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Summary.  Let (X(t), t>=O) be a centred Gaussian process with stat ionary 
increments and EXa(t)= Co t 2~ for some Co >0,  0 < ~ <  1, and let 0 <at~ t 
be a nondecreasing function of t with at/t nonincreasing. The asymptot ic  
behaviour of several increment processes constructed from X and at is studied 
in terms of their upper  classes. 

1. Introduction 

Let (X(t), t>O) be a centred Gaussian process with stationary increments, 
X ( 0 ) = 0  a.s. and define (72(h)=EX2(h)=E(X( t+h)-X( t ) )  2. If o-2(h)= Co h 2~, 0 
<c~< 1 and C o > 0  then X is known as a fractional Wiener process of order 

(FWP(e)). If  c~ = 1/2 and Co = 1 this is the standard Wiener process. 
The purpose of this paper  is the study of the asymptotic  behaviour of the fol- 

lowing increment processes: let at be a nondecreasing function of t with 0 < a t < t, 
and af t  nonincreasing. We define the following processes in terms of X and a t : 

X ( t + a t ) - X ( t )  
Y, ( t )  = 

a(at) 

Y2 (t) = sup 111 (s) 
O<_s<_t 

X ( t + u ) - X ( t )  
Y3 (t) = sup 

o<_u_<o~ ~(a,) 
Y,(t) = sup Y3(s) 

O<_s<_t--at 

Ys (t) = sup 113 (s) 
O<_s<t 
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and the processes Y~* (t), i = 1 . . . .  ,5  defined using the absolute value of the incre- 
ments. Thus, for example, 

r~*(t)= IX(t+a~)-X(t)]  
a(a,) 

In [7] it was shown that i f X  is a FWP(a) then 

lim sup Y1 (T) fiT =l im sup Y* (T) fiT 
T ~ c o  T'*co 

IX ( t+s ) -X( t ) [  
= l i m s u p  sup sup flr=l a . s .  (1.1) 

T~CO O<t<TO<--s<--aT a(ar) 

( where f i t  = 2 log . For the Wiener process these results were 

obtained in 1979 by Cs6rg6 and R6v6sz [4]. Also, (1.1) implies the LIL for 
FWP proved by Orey [5]. Note  that if a t=t ,  Y4(t)= sup X(s). 

O<s<_t 

We shall consider the asymptotic behaviour of these processes with respect 
to a nondecreasing function 4) (t) in terms of their upper classes, which we define 
following R6v6sz [13] : 

Definition 1. The function 4) belongs to the upper-upper class of the prozess 
Z(4)~UUC(Z))  if, with probability one, there exists a to(CO) such that Z ( t )<  4)(0 
for all t > to. 

Definition 2. The function 4) belongs to the upper-lower class of the process 
Z(4)eULC(Z))  if, with probability one, there exists a random sequence 0 < t l  
< t2 < ... with t i ~ oo as i ~ ~ such that Z(ti) >= 4) (ti) for i >= 1. 

In [6] the upper classes of the increments of the Wiener process were 
described by means of an integral test as follows. 

Theorem A. Let a =  1/2 and let Z be any of the processes Y~, Y~*, i= 1, ..., 5, 
then 

co t 2 t   expf 
The main result of this paper is the following: 

Theorem 1. Let X be a FWP(a) and Z any of the processes Y~, Y~*, i= 1, ..., 5, 
then 

4) E U U C  (Z)~*-I~(4)) = ,~ (4)(t))(l/~)-la(t) exp { -  4)2(t)2 } dt< oo. 

This result includes Theorem A and Theorem 5 in [15] as special cases, 
and implies the first two inequalities in (1.1). It also extends previous works 
of the author on the increments of FWP [7, 8]. 
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In the next section we give some preliminary results and in Sect. 3 the proof 
of Theorem 1. We shall assume without loss of generality that Co = 1. In what 
follows Const denotes a positive constant which can take different values on 

each appearance and O ( x ) = ( 1 / l / / ~ x ) e x p  - . We shall frequently use the 

well-known fact that if X is a standard Gaussian r.v. then P(X>x)<=O(x) for 

x > 0 a n d P ( X > x )  ~ l a s x ~ o e .  
O(x) 

2. Preliminary Results 

In this section we give some results that will be used in the proof of Theorem 1. 
In particular, Lemma 5 is an asymptotic upper bound for the tail of the distribu- 
tion of the oscillations of FWP which may be independent interest. 

