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Summary. Let (X (¢), t=0) be a centred Gaussian process with stationary
increments and EX?(t)=C, t** for some C,>0, 0<a<1, and let 0<q,<t
be a nondecreasing function of ¢ with a,/t nonincreasing. The asymptotic
behaviour of several increment processes constructed from X and g, is studied
in terms of their upper classes.

1. Introduction

Let (X(), t=0) be a centred Gaussian process with stationary increments,
X(0)=0 as. and define 6*(h)=EX?*(h)=EX(t+h) — X (1))* If a*(h)=Cqy h**, 0
<a<1 and Cy>0 then X is known as a fractional Wiener process of order
o (FWP(a)). If e =1/2 and C,=1 this is the standard Wiener process.

The purpose of this paper is the study of the asymptotic behaviour of the fol-
lowing increment processes: let g, be a nondecreasing function of t with 0 <a, =1,
and a,/t nonincreasing. We define the following processes in terms of X and a,:

Yi(0)= o(a)
Y ()= sup Y(s)
0<ss=st
Y,()= su X(t+uy—X(1)

0Susa, o(a)

Y, ()= sup Yi(s)

O0ss=t—a,

Ys(t)= sup Y;(s)

0=s=1
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and the processes Y*(¢), i=1, ..., 5 defined using the absolute value of the incre-
ments. Thus, for example,

| X (t+a)—X ()|
o(a,)

In [7] it was shown that if X is a FWP(x) then

Y¥(0)=

lim sup Y, (T) fr=limsup Y¥(T) i+

T— T- o

—X
=limsup sup sup ——-—IX(t +3) @l

T-ow O0<t<TOSs<ar olar)

Br=1 as. (L1)

T1
where fir= (2 log ( 8
ar

obtained in 1979 by Csorgd and Révész [4]. Also, (1.1) implies the LIL for
FWP proved by Orey [5]. Note that if a,=¢, Y, (t)= sup X(s).
0=s=t
We shall consider the asymptotic behaviour of these processes with respect
to a nondecreasing function ¢(t) in terms of their upper classes, which we define
following Révész [13]:

—-1/2
T)) . For the Wiener process these results were

Definition 1. The function ¢ belongs to the upper-upper class of the prozess
Z(peUUC(2)) if, with probability one, there exists a fy(w) such that Z(t)< ¢(¢)
for all t>t,.

Definition 2. The function ¢ belongs to the upper-lower class of the process
Z($peULC(Z)) if, with probability one, there exists a random sequence 0<t,
<ty < ...with t;— o0 as i > oo such that Z(t)=¢(t;) fori= 1.

In [6] the upper classes of the increments of the Wiener process were
described by means of an integral test as follows.

Theorem A. Let a=1/2 and let Z be any of the processes Y;, Y*, i=1,...,5,
then

© ot 2t
$eUUC(Z)= | 0 exp{—M} dt<oo.
L alt) 2
The main result of this paper is the following:

Theorem 1. Let X be a FWP(«) and Z any of the processes Y, Y*,i=1,...,5,
then

o (1/a)—1 2
$eUUC(Z)<1,(d)= | —(ﬂt)a)Texp{—d)z(t)}dt< 00,

This result includes Theorem A and Theorem 5 in [15] as special cases,
and implies the first two inequalities in (1.1). It also extends previous works
of the author on the increments of FWP [7, 8].
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In the next section we give some preliminary results and in Sect. 3 the proof
of Theorem 1. We shall assume without loss of generality that Cy=1. In what
follows Const denotes a positive constant which can take different values on

2
each appearance and (x)=(1/]/27nx) exp(—%—). We shall frequently use the

well-known fact that if X is a standard Gaussian r.v. then P(X > x)Zy(x) for
P(X>x)

¥ (x)

x>0 and —1as x— 0.

2. Preliminary Results

In this section we give some results that will be used in the proof of Theorem 1.
In particular, Lemma 5 is an asymptotic upper bound for the tail of the distribu-
tion of the oscillations of FWP which may be independent interest.

