Topologically Defined Classes of Commutative Rings (*) (**).

MARrRCO FoNTANA (Roma)

Sunto. — In questo lavoro viene studiata Uoperazione di somma amalgamata [13] di spazi spet--
trali [24] e vengono esaminale in dettaglio aleune proprieta algebriche degli amelli che inter;
vengono in lale operazione. Dei risultati oftenuti vengono poi fornite mumerose applicazion,
alla teoria dei « D + m» domini di GILMER [19], o quella della seminormalizzazione di TRA
VERSO [38] ¢ a quella delle OPI-estensioni nel senso di BOISEN-SHELDON [5].

0. — Introduction.

Recently, several Authors have investigated problems relevant to commutative
unitary rings, dealing with topological methods and motivations (cf. for instance [5],
[81,[9], [18], [24],[27], 28], [29], [31], [32],[35]). In the present paper, we demonstrate
various general results concerning the operation of «attaching of spectral spaces »
and the algebraic structure of the rings intervening in such an operation, taking into
consideration several different applications, principally to the theory of « D 4w »
domaing introduced by GILMER [19], to that of the CPI-extensions in the sense of
BoisEN-SHELDON [5] and to that of TRAVERSO’'S seminormalization [38].

More precisely, in the first section we demonstrate practical results of comparison
between the closure of a subset of the prime spectrum of a ring in Zariski’s topology
and its closure in the constructible (or patch) topology, and we apply the said results
to the study of the amalgamated sum of two spectral spaces. FERRAND [17] (and,
marginally, ANANTHARAMAN [1]) has also dealt with this study, but with different
motivations and applications to the problem of finite non-flat descent of schemes.
In Section 2, we apply the techniques and results of the preceeding section to build
up spectral spaces «attaching » (cf. [13]) a spectral space which has only one minimal
point to another spectral space which has only one maximal (= closed) point, over
such a closed point. This construction, expounded from an algebraic point of view,
generalizes that concerning the « D -4 m » domains [19] [21] and permits the putting
in evidence and, hence, the elimination of the hypotheses and the unnatural restric-
tions submitted in the algebraic case. Some results stated in this section, relevant
essentially to the topological and ordering properties of these spaces, are easily deduced

(*) Entrato in Redazione il 15 novembre 1978.
(**) Work performed under the auspices of C.N.R. (Gruppo Nazionale per le Strutture
Algebriche, Geometriche e loro Applicazioni).
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from those of Section 1 and they generalize considerably analogous results, proven
by algebraic means, concerning the « D 4+ m» domains (GILMER [19], PAPICK [32],
KixkucHr [26]}). Further results of this paragraph, relevant to the transfer and
noetherianity properties, permit, in particular, a widening of knowledge of such
domains.

In Section 3, we start with the construction of a spectral space by attaching a
spectral space, having only a finife number of maximal points, with a spectral space
having a unique minimal point, by amalgamating these points. Such a construction,
from an algebraic point of view, is closely linked to that of « § = K - {» rings (cf.
NAGATA [30, E 2.1 p. 204]}), K being a local ring, R a semi-local ring dominating K
and i Jacobson’s radical of R. An algebraic-topological treatment of the rings arising
from this topological-spectral construction is developed on the basis of the results
of Section 1. Furthermore, we give several examples in order to illustrate, by iterat-
ing the « glueing & amalgamating » process, how to build up spectral spaces with
pre-determinated topological and ordering peculiarities. Therefore, this type of con-
struction eomes in handy when in pursuit of examples and counter-examples rele-
vant to the problem, stated by Lrwrs [27] and founded on previous results proven
by KAPLANSKY [25] and HoCHSTER [24], of characterizing the partially ordered sets
isomorphically equivalent (as partially ordered sets) to a prime spectrum of a ring,
endowed with the partial ordering associated with Zariski’s topology (or, equivalently,
determined by C) (cf. also [8], [28]). Making use in the «local ease » of the construe-
tion examined in this paragraph, we show some notable algebraic-topological applica-
tions of it to the process of « glueing over pre-fixed points » and to the seminormality
(cf. TrAVERsSO [38]) and we outline the connections with the problem of «glueing
prime ideals » (cf. PEDRINI [33]).

In the last section, we show how the problem, stated by BoisEN and SHELDON [5],
of finding an overring of a given domain D having Pospec (= prime spectrum endowed
only with the partial-ordering structure defined by C) order-isomorphic to the subset
of Pospec (D) consisting of all prime ideals of D comparable to a fixed ideal, can be
easily studied and solved, making use of the techniques introduced in the present
paper. After having preliminarily recovered the principal results relevant to the
CPI-extensions [5], we supply further results for this theory, expecially with regard
to the problem of characterizing, making use only of the relation C, the Pospec of
the CPI-extension of a domain with respect to a non-prime ideal. Finally, this para-
graph concludes with several results concerning the transfer of properties resorting
essentially to topological and ordering properties, and referring particularly to some
classes of G-domains [18] [29] [36] and G:D-domains [32].

1. — A topelogically defined ring-theoretic operation.

Let 4 be a ring, we denote with X“[resp. X°*'] the prime spectrum of the
ring A, X = Spec (4), endowed with the Zarigki topology [resp. with the construc-
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tible (1) topology]. For every subset Y of X, we denote with Ad,, (Y) [resp. Adg,(Y)]
the closure of Y in X7 [resp. X%, and we set

90y — {we X|w is a generization (2) in X”" of a point of ¥}

®Y = {z e X|» is a specialization (2) in X*" of a point of ¥}.

It is well known that the set X of all prime ideals of A can also be viewed simply
as a poset (i.e. partially ordered set) with respect to the set-theoretic inclusion. After-
wards, we shall use the locution the Pospec of A, or just Pospec (4), to refer to this
partially ordered set.

It is eagily seen that the identity map id,: X' — X is a continuous map,
therefore, for every Y CX, Adg,(Y) < Ady, (Y). Furthermore, every closed of
X% heing stable for specializations, for every ¥ C X it happens that =Y C Ad,, (Y).

(1.1) LeMumA. —~ Let A be a ring and let X = Spée (4). For every subset YCX
it happens that:

AdZm‘( Y) = w(AdConst( Y)) .

Proor. — From the remarks of the beginning of the present section, we deduce
that #(Adgoe(Y)) € Ady,(Y). On the other hand, if « eAdZM(“’”(Adet(Y))), then,
for every fundamental open set D(f) of X%, D(f) 3, we have D(f) N *?(Adgmet(Y)) # 9,
hence D(f) N Adg,u(Y) 7 0, because every open set of X% is stable for generizations.
In the compact space X" [23] [31], Adg,(Y) and D(f) are closed sets, therefore:

0 N (D) N Adga( D) = (N D) O Adguue( ¥)

fed fed
D(i)az D(f)sm

Being () D(f) = **{z}, we conclude that e ®(Adgy(Y)).

fed
D(f)az

(1.2) REMARE. ~ In general, for every subset Y of X, the following inclusion
holds:

Adg(PY) € P (Adgope( 7)) -

Const

(1) The constructible topology [23] [3, p. 48] or paich topology [24] on X is that topology
having, as subbase of closed sets, all the closed sets of XZsr and all the quasi-compact open
sets of X7, Hence, a subbase of closed sets of XComstig given by {V(f)|f e 4} U {D(f)|f e 4}.
It is easily seen that a subset ¥ of X is closed in Xt if and only if, there exists a ring-
homomorphism ¢: 4 — B such that ¥ = %p(Spec (B)).

