Skip to main content
Log in

Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Urokinase-type plasminogen activator (uPA) initiates an extracellular proteolytic cascade with which invasive cells eliminate barriers to movement. We have evaluated the antiinvasive and antimetastatic properties of two recently developed synthetic uPA inhibitors, B428 and B623, in a BALB/c mouse mammary carcinoma model. We used the F3II and M3 tumor cell lines, previously described by our laboratory.In vitro, noncytotoxic concentrations of B428 or B623 inhibited secreted and cell-associated uPA activity produced by tumor cells and blocked uPA-mediated whole tumor cell degradation of fibronectin, allowing deposition of extracellular fibronectin fibrils.In vivo, administration of compounds was not associated with overt toxic effects. Daily i.p. treatment with B428 (20 mg/kg/day) or B623 (7.5 mg/kg/day) for 2 weeks, beginning after tumor take, markedly blocked the invasion of the muscle and adipose layers of the subcutis and dermis in mice bearing highly invasive F3II tumors. However, these compounds neither inhibited tumor-induced angiogenesis nor reduced the incidence of spontaneous lung metastasis. Moreover, B623 enhanced the formation of experimental lung metastasis. Our results suggest that synthetic uPA inhibitors act as potent antiinvasiveness agentsin vivo but may be unable to control progression of the metastatic disease in the present mammary tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mullins DE, Rohrlich ST: The role of proteinases in cellular invasiveness. Biochim Biophys Acta 695: 177–214, 1983

    PubMed  Google Scholar 

  2. Danø K, Andreasen PA, Grøndahl-Hansen J, Kristensen P, Nielsen LS, Skriver L: Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44: 139–266, 1985

    Google Scholar 

  3. Mignati P, Robbins E, Rifkin DB: Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47: 487–498, 1986

    PubMed  Google Scholar 

  4. Blasi F, Vassalli J-D, Danø K: Urokinase-type plasminogen activator: proenzyme, receptors and inhibitors. J Cell Biol 104: 801–804, 1987

    PubMed  Google Scholar 

  5. Laiho M, Keski-Oja J: Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res 49: 2533–2553, 1989

    PubMed  Google Scholar 

  6. Vassali J-D, Pepper MS: Membrane proteases in focus. Nature 370: 14–15, 1994

    PubMed  Google Scholar 

  7. Møller LB: Structure and function of the urokinase receptor. Blood Coagul Fibrinol 4: 293–303, 1993

    Google Scholar 

  8. Ossowski L, Reich E: Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611–619, 1983

    PubMed  Google Scholar 

  9. Ossowski L: Plasminogen activator dependent pathway in the dissemination of human tumor cells in the chick embryo. Cell 52: 321–328, 1988

    PubMed  Google Scholar 

  10. Ossowski L, Russo-Payne H, Wilson EL: Inhibition of urokinase-type plasminogen activator by antibodies: the effect on dissemination of a human tumor in the nude mouse. Cancer Res 51: 274–281, 1991

    PubMed  Google Scholar 

  11. Pepper MS, Vassalli J-D, Montesano R, Orci L: Urokinasetype plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105: 2535–2541, 1987

    PubMed  Google Scholar 

  12. Vassalli J-D, Bellin D: Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 214: 187–191, 1987

    PubMed  Google Scholar 

  13. Towle MJ, Lee A, Maduakor EC, Schwartz EC, Bridges AJ, Littlefield BA: Inhibition of urokinase by 4-substituted benzo [b]thiophene-2-carboxamidines: an important new class of selective synthetic urokinase inhibitor. Cancer Res 53: 2553–2559, 1993

    PubMed  Google Scholar 

  14. Alonso DF, Farías EF, Puricelli L, Bal de Kier Joffé E:In vitro andin vivo effects of potassium-sparing diuretics in a urokinase-producing murine mammary adenocarcinoma model. Proc Am Assoc Cancer Res 35: 68, 1994 (Abstract)

    Google Scholar 

  15. Bal de Kier Joffé E, Puricelli L, Sacerdote de Lustig E: Modified adhesion behavior afterin vitro passage of two related murine mammary adenocarcinomas with different metastatic ability. Invasion Metastasis 6: 302–312, 1986

    PubMed  Google Scholar 

  16. Alonso DF, Farías EF, Bal de Kier Joffé E: Urokinase-type plasminogen activator activity released by clonal tumor cell populations isolated during the growth of a murine mammary adenocarcinoma. J Exp Clin Cancer Res 13: 211–216, 1994

    Google Scholar 

  17. Bal de Kier Joffé E, Puricelli L, Vidal MC, Sacerdote de Lustig E: Characterization of two murine mammary adenocarcinoma tumors with different metastatic ability. J Exp Clin Cancer Res 2: 151–160, 1983

    Google Scholar 

  18. Pereyra-Alfonso S, Solarz GR, Bal de Kier Joffé E: Urokinase-type plasminogen activator activity increases during the growth of two murine mammary adenocarcinomas with different metastasizing abilities. Clin Exp Metastasis 10: 395–401, 1992

    PubMed  Google Scholar 

  19. Laemmli U: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    PubMed  Google Scholar 

  20. Alonso DF, Farías EF, Bal de Kier Joffé E: Impairment of fibrinolysis during the growth of two murine mammary adenocarcinomas. Cancer Lett 70: 181–187, 1993

    PubMed  Google Scholar 

  21. Wun TC, Schleuning WD, Reich E: Isolation and characterization of urokinase from human plasma. J Biol Chem 257: 3276–3283, 1982

    PubMed  Google Scholar 

  22. Saksela O: Radial caseinolysis in agarose: a simple method for detection of plasminogen activator in the presence of inhibitory substances and serum. Anal Biochem 111: 276–282, 1981