Lemma 1 (Qualls-Watanabe [11]). Let {X(z), tcR"} be a continuous centred
Gaussian random field with variance 1 satisfying

E(X(p)—X (@)Y =2C|p—ql**

for all p, g in D<=IR" with |[p—q| <d,, where 0<a <1 and | x|| is the Euclidean
norm of xelR™. Then

) P(Z(D)>u) e
lim sup T D)) ey = 1= &7

where Z(D)=sup{X (p), peD}, D is an open bounded set with Lebesque measure
u(D)=p(D), c(wy=u'"" and 0<H,< oo is a constant which does not depend on
u.

Let (X(t), t20) be a FWP(«), we define the biparametric processes y and
4 by

V(1)

Yo O=XO=XW); A=

for t<t'.

Then Ey(t, t)=EA(t, t)=0 and E4*(t, ') =1.
Lemma 2. If t=(t, t') and s=(s, 5') with t<t' and s<s', the incremental variance

of A satisfies

- 2a
P9 =E(A(t 1) — Al )5S
=15 5"
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Proof.

e (X=X XE)—X @)\
’ (t,s)—-E( o(t’' —1t) a(s'—s) )
CEX®)-XO—-X($)+X6) (0t —t)—a(s'—s))*
B o(t' —t)a(s'—s)
20 ( =D+ (1—s))
= o(t' —1)o(s'—5s)
<4(|t’—s’|2+lt—512)“

|t"—t]*|s"—s]|"

4/t—s|**
=[]

[t —t]*|s"—s]|*

We give now some results about the asymptotic distribution of the supremum
of y

Lemma 3. Let (X (t), t 20) be a FWP(«) with > 1/2. Then for h>0,

P( sup y(tt)zo(M)u)
. 0=<t<t=h
lim

u—w P{X(1)>u}

=1. 2.1)

This lemma is a consequence of Theorem B below: let {X(¢), te[0, 17"}
be a real separable centred Gaussian process with continuous covariance func-
tion, and put ¢2(t)=EX?2(f). Suppose that there is a point 7 in [0, 1]" such
that ¢2(¢) has a unique maximum value at t=1, and put ¢®>=g?%(1). Define
the metric | s—t||=max;|s;—t;| where (s;) and (¢;) are the real components of
s and t. Suppose that there exist positive nondecreasing functions ¢(t) and g(t),
t>0, such that

E(X(s)— X (0)* E(X(s)— X (1)

limsup —-——— <o limsu <1
u:—sn}; a*(Is—tl) t,mp g2 (Is—t|)
and
fae™)dy<w [ gle™)dy<ow.
1 1
Define

QW =qh)+@2+)/2) }Oq(hZ_yz)dy< w0, O<hsl.

1

Gh=g(h)+(2+)/2) [ gh2)dy<cw, 0<h<L.

Q™' (x)=sup(h: Q(h)=x)

for h>0, let B(h)={t: |t—z||<h/2} and define ¢*(h)=max{o?(t): te[O,
17" B'(h)} where A’ is the complement of A. Then we have the following result:
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Theorem B ([3], Theorem 2.1). Suppose that there exist functions g and q satisfy-
ing the conditions stated above. If, for every ¢>0,

2 2 =2 h
;izlg,[Q‘l(G(h)/s)]-"eXp{_z_iz[aTzc(fh_)Q 0
then
lim P({é“i‘ii X (6)>w)yujo)=1

#—> 00

To prove Lemma 3 it is enough to consider the case h=1 and prove that
EQ@(t, £)—y(s—s)*=4(l ) (s, 5)I1**) (see Example 4.1 in [3]).

