Upper Classes for the Increments of Fractional Wiener Processes*

J. Ortega

Instituto Venezolano de Investigaciones Cientificas, Depto. de Matemáticas, Apartado 21.827, Caracas 1020-A, Venezuela

Summary. Let $(X(t), t \geqq 0)$ be a centred Gaussian process with stationary increments and $E X^{2}(t)=C_{0} t^{2 \alpha}$ for some $C_{0}>0,0<\alpha<1$, and let $0<a_{t} \leqq t$ be a nondecreasing function of t with a_{t} / t nonincreasing. The asymptotic behaviour of several increment processes constructed from X and a_{t} is studied in terms of their upper classes.

1. Introduction

Let $(X(t), t \geqq 0)$ be a centred Gaussian process with stationary increments, $X(0)=0$ a.s. and define $\sigma^{2}(h)=E X^{2}(h)=E(X(t+h)-X(t))^{2}$. If $\sigma^{2}(h)=C_{0} h^{2 \alpha}, 0$ $<\alpha<1$ and $C_{0}>0$ then X is known as a fractional Wiener process of order $\alpha(\operatorname{FWP}(\alpha))$. If $\alpha=1 / 2$ and $C_{0}=1$ this is the standard Wiener process.

The purpose of this paper is the study of the asymptotic behaviour of the following increment processes: let a_{t} be a nondecreasing function of t with $0<a_{t} \leqq t$, and a_{t} / t nonincreasing. We define the following processes in terms of X and a_{t} :

$$
\begin{aligned}
& Y_{1}(t)=\frac{X\left(t+a_{t}\right)-X(t)}{\sigma\left(a_{t}\right)} \\
& Y_{2}(t)=\sup _{0 \leqq s \leqq t} Y_{1}(s) \\
& Y_{3}(t)=\sup _{0 \leqq u \leqq a_{t}} \frac{X(t+u)-X(t)}{\sigma\left(a_{t}\right)} \\
& Y_{4}(t)=\sup _{0 \leqq s \leqq t-a_{t}} Y_{3}(s) \\
& Y_{5}(t)=\sup _{0 \leqq s \leqq t} Y_{3}(s)
\end{aligned}
$$

[^0]and the processes $Y_{i}^{*}(t), i=1, \ldots, 5$ defined using the absolute value of the increments. Thus, for example,
$$
Y_{1}^{*}(t)=\frac{\left|X\left(t+a_{t}\right)-X(t)\right|}{\sigma\left(a_{t}\right)}
$$

In [7] it was shown that if X is a $\operatorname{FWP}(\alpha)$ then

$$
\begin{align*}
\limsup _{T \rightarrow \infty} Y_{1}(T) \beta_{T} & =\limsup _{T \rightarrow \infty} Y_{5}^{*}(T) \beta_{T} \\
& =\limsup _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T} \sup _{0 \leqq s \leqq a_{T}} \frac{|X(t+s)-X(t)|}{\sigma\left(a_{T}\right)} \beta_{T}=1 \tag{1.1}
\end{align*}
$$

where $\beta_{T}=\left(2 \log \left(\frac{T \log T}{a_{T}}\right)\right)^{-1 / 2}$. For the Wiener process these results were obtained in 1979 by Csörgö and Révész [4]. Also, (1.1) implies the LIL for FWP proved by Orey [5]. Note that if $a_{t}=t, Y_{4}(t)=\sup _{0 \leqq s \leqq t} X(s)$.

We shall consider the asymptotic behaviour of these processes with respect to a nondecreasing function $\phi(t)$ in terms of their upper classes, which we define following Révész [13]:

Definition 1. The function ϕ belongs to the upper-upper class of the prozess $Z(\phi \in U U C(Z))$ if, with probability one, there exists a $t_{0}(\omega)$ such that $Z(t)<\phi(t)$ for all $t>t_{0}$.
Definition 2. The function ϕ belongs to the upper-lower class of the process $Z(\phi \in \mathrm{ULC}(Z))$ if, with probability one, there exists a random sequence $0<t_{1}$ $<t_{2}<\ldots$ with $t_{i} \rightarrow \infty$ as $i \rightarrow \infty$ such that $Z\left(t_{i}\right) \geqq \phi\left(t_{i}\right)$ for $i \geqq 1$.