(?) We say that o € X is a generization [resp. specialization] of a point y € X if y € Ady, ()
[resp. @ e Ady, (y)]; cf. [23, 0.2.1.2].
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In fact, it is straightforward that Ad, (Y) = Ad,, (*Y) = w(Adet(sp(Y))), from
which the above inclusion follows. We note that the strict inclusion can occur, as
the following example shows.

(1.3) Exampre. — Let X = Spec (£), let Y be a non-finite proper subset of Max (Z£)
and let £ be the generic point of X. We know that X% j5 the Alexandroff com-
pactification of the diserete space Max (Z) [18, Par. 2 Lemme et Rq. 1], hence
Adg(Y) = YU {&} and therefore *7(Adgy,(Y)) = X. Whereas, »*Y = ¥ and
then Adgy,(?Y) = Y U {&}.

Let u: 4 —C be a ring-homomorphism and v:B — ¢ a surjective ring-
homomorphism. We denote by D the pull-back of A4 and B over C (ie.
D= AX ,B={(a,b)eAXBlu(a) = v(b)}), and by w:D->B, v:D->A the
restrictions to D of the canonical projections. Let X = Spec(4), ¥ = Spec (B),
Z = 8pec (0), W==Spec(D), a="u:Z—-X, B="01Z =Y, «=%:Y > W,
f'="%":X > W. We get the following commutative diagrams:

D254 Wt _Xx
B—>C Y32 Z

The map B: Z <> Y being a closed embedding, we identify Z with its image in Y,
in order to simplify the notations.

(1.4) THEOREM. — With the foregoing notations and hypotheses, let X Uy Y be the
topological space obtained by attaching X to Y, over the closed set Z, by the continuous
map o« (®). Then, X Us Y is a spectral space [24] homeomorphic to Spec (D) (4).

PrOOF. — From the definition of D itself, we deduce immediately that:

(@) v' is a surjective homomorphism (and, therefore, B is a closed embedding;
we identify for greater convenience X with its image in W under §').

(b) Let b = Ker (v) and d = Ker (v'), then u'|,: d — 0 is an isomorphism of
modules (subordinate to w': D — B). Therefore, the conductor (°) of u' contains d and,
hence, it is easily seen that, for every h e b, the canonical homomorphism Dy — By,
is an isomorphism (cf. also [6, Ch. 5 Par. 1 Ex. 16]).

(}) X U, Y is the quotient space of the disjoint union of X and ¥, modulo the equivalence
relation generated by: «(¢) ~ 2, for each z e Z [13; Ch. 6, 6.1].

(4} We notiee that a similar statement is contained in the unpublished paper [17]. We
give here a simplified proof of it, making use of Lemma (1.1).

(°) The conductor of a ring-homomorpkism f: A — B is, by definition, the ideal
f = Ann(Coker (f)) = Ann,(B/Im (f)).
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From the last assertion of the statement (b) we deduce, in particular, the other
following assertions:

(¢) For every prime ideal p of D, p p b, if q i8 the unique prime ideal of B such
that w'—(q) = p, then qp b and By ~ D,.

(@) The map o : ¥ — W restricted to Y\Z = oYW\ X) establishes a scheme-
isomorphism (and hence, in particular, an homeomorphism between topological spaces
and an order-isomorphism between partially ordered sets) with WX X (we notice
that X o V(p) and o(X) =~ V(b) =~ Z).

The equality f'ox = &'off allows us to affirm that:

(6) There exists a unique continuous map o: XUy Y — W which commutes the
following diagram:

From the statements (a) and (d) it follows that:

(f)y 0: XV Y — W is a bijective map; therefore, in particular W = X U o'(Y).

To conclude, that is, to show that ¢ is an homeomorphism, it is sufficient to prove
that, if ¥ is a subset of W such that o' ~(F) is a closed set of ¥ and §'-*(F) is closed
set of X, then F is a closed set of W. By applying Lemma (1.1) we obtain that F
is a closed set if, and only if, F' = *7(Adg(F)). We remark that Adgyg(F) = F
(see Note (1)), in fact, if o'~}(F) = V(8) and if p'~1(F) = V(r) then F is the image,
under %A, of the spectrum of the D-algebra h: D — AjtX B/3, % > (v'(@) + 1, v/ (%) + 8).
Now, the conclusion follows immediately, because F is stable for specializations,
so being FF N X and F n (W X).

(1.5) COROLLARY. — We preserve the notations and hypotheses of the beginning of
this section and of the preceding theovem (1.4).

(1) The map a — v'—a) establishes an isomorphism between the lattice of all
the ideals of A and that of all the ideals of D containing d. This map defines, by restric-
tion, an isomorphism between Pospec (A) and the partially ordered subset of Pospec (D)
which consists of all the prime ideals of D conlaining d (this isomorphism, obviously,
coincides with the one which can be deduced from the closed embedding f': Spec (4) —
—> Spec (D)).
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(2) For every prime ideal q of B, q p b, the map )+ w'~1Y) establishes a bijec-
tion, which preserves the inclusion, between the set of all the ideals of B which are primary
for q and the set of all the ideals of D which are primary for p = w'~*(q)(3 D).

(3) The map defined in the statement (2), by restriction to the prime ideals, deter-
mines the isomorphism Pospec (B)\V(0) = Pospec (D)\V(d) described formerly
(1.4(a)).

4) If w: A — C is injective [resp. surjective, of finite type, integral, finite], then
uw': D — B is injective [resp. surjective, of finite type, integral, finite].

) If A’ is the integral closure of A in C, then D'=A"X 5 B is the integral closure
of D in B.

) If wis an injective homomorphism and if b is a regular ideal of B, then Tot (B) ~
o Tot (D) (where Tot (—) denote the total ring of fractions of the ring —).

1) If w is an injective homomorphism and if B is an integral domain, then D
8 an mtegml domain with the same field of quotients as B, and in this field B and D
have the same complete integral closure.

) If O is the field of quotients of a normal domain A and if B is a normal domaein
hen D is a normal domain.

Proor. — For (1), (2), (3), (4) apply (1.4). (b) follows from (4) and [6, Ch. 5 p.15].
The verifications of (6), (7) and (8) are straightforward (cf. also [19, 22.5]).

{1.6) CoroLLARY. — We preserve the notations and hypotheses of the beginning of
this section. W and Z are noetherian spaces, if and only if, X and Y are noetherian spaces.