Lemma 4. Let {X (), t =0} be a FWP(x) with «<1/2 and h>0. Then there exists
a constant C,, which may depend on o but is independent of h, such that
P{ sup vy t)=o(h)u}

i 0<r<t=h
lf‘n_.ssp D=2 PIX (1) >u)}

<C, 2.2)

Proof. It is enough to consider the case h=1. We consider first the supremum
of y over the set A={(t, t'): 0=<t<t'<1, t'—t=<1/2}. For ¢>0 and m=[2/¢]
we have that

m
P{supy(t,t)>u}< Y P{ sup (6, 1) >u}
4 j=0  ju2sts(+ ez
0<tr—1<1/2

S(m+1)P{ sup (8, 1) > u} (2.3)

0<r'—1=(1+g)2

and to obtain a bound for this probability we use Theorem 3.3 in [2] for the
process y over the square R={0=<t=<(1+¢)/2, 0<¢'=<(1+¢)/2}. In our case

Q(x)=0(x*) and oz = (1——;—?)“, hence

(23)=(m-+1) Const(Q ™" (1/u) > X exp {_ 2u0'22}

1 . u222a
§C0nstg ?4(2/ -1 CXp {—W}

and if e < 1 this is O (v)) as u— co.

It remains to consider the process y over the set E={(t, t'): 0=¢=<1/2, t+1/
2<t'<£1}. To do this we cover E by squares of side # with ¢ satisfying uQ ()< 1,
where O is defined above. Since Q(x)=@(x*) in our case, we have n=0(u" /.
If u is large enough, the covering will be included in the set S={(t, #'): 05t <2/3,
t+1/3<¢'<1} and ¢ =ilsle(y2(t, t))=1/32*>1/3. Therefore, the right hand

side of (3.12) in [2] is uniformly bounded for all u> u,.
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-»

Fig. 1

We cover E by squares of sides parallel to the axes and length # starting
at the right angled corner (see Fig. 1). Since X has stationary increments, the
distribution of y over squares of same size having diagonals over the same
straight line is the same. Also, if we start counting from the right-angled corner,
there are exactly i squares having diagonals over the straight line /; of equation
t=t+1—in,i=1,..., N, where N=[1/25]+1.

Let E;(m)={(t,t): 0=t=<n, 1 —(i—1) n <t <1—in}. Then, using Corollary 3.1
in [2], with og,,,=(1—(i—1) #)*, we have

N
P{supy(t,t)>u} <Const > P{supy(t,t)>u}
E i=0 Ei(m)

N
=Const ) iY(u/og,y,)

i=0
N . 2 N0 2
i+ D +in) { u }

< Const — Y eXP
= Const 2., Pl 2a=in™

Y (y+ DA —yn) { u? }
<Const | """ exp{ ————-%d
= § u PV 2=y @Y

Using the method of Laplace to estimate this integral for large u, we get that
it is asymptotically like (xu®)~* exp(—u?/2) and since n=0(u"'"*) we get the
desired result. [

Next we consider the supremum of the process # over parallelograms.
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Lemma 5. Let {X(t), t=0} be a FWP(a), 0<a=<1. Then

T 2
q(Th,u)=P{ sup (X(t')—X(t)éﬂ(h)“}éca%u(”“)_le_"/2 (2.4)
05I<T
o<t —t<h

for u=uy, where C, is a constant which may depend on o but is independent
of Tand h.

Proof. The case a=1/2 was considered in [6] (see also [13]). Let O<a<1/2,
0<e<1 and m=[T/eh], then

a(Thus) P{ sup y(t)zoh)u}
j=0 jeh=t=<(j+1)¢h
O<t'—t=h

Sm+1)P{ sup y(tt)za(h)u}

0<t<t'Sh(l+g)

y(t, t) u }
<m+1 P{ su =
D P S0 ST a) = o149

and by Lemma 4, for u sufficiently large this is bounded by

u (lja)—2
<Const(m+ 1)( ) P (X(l)g

_w
o(1+¢) a(1 +e))

T ;- u?
é Const E u(” )3 €Xp {—m}
and choosing ¢=1/u* one obtains (2.4) by means of a simple calculation.

For the case 1/2<a<1 the proof is divided in two steps. We consider first
the process A(t, t') over the set B={(t, t'): 0St<T, t+h(1+¢&)<t' <t+h} where
e¢=1/u'" Lemma 2 shows that for t=(t, ) and s=(s, 5') in B and u large we
have

5 4Ht—S||2 41+a

n_ ’ < _ 2
E(A(t’t) A(S>S)) =h2a(1_8)2a= hza “t S”
Therefore, by Lemma 1
P{supy(t,t)>a(h)u} <P{sup A(t,t)>u}
B B
T u?
<C.L m=1 _z
=C; p u exp( 2) (2.5

for u large and some constant C; which may depend on «. We still have to
consider the supremum of y over the set D={(t, t'): 0St< T, t<t' <t+h(l—¢)}.