In [6] the upper classes of the increments of the Wiener process were described by means of an integral test as follows.
Theorem A. Let $\alpha=1 / 2$ and let Z be any of the processes $Y_{i}, Y_{i}^{*}, i=1, \ldots, 5$, then

$$
\phi \in \mathrm{UUC}(Z) \Leftrightarrow \int_{i}^{\infty} \frac{\phi(t)}{a(t)} \exp \left\{-\frac{\phi^{2}(t)}{2}\right\} d t<\infty
$$

The main result of this paper is the following:
Theorem 1. Let X be a $\operatorname{FWP}(\alpha)$ and Z any of the processes $Y_{i}, Y_{i}^{*}, i=1, \ldots, 5$, then

$$
\phi \in \operatorname{UUC}(Z) \Leftrightarrow I_{\alpha}(\phi)=\int_{1}^{\infty} \frac{(\phi(t))^{(1 / \alpha)-1}}{a(t)} \exp \left\{-\frac{\phi^{2}(t)}{2}\right\} d t<\infty
$$

This result includes Theorem A and Theorem 5 in [15] as special cases, and implies the first two inequalities in (1.1). It also extends previous works of the author on the increments of FWP [7, 8].

In the next section we give some preliminary results and in Sect. 3 the proof of Theorem 1. We shall assume without loss of generality that $C_{0}=1$. In what follows Const denotes a positive constant which can take different values on each appearance and $\psi(x)=(1 / \sqrt{2 \pi} x) \exp \left(-\frac{x^{2}}{2}\right)$. We shall frequently use the well-known fact that if X is a standard Gaussian r.v. then $P(X>x) \leqq \psi(x)$ for $x>0$ and $\frac{P(X>x)}{\psi(x)} \rightarrow 1$ as $x \rightarrow \infty$.

2. Preliminary Results

In this section we give some results that will be used in the proof of Theorem 1. In particular, Lemma 5 is an asymptotic upper bound for the tail of the distribution of the oscillations of FWP which may be independent interest.

Lemma 1 (Qualls-Watanabe [11]). Let $\left\{X(t), t \in \mathbb{R}^{n}\right\}$ be a continuous centred Gaussian random field with variance 1 satisfying

$$
E(X(p)-X(q))^{2} \leqq 2 C_{1}\|p-q\|^{2 \alpha}
$$

for all p, q in $D \subset \mathbb{R}^{n}$ with $\|p-q\|<\delta_{1}$, where $0<\alpha \leqq 1$ and $\|x\|$ is the Euclidean norm of $x \in \mathbb{R}^{n}$. Then

$$
\limsup _{u \rightarrow \infty} \frac{P(Z(D)>u)}{\mu(D) \psi(u)(c(u))^{n}} \leqq H_{\alpha} C_{1}^{n / 2 \alpha}
$$

where $Z(D)=\sup \{X(p), p \in D\}, D$ is an open bounded set with Lebesque measure $\mu(D)=\mu(\bar{D}), c(u)=u^{1 / \alpha}$ and $0<H_{\alpha}<\infty$ is a constant which does not depend on u.

Let $(X(t), t \geqq 0)$ be a $\operatorname{FWP}(\alpha)$, we define the biparametric processes γ and Δ by

$$
\gamma\left(t, t^{\prime}\right)=X(t)-X\left(t^{\prime}\right) ; \quad \Delta\left(t, t^{\prime}\right)=\frac{\gamma\left(t, t^{\prime}\right)}{\sigma\left(t^{\prime}-t\right)} \quad \text { for } t<t^{\prime}
$$

Then $E \gamma\left(t, t^{\prime}\right)=E \Delta\left(t, t^{\prime}\right)=0$ and $E \Delta^{2}\left(t, t^{\prime}\right)=1$.
Lemma 2. If $\mathbf{t}=\left(t, t^{\prime}\right)$ and $\mathbf{s}=\left(s, s^{\prime}\right)$ with $t<t^{\prime}$ and $s<s^{\prime}$, the incremental variance of Δ satisfies

$$
\tilde{\sigma}^{2}(\mathbf{t}, \mathbf{s})=E\left(\Delta\left(t, t^{\prime}\right)-\Delta\left(s, s^{\prime}\right)\right)^{2} \leqq \frac{4\|\mathbf{t}-\mathbf{s}\|^{2 \alpha}}{\left|t^{\prime}-t\right|^{\alpha}\left|s^{\prime}-s\right|^{\alpha}}
$$

Proof.