Proor. — Apply (1.4) and [6; Ch. 2 Par. 4, N. 2].

(1.7) REMARK. — It is not true, in general, that if A and B are noetherian rings then
A X ¢ B is a noetherian ring. For instance, if k & K are two algebraically closed fields,
fA =%k B=K[T],C = K,ifv: K[T] — K is the canonieal surjective homomorphism
T ~ 0 and, finally, if 4 is the inclusion k & K, then the ring kX  K[7] is not a noe-
therian ring. In fact, the ideal ({(0, aT)la € K}) is not finitely generated.

(1.8) PROPOSITION. — We preserve the notations and hypotheses of the beginning of
this section. A X o B and C are noetheriam rings, w' is a finite homomorphism if, ond only
if, A and B are noetherian rings and u is a finite homomorphism.

PRrROOF. — We suppose that 4 X ;B is a noetherian ring and that ' is a finite homo-
morphism. Then, A is noetherian, as a quotient ring of 4 X , B and B is also noetherian,
because «' is of finite type [3, Cor. 7.7]. Furthermore, u: A X o B/d — B/b is neces-
sarily finite. Conversely, keeping in mind the statement (1.5(4)), it suffices to show
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that A X ,B is noetherian and, to this end, it is enough to verify that b = Ker (v')
is an ideal of finite type. But this follows easily, since b is an ideal of finite type of B
and o' is a finite homomorphism (cf. (1.4(b)) and [23; 0. 6.4. 8]).

(1.9) PROPOSITION. — We preserve the notations and hypotheses of the beginning of
the present section. If 8 is a multiplicatively closed set in the ring D, then indicating
8, ='(8), 8z =u'(8), 8g= uov'(8) = vou'(8), we obtain that

S_ID o~ SzlA Xsalg S;lB .

Conversely, if 8, is a multiplicatively closed set of A and if 85is a multiplicatively closed
set of B and if u(8,) = v(8p) = S, then 87 'AXs;1085 B == (8 x5, 857 D.

PrROOF. — The verifications are straightforward.

2. — Application to the « D -+ m » constructions and to the composition of valuation
rings.

As we have already mentioned in the introduetion, in this section we apply the
techniques and results of the preceding section to build up spectral spaces by « amalga-
mating » a spectral space having a unique minimal point, with a spectral space hav-
ing only a unique maximal (== closed) point, over this closed point. The principal
applications of such a eonstruction concern the D 4- m domains[19], [21]. Particular
attention is devoted to the examination of the transfer properties, expecially with
regard to some classes of G-domains [18], [25],[29],[36] and G-D-domains [117,{12],{32].
On this subject, after having explicitly shown many different possibilities of construe-
tion of speciral spaces, we prove that the Artin-Tate theorem, concerning the noethe-
rian @-domains [10] [25], may in no wise be extended to the case of G-domains with
noetherian spectrum. We remark, among other things, that the costruction of a valua-
tion ring by composition given by Nagata [30, p. 35] is included, as a very particular
case, in the one examined in this section.

Let (V, m, k(V)) be a local ring, let D be a subdomain of k(V) and let K be the
quotient field of D. We now consider the following diagram:

e

3
i
Y Y
VvV s KV)

]

We quote X = Spec (D), ¥ = Spec (V), P = Spec (k(V)), X, = Spec (D,) and we
denote by y the closed point of Y, image of P under § = %: P — Y, by @ the generic
point of X, image of P under o == *u: P — X, and by 2z the point of X, image of P
under y = ¢(vou’) = 2(v'ou): P - X;. Let «'=': ¥ > X, and p'==": X - X,.

22 — Annali di Matemalica
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(2.1) PROPOSITION. — With the notations and hypotheses of the beginming of this
section, we have:

(1} X, is a topological space homeomorphic to X\, Y; XX is a scheme iso-
morphic to ¥Y\{y} under o restricted to Y\ {y}.

(2) The closed embedding f': X = Spec (D) < X, = Spec (D,) has the 1mage
equal to **{2} and it establishes an order-monomorphism of Pospec (D) into Pospec (D).

(3) The continuous map «': Y = Spec (V) - X, = Spec (D,) is injective, has
the image equal to *"{z} and establishes am order-monomorphism of Pospec (V) into
Pospec (D).

(4) Every prime ideal of X, is comparable with z, more precisely X, = *{z} U {2},
(3) dim (D,) = dim (D) + dim (V).

(6) Pospec (D,) is a tree if, and only if, Pospec (D) is a itree and Pospee (V)
is a totally ordered set.

(7) Spec (D,) 48 a noetherian space if, and only if, Spec (D) and Spec (V) are
noetherian spaces.
In the particular case in which D = K is a field, we have the following commutative

diagram:

V=K><k(y) VL—»_K

D
=2

=

=

therefore:

(8) 1 =":Y = Spec (V) - Y = Spec (V) is a homeomorphism and, hence, it

(
establishes an isomorphism between Pospec (V) and Pospee (V).
(9) V is local ring.
(10) If 4 is the unique closed point of ¥, then Ut TNy} — YN{#} is a scheme-
theoretic isomorphism.
PrOOF. — Apply (1.4), (1.5) and (1.6).
(2.2) PROPOSITION. — We preserve the notations and hypotheses of the beginning of
this section and of Proposition (2.1).

(1) For every prime ideal p 2 p, of the ring D,, denoting by q the unique prime
ideal of D which corresponds to p (2.1(2)), we have: D,fp =~ D/q. In particular if = p.,
then Dy/p, =~ D. '
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(2) The map d > v'-Y(D) establishes an isomorphism between the lattice of all
the ideals of D and that of all the ideals of D, containing p,.

(3) We suppose now that K = k(V). For every prime ideal p C b, of Dy, denoting
by q the unique prime ideal of V which corresponds to p, we have: (D), = V. In parti-
cular, (Dy),, = V.

(4) We suppose that D = K G k(V). For every prime ideal g of V, we denote
by § the prime ideal q O V. If qs£m, then V, = V;.

(5) Inthe general case, D C K C k(V'), for every prime ideal q of V,if § is the unique
prime ideal of V associated with the prime ideal g of V, corresponding to the prime ideal
» & 9. of Dy, then we have: (D)), = Vi == V,. When p = p,, (Dy)p, == V = Exy V.

(6) If p is a prime ideal of D, containing the ideal p, and if q = p[p, is the unique
prime ideal of D corresponding to p, then (Dy), = DXy V.

(T) The map a — u'~Ya) establishes a bijection, which preserves the ordering given
by C, between the set of all the q-primary ideals of V, q being an arbitrary prime ideal
of V, q == m, and the set of all the p-primary ideals of Dy, being p = ¢ N Dy & p,. When
K = [(V) such a bijection holds also in the case q = m.

(8) If D S K(V), then the conductor § of u': Dy <> V coincides with p..