1/a
Let m= [—], then

h

m

P{supy(t,t)>e(Wu}< Y P{ sup y(t, t)>a(h)yu}
D j=0 JehZt=(j+ V)eh
O<t'—t=h(1—g)

Sm+1)P{ sup y(t)>c(h)u}

0<t<t'<h
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and by Lemma 3, for u sufficiently large this is bounded by
<2(m+1) P{X ()2 u)}

T 2
< Const ! exp{—%} (2.6)

Finally, combining (2.5) and (2.6) we obtain (2.4). [

Lemma 6 (Berman, Plackett, Slepian [1, 9, 14]). Let {X,, i=1, ..., n} be centred,

stationary Gaussian r.v.’s with EX?=1 for alliand EX; X ;=r;;. Let I(c, +1)=[c,

oo) and I(c, —1)=(—o0,¢). If c;eR,i=1,....n denote by F; the event {X;el(c;,
&)} where ¢ is either +1 or —1. Let KC(I ., 1), then:

i) P{ﬂ F} is an increasing function of r;; ifsi g;=+1, otherwise it is decreas-
iek

ing.
ii) If {K,;, =1, ..., s) is a partition of K then

P{OF)—HP{O Bl Y X X Irleleners

ieK icKy i<l<m=Zs jeK; jeKim

where g(x, y; r) is the standard bivariate Gaussian density with correlation r
and r¥; is a number between 0 and ry;.

The proof of the following version of the Borel-Cantelli lemma can be found
in [12].

Lemma 7. Let (G,, n=1) be a sequence of events. If
i) 3, P(G)=o0
n=0
Z [P(G:n G —P(G) P(GL)]
ii) lim inf 12i=k=" =0 2.7)

)

then P(G,i.0)=1.

The following lemma is a consequence of the proof of Lemma 2.3 in [10],
taking a=1.

Lemma 8 (Qualls-Watanabe). Let {X (¢), t=0} be a real centred Gaussian process
with EX?(t)=1, which satisfies

EX({H)—X@6) z2Cylt—s*
Jor 055, t<T, 0<|t—s|<d, where 0<a < 1. Then

 P{Z,(T)>u}
W inf = e

C1/20c
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where Z,(T)= max X (k/c(u), m=[Tc(u)], c(u)=u'" and 0<H,< o0 is a con-
0<ksm

stant which does not depend on T.

3. Proof of Theorem 1
A. L(Pp)<owo=>¢cUUC(YF)

The proof is similar to the convergent halif of Theorem 1 in [6] and some details
will be omitted. We may assume without loss of generality, that 1 < ¢p(r)<t'/4
for all large ¢. Define the increasing sequence T;, k=0 by

L=T 11+ *(T-y)
where T; is chosen large enough so that ¢(Tg)= 1. Define

By={ sup sup (X (t+5)—X (@) 20 (a(Ti- 1) 9(Ti- 1)}

Te-12t5Ti 0=s=a(Tw)

If T;, is large we can use Lemma 5 to bound the probability of this event:

and since a(T)<a(T,_,)(1+ ¢ (T, _,)) we obtain

P(Bk)é(:OnstM‘_lqﬁ_l(n_l) exp{_w}

a(Ty) 2
<Const TTE: (d)_(tg;;"‘); exp {— ¢22(t)} dt

Therefore I,(¢) <oo= > P(B,)< oo and the Borel-Cantelli lemma implies by
n=0

a standard argument that ¢ e UUC(Y5). A similar proof shows that ¢ eUUC(Y).
B. I,(¢p)=00=¢dpcULC(Y))

Let f=1im —=, if f=1 then Theorem 5 in [15] implies the result. Assume

t—> o0

a(t)
t

B <1 and define an increasing sequence T, 1 oo by
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T, 1
0<“(To°)<ﬁ'= ;ﬁ, $(Ty)>1