Lemma 1 (Qualls-Watanabe [11]). Let {X(t), teN"} be a continuous centred 
Gaussian random field with variance 1 satisfying 

E ( X ( p ) -  X(q)) 2 __< 2 C111 P -  q l] 2~ 

for all p, q in Dc IR"  with [lP-q[] <61, where 0<e__ 1 and Ilxll is the Euclidean 
norm of xelR". Then 

P (Z (D) > u) 
limu_~osup #(D) ~ (u) (c (u))" < H~ C]/2 ~ 

where Z(D)= sup{X(p), peD},  D is an open bounded set with Lebesque measure 
#(D)=#(/)), c(u)=u 1/~ and 0 < H , <  oe is a constant which does not depend on 
U. 

Let (X(t), t>O) be a FWP(e), we define the biparametric processes 7 and 
A by 

~,(t, t') 
y(t, t ' ) = X ( t ) - X ( t ' ) ;  A(t, t ' ) -  - -  for t<t ' .  

( t ' -  t) 

Then Ey(t, t ' )=EA(t ,  t ' )=0 and EAE(t, t ' )= 1. 

Lemma 2. I f  t = (t, t') and s = (s, s') with t < t' and s < s', the incremental variance 
of  A satisfies 

#2 (t, s) = E(A (t, t') - d (s, s')) 2 < 4 ]l t--  s II 2~ 
=l t ' - t [~] s ' - s [  ~ 
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Proof 

[ X ( t ' ) - X ( t )  X(s')-X(s)_] 2 
f f2 ( t ' s )= t~  " ~ G~7~---~ a(s'--s) ] 

E (X (t') -- X (t) -- X (s') + X (s)) 2 -- (a (t' -- t) -- a (s' -- s)) 2 

a ( t ' -  t) ~ ( s ' -  s) 
<_ 2(az( l t ' -  s'l)+ a2(]t-  sl)) 

( t '  - t )  ~ ( s '  - s )  

<4(It'--s'12+lt--s]2) ~ 

- -  It, tills, sff 
4[It-sl l  2~ 

[] 
It'-tl~ls'-s? 

We give now some results about the asymptotic distribution of the supremum 
of 7 

Lemma 3. Let (X(t), t >O) be a FWP(a) with c~> 1/2. Then for h>0,  

P( sup 7(t,t ')>a(h)u) 
lim O<-t<t<-h = 1. 
, - ~  P{X(1)>u}  

(2.1) 

This lemma is a consequence of Theorem B below: let {X(t), t~[0, 1]"} 
be a real separable centred Gaussian process with continuous covariance func- 
tion, and put a2(t)=EX2(t). Suppose that there is a point z in [0, 1]" such 
that a2(t) has a unique maximum value at t=% and put a2=a2(z). Define 
the metric Ils-t]l =maxzls~-til  where (st) and (ti) a r e  the real components of 
s and t. Suppose that there exist positive nondecreasing functions q(t) and g(t), 
t > 0, such that 

E ( X  (s) - X (t)) ~ E ( x  (s) - x (t)) ~ 
lim sup lira sup < 1 
IIt-sll --'o q2([ls--t[]) < o0 t . . . .  g2(lls-tl[) 

and 

~ q(e-Y2)dy< oo ~ g(e-Y~)dy< oo. 
1 1 

Define 

Q(h)=q(h)+(2+]/2) S q(h2- '~)dy<oo,  O < h = l .  
1 

o o  

G ( h ) = g ( h ) + ( 2 + ~ )  ~ g(h2-Y2)dy<o% 0 < h < l .  
1 

Q- 1 (x) = sup (h : Q (h) < x) 

for h>0 ,  let B(h)={t: I]t-'cLl<h/2} and define 62(h)=max{a2(t): te[0,  
1]"c~ B'(h)} where A' is the complement of A. Then we have the following result: 
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Theorem B ([33, Theorem 2.1). Suppose that there exist functions g and q satisfy- 
ing the conditions stated above. If, for every e > O, 

then 

.J" g2 [0"2 - -  e2  (h)_]'~ = 0 
~irn ~ [Q-*(G(h)/e)]-" exp~  2 a  4 [ G2(h ) ]j  

lim P (max X (t) > u)/O (u/a) = 1 
u--+m l.O, 1] '~ 

To prove Lemma 3 it is enough to consider the case h =  1 and prove that 
E(7(t, t')--7(s--s')) 2 <4([[(t, t ')-(s, s')[[ 2~)(see Example 4.1 in [3]). 