$$
\begin{aligned}
\tilde{\sigma}^{2}(\mathbf{t}, \mathbf{s}) & =E\left(\frac{X\left(t^{\prime}\right)-X(t)}{\sigma\left(t^{\prime}-t\right)}-\frac{X\left(s^{\prime}\right)-X(s)}{\sigma\left(s^{\prime}-s\right)}\right)^{2} \\
& =\frac{E\left(X\left(t^{\prime}\right)-X(t)-X\left(s^{\prime}\right)+X(s)\right)^{2}-\left(\sigma\left(t^{\prime}-t\right)-\sigma\left(s^{\prime}-s\right)\right)^{2}}{\sigma\left(t^{\prime}-t\right) \sigma\left(s^{\prime}-s\right)} \\
& \leqq \frac{2\left(\sigma^{2}\left(\left|t^{\prime}-s^{\prime}\right|\right)+\sigma^{2}(|t-s|)\right)}{\sigma\left(t^{\prime}-t\right) \sigma\left(s^{\prime}-s\right)} \\
& \leqq \frac{4\left(\left|t^{\prime}-s^{\prime}\right|^{2}+|t-s|^{2}\right)^{\alpha}}{\left|t^{\prime}-t\right|^{\alpha}\left|s^{\prime}-s\right|^{\alpha}} \\
& =\frac{4\|\mathbf{t}-\mathbf{s}\|^{2 \alpha}}{\left|t^{\prime}-t\right|^{\alpha}\left|s^{\prime}-s\right|^{\alpha}}
\end{aligned}
$$

We give now some results about the asymptotic distribution of the supremum of γ
Lemma 3. Let $(X(t), t \geqq 0)$ be a $F W P(\alpha)$ with $\alpha>1 / 2$. Then for $h>0$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{P\left(\sup _{0 \leqq t<t \leqq h} \gamma\left(t, t^{\prime}\right) \geqq \sigma(h) u\right)}{P\{X(1)>u\}}=1 . \tag{2.1}
\end{equation*}
$$

This lemma is a consequence of Theorem B below: let $\left\{X(t), t \in[0,1]^{n}\right\}$ be a real separable centred Gaussian process with continuous covariance function, and put $\sigma^{2}(t)=E X^{2}(t)$. Suppose that there is a point τ in $[0,1]^{n}$ such that $\sigma^{2}(t)$ has a unique maximum value at $t=\tau$, and put $\sigma^{2}=\sigma^{2}(\tau)$. Define the metric $\|s-t\|=\max _{i}\left|s_{i}-t_{i}\right|$ where $\left(s_{i}\right)$ and $\left(t_{i}\right)$ are the real components of s and t. Suppose that there exist positive nondecreasing functions $q(t)$ and $g(t)$, $t>0$, such that

$$
\limsup _{\|t-s\| \rightarrow 0} \frac{E(X(s)-X(t))^{2}}{q^{2}(\|s-t\|)}<\infty \quad \limsup _{t, s \rightarrow \tau} \frac{E(X(s)-X(t))^{2}}{g^{2}(\|s-t\|)}<1
$$

and

$$
\int_{1}^{\infty} q\left(e^{-y^{2}}\right) d y<\infty \quad \int_{1}^{\infty} g\left(e^{-y^{2}}\right) d y<\infty
$$

Define

$$
\begin{aligned}
& Q(h)=q(h)+(2+\sqrt{2}) \int_{1}^{\infty} q\left(h 2^{-y^{2}}\right) d y<\infty, \quad 0<h \leqq 1 . \\
& G(h)=g(h)+(2+\sqrt{2}) \int_{1}^{\infty} g\left(h 2^{-y^{2}}\right) d y<\infty, \quad 0<h \leqq 1 \\
& Q^{-1}(x)=\sup (h: Q(h) \leqq x)
\end{aligned}
$$

for $h>0$, let $B(h)=\{t:\|t-\tau\| \leqq h / 2\}$ and define $\bar{\sigma}^{2}(h)=\max \left\{\sigma^{2}(t): t \in[0\right.$, $\left.1]^{n} \cap B^{\prime}(h)\right\}$ where A^{\prime} is the complement of A. Then we have the following result:

Theorem B ([3], Theorem 2.1). Suppose that there exist functions g and q satisfying the conditions stated above. If, for every $\varepsilon>0$,

$$
\lim _{h \rightarrow 0}\left[Q^{-1}(G(h) / \varepsilon)\right]^{-n} \exp \left\{-\frac{\varepsilon^{2}}{2 \sigma^{4}}\left[\frac{\sigma^{2}-\bar{\sigma}^{2}(h)}{G^{2}(h)}\right]\right\}=0
$$

then

$$
\lim _{u \rightarrow \infty} P\left(\max _{[0,1]^{n}} X(t)>u\right) / \psi(u / \sigma)=1
$$