(T)=T—a(Tl)=T-y, k2L

We define also

O =[¢"(T)] 6,=[16;] O<i<l1; k=1
ja(T, _
Tk,j:%“ll i=Te-1tt,; Jj=1,...,0; k=1

k
Gk={lrsnja5§, Yi(t, )> (T3}

Suppose that s and ¢ belong to the interval [T, ,, T,_,+4a(T,—,)} and
s=t. We shall show that there exists a constant D, >0 such that

E(Y,(0- Y9720, @8
1 1 =g aZ“(’I',", 1) .
Start with
E(Y,()—Y,(5)
_20(a)o(a)+o(t—s+a,—a)+0*(t—s)—o*(a,+t—s)—c*(a,—t+5) 29)
o(a)o(a,) '
and consider
a(a,+t—s)+ 0% (a;—t+5)=(a,+t—5)**+(a,— (t —s))**
Using Taylor’s theorem we get, for some 0 <8 <(t—s), that this is
=a}*+a*+20(a?* " —aZ* Yt —s)+aRa—1)(t—s)*(a,+ 0)** 2
+(a;—0)**~2). (2.10)

If 0< & < 1/2 this expression is bounded above by a2*+a2* and

(t—s+a,—a)**+(t—s)** —(a*—a%)?

2.9)>

@92 a; ag
S (t—s+a,—a)**+(t—s)?*—(a,—a)**
- a; ag

2 N\ 2a
SE=9 —9™
ata; ~a**(Ti—y)

If 1/2<a<1 then (a?* '—a2* " Y)<(a,—a)?* 1; also O<(t—s)<ia(T-,)
<Aa,=Aa,,and a,—a,<t—s, hence
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o y v . 2e t—gs\2 " 2¢ t—s 2-2a
(210)<a?*+al*+2a(t—s)** +a(2a—1)(t—s) (( at) +<(1~A)as) )

/1 2=2¢g
§at2“+a§"+(t—s)2“<2a+cx(2oc—I)(/12‘2“+(1—_7) )) (2.11)

On the other hand, since 1 <2a <2, we have (t —s+a, —a)** = (t — 5)?* +(a,— a)>*
and using this and (2.11) in (2.9) we get

2.9)
L 2@ &+ 20— 9 +(a—a) " — a2 — a2 — (t— P R+ a(2o— D) (™21 + (1 — A2 2))
- ad

but (a,—a)** 2 (af —a?)* =a?*+a2*—2a? a?. Choosing 0<Ai<1 so that D,=2
—2a—a(2a—1) 22725(1 +(1 — 1)?*~?)> 0 we get

(t—s)z"

E(Y, ()Y, (S))ZzDaaz—a@j

and (2.8) is proved.
Now for ge[0, 1] define

V@)= Y1 (T— +qia(T;- 1))
Then (2.8) implies that for p and g in [0, 1]

—ql4 Tl’f‘l 2 2a 2a
Eitp) = Vata)? 20, LI p, ey

On the other hand

P(Gk)zP{lran%’ Vil(i/6) > d(T)}

and using Lemma 8 we see that if T, is sufficiently large there exists a positive
constant C; such that for all k we have

P(G)ZC. o, ¥ ($(T) .
2 Const qbrl(ﬂ) exp{—¢ é J
L—Ty i1 $*(T;)
;ConStTE"‘flqb (T) exp{— 5 }
Tios (g ()11 ()
P : ——;(—t)——exp{— 5 }dt (2.12)
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and I(¢)=00= Y P(G,)=c0. To show that P(G,i.0.)=1 we still have to prove

n=0
(2.7). Tt is easy to see that

P(G,n G)— P(G) P(G)=(P(Gjn G})— P(G}) P(G})

where G’ is the complement of G.