Lemma 4. Let {X(t), t=>0} be a FWP(~) with c~< 1/2 and h>0 .  Then there exists 
a constant C2, which may depend on ~ but is independent of h, such that 

P{ sup 7 (t, t') >-- a (h) u} 
lim sup o~,<t_<h 

u--+oo u ( t / ~ ) _ 2 p { x ( 1 ) > u }  ~ C  2 (2.2) 

Proof. It is enough to consider the case h = 1. We consider first the supremum 
of 7 over the set A={(t ,  t'): 0<t<t '__<l ,  t ' - t < l / 2 } .  For  e > 0  and m=[2 /e ]  
we have that 

e{supT(t,t')>u}<= ~ P{ sup 7(t,t')>u} 
A j = 0  Je/2<t<=(J+l)~/2 

O<tt-t<=l/2 

< ( m + l ) P {  sup ,/(t,t')> u} 
O < t ' - t < ( l + e ) / 2  

(2.3) 

and to obtain a bound for this probability we use Theorem 3.3 in [2] for the 
process 7 over the square R={O<t<(l+e) /2 ,  0 < t ' < ( l + g ) / 2 } .  In our case 

{l+eV 
Q (x) = (9 (x ~) and a ,  = / ~ / ,  hence 

\ z !  

2aR f u 2 )  (2.3) < (m + 1) Const(Q-  1 (l/u))- ~ -  exp ~ -  2~a~; 

_< Const 1 u(2/~)_ 1 exp f u2 22 ~ "~ 

and if e < 1 this is (9 (~, (u)) as u ~ o0. 
It remains to consider the process 7 over the set E={(t ,  t'): 0 < t <  1/2, t +  1/ 

2 < t' < 1 }. To do this we cover E by squares of side q with t/satisfying u Q (7) < 1, 
where Q is defined above. Since Q(x)= (9(x ") in our case, we have q =(9(u-1/~). 
If u is large enough, the covering will be included in the set S = {(t, t'): 0 _< t < 2/3, 
t +  1/3 < t' < 1} and a 2 =infE(TZ(t, t '))> 1/32~> 1/3. Therefore, the right hand 

s 

side of (3.12) in [2] is uniformly bounded for all u > Uo. 
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Iv 

i 

i 
F i g .  1 

We cover E by squares of sides parallel to the axes and length q starting 
at the right angled corner (see Fig. 1). Since X has stationary increments, the 
distribution of 7 over squares of same size having diagonals over the same 
straight line is the same. Also, if we start counting from the right-angled corner, 
there are exactly i squares having diagonals over the straight line Ii of equation 
t' = t +  1 -iq,  i= 1, ..., N, where N =  [1/2q] + 1. 

Let Ei (q) = {(t, t'): 0 < t < q, 1 - ( i -  1) i? < t' ~ 1 - i q}. Then, using Corollary 3.1 
in [2], with o-e,(~)= ( 1 - ( i - 1 )  r/) ", we have 

P {sup 7(t, t') > u} < Const 
E 

N 

E P{sup 7(t, t ' )>u} 
i = 0 Ei 01) 

N 

< Const ~ i~b(u/aei(,o) 
i = 0  

<Cons t  ~ ( i+ l ) ( l+ i t / )~  e x p {  
i = 0  U 

~/" (y+  1)(1 --yt/) ~ e x p {  <Cons t  
0 U 

U 2 

2(1 _ iq)2~-} 

U 2 

2(1-- yrl)2~'} dy 

Using the method of Laplace to estimate this integral for large u, we get that 
it is asymptotically like (c~qu3) - 1 exp( -u2 /2)  and since q = (9(u-1/~) we get the 
desired result. [ ]  

Next we consider the supremum of the process ~ over parallelograms. 



Upper Classes for the Increments of Fractional Wiener Processes 371 

L e m m a  5. Let {X(t), t>O} be a FWP(~), O<a=< 1. Then 

, > < T (1/~)- 1 (2 .4)  q(T,h,u)=P( 0SUPT ( X ( t ) - X ( t ) = a ( h ) u } = C ~ u  e -"2/2 

O < t ' - t < h  

for u>=uo, where C~ is a constant which may depend on ~ but is independent 
of r and h. 

