific cell adhesion receptors, extracellular matrix molecules, and cell dissociating cytokines in the metastatic cascade. We will particularly focus on disturbance of intercellular adhesion as a prerequisite for the release of invasive cells from carcinomas. We suggest that cell dissociation in these tumors is accomplished by loss of function or expression of the epithelial cell adhesion molecule E-cadherin, and through the activity of cell motility factors, like scatter factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gabbert H, Wagner R, Moll R, Gerharz C-D: Tumor dedifferentiation: an important step in tumor invasion. Clin Exp Metastasis 3:257–279, 1985

    PubMed  Google Scholar 

  2. Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455, 1991

    PubMed  Google Scholar 

  3. Behrens J, Birchmeier W, Goodman SL, Imhof BA: Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-Arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol 101:1307–1315, 1985

    PubMed  Google Scholar 

  4. Gumbiner B, Simons K: A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol 102:457–468, 1986

    PubMed  Google Scholar 

  5. Nagafuchi A, Schirayoshi Y, Okazaki K, Yasuda K, Takeichi M: Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329:340–343, 1987

    Google Scholar 

  6. McNeill H, Ozawa M, Kemler R, Nelson WJ: Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62:309–316, 1990

    PubMed  Google Scholar 

  7. Behrens J, Mareel MM, Van Roy F, Birchmeier W: Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108:2435–2447, 1989

    PubMed  Google Scholar 

  8. Frixen U, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W: E-cadherin mediated cell-cell adhesion prevents invasiveness of human carcinoma cell lines. J Cell Biol 111:173–185, 1991

    Google Scholar 

  9. Vleminckx K, Vakaet L, Mareel M, Fiers W, Van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119, 1991

    PubMed  Google Scholar 

  10. Chen W, Öbrink B: Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Biol 114:319–327, 1991

    PubMed  Google Scholar 

  11. Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW: Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Diff 2:365–372, 1991

    PubMed  Google Scholar 

  12. Mareel MM, Behrens J, Birchmeier W, De Bruyne GK, Vleminckx K, Hoogewijs A, Fiers WC, Van Roy FM: Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int J Cancer 47:922–928, 1991

    PubMed  Google Scholar 

  13. Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A: A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115:517–533, 1991

    PubMed  Google Scholar 

  14. Mahoney PA, Weber U, Onofreckuk P, Biessmann H, Bryant PJ, Goodman CS: Thefat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67:853–868, 1991

    PubMed  Google Scholar 

  15. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W: E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51:6328–6337, 1991

    PubMed  Google Scholar 

  16. Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Tamura S, Iihara K, Doki Y, Hiran S, Takeichi M, Mori T: Expression of E-cadherin adhesion molecules in human cancers. Am J Pathol 139:17–23, 1991

    PubMed  Google Scholar 

  17. Shimoyama Y, Hirohashi S: Expression of E- and P-cadherin in gastric carcinomas. Cancer Res 51:2185–2192, 1991

    PubMed  Google Scholar 

  18. Tohma Y, Yamashima T, Yamashita J: Immunohistochemical localization of cell adhesion molecule epithelial cadherin in human arachnoid villi and meningiomas. Cancer Res 52:1981–1987, 1992

    PubMed  Google Scholar 

  19. Shimoyama Y, Hirohashi S, Hirano S; Noguchi M, Shimosato Y, Takeichi M, Abe O: Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res 49:2128–2133, 1989

    PubMed  Google Scholar 

  20. Eidelman S, Damsky CH, Wheelock MJ, Damjanov I: Expression of cell-cell adhesion glycoprotein cell-CAM 120/80 in normal human tissues and tumors. Am J Pathol 135:101–110, 1989

    PubMed  Google Scholar 

  21. Tsuda H, Zhang W, Shimosato Y, Yokota J, Terada J, Terada M, Sugimura T, Miyamura T, Hirohashi S: Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. Proc Natl Acad Sci USA 87:6791–6794, 1990

    PubMed  Google Scholar 

  22. Natt E, Magenis RE, Zimmer J, Mansouri A, Scherer G: Regional assignment of the human loci for uvomorulin (UVO) and chymotrypsinogen (CTRB) with the help of two overlapping deletions on the long arm of chromosome 16. Cytogenet Cell Genet 50:145–148, 1989

    PubMed  Google Scholar 

  23. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB: Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87:8751–8755, 1990

    PubMed  Google Scholar 

  24. Sato T, Tanigami A, Yamakawa K, Akiyama F, Sakamoto G, Nakamura Y: Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 50:7184–7189, 1990