(9) D, is an integral domain if, and only if, V is an integral domain. In this
case, D, and V have the same complete integral closure in their common field of quotients.
) : 14 g v

(10) If D' is the integral closure of D in k(V), then D; = D’Xk(v),V is the inte-
gral closure of Dy in V. If V is a valuation ring, then D, is the integral closure of D,
in its field of quotients.

ProOF. — For (1) and (2) cf. (1.4(a)) and (1.5(1)). (3) and (4) follow from (1.4(c)),
(1.9) and (2.1(1), (10)). (5) ensues from (3), (4) and (1.4(c)). (6) is a particular case of
(1.9); in fact, if 8 = D\p, with p2p,, then w'(8)Cw/ (D p,) ¢ V~\m. For (7)
of. (1.5(2)). (8): we already know that p,Cf (1.4(b)). On the other hand, V being
a local ring, every element of V\um is a unit of V, therefore if # € D)\ p,, then & & i,
because otherwise, f would be equal to the ideal (1) and hence, ¥ would be equal to D,
that is D = K = Kk(V). The statement (9) is a particular case of the statements
(1.5(6), (7)). The first part of the statement (10) follows from (1.5(5)); the second
part can be proven using an argument 'quite similar to the one used to establish the
assertion (1.5(8)).

(2.3) THEOREM. — We preserve the notations of the beginning of this section. D, is a
noetherian domain if, and only if, V is a noctherian domain, D = K and [k(V): K] < co.

PrOOF. — From what is already known (cf. (1.8)), it suffices to show that the homo-
morphism «': D; — V is finite in order to conclude, passing to the quotient rings,
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that  is finite, D = K is a field and [k(V): K]< oco. Now, if p, is a D;-module of
finite type, then m = p,V is a D,-module of finite type (1.4(b)). Furthermore,
D, and V have the same field of quotients (2.2(9)) and the conductor of D, = V is
the ideal p,, which is a non-zero ideal, hence V is a D;-module of finite type (cf. also
[25, Ch. 1 Ex. 41 (a) p. 46]).

(2.4) THEOREM. — We preserve the notations of the beginning of this section. We
suppose that k(V) is the field of quotients of D.

(1) D, is a valuation ring if, and only if, V and D are valuation rings.

(2) D, is a discrete valuation ring if, and only if, V is a discrete valuation ring
and D = (V) (i.e. D,;= V).

{(3) D, is a Priifer domain if, and only if, D and V are Priifer domains.

(4) D, is a 8-domain (*) if, and only if, D and V are S-domains.

Proor. — (1) It is clear that if D, is a valuation ring, then V = (Dy),, and
D = D,/p, are also valuationrings. For the converse the verification is straightforward
[30, p. 35]. (2) follows from (1) and from (2.3). (3) ensues from (1) and (2.2(6)),
bearing in mind that a Priifer domain is characterized by having all its localizations
at prime ideals equal to valuation rings. (4) is a simple consequence of (2.2(2) and (7)).

(2.5) REMARK. — If the field of quotients K of D is isomorphic to a proper subfield
of k(V), by imposing on ¥ and D the properties of the type enounced above (cf. (2.4)),
we cannot conclude, in general, that the same property holds for D,, as the following
example (concerning the statements (1)-(3)) shows.

(2.6) ExampLE. — If V = K[T], D =k, k being a proper subfield of K, and if
v: K[T] - K, T + 0, then D, = kX z K[T] is isomorphic to the subring k + TK[T]
of K[T], which is not a valuation ring in its field of quotients K{(7)).

As regards the S-domains, the difficulties mentioned in (2.5) rise since, in general,
we cannot describe the behaviour of the m-primary ideals when we pass from V to D;.
On this subject, we recall that a prime ideal p of a commutative ring is called a branched
prime, when there exists at least one p-primary ideal §, § 5= p; otherwise, p is called
an unbranched prime. 1fm is an unbranched prime ideal, we can strengthen the state-
ment (2.4(4)) in the following manner; ¢f D and V are S-domains and m is unbranched
in V then D, is an S-domain and p, is unbranched (cf. 2.2(7 )). Therefore, as a
simple and direct application of the topological techniques of Section 1, we have
reobtained, as a particular case, the principal results concerning the S-domains proven
in [26] using algebraic methods.

(1) Cf. [20] and [26].
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‘(2.7 ) THEOREM. — We preserve the hypotheses and notations of the beginning of
the present section.

(a) D, is a G-domain (2)<=V is a G-domain.
(b) D, is a Goldman ring (®) <>V and D are Goldman rings.

(¢) D, is a g-ring [resp. a locally pqr domain] (*)<=>V and D are g-rings [resp.
locally pqr domains).

If we suppose that k(V) is the field of quotients of D, then:
(d) Dy is a strong G-domain (°)<=>V and D are strong G-domains.
() D, is an i-domain (®) =V and D are i-domains.

(f) D, is an open domain [resp. a propen domain] (°) =V and D are open do-
mains [resp. D is an open domain and V is a propen domain].

(9) D, is a GD-domain (*) =V and D are GD-domains.

(h) If V is a valuation ring the statements (e), (f) and (g) can be inverted.

Proovr. ~ (a). It suffices to remark that the generic point of X, is open if, and only
if, the generic point of Y is open. (b). Itis easily seen that X, is a ', topological space (%)
if, and only if, X and ¥ are T, topological spaces. (¢). It is straightforward that X,
is an Alexandroff-discrete topological space (°) if, and only if, X and Y are Alexan-

(®) A G-domain D is an integral domain such that its field of quotients is a finitely gene-
rated algebra over D [25, 1.3]. Topologically, a reduced ring is a G-domain if, and only if,
ts prime spectrum is an irriducible space and the generic pointis open [25, Th. 18][18, Lemme 2].

(®) A Goldman ring A is a ring such that every prime ideal p is a G-ideal (i.e. A/y is a
G-domain) [18] [35]. A reduced ring is a Golman ring if, and only if, its prime spectrumis a T,
topological space [18, Prop. 1]; ef. also the following Note (8).

(4 A g-ring A [35, Prop. 6] [18, Par. 3] is a ring such that for every prime ideal p
of A there exists f € A\ p in such a way that 4, ~ 4. A reduced ring 4 is a g-ring if, and only
if, Spec (4) is an Alexandroff-discrete topological space; cf. also the following Note (°). An
integral g-ring is called in [36] a locally pqr domain.

(®) A strong G-domain A [36] is an integral domain such that every overring of 4 is equal
to A, for some fe A.

(®) An i-domain [Tesp. open domain] A, with K as a field of quotients, is an integral domain
such that for every overring B, AC BC K, the map Spec (B) — Spec (4) is injective [resp.
open]. A propen domain A is an integral domain, such that the map Spec (B) — Spec (4)
is open for every overring B, ACRB ; K; [32].

(") A GD-domain A is an integral domain such that the «going-down » property holds
for every overring B of A [11], [12], [32].

