
Topologically Defined Classes of  Commutative Rings (*)(**). 

MArco FO~A~A (Roma) 

S u n t o .  - I ~  questo lavoro viene studiata l'operazione di somma amalgamata [13] di spaz~ spet-- 
trali [24] e vengono esaminate in dettaglio aIcune propriet~ algebriche degli anelli the inter i 
vengouo in tale operazione. Dei risultati ottenuti vengono poi ]oruite uumerose appticazion 
alla teoria dei (~ D d- m ~) domini di GIL~I~ [19], a quella della seminormalizzazioue di TRA 
VERSO [38] e a quella delle CPI.estensioni nel senso di BOISEN-SHELDON [5]. 

O. - I n t r o d u c t i o n .  

l~ecently, several Authors have investigated problems relevant to commutat ive 
uni tary  rings, dealing with topological methods and motivations (ef. for instance [5], 
[8], [9], [18], [24], [27], [28], [29], [31], [32], [35]). In  the present paper, we demonstrate 
various general results concerning the operation of <( at taching of spectral spaces )> 
and the algebraic structure of the rings intervening in such an operation, taking into 
consideration several different applications, principally to the theory of <( D d - m  )> 
domains introduced by GIL~VXE~ [19], to tha t  of the CPI-extensions in the sense of 
BOISE~-SHELD0r - [5] and to tha t  of TBAVE~S0'S seminormMization [38]. 

More precisely, in the first section we demonstrate practical results of comparison 
between the closure of a subset of the prime spectrum of a ring in Zariski's topology 
and its closure in the construetible (or patch) topology, and we apply the said results 
to the s tudy of the amalgamated sum of two spectral spaces. FE~aA~D [17] (and, 
marginally, A~A~TttAlCAIVIA~N [1]) has also dealt with this study, bu t  with different 
motivations and applications to the problem of finite non-flat descent of schemes. 
In  Section 2, we apply the techniques and results of the preceeding section to build 
up spectral spaces (~ at taching 7> (ef. [13]) a spectral space which has only one minimal 
point to another spectral space which has only one maximal  ( =  e]osed) point, over 
such a closed point. This construction, expounded from an algebraic point of view, 
generalizes tha t  concerning the (~ D -4- m ~> domains [19] [21] and permits the put t ing 
in evidence and, hence, the elimination of the hypotheses and the unnatura l  restric- 
tions submit ted in the algebraic ease. Some results s tated in this section, relevant 
essentially to the topologieM and ordering properties of these spaces, are easily deduced 

(*) Entrato in :Redazione il 15 novembre 1978. 
(**) Work performed under the auspices of C.N.R. (Gruppo i%zionMe per le Strutture 

Algebriehe, Geometriehe e loro Applicazioni). 
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from those of Section 1 and they generalize considerably analogous results, proven 
by algebraic means, concerning the (( D + m >> domains (GII.~m~ [19], PAPIC~ [32], 
KIELTC~ [26]). Further results of this paragraph, relevant to the transfer and 
noetherianity properties, permit, in particular, a widening of knowledge of such 
domains. 

In Section 3, we start with the construction of a spectral space by  attaching a 
spectral space, having only a finite number of maximal points, with a spectral space 
having a unique minimal point, by  amalgamating these points. Such a construction, 
from an algebraic point of view, is closely linked to that  of (( S ~ K + ~ >> rings (cf. 
~)-aAT~ [30, E 2.1 p. 204]), K being a local ring, R a semi-locM ring dominating K 
and i Jacobson's radical o f / L  An Mgebraic-topologicM treatment of the rings arising 
from this topologicM-spectrM construction is developed on the basis of the results 
of Section 1. Purthermore, we give several examples in order to illustrate, by iterat- 
ing the ((glueing & amMgamating >> process, how to build up spectral spaces with 
pre-determinated topological and ordering peculiarities. Therefore, this type of con- 
struction comes in handy when in pursuit of examples and counter-examples rele- 
vant to the problem, stated by  LEwis [27] and founded on previous results proven 
by KAPLA~SKu [25] and It0C~STE~ [24], of characterizing the partiMly ordered sets 
isomorphicMly equivalent (as partially ordered sets) to a prime spectrum of a ring, 
endowed with the partial ordering associated with Zariski's topology (or, equivalently, 
determined by  _c) (cf. also [8]~ [28]). Making use in the (( local case )> of the construc- 
tion examined in this paragraph, we show some notable MgebrMc-topologicM applica- 
tions of it to the process of (( glueing over pro-fixed points ~) and to the seminormMity 
(of. TRAVERSO [38]) and we outline the connections with the problem of (~ glueing 
prime ideals )> (cf. P]~)~I~I ~33]). 

In the last section, we show how the problem, stated by B o l S ~  and SH~DO~ [5], 
of finding an overring of a given domain D having Pospec (~-- prime spectrum endowed 
only with the partial-ordering structure defined by _c) order-isomorphic to the subset 
of Pospee (D) consisting of all prime ideals of D comparable to a fixed ideal, can be 
easily studied and solved, making use of the techniques introduced in the present 
paper. After having preliminarily recovered the principal results relevant to the 
CPI-extensions [5], we supply further results for this theory 9 expeciMly with regard 
to the problem of characterizing, making use only of the relation g, the Pospec of 
the CPI-extension of a domain with respect to a non-prime ideal. FinMly, this para- 
graph concludes with several results concerning the transfer of properties resorting 
essentially to topological and ordering properties, and referring particularly to some 
classes of G-domMns [18] [29] [36] and GD-domMns [32]. 

1. - A topologically defined ring-theoretic operation. 

Let A be a ring, we denote with xZar[rcsp. X c~ the prime spectrum of the 
ring A, X = Spec (A), endowed with the Zariski topology [resp. with the construc- 
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tible (~) topology].  For  every  subset  17 of X,  we denote wi th  Adz~ (Y) [resp. Adconst( Y)] 
the  closure of 17 in X TM [resp. Xe~ and we set 

~e,17 _~ {x e X[x is a generization (~) in X TM of a point  of 17} 

~ Y  ~ {x ~ XIx is a specialization (~) in X TM of a point  of 17}. 

I t  is well known tha t  the  set X of all p r ime ideals of A can also be viewed s imply 
as a poset (i.e. par t ia l ly  ordered set) with respect  to the  set- theoret ic  inclusion. After-  

wards,  we shall use the  locution the Pospec of A, or jus t  Pospec (A), to refer to this 

par t ia l ly  ordered set. 
I t  is easily seen t h a t  the ident i ty  m a p  idx: X c~ - ~ X  TM is a continuous map ,  

therefore,  for every  17 _c X,  Adco~(17 ) c Adzar(17 ). Fur the rmore ,  every  closed of 
X TM being stable for specializations, for every  17 _c X it  happens  t h a t  ~17 c Adz~r(17). 

(1.1) L ~ v [ A .  - /~et A be a ring and let X - ~  Spec (A). For every subset Y g X 
it happens that: 

Adza~(17) : sT (Adconst (Y)) . 

PnooF.  - F r o m  the remarks  of the  beginning of the present  section, we deduce 

t h a t  ~(Ad~ A d z A r ) .  On the other  hand,  if x e Adz,~( '~(Adco~(r))) ,  then,  
for every  fundamen ta l  open set D(]) of X TM, D(f) ~ x, we have  D(]) (~ S~(Adconst(17)) v~ 0, 
hence D(]) ~ Adconst(17) v a 0, because every open set of X TM is stable for generizations. 

I n  the compac t  space X c~ [23] [31], Adco~t(I  z) and  D(f) are closed sets, therefore:  

I~A 

Being ~ D ( ] ) =  g*"{x}, we conclude t ha t  x a 8~(Adcon~t(17)). 
I~A 

(1.2) I ~ A ~ K .  - I n  general, for every  subset  I7 of X,  the following inclusion 

holds: 

Adconst(8~ y )  _c 8~ (Adcons~ (17)). 