Proof. The case c~=1/2 was considered in [6] (see also [13]). Let 0 < ~ < 1 / 2 ,  
0<5__< 1 and m =  [T/eh], then 

q(T,h,u)<= ~ P{ sup 7(t,t')>a(h)u} 
j = 0  jeh<_t<=(j+ l)~h 

O<t ' - t<_h 
' >  < ( m + l ) P {  sup 7(t,t)=a(h)u} 

O<=t<t'<-h(1 +e) 

=<(m+l)P sup a(h(l+e))=a(1-+e 
I.O~t<t'<-h(1 +c) 

and by Lemma 4, for u sufficiently large this is bounded by 

_-__Const(m + ) P X(1)> 

T (x ~t 3 exp ( - -  U2 
< C o n s t ~ u  / ) -  , 2(1_e)2~ } 

and choosing e = 1/u 2 one obtains (2.4) by means of a simple calculation. 
For  the case 1/2 < a < 1 the proof is divided in two steps. We consider first 

e < t' < h} where the process A (t, t') over the set B = {(t, t'): 0_< t_< T, t + h(1 + )=  = t + 
e= 1/u 1/~. Lemma 2 shows that for t=( t ,  t') and s=(s, s') in B and u large we 
have 

41lt_sll 2 41+~ 
< . . . .  < _ _  E(A (t, t') -- A (s, s')) 2 = h2~( 1 _ g ) 2 e  = h2~ ]1 t -  s II 2 

Therefore, by Lemma 1 

P {sup y (t, t') > a(h) u} <= P {sup A (t, t') > u} 
B B 

< C~ T--u"/~)- 1 exp -- (2.5) 
= o h 

for u large and some constant C3 which may depend on cc We still have to 
consider the supremum of y over the set D = {(t, t'): 0_< t_< T, t < t' __< t + h (1 - 5)}. 

[ Tu tl~] 
Let m = [ ~ ] ,  then 

P{supT(t,t')>a(h)u}< ~ P{ sup 7(t,t')>a(h)u} 
D j = O  jeh<=t<(j+l)eh 

0 <t"-t<=h(1 - e )  

=<(m+l)P{ sup 7(t,t')>a(h)u} 
O<_t<t'<=h 
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and by Lemma 3, for u sufficiently large this is bounded by 

< 2(m + 1) P {X(1) > u} 

< Const-Tu(~/~)- 1 exp - (2.6) 
= h 

Finally, combining (2.5) and (2.6) we obtain (2.4). [] 

Lemma 6 (Berman, Plackett, Slepian [1, 9, 14]). Let  {Xi ,  i=  i . . . .  , n} be centred, 
stationary Gaussian r.v. 's with E X  2 = 1 for  all i and E X  i X i = rii. Let  I (c, + 1) = [c, 
oo) and I(c, - 1 ) = ( - o %  c). I f  ClaiR, i=1  . . . .  , n denote by F i the event {X i~I (c i ,  
ei)} where ei is either + 1 or - 1. Let  K c ( 1 ,  ..., n), then: 

i) P { 0 Fi} is an increasing funct ion o f  rij i f  E i ej = + 1, otherwise it is decreas- 
i ~ K  

ing. 
ii) I f  {K  z, I= 1, . . . ,  s) is a partition o f  K then 

P{ 2 [I P(iQ ,, r,} <= 2 2 2 Iri,I g(c,, cj;r ) 
i e K  1 = 1 i < l < m < s  j e K z  j e K m  

where g(x, y; r) is the standard bivariate Gaussian density with correlation r 
and r* is a number between 0 and rii. 

The proof of the following version of the Borel-Cantelli lemma can be found 
in [12]. 

Lemma 7. Let  (G,, n > 1) be a sequence o f  events. I f  

i) ~" P ( G , ) = c o  
n = O  

[P(G, c~ G k ) -  P(Gi) P(Gk)] 

ii) l iminf l_<i<k_<, --0 (2.7) 
n --+ oo 

then P(G,  i.o.) = 1. 

The following lemma is a consequence of the proof of Lemma 2.3 in [10], 
taking a = 1. 