(&) A Ty-space X (cf. {4, 3.1], [9, Par. 6], [18]) is a topological space such that for every
point x € X, the derived set {w}’ is a closed set.

(°) An Alexandroff-discrete topological space X is a T,-space such that, for every subspace
Y C X, the following property holds:

Adg(Y) = U Adg(y)

yEY

(cf. [4, Par. 5], [9, Par. 6], [18, Par. 1]).
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drofi-diserete topological spaces. (d). 1t is well known that a strong G-domain is
simply a locally pgr Priifer domain [36, Th. 3.5]. The conclusion follows from (¢) and
(2.4(3)). The statements (¢), (f) and (g) follow easily from (2.1(2), (3), (4)) and (2.2(1),
(3)). (k). The statement (¢) reverses, because D, is an i-domain if, and only if D, c D,
is an i-extension, D; being the integral closure of D, in its fields of quotients, and D,
is a Priifer domain [32, 2.13]. In fact, in the present situation D] = D' x wvy ¥ where
D’ is the integral closure of D’ in k(V) (2.2(10)). The statement (g) can be inverted:
it is well-known that an integral domain 4 is a GD-domain, if and only if, 4 C A[«]
satisfies GD for every » in the field of quotients of A [12]. Therefore, if u ¢ V, then
wtem, hence Dfu]= D[(w )] = (D,),~. The reversibility of (f) now follows
from [32, 3.2 and 5.1].

(2.8) ProposrrION, — If (V,m, kK(V)) is a valuation ring containing, as subring,
o field & isomorphic to k(V), then there exists an isomorphism ¢: D + m ~ D, which
commutes the following diagram:

D4+m__2.D,

m

Lo
E+m =V

PRroOOF. — For the universality property of D,, there exists a unique homomorphism
¢ which commutes the following diagram:

D
Pt

D+wm--%>D,

AR
E4+m = 14

where w"(z - ) = u(x) -+ ¥y, v"( -+ y) =2 for all e D, yem. The verification
that o a bijective map is straightforward.

The Proposition (2.8) shows how the results of the present section, deduced in a
patural and direet way from the main statements of the previous section, generalize
some of those which GrLMER [19, Th. A p. 560],[21] and PAPICcK [32; 3.27, 3.28, 5.26]
have proven for the D --m domains, further widening the knowledge about this
theory.

(2.9) EXAMPLE. — Let k be an arbitrary non-finite field. Set K = k(X), D = k[ X],
V =K[Y]y. Let u:D = kX]—>kX), v: V—>kV) = K be the canonical homo-
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morphisms. The Pospec of the domain D, = DXV ~kX]+ YKX)[Y]yp
G k(X, Y) can be represented by the following diagram:

Pospec (D,)

(2.10) EXAMPLE, — Let k, K, V be as in (2.9). Set D = k[X]xyand let u: D < K,
v:V > EV) 2>~ K be the canonical homomorphisms. The Pospec of the domain
Dy=DX gV =2 k[X]ixy+ YRX)[ Y]y G k(X, Y) can be represented by the follow-
ing diagram:

Pospec (D,)

We note that D, and D, are non-noetherian rings, even if Spec (D,) and Spec (D,)
are noetherian topological spaces (2.1(7)). Furthermore, D, and D, are G-domains
(2.7(a)) and D, is a valuation ring. These examples show that none of the conditions
of the Artin-Tate Theorem (i.e. semi-locality and dim<1), which characterize the
noetherian G-domains [10, Th. 2.5], holds in the case of G-domains with noetherian
spectra.

(2.11) EXAMPLE. — Let k be an arbitrary field. Set

K = k(X) ’ D= k[X](X)a V= K[YI’ Y27 seey Yn](YI,Yg,...,Yn) .

Let u: D <> K v: V — K be the canonical homomorphisms. The Pospec of the do-
main Dy = DX . V & K(X)(Y,, Y, ..., ¥,) can be represented by a diagram of the
following type:

In general, we can take K = k(X,iel), D= S'k[X,liel], V= K[Y,|j€J]y,
where I and J are arbitrary sets of indexes, § is a multiplicative set of k[ X,[i e I]
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and m is a maximal ideal of K[Y,|j € J] such that k(m) o~ K. The properties of the
Pospec of the domain D, = DX V are easily deduced froma those of Pospec (D)
and Pospec (V).

3. — Applications to the seminormality and to the glueing of prime ideals.

In this section, we intend to build up a spectral space by «glueing & amalgamat-
ing » a spectral space having a finite number of maximal (= closed) points with
another having only one minimal point and we develop an algebraic-topological
study of the rings intervening in such a construction. Then, we apply this study to
recover, in a natural and direct way, the main properties of the seminormalized of
a ring [38] and to enlarge the knowledge of this theory, especially in connection with
the glueing process over points of a spectral space. Furthermore, we explicitly con-
struet several examples to show how the « glueing & amalgamating » process comes
in handy in studying spectral sets [27], [28].

First at all, we show that the « A - ¥(B) » rings (similar to the « D 4 m» do-
mains, cf. § 2) introduced by NacATA [30, E.2.1 p. 204] and revided later by LEwrs [27]
can be easily obtained and studied with the methods introduced in Par. 1.

Let (4,m, k) be a local ring and B a semi-local ring such that, for every maximal
idealm,, the field K, = k(m,) = B, /m,; By, is an extension of the field k,¢ =1, 2, ..., ».

T
Let j: k <> [[ K, be the canonical monomorphism. In the following commutative

=1

diagram all the homomorphisms are canonical:

"

B2:AXHK‘B 1)__»_4
N ,
w| Bi=kXpggB —>k %
]
v v
X B—t— ~>>I-_[Kiv‘
i=1

Set X = Spec (4), Y = Spec(B), Y, = Spec(B,), t=1,2, P=Spec (k), F =
r
== Spec (HKE), a="u:F >X,0/="4":Y > Y,,p="h: P >X,p="0:Y, - ¥,

i=1
e=%F 5P, ¢=%:Y>Y, f="0:F -7, f/="":P =Y, f'=2":X > Y,.
We denote by ¥, [resp. y., #] the image of P into Y, [resp. ¥,, X]. We identify
F = {21, %, ..., %} [resp. X] with its image into ¥ [resp. ¥,] under the closed embedd-

ing § [resp. "]
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(3.1) PrOPOSITION. — We preserve the notations introduced above.
1) ¥{~PU,¥; ¥, ~XU, ¥ =XU, Y,
(2) B, and B, are local rings.

(3) The conductor of B into B, coincides with the maximal ideal 1, of B, (kernel
of the homomorphism v'), which, in turn, is isomorphic to F(B) under §'.

(4) The conductor of u': B, — B contains the ideal n, of B, (kernel of the homo-
morphism v"), which is isomorphic to F(B) under w'.

(8) Y \{y} is scheme-theoretically isomorphic to YN\ F.