(1) The constructible topology [23] [3, 1 o. 48] or patch topology [24] on X is that to10ology 
having, as subbase of closed sets, all the closed sets of X TM and all the quasi-com10act o10en 
sets of X TM. Hence, a subbase of closed sets of X c~ is given by {V(])I] e A} u {D(])]] e A}. 
I t  is easily seen that a subset Y of X is closed in X con~ if, and only if, there exists a ring- 
homomor10hism ~: A ~ B such that Y = a~(Spee (B)). 

(2) We say that x ~ X is a generization [rest0. specialization] of a 10oint y e X i~ y ~ Adzar(x ) 
[rest0. xeAdz~r(y)] ; el. [23, 0.2.1.2]. 
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In  fact, it  is s t raightforward tha t  Adzar(Y ) ----Adzar(~Y)= ~(Adcons,(~(y))), f rom 
which the above inclusion follows. We note tha t  the strict  inclusion cun occur, as 
the following example shows. 

(1.3) EXA~PLE. -- Le t  X = Spec (Z), let  Y be a non-finite proper  subset of Max (Z) 
and let ~ be the generic point  of X. We know tha t  X c~ is the Alexandroff com- 
paetification of the discrete space Max (Z) [18, Par.  2 Lemme et Rq. 1], hence 

Adeo~s~(Y) = Y W {~} ~nd therefore ~(Adcon~t(Y)) = X. Vv~hereas, ~pY = Y ~nd 
then  Adco~t(~Y)-~ Y w (~}. 

Le t  u : A - ~ C  be ~ r ing-homomorphism and v:B---~C a surjeetive ring- 
homomorphism.  We denote by  D the pull-back of A ~nd B over C (i.e. 
D ~ - A •  c B =  ( ( a , b ) e A •  and b y  u ' : P - - > B ,  v ' : D - ~ A  the  
restrictions to D of the canonical projections. Le t  X----Spec (A), Y : S p e c  (B), 
Z = S p e c ( C ) ,  W-----Spot(D), ~ - ~ a u : Z - - > X ,  B - ~ a v : z  ~ Y,  g ' :au ' :  Y - + W ,  
f l '= aV': X -* W. We get the  following commuta t ive  diagrams: 

D " , A  W <  ~' X 

1 l 
B ~, ~ C  Y ~ - - ~  Z 

The map fi: Z ~-> Y being a closed embedding, we ident i fy  Z with its imuge in 17, 
in order to simplify the notations.  

(1.4) THEOaE~L -- With the foregoing notations and hypotheses, let X U~ Y be the 
topological space obtained by attaching X to Y,  over the closed set Z, by the continuous 
map o: (3). Then, X U~ Y is a spectral space [24] homeomorphic to Spec (D) (4). 

P~ooF. - F r o m  the definition of D itself, we deduce immediate ly  tha t :  

(a) v' is a surjective homomorphism (and, therefore, fl' is a closed embedding; 
we ident i fy  for greater  convenience X with its image in W under  fi'). 

(b) Let ~ z Ker  (v) and b--- -Ker  (v'), then u'[b: b-->5 is an isomorphism of 
modules (subordinate to u' : D -~ B). Therefore, the conductor (5) of u' contains b and, 
hence, it  is easily ~ seen that, for every h ~ b, the canonical homomorphism D1,-* Be(h) 
is an isomorphism (cf. also [6, Ch. 5 Far.  1 Ex.  16]). 

(3) X w~ Y is the quotient space ol the disjoint union of X and Y, modulo the equivalence 
relation generated by: a(z) ~ z, for each z e Z [13; Ch. 6, 6.1]. 

(~) We notice that a similar statement is contained in the unpublished paper [17]. We 
give here a simplified proof of it, making use of Lemma (1.1). 

(5) The conductor o] a ring-homomorphism ]: A---~B is, by definition, the ideal 
---- Ann~(Cokcr (])) = Anna(B/Ira (])). 
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From the last assertion of the s ta tement  (b) we deduc% in particular, the other 

following assertions : 

(c) For every prime ideal ~ of D, p ~ b, if q is the unique prime ideal of B such 
that u'-~(q) ~ p, then q ~ ~ and Bq ~ Dv. 

(d) The map s : ~ --> W restricted to Y'...Z = s  establishes a scheme- 
isomorphism (and[ henc% in particular, an homeomorphism between topological spaces 
and an order-isomorphism between partially ordered sets) with W \ X  (we notice 
tha t  X ~ V(b) and s ~ V(D) ~ Z). 

The equali ty fi'o~ = s allows us to affirm tha t :  

(e) There exists a unique continuous map a: XUc, Y--> W which commutes the 

following diagram: 

X 

X ~ J ~  ~ ~ W 

I 
~g 

From the statements (a) ~nd (d) it  follows tha t :  

(f) (r: X w~ ~ --+ W is a bijective map; therefore, in particular W -== X kJ s  

To conclude, tha t  is, to show tha t  ~ is an homeomorphism, it  is sufficient to prove 
that ,  if F is a subset of W such tha t  s is a closed set of ~Y and fi'-~(F) is closed 
set of X, then ~ is a closed set of W. By applying Lemma (1.1) we obtain tha t  F 
is a closed set if, and only if, _F = ~(Adeons~(F)). We remark tha t  Adconst(F ) = F 
(see Note (~)), in fact, if e'-I(F) = V(g) and if fi'-~(F) = V(v) then F is the image, 
under %, of the spectrum of the D-algebra h: D -->Aft•  x ~ (v' (x) d- r, u' (x) d- 8). 
Now, the conclusion follows immediately,  because F is stable for specializations, 
so being F n X a n d / ~  n ( W ~ X ) .  

(1.5) COrOLLarY. - We preserve the notations and hypotheses 01 the beginning o1 
this section and of the preceding theorem (1.4). 

(1) The map a ~-. v'-l(a) establishes an isomorphism between the lattice o] all 
the ideals of A and that of all the ideals of D containing b. This map defines, by restric- 
tion, an isomorphism between Pospec (A) and the partially ordered subset ol Pospec (D) 
which consists of all the prime ideals of D containing b (this isomorphism, obviously, 
coincides with the one which can be deduced from the closed embedding fi': Spec (A) -* 
-~ Spee (D)). 
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(2) ~or every prime ideal q o / B ,  q ~ b, the map ~ ~-~ u'-~(t)) establishes a bi]ec- 
tion, which preserves the inclusion , between the set of all the ideals of B which are primary 
for q and the set o/al l  the ideals o / D  which are primary/or  p : u'-l(q)(~ b). 

(3) The map de/ined in the statement (2), by restriction to the prime ideals, deter- 
mines the isomorphism Pospec ( B ) ~ V ( 5 ) - ~  Pospee(D)~V(b)  described /ormerly 
(1.4(d)). 

(4) 
u r : D  --> 

(5) 
o/ D in 

I /  u: A ~ C is injective [resp. surjective, o] /inite type, integral, /inite], then 
B is injective [resp. surjective, o/ / inite type, integral, ]inite]. 

I] A'  is the integral closure o / A  in C, then D ' : A '  • e B is the integral closure 
B. 

(6) I] u is an injective homomorphism and i/~ is a regular ideal o/B,  then Tot (B) 
Tot (D) (where Tot (--) denote the total ring o/ /factions o/ the ring --). 

(7) I /  u is an injective homomorphism and i/ B is an integral domain, then D 
is an integral domain with the same /ield o] quotients as B, and in this /ield B and 1) 
have the same complete integral closure. 

(8) I / C  is the ]ield o/quotients o] a normal domain A and i / B  is a normal domain 
hen D is a normal domain. 

PBOOF.- For (1), (2), (3), (4)apply  (1.Q. (5)follows from (4)and[6,  Ch. 5 p. 15]. 
The verifications of (6), (7) and (8) are straightforward (cf. also [19, 22.5]). 

(1.6) COI~OLLAt~u - -  We preserve the notations and hypotheses o/ the beginning o/ 
this section. W and Z are noetherian spaces, if and only i], X and Y are noetherian spaces. 

P~ooF. - Apply (1.r and [6; Ch. 2 Par. 4~ N. 2]. 