Lemma 8 (Qualls-Watanabe). Let  {X(t), t > 0} be a real centred Gaussian process 
with E X  2 (t)= 1, which satisfies 

E ( X  ( t )  - -  X (s))  2 ~ C 4 I t  - s l 2 ~ 

for  O<s,  t <  T, 0 <  I t - s [  <6  2 where 0<c~< 1. Then 

. . ~ P { Z ~ ( T ) > u }  
1mini - - -  ~C~/2~H~ 

o~ T~,(u) c(u) 
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where Z , ( T ) =  max X(k/c(u)), m=[Tc(u)], c(u)=u TM and 0 < H , <  ~ is a con- 
O < _ k < . m  

stant which does not depend on T. 

3. Proof  of  Theorem 1 

A. I~($)< oo~)~UUC(Y*)  

The proof  is similar to the convergent half of Theorem 1 in [6] and some details 
will be omitted. We may assume without loss of generality, that  1_< $(t)<=t 1/* 
for all large t. Define the increasing sequence Tk, k__> 0 by 

Tk = Tk_ 1 (1 + q~- 2 (Tk_ 1)) 

where T O is chosen large enough so that 4)(To)_>_ 1. Define 

Bk= { sup sup (X(t+s)--X(t))>a(a(Tk_l))O(Tk_O}. 
T k -  l <=t<= T k  O<=s<_a(Tk)  

If T o is large we can use Lemma 5 to bound  the probability of this event: 

r k _ r k  - a ( r k _ l  ) 1 - ~  1_  1 
P(Bk)<-C~ a ( T k ) 1 ( ~ ) q  ~ (Tk- ~) exp {- -  21 {a (Tk- 1)~2~q~2 (Tk- t)} 

and since a(Tk)__< a(Tk_ 0(1 + qS-2(Tk_l)) we obtain 

P (Bk)< C~ Tk--Tk-1 ~bl-l(Tk-1)exp f ---- a(Tk)  (~2 (rk- 1)~ 2 

__< Const rkS l (O(t))(1/~)-la(t) exp{ -O~(t)'~ ) 
T k  - 2 

Therefore I~(4~) < oo ~ ~, P(B,) < oo and the Borel-Cantelli lemma implies by 
n=O 

a standard argument  that ~b~ UUC(Ys). A similar proof shows that q~ ~UUC(Y*).  

B. I~(~b)= oo~c~eULC(Y1) 

Let /3= lim a(t) 
t~oo t 

, if /3=1 then Theorem 5 in [15] implies the result. Assume 

/3 < 1 and define an increasing sequence Tk ~ oo by 
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0 <  a(T~ < f l ' -  1 + f l  
To 2 ' 

~(Tk) = Tk-- a(Tk) = Tk_ 1, 

q~(To)> 1 

k > l .  

We  define also 

j a ( T k - 1 )  
72k'J - -  (~k t k ' j  = T k  -- 1 ~ -  "Ck,j 

Gk = {1max 

0 < 2 < 1 ;  k > l  

j = l , . . . , 6 ~ ;  k__>l 

Suppose  tha t  s and  t be long to the interval  [Tk-1,  T k - l W 2 a ( T k - 1 ) ]  and  
s < t. We  shall show tha t  there exists a cons tan t  D~ > 0 such tha t  

( t  - -  S) 2 e  

E ( Y  1 (t) -- Y1 (s)) 2 => D,  a2,  (Tk_ 1) (2.8) 

Start  with 

E ( Y  1 (t) -- Y1 (s)) 2 
2 a (at)  a (as) + a 2 ( t  - -  s + at  - -  as) + a 2 ( t - -  s)  - -  a 2 (at + t - -  s)  - -  a 2 (as - -  t + s)  

(2.9) 
a (at) a (as) 

and consider  

a 2 (at  + t - -  s)  + a 2 (a~ - -  t + s)  = (at  + t - -  s)  2 ~ + ( a s - -  ( t  - -  s)) 2". 