(6) For every prime ideal q of B, q = m, foralli =1,2,...,r,themaph — H N B,
establishes a bijection, which preserves the inclusion C, between the set of all the q-primary
ideals of B and the set of all p-primary ideals of By, where p = q N B G n,. Hence, in
particular, by restriction to the set of all the prime ideals, this map establishes an isomor-
phism between Pospec (B)\F and Pospec (B,)\ {1}

(1) Y X is scheme-theoretically isomorphic to Y\ F.

(8) For every prime ideal q of B, q % m, for all i =1, 2, ..., 7, the map § — u'~1(§)
establishes a bijection, which preserves the inclusion C, between the set of all the g-primary
tdeals of B, and the set of all p-primary of B,, where p = uw'~*(q), p p ny. In particular,
by restriction to the set of all the prime ideals, this map defines an isomorphism between
Pospee (BNJF and Pospec (B,\X.

(9) If B is a k-algebra (%), then B, is & k-algebra; more exactly, B, ~k + §(B).

(10) Ij B dominates (*) A, then B, and B, dominate A; more exactly, B, = A +
+ J(B) and B, is a A-ring trivially augmented onto A, with §(B) as augmeniation ideal
[23, 0.16.1].

(11) B, [resp. B,] is @ noctherian ring and B is a Bi-algebra [resp. By-algebra]
of finite type if, and only if, B is a noetherian ring [resp. A and B are noetherian rings]
and [K,: k] << co when ¢ =1,2, ..., 7.

(12) B is a finite Bi-algebra (and also a finite B,-algebra) if, and only if,
[K;:k]l<<oo,i=1,2,..,7

(13) Spec (B,) [resp. Spec (B,)] is a noetherian space if, and only if, Spec (B) is
a noctherian space [resp. Spec (A) and Spee (B) are noetherian spaces].

(14) If B is an integral domain then B, is an integral domain and B and B, have
the same field of quotients, and in this field they have the same complete integral closure.

Proor. - (1) is a particular case of (1.4). (2) follows from (1). (3) and (4) are parti-
cular cases of (1.4(b)). (5) and (7) are particular cases of the statement (1.4(a),

() We mean, obviously, that k< B % Il K, coincides with j.
() We mean that ACB % [I K, coincides with u.
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whereas (6) and (8) are particular cases of the statements (1.5(2), (3)). (9) and (10):
for the universality property of B, [resp. B,], there exists a unique homomorphism
k < B, [resp. 4 <> B,] which commutes the following diagrams:

R : A
//’ v’\ / ”1\& k\?A
| c————"> B, MK [aec———= > B, T1x]
\ ?/ | '
\ v

A\ 4 Y
B B,

N,

j
B

If we identify k [resp. A] with its image into B and B, [resp. inte B, and B,] and n,
[resp. my and n,] with §(B), then we bave: B, 2 k + F(B) [resp. B; 2 A + F(B) and
B, 2 A + §(B)]. Furthermore, if # € B\ F(B) then v'(2) € k C B, [resp. if # € BAF(B),
then »'(x) = ¢ +m with ae 4; if ye B)\F(B), then v'(y) € A] hence x — v'(x) e
Eny == F(B) [resp. 2 —aen, =~ F(B); y— v"(y) en, =~ F(B)]. The statements (11)
and (12) follow from (1.8) and (1.5(4)), bearing in mind that, in this case, the follow-
ing affirmations are equivalent: (i) § is 2 homomorphism of finite type; (ii) j is a finite
homomorphism; (iii) [K,: k] < oo, for all i =1, 2, ..., . (13) follows from (1.6) and
(14) from (1.5(7)).

Proposition (3.1) provides a technique easy to visualize in order to build up new
speectral spaces and spectral sets (3) by the «glueing & amalgamating » process.

(3.2) ExaMPLE, ~ If V is a valuation ring of rank n and W is a valuation ring of
rank m and if (V) = k(W) = %, then VX, W = 4 is a ring, having a noetherian
spectrum, and the following picture describes its Pospec:

Pospec (4} hi=n—1 )y Shi=m —1

@—ose
@—~9ve0

(3) A partially ordered set is termed speciral set if it is isomorphic to the Pospec of some
ring {27], [28].
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Explicitly, when n = m = 1, we can take as V and W two valuation rings of
dimension 1 [resp. two discrete valuation rings] having the same residue field .
The ring B = VX, W has a noetherian spectrum [resp. is noetherian]. When
n=m=2, we can take as V the ring associated with the valuation of the field
K =KX, Y) (k being an arbitrary field) with Z ® Z (lexicographically ordered) as
value group, defined by the map f,: X ~ (1,0), ¥ > (0, 1), and as W the ring asso-
ciated with the valuation (of the same field and with the same value group) defined
by the map fu: X — (0,1), ¥ (1, 0) (cf. [19, Par. 15], [22, Ex. 4.3], [26, Ex. 1]).
Tt is easy to show that k(V) = k(W) = k. Set ( = VX, W. If m, and m, are the
maximal ideals of the semilocal domain D = V N W, it is easy to show that k(m,) =
= k(m,) = k, then the domain E = kX m)x m,) D =k + §(D) has a Pospec of the
following type:

Pospec (E)

More generally, let {V i = 1,2, ..., 7} be a family of valuation rings of the same
field, not two of which are comparable. If we suppose that every residue field %(V,)
is an extension of one fixed field k (¢ = 1, 2, ..., ), then the domam F=1Ex n km)(ﬂ V)

has a Pospec which can be represented by a diagram of the following type

Pospec (F)

Obviously if we fix the field of quotients K of the domain ¥ (or D, or V, or W),
then we can find some rings 4, B', ¢/, D', B’ having the Pospec isomorphic-respec-
tively-to that of 4, B, 0, D, B, and coefficient field k'= K (the choice of the coef-
ficient field being quite arbitrary). Therefore, we can go on glueing & amalgamating.
For instance, if D' and F are integral domains with the Pospec deseribed above and
it &'= k(m,) = k(m,;) = K, then the Pospec of G = EX Kmy D' has the following



348 MARCO FONTANA: Topologically defined classes of commutative rings

form:

Pospec (@)

The preceding examples give an idea of how to use the glueing & amalgamating
process and suggest how to build up many other spectral sets with pre-established
properties.

We purpose now to point out how the concept of seminormality [38] can be studied
in a natural and direct way, by using the topological-algebraic techniques introduced
above.

(3.3) PROPOSITION. — Given two rings A C B, we suppose that A is a noetherian ring,
B is A-finite (hence, noetherian). For every z € X = Spec (4), we denote by B'® the
subring of B obtained by B glucing over (4) @. Let @, = {y1, Ya, ..., Yx} be the fiber over x

of the canowical map Y = Spec (B) — X = Spec (4). Set F,= [ k(y,), B,, =
i=1

=4, ®, B, Aix being the localization at the prime x = p,, and let u,: k(x) <> F be
the camonical monomorphism. We have o commutative diagram of the following type:

o <
Y

(1) I° is o local ring; more precisely, L° ~ A, -+ F(B,,), where F(By,) is the
Jacobson radical of B, , which coincides (under the embedding L7 = B,,) with the maximal
ideal of L.