(1.7) t~E~AlCK. - I t  is not  true, in general, t ha t  if A and B are noetherian rings then 
A • c B is a noetherian ring. For  instance, if k ~ K are two algebraically closed fields, 
if A ~ k, B ~ K[ T], C -: K, if v: K[ T] -+ K is the canonical surjective homomorphism 
T ~ 0 and, finally, if u is the inclusion k ~ K,  then  the ring k • K K[T] is not  a noe- 
therian ring. In  fact, the ideal (((0, aT)la e K}) is not finitely generated. 

(1.8) PI~OPOSITIO_N. - We preserve the notations and hypotheses o] the beginning o/ 
this section. A • c B and C are noetherian rings, u' is a/inite homomorphism i/, ond only 
i/, A and B are noetherian rings and u is a /inite homomorphism. 

PgooF. - We suppose tha t  A • o B is a noetherian ring and tha t  u' is a finite homo- 
morphism. Then, A is noetherian, as a quotient ring of A • o B and B is also noetherian, 
because u' is of finite type [3, Cor. 7.7]. l~urthermore, u:  A x c B / b  -+B/b is neces- 
sarily finite. Conversely~ keeping in mind the s ta tement  (1.5(4)), it  suffices to show 



MArco ~O~A~A: Topologically de]ined classes o] commutative rings 337 

tha t  A •  cB is noetherian and, to this end, it  is enough to verify tha t  b = Ker (v') 
is un ideal of finite type. But  this follows easily, since 5 is an ideal of finite type  of B 
and u' is a finite homomorphism (ef. (1.4(b)) and [23; 0. 6.4.8]). 

(1.9) P~oPosI~IO~. - We preserve the notations and hypotheses of the beginning of 
the present section. I] S is a multiplicatively closed set in the ring D, then indicating 
S A = v'(2), 2B --= ~'(2), 2 o = uov'(2) = you'(S), we obtain that 

2 -1D ~ S ~ I A •  2~1B.  

Conversely, i] S.4 is a multiplicatively closed set o / A  and i] S B is a multiplicatively closed 
set o] B and i/ u(S~) = v(S~) = Sc, then S ~ X A •  =~: (24• SB)-ID. 

P~ooF. - The verificutions are straightforward. 

2. - Appl icat ion to the  (( D -~ m ~) cons truct ions  and to  the compos i t i on  o f  va luat ion  

rings.  

As we have already mentioned in the introduction, in this section we apply the 
techniques and results of the preceding section to build up spectral spaces by (~ amalga- 
mating ~) a spectral space having a unique minimal point, with a spectral space hav- 
ing only a unique maximal  (---- closed) point, over this closed point. The principal 
applications of such a construction concern the D ~- m domains [19], [21]. Part icular  
a t tent ion is devoted to the examination of the transfer properties, expecially with 
regard to some classes of G-domains [18], [25], [29], [36] and GD-domains [11], [12], [32]. 
On this subject, after having explicitly shown many  different possibilities of construc- 
t ion of spectral spaces, we prove tha t  the Artin-Tate theorem, concerning the noethe- 
rian G-domains [10] [25], may  in no wise be extended to the case of G-domains with 
noetherian spectrum. We remark, among other things, tha t  the costruction of a valua- 
tion ring by  composition given by ~aga t a  [30, p. 35] is included, as a very particular 
case, in the one examined in this section. 

Le t  (V, m, k(V)) be a local ring, let D be a snbdomain of k(V) and let K be the 
quotient field of D. We now consider the following diagTam: 

DI = D• V v' -+> D 

I~ 

We quote X ~ Spec (D), I7 = Spee (V), P = Spec (k(V)), X1 = Spee (D1) and we 
denote by y the closed point of Y, image of/~ under fi = av: P --> :Y, by  x the generic 
point of X,  image of P under ~ = au: P -> X, and by  z the point of X1 image of P 
under y = a(vou') - =  a(v'ou) : P ~ X1. Let  s  Y -> X1 and ~ f = a v t :  X ---~ X 1. 

2 2  - Annalf ,  di Matemal~ea 
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(2.1) PRoP0sITI0~. - With the notations and hypotheses of the beginning o/ this 
section, we have: 

(1) X~ is a topological space homeomorphic to X U~ Y; X ~ X  is a scheme iso- 
morphic to Y'\{y} under s restricted to Y~(y} .  

(2) The closed embedding fi': X = Spec (D) ~ X~ ---- Spec (D~) has the imag~ 
equal to ~p{z} and it establishes an order-monomorphism of Pospec (.D[ into Pospec (D1). 

(3) The continuous map s  Y-= Spec (V)--~X~ ~--Spec (D~) is injective~ has 
the image equal to ~(z} and establishes an order-monomorphism of Pospec (V) into 
Pospec (D~). 

(4) Every prime ideal of X~ is comparable with z, more precisely X~ -= 8~(z} U g~'~{z}. 

(5) dim (D~) = dim (D) + dim (V). 

(6) Pospec (D~) is a tree if, and only if, Pospec (D) is a tree and Pospec (V) 
is a totally ordered set. 

(7) Spec (D~) is a noetherian space if, and only if, Spec (D) and Spec (V) are 
noetherian spaces. 

In the particular case in which D ~- K is a field, we have the following commutative 
diagram: 

therefore: 

?-= K• V ~ § K 
r.~ ( %  

? J 

V ~ §  

(8) t = a~: y = Spec (V) --~ Y = Spec (IY) is a homeomorphism and, hence, it 
establishes an isomorphism between Pospec (V) and Pospec (V). 

(9) V is local ring. 

(10) I] ~ is the unique closed point of Y, then t[~7\(~,}: Y"-,,{y} -~ }"',,,{~} is a scheme- 
theoretic isomorphism. 

P ~ o o ~ . -  Apply (1.4), (1.5) und (1.6). 

(2.2) P~O1)OSITIO~. - We preserve the notations and hypotheses of the beginning of 
this section and of Proposition (2.1). 

(1) For every prime ideal p ~_ p~ of the ring DI~ denoting by q the unique prime 
ideal of D which corresponds to p (2.1(2)), we have: D1/O -~ D/q. In particular if ~ = O~, 
then DI/O~ _~ 1). 
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(2) The map b ~--~v'-l(b) establishes an isomorphism between the lattice o] all 
the ideals o ]D  and that o] all the ideals o] 1)1 containing p,. 

(3) We suppose now that K ~ k(V). For every prime ideal p c_ p, o] 1)~, denoting 
by q the unique prime ideal o] V which corresponds to p, we have; (D1) ~ ~ Vq. In  parti- 
cular, (D1) w ~ V. 

(4) We suppose that D : K ~ k(V). For every prime ideal q o] V, we denote 
by ~ the prime ideal q (~ ~. I] q V=m, then Vq ~ ~ .  

(5) In  the general case, 1) c_ K g k(V), ]or every prime ideal q o] V, i] ~ is the unique 
prime ideal o] ~ associated with the prime ideal q o] V, corresponding to the prime ideal 
p ~ p ~ o ] D ~ , t h e n w e  have: (D1) ~ _ ~ _ ~ V q  W h e n p ~ - p ~ , ( D 1 )  w _ ~ V = K •  V. 

(6) I] p is a prime ideal of D1 containing the ideal p, and i] q : p/p, is the unique 
prime ideal o] D corresponding to p, then (D1) ~ ~__ Dqxk(F) V. 

(7) The map a ~ u'-~(a) establishes a bijection, which preserves the ordering given 
by ~, between the set o] all the q-primary ideals o] V, q being an arbitrary prime ideal 
o] V, q ~= m, and the set o] all the O-primary ideals o] D1, being p : q (~ 1)~ cr p~. When 
K -~ k(V) such a bijection holds also in the case q -~ m. 

(8) I] 1) ~ k(V), then the conductor [ o] u' : 1)1 ~-> V coincides with p~. 

(9) D~ is an integral domain i], and only i], V is an integral domain. In  this 
case, D1 and V have the same complete integral closure in their common ]ield o] quotients. 

(10) 1] 1)' is the integral closure o]D in k(V), then D' 1 -~ D' • V is the inte- 
gral closure o] 1)1 in V. I] V is a valuation ring, then D~ is the integral closure o] D~ 
in its ]ield o] quotients. 