If 0<a<1/2 the variables Y(t; ;) and Y(t, ;) are negatively correlated if j<k
—1, and in that case by Lemma 6, P(G;n G;) < P(G)) P(G;), which is sufﬁ01ent
for (2.7). If 1/2< o< 1, using Lemma 6 we get

[
P(G;nGY)—P(G)PGIS Y. Y. pltsuity.m) 8O(T). 9(T: p*ty3trm) 213

I=0m=0

where p(t; ;5 ty,m) = E(Y, (i) Y1 (t; ). This correlation can be written as

P15t m)= (P**+H(Q, R)),

1
20°R"

k—1 l
where P= Za(T)Jr a(Tk =g all-y)—alt;), @=a(t;), R=alt,) and

HU, V)=F+U+V)’ _(P+U) *—(P+V)**. By Taylor’s theorem
H(QaR)'—’_P2“+2_oc(2oc—1)QRP2(a—1)+S

2a(2a_31')(2a_2) (Q+R)P*(P+0R+0Q)** > —Q3(P+0Q)**?

—R¥*(P+0R)?>* 3 for some 0<0<1. It is easy to see that

where S=

S§2(x(2cx—31‘)(206—2) Q3(P+0Q)2a—3

and
H(Q,R) < —P?*+3a(2a—1)QRP?* ?
whence

QRP>*~2
p(t;.15 ti,m) = Const TR
<Const(al(t;) alt, )"~ ( )
i=j+1
_a(Tya() \*

( bl a(Ti))

i=j+1

=<Const



Upper Classes for the Increments of Fractional Wiener Processes 377

since f<1 we may assume, without loss of generality, that a, <1, and then
T,(1—a,)<T,_, which implies a(T,) £(1 —a,) *a(T,_,) and

a(]p 1-a

k—1

Y. a(T)

i=j+1

<Const(k—j—1)*"'=n

p(t.15 ty,m) = Const

as long as k>j+2. We define

pixk= sup sup p(t;;; b m)-
1SIS6, 15k<H,

Using this we see that (2.13) is bounded by

3501 i P*(T)+ > (L) 20 9(T) $(T)
2a(l—p? )UZGXP{ 2(1—p%) }

where pj, is the value of p(t;;; f,,) which maximises the exponent. For our
purpose it is sufficient to consider, for ¢ fixed,

ii}ﬂ@m@—ﬂ@ﬂ@n

k=

ok - ;0 M P (T)+¢* (L) =25 d(T) ()
(ZZ+Z Z)EETWﬂW%' 2(1-p%) }

k=c j=1 k=c j=k— v

where v, = [(¢(T))*t ~]. The first sum is bounded by

33 T PO 6y (1) 0,0 @) exp (7 (T

k=c j=1

and using (2.12) this 1s bounded by

Const Z Zk njkd) (17)2 exp{$>(T) ”Ijk} P(Gy) P(G))

k=c j=1

but k—j=v, implies n; ¢*(T)<Constvi ! ¢*(T,) < Const ¢~ *(T;). Therefore,
the sum above is bounded by
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Const ¢ *(I)) exp{ —Const $ ()} 3 3 P(Gy P(G)
k=c j=1
and for c sufficiently large this is bounded by
n 2
S P(G)) .
(k; ( k))
The second sum is
R _¢2(7}>+</>2(m—2ﬁjk¢(7})¢><m}
k;,.=k_vk2n(1;gfk)”2§f‘f{ 2P
SRR ¢ (T (TG [ (R —pu$(T)
=2 2" e"p{ 2(1—p3) }
ntok=1 g, 1 1—
<const Y Y ¢ WD) exn{—o2m (o)
k=cj=k—ve p

. . . 1—p\2
where p is the largest covariance among the terms considered. Let B=(T_—*_£)

>0. Then if ¢ is large enough this is

<Const . v 8% () 6*(To_ ) W(d(Ty-..) exp{ — BS*(T)}

k=c

<Constv, ¢ (T) exp{~BF(T)} ¥ P(G)

k=c—v,

SConst Y, P(G).

k=1

We have shown that given 6 >0, for ¢ large

n k—1 n 2 n
Ty P(Gijk)—P(Gj)P(Gk)éé(z P(Gk)) +Const Y P(Gy)
k=c j=j

k=1 k=1
and this is enough to prove (2.7). [
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