(2) B =~ B'™

(3) The ideal q* = Ker (B* — k(x)) is the unique prime ideal of B® such that
a° N4 =y,

(%) B'= is the largest subring of B, A C B's, satisfying the following conditions:

(i) there exists a unique point a’'e Spec (B'®) over z;

(ii) the canonical homomorphism k(z)<> k(z') is an isomorphism [38, p. 588).
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(4) If t; is the prime ideal of B corresponding (i.e. logically, coinciding) with
1,€Y (i =1,2,...,n), then the following diagram:

B __»Ban/qaa
| |
Y Y a

B — B[N 1,
i=1

is a cariesian diagram.
(5) The conductor of B into B® contains the prime ideal g which coincides (under

the embedding B® = B) with the ideal [)1,.

i=1

(6) For every fep,C A or, more generally, for every fe q”C B, the canonical
homomorphism B =% B; is an isomorphism. Hence, if Y= denotes the Spec of B2,
YAV (q%) is scheme-theoretically isomorphic to YNAA(D,). In particular, for every
prime ideal P Dy, of A the canonical homomorphism By =3 B is an isomorphism.

(1) Let »;, v, € X and let D, = {9, 49, .., yf{‘t)} be the fiber over x; of the map
n

Y—>X,i=1,2 8Set F, =[]k@), i=1,2. Al the homomorphisms in the fol-
i=1

lowing commutative diagram:

Bmx,%x — Lwnxz >< _Bp;':1 X szz B — Lw;,m — (k({vl) X k(wz)) X le x F"z (szl X szz) —> k(wl) >< k(wg)

Y L l
B By, X By, ———— I, xT,,

are canom’cal. Then:
Bwlami ~ B‘UL X B Bwa ~ (Bws)% o (B%)Wn

where (B™)™ is the ring obtained by B™ glueing over x; (i, j = 1, 2).

(8) If A is seminormal (°) in B then there exists a finite number of points @y,
Zyy ooy T € X in such a way that B ->% is isomorphic to A.

ProoOF. — (1): cf. (3.1(2), (10)). (2). If we identify B+ with its image into B and
k(») with its image into k(y;) (¢ =1,2,...,n), then B*= {be B|b(y,) € k(z) and
b(y,) = bly,) for all 4, j = 1, 2, ..., n}. The conclusion follows from [38, 1.4]. (3). From

(%) CL. [38].
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the following commutative diagram:

A —> A, —— k{z)
NN

v v

B—— I — E(x)

we deduce that q°= Ker (B® — k(»)) is a prime ideal such that ¢°N A4 = P, =
= Ker (A4 — Kk(z)). The uniqueness follows from (2). The verification of (4) is straight-
forward. (5) and (6) are particular cases of (1.4(b), (c), (d)), bearing in mind that

%
Ady(®P,) = V((\1). The statement (7) can be deduced by a direct verification.
i=1

(8) follows from (7) and [38, Th. 2.1].

(3.4) REMARK. ~ We note that, if 4 is an integral domain of dimengion <1 and B
the field of quotients of A, then the seminormalization of 4 in B coincides with the
weak normalization in the sense of EXDO [16, § 1, p. 341]. A construction quite similar
to the seminormalization is the weak normalization introduced in [2], with reference
to a problem of topological classification of algebraic varieties.

Another econstruction, having algebraic-geometrical motivations as well, which
can also be treated with the techniques introduces above, is the process of glueing of
prime ideals (cf. [33], [37]). More precisely, given a noetherian ring B, two prime
ideals of it, p;, s C B, and a isomorphism ¢: Bfp, X B/p, such that ¢(h, + p./p:) =
= Py + Po/h, and ¢: B/p;, -+ p, — B/p, -+ b, is the identity, then the problem con-
sists in finding a subring 4 of B, which contains a prime ideal p C 4 such that
P = p. N P,, and which can be obtained by glueing over p (cf. Note (4)). From the
preceeding results, it is easy to verify that the solution of this problem is given by
the ring k(D) X kp,) < kep,) By Where the homomorphism B — E(p;) X k(p,) is the compo-
sition of the canonical homomorphisms B — B, X B, , B, X B, — k(p;) X k(p,) and
the homomorphism k(p,) — Ek(p,) X k(p,) is the graph of the isomorphism k(p,) = k()
deduced from @. Several geometrical examples are discussed in [33] and [37].

4. — Applications to the CPI-extensions.

This section is essentially devoted to showing how the theory of the CPI-exten-
gions in the sense of BoIsEN and SHETDON [5] is included, as a particular case, in the
theory developed in Section 1. Further results, especially concerning properties of
transfer, related to the topological and ordering structure of the prime spectrum,
are given here so as to enlarge and point out knowledge of the theory of the
CPI-extensions.

Let R be a ring and o an ideal of R, set A = R/a. We denote by S(a) the multi-
plicatively closed subset of R complement in R of the set-theoretic union of the ele-
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ments of the family F(a) = {p,|¢ €I} of all the prime ideals of R, which, modulo a,
consist of zero-divisors an R/a (!). Therefore, the ring ¢ = S(a)~*4 is isomorphic
to the total ring of fractions of 4. Set B = 8(a)*R, X = Spec (4), ¥ = Spec (B),
Z == Spec (C). In the following diagram:

R°=AxX B2+ 4

B— 5

all the homomorphisms are canonical. Set T == Spec (R), T* = Spec (RB%), « = “u:
Z—>X, f="%:72—>Y, «/="0":Y>T% f=%":X—1T% By the universality
property of R%, there exists a nnique homomorphism w: B — R* which commutes

the following diagram:
FYs
g TW’

R --—¥ee> RO

Ny

A B

w, and wyp being the canonical homomorphisms. Set y = *w: T* > T v, ="w,:
X =T, yg ="wpz: Y — T, and denote by V(a) the image of X into 7 and by A(a)
the image of Y into 7.

(4.1) PROPOSITION. — We preserve the notations of the beginning of this section.
(1) o': R* - A is a surjective homomorphism (i.e. ' is a closed embedding).

(2) If b =Ker (v) and b = Ker (v'), then u'ly:d b is a (module-theoretic)
isomorphism (we notice that b ~ S(a)'a).

(b) b is contained in the conductor of w': R® — B and, hence, for every febd,
Rf =~ B, and, for every prime ideal q of R%, g3 b, Rf =~ B, >~ R,, where p = q N
NEpa, pcU p..

iel )
(4) If we identify X with its image, V(b), into T* under B, then a': ¥ — T°
restricied to o TN (IN\X) = Y\ Z establishes a scheme-theoretic isomorphism with T™\X.
(8) I is homeomorphic to X U, Y or, which is the same, to V(a) U,,0q 4(a) and,

hence, the image of the eontinuous. injective map T T coincides with V(a)\ 4(a)
(which is, therefore, a closed set of T,

(1) If a = 4/q, then F(a) can be taken as equal to the family of all the minimal prime ideals
containing a.
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(6) A(a) = {p]p is a prime ideal of R such that » C (J pi}.
iel
(7) If T is a noetherian space, then T° is a noetherian space.
(8) The map § —v'~2(}) establishes an isomorphism between the lattice of all
the ideals of R containing a and that of all the ideals of R® containing d.