P~ooF. - For  (1) and (2) el. (1.4(a)) and (1.5(1)). (3) and (4) follow from (1.4(e)), 
(1.9) and (2.1(1)~ (10)). (5) ensues from (3), (4) and (1.4(e)). (6) is a particular case of 
(1.9); in fact, if S = D I ~ p ,  with p~_p~, then u'(g) c_u'(D~'\..p~)c_V~m. For (7) 
cf. (1.5(2)). (8): we already know tha t  p~_c~ (1A(b)). On the other hand, V being 
a local ring, every element of V ~ m  is a unit  of V, therefore if x e DI~p~, then x ~ ~, 
because otherwise, f would be equal to the ideal (1) and hence, V would be equal to D1, 
tha t  is D - ~  K ~ k(V). The s ta tement  (9) is a particular case of the s ta tements  
(1.5(6), (7)). The first par t  of the s ta tement  (10) follows from (1.5(5)); the second 
par t  can be proven using an argument  quite similar to the  one used to establish the 
assertion (1.5(8)). 

(2.3) Tm~o~E~. - We preserve the notations of the beginning o] this section. 1)1 is a 
noetherian domain i], and only if, V is a noetherian domain, i)  ~ K and [k(V): K]  < c~. 

P~oor .  - From what  is already known (cf. (L8)), it suffices to show tha t  the homo- 
morphism u':  1)1 -~ V is finite in order to conclude, passing to the quotient  rings, 
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t ha t  u is finite, D ---- K is a field and [k(V): K] < co. ~ow, if p~ is a Dl-module of 
finite type, then m--~ p~V is a D~-module of finite type  (1.4(b)). Furthermor% 
D1 and V have the same field of quotients (2,2(9)) und the conductor of D1 ~-> V is 
the ideal p~ which is a non-zero ideal, hence V is a Dl-module of finite type  (cf. also 
[25, Ch. 1 Ex.  41 (a) p. 46]). 

(2.4) T~EORE)L -- We preserve the notations o] the beginning of this section. We 
suppose that k(V) is the ]ield o] quotients o] D. 

(1) D~ is a valuatio~ ring i], and only i], V and D are valuation rings. 

(2) D1 is a discrete valuation ring i], and only i], V is a discrete valuation ring 
and D -~ k(V) (i.e. D1 = V). 

(3) D~ is a Pri~]er domain i], and only i].~ D and V are Pri~]er domains. 

(4) D1 is a S-domain (t) i], and only if, D and V are S-domains. 

P ~ o o F . -  (1) I t  is clear tha t  if D1 is a valuation ring, then V = (D1)p~ and 
D = D1/O~ are also valuation rings. For  the converse the verification is straightforward 
[307 p. 35]. (2) follows from (1) and from (2.3). (3) ensues from (1) and (2.2(6)), 
bearing in mind tha t  a Priifer domain is characterized by  having all its loealizations 
at  prime ideals equal to valuation rings. (4) is a simple consequence of (2.2(2) and (7)). 

(2.5) I ~ E ) ~ K .  - I f  the field of quotients K of D is isomorphic to a proper subfield 
of k(V), by  imposing on V and D the properties of the type  enounced above (cf. (2.Q), 
we cannot conclude, in general~ tha t  the same property holds for D~, ~s the following 
example (concerning the s tatements  (1)-(3)) shows. 

(2.6) EXA~IPLE. - If  V : K~T~, D ~ k, k being a proper subfield of K,  and if 
v: K~T~ --> K,  T ~ O, then D1 = k • E K~T~ is isomorphic to the subring k ~- TK~T~ 
of K[T , which is not a valuation ring in its field of quotients K((T)). 

As regards the S-domains, the difficulties mentioned in (2.5) rise since, in general, 
we cannot describe the behaviour of the m-primary ideals when we pass from V to D1. 
On this subject, we recall tha t  a prime idea.1 p of a commutat ive  ring is called a branched 
prime, when there exists at  least one p-primary ideal ~), t) r p; otherwise, p is called 
an unbranched prime. I f  m is an unbranched prime ideal~ we can strengthen the state- 
ment  (2.4(4)) in the following manner;  i ] D  and V are S-domains and m is unbranched 
in V then D1 is an S-domain and p~ is unbranched (cf. 2.2(7)). Therefore, as 
simple and direct applicution of the topological techniques of Section 1, we have 
reobtained, as a particular case, the principal results concerning the S-domains proven 
in [26] using algebraic methods.  

(1) Cf. [20] ~nd [26]. 
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(2.7) T~EO]~E~. - ~Ve preserve the hypotheses and notations el the beginning el 

the present section. 

I]  we 

(d) 

(e) 
(D 

(a) D~ is a G-domain (2)4=~ V is a G-domain. 

(b) D~ is a Goldman ring (3)r V and D are Goldman rings. 

(c) D~ is a g-ring [resp. a locally pqr domain] (4) <=:> V and D are g-rings [resp. 
locally pqr domains]. 

suppose that k(V) is the ]ield el quotients o / D ,  then: 

Dx is a strong G-domain (5)r V and D are strong G-domains. 

Dx is an i-domain (s) ==> V and D are i-domains. 

D~ is an open domain [resp. a propen domain] (6) ==> V and D are open do- 
mains [resp. D is an open domain and V is a propen domain]. 

(g) D~ is a GD-domain (7) ==> V and D are GD-domains. 

(h) I]  V is a valuation ring the statements (e)~ (]) and (g) can be inverted. 

PROOF. - (a). I t  suffices to  r e m a r k  t h a t  t he  generic po in t  of X~ is open if, und  only  

if, the  gener ic  po in t  of Y is open. (b). I t  is easily seen t h a t  X~ is a T s  topological  space (s) 

if, and  only  if, X and  Iz are  T s  topological  spaces. (c). I t  is s t r a igh t fo rward  t h a t  X~ 

is an  Alexandroff -d iscre te  topologicul  space (9) if, and  only  if, X and  17 are  Alexan-  

(5) A G-domain D is an integral domain such that  its field of quotients is a finitely gene: 
rated algebra over D [25, 1.3]. Topologically, a reduced ring is a G-domain if, and only if, 
ts prime spectrum is an irriducible space and the generic point is open [25, Th. 18] [18, Lemme 2]. 

(s) A Goldman ring A is a ring such that  every prime ideal ~ is a G-ideal (i.e. A/D is a 
G-domain) [18] [35]. A reduced ring is a Golman ring if, and only if, its prime spectrum is a T~ 
topological space [18, Prop. 1]; cf. also the following Note (s). 

(~) A g-ring A [35, Prop. 6] [18, Par. 3] is a ring such that  for every prime ideal 
of A there exists ] e A ~ p  in such a way that  A v ~ A 1. A reduced ring A is a g-ring if, and only 
if, Spec (A) is an Alexandroff-discrete topological space; ci. also the following Note (s). An 
integral g-ring is called in [36] a locally pqr domain. 

(5) A strong G-domain A [36] is an integral domain such that  every overring el A is equal 
t o  A I for some ] ~A.  

(s) An i-domain [resp. open domain] A, with K as a field of quotients, is an integral domain 
such that  for every overring B, A _C B _C K, the map Spec (B) -+ Spec (A) is injective [resp. 
open]. A propen domain A is an integral domain, such that  the map Spec (B) -+ Spec (A) 
is open for every overring B, A _c B ~ K;  [32]. 

(~) A GD-domain A is an integral domain such that  the (( going-down ~ property holds 
for every overring B of A [l l] ,  [12], [32]. 

(5) A T~-spaee X (cf. [4., 3.1], [9, Par. 6], [18]) is a topological space such that  for every 
point x e X, the derived set {x}' is a closed set. 