    PubMed  Google Scholar 

  23. Jankum, J Maher VM, McCormick JJ: Malignant transformation of human fibroblast correlates with increased activity of receptor-bound plasminogen activator. Cancer Res 51: 1221–1226, 1991

    PubMed  Google Scholar 

  24. Maidorn RP, Cragoe EJ Jr, Tannock IF: Therapeutic potential of analogues of amiloride: inhibition of the regulation of intracellular pH as a possible mechanism of tumour selective therapy. Br J Cancer 67: 297–303, 1993

    PubMed  Google Scholar 

  25. Spahn H, Reuter K, Mutschler E, Gerok W, Knauf H: Pharmacokinetics of amiloride in renal and hepatic disease. Eur J Clin Pharmacol 33: 493–498, 1987

    PubMed  Google Scholar 

  26. Sidky YA, Auerbach R: Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 192: 1237–1238, 1976

    PubMed  Google Scholar 

  27. Miguez M, Davel L, Sacerdote de Lustig E: Lymphocyteinduced angiogenesis: correlation with the metastatic incidence of two murine mammary adenocarcinomas. Invasion Metastasis 6: 313–320, 1986

    PubMed  Google Scholar 

  28. Monte M, Davel L, Sacerdote de Lustig E: Inhibition of lymphocyte-induced angiogenesis by free radical scavengers. Free Radic Biol Med 17: 259–266, 1994

    PubMed  Google Scholar 

  29. Pereyra-Alfonso S, Haedo A, Bal de Kier Joffé E: Correlation between urokinase-type plasminogen activator production and the metastasizing ability of two murine mammary adenocarcinomas. Int J Cancer 42: 59–63, 1988

    PubMed  Google Scholar 

  30. Ossowski L:In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell suface-bound urokinase. J Cell Biol 107: 2437–2445, 1988

    PubMed  Google Scholar 

  31. Hoosein NM, Boyd DD, Hollas WJ, Mazar A, Henkin J, Chung LW: Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma carcinoma cell lines. Cancer Commun 3: 255–264, 1991

    PubMed  Google Scholar 

  32. Kobayashi H, Ohi H, Sugimura M, Shinohara H, Fujii T, Terao T: Inhibition ofin vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res 52: 3610–3614, 1992

    PubMed  Google Scholar 

  33. Bruckner A, Filderman AE, Kirchheimer JC, Binder BR, Remold HG: Endogenous receptor-bound urokinase mediates tissue invasion of the lung carcinoma cell lines A549 and Calu-1. Cancer Res 52: 3043–3047, 1992

    PubMed  Google Scholar 

  34. Quigley JP, Gold LI, Schwimmer R, Sullivan LM: Limited cleavage of cellular fibronectin by plasminogen activator purified from transformed cells. Proc Natl Acad Sci USA 84: 2776–2780, 1987

    PubMed  Google Scholar 

  35. Gold LI, Rostagno A, Frangione B, Passalaris T: Localization of the cleavage sites on fibronectin following digestion by urokinase. J Cell Biochem 50: 441–452, 1992

    PubMed  Google Scholar 

  36. Mangel WF: Better reception for urokinase. Nature 344: 488–489, 1990

    PubMed  Google Scholar 

  37. Sato Y, Okamura K, Morimoto A, Hamanaka R, Hamaguchi K, Shimada T, Ono M, Kohno K, Sakata T, Kuwano M: Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cellsin vitro. Exp Cell Res 204: 223–229, 1993

    PubMed  Google Scholar 

  38. Alonso DF, Bertolesi GE, Farías EF, Eiján AM, Bal de Kier Joffé E, Lauría de Cidre L: Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model. Oncology Rep 3: 219–222, 1996

    Google Scholar 

  39. Olander JV, Bremer ME, Marasa JC, Feder J: Fibrin-enhanced endothelial cell organization. J Cell Physiol 125: 1–9, 1985

    PubMed  Google Scholar 

  40. Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM: Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 57: 673–686, 1987

    PubMed  Google Scholar 

  41. Constantini V, Zacharski LR: The role of fibrin in tumor metastasis. Cancer Metast Rev 11: 283–290, 1992

    Google Scholar 

  42. Ostrowski LE, Ahsan A, Suthar BP, Pagast P, Bain DL, Wong C, Patel A, Schultz RM: Selective inhibition of proteolytic enzymes in anin vivo mouse model for experimental metastasis. Cancer Res 46: 4121–4128, 1986

    PubMed  Google Scholar 

  43. Kellen JA, Mirakian JA, Kolin A: Antimetastatic effect of amiloride in an animal tumor model. Anticancer Res 8: 1373–1376, 1988

    PubMed  Google Scholar 

  44. Colombi M, Rebessi L, Boiocchi M, Barlati S: Relationship between circulating plasminogen activators and tumor development in mice. Cancer Res 46: 5748–5753, 1986

    PubMed  Google Scholar 

  45. Gunji Y, Gorelik E: Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Res 48: 5216–5221, 1988

    PubMed  Google Scholar 

  46. Esumi N, Fan D, Fidler IJ: Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 51: 4549–4556, 1991

    PubMed  Google Scholar 

  47. Hauert J, Nicoloso G, Schleuning W, Bachmann F, Schapira M: Plasminogen activator in dextran sulfate-activated euglobulin-fractions: a molecular analysis of factor XII- and prekallikrein-dependent fibrinolysis. Blood 4: 994–999, 1989

    Google Scholar 

  48. Kohn EC, Liotta LA: Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55: 1856–1862, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, D.F., Farías, E.F., Ladeda, V. et al. Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model. Breast Cancer Res Tr 40, 209–223 (1996). https://doi.org/10.1007/BF01806809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806809

Key words

Navigation