(9) For every prime ideal » of R, pC U 9., b D a, the map § — u'~2(Y) induces
i€l

a bijection between the set of all the p-primary ideals of R and the set of all q-primary
ideals of R®, where q is the unique prime ideal of R® such that g N R = p. In particular,
the injective map Y = T* (i.e. A(a)C T%) preserves the ordering.

(10) If 8(b) is the multiplicatively closed subset of R* complement in B* of | q,,
with q;N\ R = p;, and if B'= S(d) "' R® then R* ~ AX ,B'. iel
(11) If R is an integral domain, then R* is an integml\domain with the same field

of quotients of R.

(12) There exists a unique homomorphism u: (1 + a) 'R — R® whick commuics
the following diagram:

>y
Ra

The subspace of T image of Spec ((1 + a)"*R) coincides with “"V(a) (which is,
therefore, a closed subset of TC™),

(18) If R is normal and if Rja is integrally closed, R is normal.

(14) If a = p is a prime ideal of R, then y: T® — T establishes @ homeomorphism
of TP with its image: V(p) U A(p).

ProOF. — For (1)-(9) cf. (1.4), (1.5) and (1.6). (10). It is sufficient to remark
that §(b)"'R® is isomorphic to S(a)~R. For (11) ef. (1.5(7)). The first part of the
statement (12) follows from the universality property of R% 1In faet, there exist
two homomorphisms ¢: (1 4 a)*R — R/a, #/1 + a —x + a, p: (1 + o)L B — 8(a)"'R,
#/1 + a > «/1 4+ a (8(a) containing 1 4 a), which commute the following diagram:

1+ a)'R —2>Rja

S(ay 1R ——>C

Furthermore, V(a) is contained in the image of Spee ((1 -+ a)"*R) into Spec (R),
hence "V (q) is also contained in this image. On the other hand, if p is a prime ideal
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such that p N (1 4 a) = @ then p -+ a== (1), hence V(p) N V(a) = V(p 4 a) # 0.
(13): cf. (1.5(B)). (14). In this case, V(p) U,, .. 4(p) = V(p)U 4(p), the closed set Z
consisting of one point solely.

(4.2) REMARE. — (a) If R is an integral domain, then R® coincides with the CPI-
extension, C(R, a), of B with respect to a [5].

(b) In general, the continuous injective map T — T' does not establish a homeo-
morphism of 7% with its image. It is not difficult to build up some explicit examples
for which y: T* — V(a) U A(a) is neither a homeomorphism nor an isomorphism of
ordered sets [5, Ex. 3.14]. Nevertheless, if a = p is a prime ideal, 7% is homeomorphic
to P{p} U **{p}, but, in general, it is not isomorphic in the scheme-theoretic meaning
[5, Ex. 2.11 and Prop. 2.12].

(4.3) LEMMA. — We preserve the notations of the beginning of this section. The con-
tinuous bijective map y: T% - V(a) U A(a) is a homeomorphism if, and only if, the
canonical map V(a) ][] 4(a) = V(a) U A(a) is an identification (2).

~ Proor. -~ The statement follows easily from the theorem (V1.7.2) of [13], bearing
in mind (4.1.(8)) and [13,VL.6.1].

' (4.4) REMARK. — It is easy to show that if the family F(a) is finite, then y: T™ —
— V(a) U A(a) is a homeomorphism, V(a) = “F(a), A(a) = *"F(a) and Z =~ V({a) N
N A(a) = F(a). This result can be generalized in the following way:

(4.5) PROPOSITION. — We preserve the notations of the beginning of this section.
If the ring A = Rla is quasi-regular (3} and if pC |J p, C R implies pC p, for some
iel
index 4 of I, then y: T® — V(a) U A(a) is a homeomorphism, V(a) = *F(a), A(a) =
= "“"Fla) and Z =~ V(a) N A(a) = F(a).

PRrROOF. — Since A is quasi-regular, the image of Z into X is homeomorphic to
F(a) (which is a compact subspace of X), hence the image of Z into 7, which coincides
with V(a) N 4(a), is still homeomorphic to F(a). Since F(a) = Adg,(F(a)), then
V{a) = ®F(a) (1.1). Furthermore, if p is a prime ideal of B such that p pa and

pC U p., then p Cp,, for some ¢ € I. The conclusion follows from (4.1.(5)), because
i€l

T* =V, . ) = V(a)U; 4(a), where j is the embedding of V(a) N A(a)

into V{(a).

(?) A continuous surjective map f: X — ¥ is called an identification map whenever a
subset ¥ of Y is an open set if, and only if, f~1(V) is an open set of X [13, VI.1.3].

(®) A ring is called quasi-reqular in the sense of Endd [15], if its total ring of fractions is
regular (i.e. zero-dimensional and reduced).
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(4.6) PROPOSITION. — We preserve the notations of the beginning of this section.
Let a be an ideal of R, then

(1) R is a G-domain = R® is a Q-domain.

(2) R is a Priifer domain == R® is a Priifer domain.
(3) R is o Q-domain (*) = R* is a Q-domain.

(4
(5
(6
(

7) R is a Goldman ring = E" is a Goldman ring.

R is an i-domain = R® is an i-domain.

)
)
)
) R is an open [resp. propen] domain = R® is an open [resp. propen] domain.
y R is o GD-domain = R is o GD-domain.

)

If we suppose that the ring Rja is quasi-regular (as in (4.5)), then:

(8) R is a g-ring [resp. a locally pgr domain] => R* is a g-ring [resp. a locally
par domain).

(9) R is a strong G-domain = R" is a strong G-domain.

In particular, if a = p is a prime ideal, each one of the properties (1)-(9) transfer
from R to RP.

ProoF, — (1). We reecall that R is a G-domain if, and only if, its field of
quotients K is a finitely generated R-algebra [25, Th. 18]. (2). A Priifer domain is
characterized by having all its overrings integrally closed. (3), (4), (5) and (6) are trivial
consequences of the definitions. (7). It is rather easy to see that if T is a T',-space,
then 7T° is a T,-space; in fact, for every ring R, the counter-image in T° of the set
of all the G-ideals of R, Gold (R), is always contained in the set of all the G-ideals
of R, Gold (R%. (8) R/a being quasi-regular, 7° ~ V(a) U A(a). It is easy to show
now that if 7 is an Alexandroff-discrete space then T® is also an Alexandroff-
discrete space. The statement (9) follow from (2) and (8).
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