(g) An Alexandro]]-diserete topological space X is a To-space such that,  for every subspace 
y_c X, the following property holds: 

Adz(Y ) = (J Adz(y) 
y ~ Y  

(cf. [4, Par. 5], [9, Par. 6], [18, Par. 1]). 
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droff-diserete topological spaces. (d). I t  is well known tha t  a strong G-domain is 
simply a locally pqr Prfifcr domain [36, Th. 3.5]. The conclusion follows f rom (c) and 
(2.4(3)). The s ta tements  (e), (J) and (g) follow easily f rom (2.1(2), (3), (4)) and (2.2(1), 
(3)). (h). The s ta tement  (e) reverses, because D1 is an i-domain if, and only if D1 c D~ 

! t 
is an / - ex tens ion ,  D 1 being the integral  closure of / )1  in its fields of quotients,  and D~ 
is a Prfifer domain [32, 2.13]. In  fact ,  in the present  si tuation D'I = D ' •  k(v) V where 
D'  is the integral  closure o f / ) '  in/~(V) (2.2(10)). The s ta tement  (g) can be inver ted:  
it  is well-known tha t  an integral  domain A is a GD-domain, if and only if, A c A[u] 
satisfies GD for every  u in the field of quotients of A [12]. Therefore,  if u ~ V, then  
u -~ e ra ,  hence D~[u] = D~[(u-~) -~] = (D~)~_.. The reversibil i ty of (/) now follows 
from [32, 3.2 and 5.1]. 

(2.8) PROVOSITIO~. - I/ ( V , m ,  I~(V)) is a valuation ring containing, as subring, 
a /ield k isomorphic to k(V),  then there exists an isomorphism (~: D q- m _% D1 which 
commutes the /ollowing diagram: 

D + m .  : ~ D 1  

r r 
4, �9 

k + m  = V 

PROOF. - For  the universal i ty  p roper ty  of D1 ~ there  exists a unique homomorphism 
a which commutes  the following diagram: 

D q- m --e-+ D~ 

3'  

k + m  = g 

where u"(x -~ y) - u(x) -~ y, v"(x + y) = x for all x e i),  y e m .  The verification 

t ha t  a a bijective map is s traightforward.  

The Proposi t ion (2.8) shows how the results of the present  section, deduced in a 
na tura l  and direct way f rom the main s ta tements  of the previous section, generalize 
some of those which GIL~gER [19, Th. A p. 560], [21] and PAPICK [32 ; 3.27, 3.28, 5.26] 
have proven  for the D + m domains, fur ther  widening the knowledge about  this 

theory.  

(2.9) ExAs~PLE. - Le t  k be an a rb i t ra ry  non-finite field. Set K = k(X), D = k[X], 
V = K[:Y](y). Le t  u: D = k[X] ~-->k(X), v: V - - - ~ k ( V )  ~ K  be the canonical homo- 



MARCO Fo:~A~A: Topologically de]ined classes o] comm~eta~ive rings 343 

morphisms. The Pospec of the domain D~ ~ D X K  V ~ b[X] Jr Yk (X)[Y] (y )  
cr k(X,  Y) can be represented by  the following diagram: 

(2.10) EXA)fPLE. -- Le t  k, K,  V be as in (2.9). Set D = k[X](x) and let  u: D ~-->K, 
v: V -+> k(V)  ~= K be the canonical homomorphisms.  The Pospee of the domain 

D~ = D X K  V ~ k[X](z) -{- Yk (X) [Y] ( r )  ~ k(X,  ~)  can be represented by  the follow- 

ing diagram: 

Pospee (D2) t 
We note tha t  D1 and D~ are non-noetherian rings, even if Spec (D~) and Spee (D~) 

are noetherian topological spaces (2.1(7)). Fur the rmore ,  D~ and D~ are G-domains 
(2.7(a)) and D2 is a valuation ring. These examples show tha t  none of the conditions 
of the Art in-Tate  Theorem (i.e. semi-locality and dim~<l), which characterize the 
noetherian G-domains [10, Th. 2.5], holds in the case of G-domains with noetherian 

spectra. 

(2.11) EXA~Lv,.  - Le t  /~ be an a rb i t ra ry  field. Set 

K = k (X) ,  D ---- k[XJ(x) , V = K[X1, Y2, ..., Yn](rl,Y, ..... r,)" 

Let  u: D ~ K v: V --~ K be the canonical homomorphisms. The Pospec of the do- 
main D 3 ----DX K V c# t~(X)(Y1, Y~, ..., ~ )  can be represented b y  a diagram of the 
following type :  

Pospee (D3) 

�9 j 

In  general, we can take K =  k ( X i ] i e I ) ,  D = S - l k [ X i [ i e I ] ,  V = K [ Y j l j e J ] m  , 
where I and J are arb i t rary  sets of indexes, S is a multiplicative set  of k[X~li e I] 
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and m is a maximal  ideal of K[Yr E J] such tha t  k(m) ~ K.  The properties of the 
Pospee of the domain D 4 = D X K V are easily deduced from those of Pospec (D) 
and Pospec (V). 

3. - Applications to the seminormality and to the glueing of  prime ideals. 

In  this section, we intend to build up a spectral space by (( glueing & amalgamat-  
ing ~> a spectral space having a finite number of maximal  ( ~  closed) points with 
another having only one minimal point and we develop an algebraic-topological 
s tudy  of the rings intervening in such a construction. Then, we apply this s tudy  to 
recover, in a nutural  and direct way, the main properties of the seminormalized of 
a ring [38] and to enlarge the knowledge of this theory, especially in connection with 
the glueing process over points of a spectral space. Furthermore,  we explicitly con- 
struct  several examples to show how the (< glueing & amalgamating ~> process comes 
in handy  in s tudying spectral sets [27], [28]. 

Firs t  a t  all, we show tha t  the (( A + ~(B) ~> rings (similar to the <~ D + m ,) do- 
mains, cf. w 2) introduced by  N.~GATA [30, E.2.1 p. 204] and revided later by  LEWIS [27] 
can be easily obtained and studied with the methods introduced in Par. 1. 

Le t  (A, m,/~) be a local ring and B a semi-local ring such that ,  for every maximal  
idealm~, the field Ks -= k(mi) -= Bm,/m~B,t , is an extension of the field k, i : :l, 2, ..., r. 

Let  j:  k ~-> I:I Ks be the canonical monomorphism. In  the following commutat ive 
i = 1  

diagram all the homomorphisms are canonical: 

B2 ~.  A X II K~ B v" -+> A 

r V' _~ 
e '~ B l =  ~ X I I K  B ~ u 

j '  j 

f 
B v _>> ] - i K i  Y" 

i=l 

Set X = S p e e ( A ) ,  Y = S p e c ( B ) ,  :Y~--~Spec(Bs), i = 1 , 2 ,  P : S p e c ( k ) ,  F = -  
f 

- - - -Spec ( l - IK , ) ,~z=~u:F  --> X ,  o~':au':  ~---~ ~2,  ~ : a h : P - - ~  X , ~  2 l : a h f :  ~ 1 - +  ~-2, 

e = ~i : /7-->P,  e'=~j': Y - + Y 1 ,  fl : a v : F - - - > Y ,  fl'~--aV':P--->Y1, fi " : % ' r : X - >  Y~" 
We denote by y~ [resp. y~, x] the image of P into Y~ [resp. Y2, X]. We identify 
F = {z~, z~, ..., z,} [resp. X] with its image into Y [resp. Y~] under the closed embedd- 
ing/~ [resp. /5"]. 



MARCO FO~TA~A: Topologically de]ined classes o] commutative rings 345 

(3.1) PROPOSITIOn. - We preserve the notations introduced above. 

(1) Y ~ P W ,  Y; Y ~ = X U ~ Y ~ - - - X U r Y  1. 

(2) B1 and B2 are local rings. 

(3) The conductor o] B into B1 coincides with the maximal ideal nl o/B1 (kernel 
o/the homomorphism v'), which, in turn, is isomorphic to ~(B) under j'. 

(4) The conductor o] u': B~ -~ B contains the ideal n~ o] B2 (kernel o/the homo- 
morphism v"), which is isomorphic to ~(B) under u'. 

(5) Y~"..(Yl} is scheme-theoretically isomorphic to I ~ , F .  

(6) -For every prime ideal q o/B,  q V= mi ]or all i -~ 1, 2, ..., r~ the map I) ~ ~ (~ BI 
establishes a bi]ection, which preserves the inclusion g, between the set o/all the q-primary 
ideals o] B and the set o] all p-primary ideals o] B1, where p ~- q (~ B ~ nl. Hence, in 
particular, by restriction to the set o/all the prime ideals, this map establishes an isomor- 
phism between Pospec (B)~-F and Pospec (B~)~(yl}. 