Using  Tay lor ' s  t heo rem we get, for some 0 < 0 < ( t - s ) ,  tha t  this is 

2 ~  2 a  2 a -  1 2 a -  =at  +as  + 2 a ( a t  --a~ 1) ( t - - s )+c~(2o: - - l ) ( t - - s )2( (a t+O)  2~-2 

+ (as-- 0) a ' -  2). (2.10) 

I f  0 < e < 1/2 this express ion is b o u n d e d  above  by 2, 2a at + as and  

2 a  2 a  ~t a 2 
( t - - s + a t - - a s )  + ( t - - s )  - - ( a t - - a s )  

(2.9)> 

_> 

~t ~t 
at as 

(t - s + at - as) 2~ + (t - s) 2~ - (at - as) 2 ~ 

at as 

~-~(t--s) 2e> (t--s)  2 e 

at as a2~(Tk- 1) 

If  1 / 2 < e < 1  then 2~-1 2~- (at - a s  1)<=(at-as)2~-l;  also O < ( t - - s ) < 2 a ( T k _  0 
__< 2 as_--< 2 at, and  a t -  as_-< t -  s, hence 
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[ / t - - s  \2-2~ / t - s  12-2at (2"lO)----<a2"+a~<+2~ +t(l aJ ] 

2 - 2 a  

On the other hand, since 1 < 2 c~ < 2, we have ( t -  s + a t -  as) 2~ > ( t -  s) 2~ + (a~-  as) z~ 
and using this and (2.11) in (2.9) we get 

(2.9) 
+(a~-as) - a i  - a  s - - ( t -s)2=(2a+ a ( 2 e -  1)(22-2=(1 + ( 1 -  2)2=- 2))) > 2c~ a ~ + 2 ( t - s )  2~ 2~ 2~ 2~ 

- aI 

but (a t -as )  2~ ~ ~ 2 2 . -  2~ ~ > ( a t  - -  a s )  = a ~ .  at t a ,  - -2at  Choosing 0 < 2 < 1  so that D~=2 
- 2 c ~ -  c~(2a- 1) 2 2 -2~(1 +(1 - 2)2"- 1) > 0  we get 

( t  - -  S ~2 ~ 
E(Y1 ( t ) -  Y1 (s)) 2 __>Dz a ~ )  

and (2.8) is proved. 
Now for qe[0,  1] define 

Vk(q) = Y1 (Tk- 1 + q2a(Tk -  ,)). 

Then (2.8) implies that for p and q in [0, 1] 

E ( V k ( p ) -  Vk(q))2>D~, ( IP-q]  2a (T  0) 2~ ---D, 22~lp-q12% 
= a==(Tk_O 

On the other hand 

P ( G k ) = P {  max Vk(J/ak)>r } 

and using Lemma 8 we see that if To is sufficiently large there exists a positive 
constant C', such that for all k we have 

P(G)>= c -  ak 0 ( r  G ) )  

=> Const r exp -- 

> Const Tk-- Tk q5 ~ (Tk) exp 
= a(T0 2 

e x p { - r  > 
Tk+, (q~(t))(1/a)-- 1 

I 
r~ a(t) 

(2.12) 
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and I~(~b) = o e ~  ~ P(G,)= oo. To show that P(G k i.o.) = 1 we still have to prove 
t / ~ 0  

(2.7). It is easy to see that 

P(Gj c~ Gk)-  P(Gj) P(Gk)= (P(G)c~ G'k)-- P(G)) P(G'k) 

where G' is the complement of G. 
If 0 < c~ < 1/2 the variables Y(tj, i) and Y(tkd) are negatively correlated i f j  < k 

--1, and in that case by Lemma 6, P(G)~ G'k)NP(G))P(G'k), which is sufficient 
for (2.7). If 1/2 < e < 1, using Lemma 6 we get 

1=0 m=0 
p ( t j j  ; tk,m) g(q~ (Tj), q~ (Tk) ; p*( t j ,  l ; tk,m) ) (2.13) 

where p(tka ; tk,~) = E(Y1 (tka) Y1 (tj,~)). This correlation can be written as 

1 
p(t2,~ ; tk, m)-- 2Q "R~ (P2~ + H (Q, R)), 

k-1  W/ l 
where P =  ~ a(T~)+~-a(Tk_l)-~-a(Tj_l)-a(t~,~), Q=a(ti,~), R=a(tk,m) and 

i=j t,k ~ 

H(U, V) = (P + U + V) 2~ - (P + U) 2~-  (P + V) 2~. By Taylor's theorem 

H(Q, R)=  _p2~  + 2 a ( 2 ~ -  1) QRP 2(~- 1)+ S 

where S=2c~(2a-1)(2~ ( (Q+R)3(p+OR+OQ)2~-3-Q3(p+oQ)  2~-3 
3~ 

- R 3 ( p + O R )  2~-3) for some 0 < 0 < 1 .  It is easy to see that 

and 

whence 

S=< 2c~(2c~- 1)(2c~--2) Q3(p+ OQ)2~-a 
3! 