    PubMed  Google Scholar 

  25. Behrens J, Löwrick O, Klein-Hitpass L, Birchmeier W: The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci USA 88:11495–11499, 1991

    PubMed  Google Scholar 

  26. Leask A, Rosenberg M, Vassar R, Fuchs E: Regulation of a human epidermal keratin gene: sequences and nuclear factors involved in keratinocyte-specific transcription. Genes Dev 4:1985–1998, 1990

    PubMed  Google Scholar 

  27. Lüscher B, Eisenmann RN: New light on myc and myb, Part I: Myc. Genes Dev 4:2025–2035, 1990

    PubMed  Google Scholar 

  28. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Tupert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56, 1990

    PubMed  Google Scholar 

  29. Roth J, Zuber C, Wagner P, Taatjes DJ, Weisgerber C, Heitz PU, Goridis C, Bitter-Suermann D: Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 85:2999–3003, 1988

    PubMed  Google Scholar 

  30. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP: Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57:327–334, 1988

    Google Scholar 

  31. Valles AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP: Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 87:1124–1128, 1990

    PubMed  Google Scholar 

  32. Jouanneau J, Gavrilovic J, Caruelle D, Jaye M, Moens G, Caruelle J-P, Thiery JP: Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential. Proc Natl Acad Sci USA 88:2893–2897, 1991

    PubMed  Google Scholar 

  33. Sehgal PB, Tamm I: Interleukin-6 enhances motility of breast carcinoma cells.In Goldberg ID (ed) Cell Motility Factors. Birkhäuser Verlag, Basel, 1991, pp 178–193

    Google Scholar 

  34. Stoker M, Gherardi E, Perryman M, Gray J: Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327:239–242, 1987

    PubMed  Google Scholar 

  35. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W: Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108, 1990

    PubMed  Google Scholar 

  36. Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y, Birchmeier W: Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88:7001–7005, 1991

    PubMed  Google Scholar 

  37. Bottaro DP, Rubins JS, Faletto DL, Chan AM-L, Kmiecik TE, Vande Woude GF, Aaronson SA: Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804, 1991

    PubMed  Google Scholar 

  38. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK, Birchmeier W, Comoglio P: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10:2867–2878, 1991

    PubMed  Google Scholar 

  39. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336, 1991

    PubMed  Google Scholar 

  40. Dedhar S, Saulnier R: Alterations in integrin receptor expression on chemically transformed human cells: specific enhancement of laminin and collagen receptor complexes. J Cell Biol 110:481–489, 1990

    PubMed  Google Scholar 

  41. Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E: Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic petides. J Cell Biol 106:925–930, 1988

    PubMed  Google Scholar 

  42. Yamada KM, Kennedy DW, Yamada SS, Gralnick H, Chen W-T, Akiyama SK: Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res 50:4485–4496, 1990

    PubMed  Google Scholar 

  43. Humphries MJ, Olden K, Yamada K: A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233:467–470, 1986

    PubMed  Google Scholar 

  44. Iwamoto Y, Robey F, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134, 1987

    PubMed  Google Scholar 

  45. Chan BMC, Matsuura N, Takada Y, Zetter B, Hemler ME: In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251:1600–1602, 1991

    PubMed  Google Scholar 

  46. Plantefaber LC, Hynes RO: Changes in integrin receptors on oncogenically transformed cells. Cell 56:281–290, 1989

    PubMed  Google Scholar 

  47. Giancotti FG, Ruoslahti E: Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of chinese hamster ovary cells. Cell 60:849–859, 1990

    PubMed  Google Scholar 

  48. Ruoslahti E: Integrins. J Clin Invest 87:1–5, 1991

    PubMed  Google Scholar 

  49. Raz A, Pazerini G, Carmi P: Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res 49:3489–3493, 1989

    PubMed  Google Scholar 

  50. Zhu D, Cheng C-F, Pauli BU: Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci USA 88:9568–9572, 1991

    PubMed  Google Scholar 

  51. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haußmann I, Matzku S, Wenzel A, Ponta H, Herrlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24, 1991

    PubMed  Google Scholar 

  52. Stamenkovic I, Amiot M, Pesando JM, Seed B: A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057–1062, 1989

    PubMed  Google Scholar 

  53. Goldstein L, Zhou DFH, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC: A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56:1063–1072, 1989

    PubMed  Google Scholar 

  54. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B: CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313, 1990

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, J. The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Tr 24, 175–184 (1993). https://doi.org/10.1007/BF01833258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833258

Key words

Navigation