(7) Y2~X is scheme-theoretically isomorphic to Y'.~F. 

(8) For  every prime ideal q o] B, q V= m~ ]or all i -~ 1~ 2, ..., r, the map ~ ~-~ u'-~(I)) 
establishes a bi]ection, which preserves the inclusion c_, between the set o/all the q-primary 
ideals o /B ,  and the set o] all p-primary o / B ~  where p = u'-~(q), p ~ n~. In  particular~ 
by restriction to the set o] all the prime ideals, this map de/ines an isomorphism between 
Pospec (B )~F  and Pospee (B~)\X.  

(9) 1 / B  is a k-algebra (1), then B~ is a k-algebra; more exactly, B~ ~ k -~ ~(B). 

(10) I / B  dominates (~) A, then B~ and B~ dominate A; more exactly~ B~ = A Jr 
~- ~(B) and B2 is a A-ring trivially augmented onto A~ with ~(B) as augmentation ideal 
[23, 0.16.1]. 

(11) B~ [resp. B2] is a noetherian ring and B is a Bl-algebra [resp. B~-algebra] 
o~/inite type i], and only i/, B is a noetherian ring [resp. A and B are noetherian rings] 
and [Ki: k ] <  co when i -~  1, 2, ...~ r. 

(12) B is a /inite B~-algebra (and also a /inite B2-algebra) i/, and only i]~ 
[Ki: k] < co, i -~ 1, 2, ...~ r. 

(13) Spec (B1) [resl0. Spec (B~)] is a noetherian space i/, and only i/, Spec (B) is 
a noetherian space [resp. Spee (A) and Spec (B) are noetherian spaces]. 

(14) I / B  is an integral domain then B1 is an integral domain and B and B1 have 
the same ]ield o/quotients, and in this/ield they have the same complete integral closure. 

PROOF. - (1) is a particular case of (1.4). (2) follows from (1). (3) and (4) are parti- 
cular cases of (1.a(b)). (5) and  (7) are particular eases of the s ta tement  (1A(d)), 

(1) We mean, obviously, that k ~ B ~> II K i coincides with j. 
(2) We mean %hat A _c B-?~ II K~ coincides with u. 
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whereas (6) and (8) are par t icular  cases of the s ta tements  (1.5(2), (3)). (9) and (10): 

for the  universal i ty  p roper ty  of B,  [resp. B~], there  exists a unique homomorphism 
k ~-> B,  [resp. A ~-~ B~] which commutes  the following diagrams: 

k 

# 
/~ c..-, ~" B1 I I  K~ 

A h 

. . . . .  B,. d 

B 

If  we ident i fy  k [resp. A] with its image into B and B1 [resp. into B1 and Bp] and rh 
[resp. nl and n~] with ~(B) ,  then  we have :  B~ ~_/c + ~(B) [resp. B1 v_ A + ~(B) and 
B2 ~- A + ~(B)].  Fur ther inore ,  if x e B ~ ' ~ ( B )  then  v'(x) e k c B~ [resp. if x e B ~ ' ~ ( B ) ,  

then  v'(x) = a + m with a e A ; if y e B p ~ ( B ) ,  then  v"(y) ~ A] hence x -- v '(x) E 

e n~ ~ ~(B) [resp. x -- a e 1tl ~ ~ ( B ) ;  y --  v"(y) e n~ --~ ~(B)].  The s ta tements  (11) 
and (12) follow from (1.8) and (1.5(4)), bearing in mind tha t ,  in this case, the follow- 
ing affirmations are equivalent :  (i) j is a hoinomorphism of finite type ;  (if) ] is a finite 
hoinoinorphism; (iii) [K~: k] < 0% for all i = 1, 2, ...~ r. (13) follows f rom (1.6) and 
(14) f rom (1.5(7)). 

Proposi t ion (3ol) provides a technique easy to visualize in order to build up new 
spectral  spaces and spectral  sets (8) b y  the <~ glueing & ainMgamating ~> process. 

(3.2) EX~3~PLE. - I f  V is a valuat ion ring of rank n and W is a valuat ion ring of 
r a n k m a n d i f  k(V) = k(W) ----- k, then  V•  W = A is a ring, having a noether ian 
spectrum, and the  following picture describes its Pospee:  

Pospec (A) 

[ 
ht -~ n - -  1 1 

[ 
h t = m - I  

(a) A partially ordered set is termed spectral set if it is isomorphic to the Pospec of some 
ring [27], [28]. 
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Explici t ly ,  when n -~ m -~ 1, we can take as V and W two valuat ion rings of 
dimension 1 [resp. two discrete valuat ion rings] having the same residue field k. 
The ring B = V•  W has a noetherian spectrum [resp. is noetherian].  When  
n = m = 2, we can take as V the ring associated with the valuat ion of the field 
K -~ k(X, Y) (k being an a rb i t ra ry  field) with Z �9 Z (lexicographically ordered) as 
value group, defined by  the map 1,: X ~ (1, 0)7 I7 ~ (0,: ! ) ,  and as W the ring asso- 
ciated with the valuat ion (of the same field and with the same value group) defined 
by  the map ~ :  X ~ (0, 1), :Y ~-~ (1, 0) (cf. [19, Par.  15], [22, Ex.  4.3], [26, Ex.  1]). 

I t  is easy to show tha t  k(V) k (W) -~k .  Set C =  V •  kW. I f m ~ a n d m ~  are the 
maximal  ideals of the semilocM domain D = V n W, it  is easy to show tha t  k(m~) = 
= k(m~) =/~,  then  the domain E ~ kX~(m~)• (m~)D ~_/~ -~ ~(D) has a Pospee of the 

following type :  

Pospec (E) 

More generally, let  {V~]i -~ 1, 2, ..., r} be a family of valuat ion rings of the  same 
field, not  two of which are comparable. I f  we suppose tha t  every  residue field/~(V~) 

is an extension of one fixed field k (i -~ 1, 2, ..., r), then the domain/~ = k • H ~(v,)(~ Vi) 
, i i 

has a Pospee which can be represented b y  a diagram of the following type :  

Pospee (F) 

Obviously if we fix the field of quotients K of the domain E (or D, or V~ or W), 
then we can find some rings A r, B', C r, D', E' having the Pospec isomorphic-respec- 
t ively-to tha t  of A, B, C, D, E, and coefficient field k ' ~  K (the choice of the coef- 
ficient field being quite arbi trary) .  Therefore, we can go on glueing & amalgamating.  

For  instance, ff D'  and E are integral domains with the Pospee described above and 

if k '~-k(m~)= k ( m 2 ) =  K,  then the Pospec of G-----EXk(m,)D r has the following 
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form:  

Pospec(G) 

The preceding examples give an idea of how to use the glueing & ~m~lgamating 
process and suggest how to build up many  other  spectral sets with pre-est~blished 

properties.  
We purpose now to point  out  how the  concept of seminormality [38] can be studied 

in ~ nutur~l ~nd direct way, by  using the topologieal-~lgebraic techniques int roduced 

ubove. 

(3.3) PI~OPOSITIOZr - Given two rings A ff B~ we suppose that A is a noetherian ring~ 
B is A-Jinite (hence, noetherian). For every x ~ X = Spec (A)~ we denote by B '~ the 

subriqzg o / B  obtained by B glueing over (~) x. Let q5 = {y~, Y2 ~ ..., Y.} be the jiber over x 

oJ the canonical map ~ Y = S p e c ( B ) - ~ X = S p e c ( A ) .  Set F~ = [ I  k(yi)~ Bp~ = 
i = l  

= A w Q  A B, A ~  being the localization at the prime x--=-p~, and let ~ :  k ( x ) ~ - > ~  be 
the canonical monomorphism. We have a commutative diagram o] the following type: 

B* = L ~ X .Bp~ B ~ L ~ = k(x) X _~,~ Bv. >> k(x) 

(1) L ~ is a local ring; more precisely, L ~ ~ Ap. ~- ~(Bo.), where ~(Bw) is the 
Jacobson radical o] Bp. ~ which coincides (under the embedding L ~ ~-+ Bp~) with the maximal 

ideal of L ~. 

(2) B �9 ~ B '~. 