H(Q,R)<_<_-P2~+ 3 a ( 2 a - 1 ) Q R P  2~ 2 

Q R p  2~-2  
p(tj, t ; tk,,,) < Const 

Q~R ~ 
[ k - 1  \ 2 ~ - - 2  

__< Const(a(tj.) { a(T,)J 
\ i  = j +  1 / 

/ 
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since f i < l  we may  assume, without  loss of generality, that  a t < l ,  and then 
rk(1 -- al) =< rk - 1 which implies a(Tk) < (1 -- a l ) -  1 a(Tk_ 1) and 

/ a(Tj) \ 1 - ,  
. ( t  j.,; tk.m)=< Constlk  --  -/ 

~, a(T~)] 
\ i = j +  1 / 

=< Const  ( k - j -  1) ~- x _ t/jk 

as long as k > j  + 2. We define 

Pjk= sup sup p(tj, z; tk,m). 
i ztz~j i~k~; 

Using this we see that  (2.13) is bounded by 

(~)(~kl~jk { @2 (rj) + ~2(rk)-- 2r (~ (rj) @ (rk)} 
2~(1--p]k) 1/2 exp 2(1--r ) - 

where Pjk is the value of p(tj, l; tk, m) which maximises the exponent. For  our  
purpose it is sufficient to consider, for c fixed, 

n k - i  

~, [P(Gj~ Gk)- P(Gj) P(Gk)] 
k - c  j = l  

/ n  k - v  k n k 1 \ . ~ . N  ~. f q~2(Tj)~t~2(Tk)--2/}jk ~b(Tj)q~(Tk)). 

\k=c j=l  k=cj=k-W'  t --IJjK, 2(1--Pjk)  I 

where vk = [(4(Tk)) 4/(1 ~)]. The first sum is bounded  by 

n k -- v k T~ 

z_, / ,  ( , ~ 5 7 2  Vk0(q~(Tk))fJff(6(Tj))exp{q~2(Tk)t/Jk} 
k=c  j = l  ~,J- - IJJk)  

and using (2.12) this is bounded by 

n k - v k 
Const  ~ ~ r/jkq52(Tk) 

k =~ :=1 (1 -- p}k) 1/z exp {q~2 (Tk) q~g} P(Gk) P(Gj) 

but k--j>vk implies t/jk~bZ(Tk)__<Constv~, -1 (b2(Tk)~Const q~-2(Tk). Therefore, 
the sum above is bounded by 
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n k - v k 

Const qS-2(Tj exp{-Const qS-Z(T3} ~ 
k = c  j = l  

and for c sufficiently large this is bounded by 

P(Gk) P(Gg) 

k 1 

The second sum is 

~ k~l ~j~k~jk ~ ~2 ~ + ~2 ~ )  -- 2 Pjk ~ ~ ~ ~ )  } 
L 2r~_--2~1/2 exp~ - -  2(1_/~2k ) 

k = c j = k - ~ v k  I, - - ~ j k !  1 +  1 k 

z., ~ 2 7t'l _,,.2,1/2 exp { ~(~ ~ -f 
k = c  J=k--nVk k -  1 ~ V j k I  

<Constk=c ~ ~=k-~ ~ ~b~+l(Tk)~b~(T~)0(~b(Tj)) exp{ -~b2(Tk)(l~p) t l - p  

where p is the largest covariance among the terms considered. Let \1 + p] 

> 0. Then if c is large enough this is 

l + t  1 
<Const ~ Vk (Tk) ~ _ q~ (Tk_~k) $(qS(Tk_~,)) exp{-Bq~2(Tk)} 

k = c  
§  

<Constvc (T~)exp{-B~b2(T3} ~ P(Gk) 
k = c - V c  

<Const ~ P(Gk). 
k = l  

We have shown that given 6 > 0, for c large 

~ P(GjC~Gk)--P(Gj)P(Gk)<=5 P(Gk +Const P(Gk) 
k = c  j = j  k k = 1 

and this is enough to prove (2.7). [] 

Acknoweledgements. The author thanks the reface for his remarks that have led to improvements 
in this work. 
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