(3) The ideal q ~  Ker  (B '~ -+ k(x)) is the unique prime ideal o] B ~ such that 

~ n  A ---- p~. 

(4) B'* is the largest subring of B, A c B'*, satisfying the following conditions : 

(i) there exists ~ unique point x'e Spee (B '~) over x; 

(ii) the canonical homomorphism k(x)r k(x') is an isomorphism [38, p. 588]. 
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(4) Z] ~ is the prime ideal oJ B corresponding (i.e. logically, coinciding) with 

y~ e ~ (i = 1, 2, ...~ n), then the ]ollowing diagram: 

B �9 +> B~/q ~ 

r 
.B >,v/n 

is a cartesian diagram. 

(5) The conductor of B into B ~ contains the prime ideal q~ which coincides (under 

the embedding B ~ r B) with the ideal A v~. 
i = l  

(6) For every ] e p~ c A or, more generally, ]or every ] e q~ c B,  the canonical 

homomorphism B~- -~-B  s is an isomorphism. Hence, iJ ~ denotes the Spec o] B ~, 

Y ~ V ( q  ~) is scheme4heoretically isomorphic to Y~Ady(q}~). I n  particular, /or every 

prime ideal p ~ p~ o] A the canonical homomorphism B ~ - ~  Bv is an isomorphism. 

= y(~)~ be the /iber over x~ of the map (7) Let x~, x ~ e x  and let ~ ,  {y~'),y(~'), . . . ,  ~, ,  
~tf 

Y -~ X, i = 1, 2. Set ~ ,  = I~ h(Y~)), i = 1, 2. All  the homomorphisms in the ]ol- 

lowing commutative diagram: 

B ~''x' = L ~''~' • ~ , ,  • ~ ,  B --+ L ~'~' = (k(x l )  • k(x~)) • f.~ • v~, (B~,,, • B p , )  , >> k(x~) • k(x~) 

B .+ Bp~, X B v., > F~  • F~, 

are canonical. Then: 

B ~,~' ~ B ~ • ~ B ~ ~ (B~,)~, ~ (B~) ~" 

where (B~') ~j is the ring obtained by B ~' glueing over xj (i~ j = 1, 2). 

(8) I]  A is seminormat (5) in B then there exists a ]inite number o/ points xl~ 

x~, ..., x, ~ X in such a way that B ~''~ ...... ~' is isomorphic to A .  

P~OOF. - (1): cf. (3.1(2), (10)). (2). If  we identify B �9 with its image into B and 
k(x) with its image into h(y~) (i = 1, 2, . . . ,n) ,  then B ~ = {beB[b(y~)ek (x )  and 
b(y,) = b(y~) for all i, j ---- 1, 2, ..., n}. The conclusion follows from [38, 1.4]. (3). F rom 

(5) Cf. [38]. 
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the following commutat ive  diagram: 

A ~ A ~  >~ k(x) 

] 

B ~ )~ L ~ + k(x) 

we deduce tha t  q*----Ker (B*-+ k(x)) is a prime ideal such tha t  q ~ n  A = p~ = 
= Ker (A ---> k(x)). The uniqueness follows from (2). The verification of (4) is straight- 
forward. (5) and (6) are particular cases of (lA(b), (c), (d)), bearing in mind tha t  

Ady( r  = V( ~ ~r The s ta tement  (7) can be deduced by a direct verification. 
i = 1  

(8) follows from (7) and [38, Th. 2.1]. 

(3.4) R E ~ K .  - We note that ,  if A is an integral domain of dimension ~<1 and B 
the field of quotients of A, then the seminormalization of A in B coincides with the 
weak normalization in the sense of E~])o [16, w 1, p. 341]. A construction quite similar 
to the seminormalization is the weak normalization introduced in [2], with reference 
to a problem of topological classification of algebraic varieties. 

Another construction, having algebraic-geometrical motivations as well, which 
can also be t reated with the techniques introduces above, is the process of glueing el 
prime ideals (cf. [33], [37]). 5lore precisely, given a noetherian ring B, two prime 
ideals of it, Pl, P2 r B, and a isomorphism ~v: B/p1 --% B/p~ such tha t  q(Pl + P2/Pl) -~ 
= P~ + P2/P2 and ~v : B/pl ~ p~ ~ B/p1 ~- P2 is the identi ty,  then  the problem con- 
sists in finding a sabring A of B, which contains a prime ideal p c A such tha t  
p = p~ (~ p~, and which can be obtained by glueing over p (cf. l~ote (4)). F rom the 
preceeding results, it  is easy to verify t ha t  the solution of this problem is given by 
the ring k(p~) X k(~.) • k(v~) B, where the homomorphism B --~ k(p0 X k(p2) is the compo- 
sition of the ca,nonical homomorphisms B --~ BwXBv,  , B p X B v ,  -+ k(p~) X k(p2) and 
the homomorphism k(p~) -+ k(p~) x k(p2)is the graph of the isomorphism k(p 0 ~ -  k(p2) 
deduced from q. Several geometrical examples are discussed in [33] and [37]. 

4.  - Appl icat ions  to the  C P I - e x t e n s i o n s .  

This section is essentially devoted to showing how the theory of the CPI-exten- 
sions in the sense of BOISEI~ and SH~LDO~ [5] is included, as a particular ease, in the 
theory developed in Section 1. Fur the r  results, especially concerning properties of 
transfer, related to the topological and ordering structure of the prime spectrum, 
are given here so as to enlarge and point out knowledge of the theory of the 
CPI-extensions. 

Le t  R be a ring and a an ideal of R, set A -~ t~/a. We denote by  S(a) the multi.  
plicatively closed subset o f /~  complement i n /~  of the set-theoretic union of the ele- 
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merits of the  fami ly  F(a)  = {pili ~ I} of all the pr ime ideals of R, which, modulo a, 
consist of zero-divisors an  R/a (1). Therefore,  the  r ing C = S(a)-~A is isomorphic 

to the  to ta l  ring of fract ions of A. Set B --: S(a)-lR,  X = Spec (A), :Y ---- Spee (B), 
Z = Spec (C). I n  the following d iagram:  

R a = A X o  B ~' )) A 

B ~ ~C 

all the  homomorph i sms  are canonical. Set 2" = Spee (R), T ~ = Spec (Ra), ~ = "u: 

Z ~ X ,  f l - = % : Z ~ Y ,  s  a, f i ' = a v ' : X ~ T  a. B y  the universal i ty  
p rope r ty  of R a, there exists a unique homomorph i sm w : R  ~ R a which commutes  
the following d iagram:  

A 

R . . . .  w ._~ R" 

B 

w~ and w~ being the  canonical homomorphisms .  Set ~ = ~w: Ta--> T y~ =~w~:  

X -+ T, ?~ = ~w~: Y -+ T~ and denote b y  V(a) the image of X into T and  b y  A(a) 
the  image of 17 into I ' .  

(4.1) P~OPOSZTIO5". - We preserve the notations o/ the beginning o] this section. 

(1) v': 1~ ~ -~. A is a sur]ective homomorphism (i.e. fl' is a closed embedding). 

(2) I /  5 = Ker  (v) and b = Ker  (v'), then u'lb: b-->5 is a (module-theoretic) 
isomorphism (we notice that ~ _~ S(a)-la). 

(5) b is contained in the conductor o/ u': Ra--~ B and, hence, ]or every / e  b, 
1~ ~ B~.(O and, for every prime ideal q o/ R", q ~ b, R~ ~ Bq ~ R~, where ~ = q 

i 8 I  

(~) I] we identi/y X with its image, V(b), into T ~ under fi', then s  Y --> T a 
restricted to s  = Y". .Z evtablishes a scheme-theoretic isomorphism with T~ . .X .  

(5) T a is homeomorphie to X ~)~ Y or, which is the same, to V(a) t.)r~o~ zJ(a) and, 
hence, the image o/ the continuous in]ective map Za ___> T coincides with V(a) w A(a) 
(which is, there/ore, a closed set o] Tc~ 

(1) If  a = ~/~, then ~(a) can be taken as equal to the family of all the minimal prime ideals 
containing a. 
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A(a)----r~p]p is a prime ideal o/ R such that p c [_J p~.. (6) 
i e I  

(7) I /  T is a noetherian space, then T ~ is a noetherian space. 

(8) The map I~ ~ v~-~(1)) establishes an isomorphism between the lattice o/ all 
the ideals of R containing a and that o /a l l  the ideals o / R  a containing b. 

(9) Eor every prime ideal p o/ R, p c_ [_j ~ ,  ~ ~ a, the map ~ ~u ' - l ( l ) )  induces 
i e I  

a bi]ection between the set o/ all the p-primary ideals o / R  and the set o/al l  q-primary 
ideals o / R  ~, whexe q is the unique prime ideal o / t t  a such that q (5 R -= p. I n  particular~ 
the injective map Y ~ T Q (i.e. A(a) c T a) preserves the ordering. 

(10) I / S ( b )  is the multiplicatively closed subset o / R  a complement in 1~ ~ o/ [J q~, 
with q~(~ R = p~, and i/  B ' =  S(b)-~/~ ~ then 17 a ~_ A X c B ' .  ~z 

(11) I / R  is an integral domain, then Ita is an integral domain with the same/ ie ld  
o/ quotients o/ It. 

(12) There exists a unique homomorphism #: (1 ~ a ) - l R  - + R  ~ which commutes 
the /ollowing diagram: 

R ~ (1 + a)-~R 

] 

R" 

The subspace o/ T image o/ Spec ((1 ~-a)-~R) coincides with g~V(a) (which is, 
there/ore, a closed subset o/ Tc~ 

(13) I f  R is normal and i/ It/a is integrally closed, R ~ is normal. 

(14) I /  a = p is a prime ideal o/ R, then 7: T~ --~ T establishes a homeomorphism 
o/ T" with its image: V(p)~)A(p). 

P ~ o o P . -  For (1)-(9) cf. (1.4), (1.5) and (1.6). (10). I t  is sufficient to remark 
tha t  S(b)-IR a is isomorphic to g(a)-lR,  l~or (11) cf. (1.5(7)). The first part  of the 
statement (12) follows from the universality property of /~% In  fact, there exist 
two homomorphisms ~: (1 ~ a)- lR -+R/a,  x/1 ~- a ~ x 4: a, V: (1 -~ a)-l R ---~ S(a)-IR, 
x/1 -~ a ~ x/1 4- a (S(a) containing 1 -~ a), which commute the following diagram: 

(1 ~- a)-l/~ ~ )-R/a 

S(a) , I  R ~ C 

l~urthermore, V(a) is contained in the image of Spec ((1-}-a)-lR) into Spec (R), 
hence ge~V(a) is also contained in this image. On the other hand, if p is a prime ideal 
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such tha t  p ~ ( l ~ - a ) = 0  then  p + a ~ = ( 1 ) ,  hence V(p) n V ( a ) =  V(p ~- a) =/= 0. 

(13): cf. (1.5(5)). (14). I n  this case, V(O)Wr~o~ A(O) ~ V(O)w A(O), the closed set Z 

consisting of one point  solely. 

(4.2) R E ~ .  - (a) I f  R is an integral  domain,  then  R ~ coincides with the CPI- 
extension, C(R, a), o / R  with respect to a [5]. 

(b) I n  general, the continuous injective m a p  T a -+ T does not  establish a homeo- 
morph i sm of T a wi th  its image. I t  is not difficult to build up some explicit examples  

for which ?:  T ~ ~ V(a) ~) zJ (a) is nei ther  a homeomorph i sm nor an isomorphism of 
ordered sets [5, Ex.  3.14]. ~ever theless ,  if a = p is a pr ime ideal, T p is homeomorphic  
to ~v{p} w ~{p},  but ,  in general, it is not  isomorphic in the  scheme-theoret ic  meaning 

[5, Ex.  2.11 and  Prop.  2.12]. 

(4.3) L E p t A .  - We preserve the notations o] the beginning o/ this  section. The con- 
tinuous bijective map 7: T~-~  V ( a ) u  A(a) is a homeomorphism i], and only i], the 
canonical map V(a) LI A(a) --> v(a) ~) A(a) is an identi]ication (2). 

PROOF. -- The s t a t ement  follows easily f rom the  theorem (VI.7.2) of [13], bear ing 

in mind (4.1.(5)) and [13,VI.6.1]. 

(4.4) R~A~tC.  - I t  is easy to show tha t  if the family  F(a) is finite, then  7: Ta --> 
V(a) w A(a) is a homeomorph i sm,  V(a) = ~F(a), A(a) -= g~F(a) and Z ~ V(a) n 

(~ A(a)-= F(a). This result  can be generalized in the following way :  

(4.5) P~OPOSITIO~. - We preserve the notations o] the beginning o] this section. 
I] the ring A = R/a is quasi-regular (3) and i] p c_ ~ Or = R implies p c_ ~ ]or some 

index i o] I ,  then y: Ta --) - V(a) w A(a) is a homeomorphism, V(a) --~ 8~F(a), A(a) -= 
= genff(a) and Z ~ V(a) N A (a) -~ F(a). 

PaooF.  - Since A is quasi-regular,  the image of Z into X is homeomorphic  to 
/~(a) (which is a compact  subspace of X),  hence the image of Z into T, which coincides 

wi th  V(a) n A (a), is still homeomorphic  to F(a). Since F(a) -= Adco~t(F(a)) , then  
V(a) ~--8~F(a) (1.1). Fur thermore ,  if p is a pr ime ideal of R such tha t  p ~ a and  

p _c [_J p~, then  ~ _= Or, for some i e I .  The conclusion follows f rom (4.1.(5)), because 

T a ~ V(a) ~Jv~o~ A(a) ~ V(a) w~ A(a), where j is the embedding of V(a) n A(a) 
into V(a). 

(2) A continuous surjeetive map ]: X - ~  Y is called an identi]ication map whenever a 
subset V of :~ is an open set if, and only if, ]-I(V) is an open set of X [13, VI.1.3]. 

(s) A ring is called quasi-regular in the sense of End5 [15], ii its total ring of fractions is 
regular (i.e. zero-dimensional and reduced). 

2 3  - A n n a l i  ell Matemat~ca  
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(4.6) PlCO~OSITIO~. - We preserve the notations o] the beginning o] this section. 

.Let a be an ideal o] R ,  then 

(1) t t  is a G-domain ==~ R a is a G-domain.  

(2) R is a Pri~]er domain ===> t~ ~ is a Pri~]er domain.  

(3) R is a Q-domain (') :==> R a is a Q-domain. 

(~) R is an i -domain ~ R ~ is an i -domain.  

(5) /~ is an open [resp. propen] domain ===> R a is an open [resp. propen] domain.  

(6) R is a GD-domain  =:> 1~ ~ is a GD-domain.  

(7) /~ is a Goldman ring ==> 1~ a is a Goldman ring. 

I]  we suppose that the ring R / a  is quasi-regular (us in  (4.5)), then: 

(8) R is a g-ring [res p. a locally pqr domain] :=> t t  a is a g-ring ~resp. a locally 

pqr domain]. 

(9) R is a strong G-domain ==> 1~ a is a strong G-domain. 

I n  particular, i] a ~ p is a pr ime idea 4 each one o] the properties (1)-(9) trans]er 

]rom R to R ~. 

P~ooF. - (1). We recall tha t  R is a G-domain if, ~nd only if, its field of 
quot ients  K is a finitely generated R-algebra [25, Th. 18]. (2). A Prfifer domain is 
characterized by  having ~11 its overrings integrally closed. (3), (4), (5) and (6) are trivial 
consequences of the definitions. (7). I t  is ra ther  easy to see tha t  if T is a T~-space, 
then  T a is ~ TD-space; in fact,  for every  ring R, the counter-image in T ~ of the set 
of all the  G-ideals of R, Gold (R), is always contained in the set of all the G-ideals 
oi /~", Gold (Ra). (8) R / a  being quasi-regular, ~r ~ _~_ V(a) ~) A(a). I t  is easy to show 
now tha t  if T is an Alexandroff-discrete space then  T ~ is also un Alexandroff- 
discrete space. The s ta tement  (9) follow from (2) and (8). 
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