To prove Lemma 3 it is enough to consider the case $h=1$ and prove that $E\left(\gamma\left(t, t^{\prime}\right)-\gamma\left(s-s^{\prime}\right)\right)^{2} \leqq 4\left(\left\|\left(t, t^{\prime}\right)-\left(s, s^{\prime}\right)\right\|^{2 \alpha}\right)$ (see Example 4.1 in [3]).
Lemma 4. Let $\{X(t), t \geqq 0\}$ be a $F W P(\alpha)$ with $\alpha<1 / 2$ and $h>0$. Then there exists a constant C_{2}, which may depend on α but is independent of h, such that

$$
\begin{equation*}
\underset{u \rightarrow \infty}{\limsup } \frac{P\left\{\sup _{0 \leqq t<t \leq h} \gamma\left(t, t^{\prime}\right) \geqq \sigma(h) u\right\}}{u^{(1 / \alpha)-2} P\{X(1)>u\}} \leqq C_{2} \tag{2.2}
\end{equation*}
$$

Proof. It is enough to consider the case $h=1$. We consider first the supremum of γ over the set $A=\left\{\left(t, t^{\prime}\right): 0 \leqq t<t^{\prime} \leqq 1, t^{\prime}-t \leqq 1 / 2\right\}$. For $\varepsilon>0$ and $m=[2 / \varepsilon]$ we have that

$$
\begin{align*}
P\left\{\sup _{A} \gamma\left(t, t^{\prime}\right)>u\right\} & \leqq \sum_{j=0}^{m} P\left\{\sup _{\substack{s \varepsilon / 2 \leqq t \leqq(j+1), / 2 \\
0<t \leq t \leqq 1 / 2}} \gamma\left(t, t^{\prime}\right)>u\right\} \\
& \leqq(m+1) P\left\{\sup _{0<t^{\prime}-1 \leqq(1+\varepsilon) / 2} \gamma\left(t, t^{\prime}\right)>u\right\} \tag{2.3}
\end{align*}
$$

and to obtain a bound for this probability we use Theorem 3.3 in [2] for the process γ over the square $R=\left\{0 \leqq t \leqq(1+\varepsilon) / 2,0 \leqq t^{\prime} \leqq(1+\varepsilon) / 2\right\}$. In our case $Q(x)=\mathcal{O}\left(x^{\alpha}\right)$ and $\sigma_{R}=\left(\frac{1+\varepsilon}{2}\right)^{\alpha}$, hence

$$
\begin{aligned}
(2.3) & \leqq(m+1) \operatorname{Const}\left(Q^{-1}(1 / u)\right)^{-2} \frac{\sigma_{R}}{u} \exp \left\{-\frac{u^{2}}{2 \sigma_{R}^{2}}\right\} \\
& \leqq \text { Const } \frac{1}{\varepsilon} u^{(2 / \alpha)-1} \exp \left\{-\frac{u^{2} 2^{2 \alpha}}{2(1+\varepsilon)^{2 \alpha}}\right\}
\end{aligned}
$$

and if $\varepsilon<1$ this is $\mathcal{O}(\psi(u))$ as $u \rightarrow \infty$.
It remains to consider the process γ over the set $E=\left\{\left(t, t^{\prime}\right): 0 \leqq t \leqq 1 / 2, t+1 /\right.$ $\left.2<t^{\prime} \leqq 1\right\}$. To do this we cover E by squares of side η with η satisfying $u Q(\eta) \leqq 1$, where Q is defined above. Since $Q(x)=\mathcal{O}\left(x^{\alpha}\right)$ in our case, we have $\eta=\mathcal{O}\left(u^{-1 / \alpha}\right)$. If u is large enough, the covering will be included in the set $S=\left\{\left(t, t^{\prime}\right): 0 \leqq t \leqq 2 / 3\right.$, $\left.t+1 / 3 \leqq t^{\prime} \leqq 1\right\}$ and $\sigma^{2}=\inf _{s} E\left(\gamma^{2}\left(t, t^{\prime}\right)\right) \geqq 1 / 3^{2 \alpha}>1 / 3$. Therefore, the right hand side of (3.12) in [2] is uniformly bounded for all $u>u_{0}$.

Fig. 1

We cover E by squares of sides parallel to the axes and length η starting at the right angled corner (see Fig. 1). Since X has stationary increments, the distribution of γ over squares of same size having diagonals over the same straight line is the same. Also, if we start counting from the right-angled corner, there are exactly i squares having diagonals over the straight line l_{i} of equation $t^{\prime}=t+1-i \eta, i=1, \ldots, N$, where $N=[1 / 2 \eta]+1$.

Let $E_{i}(\eta)=\left\{\left(t, t^{\prime}\right): 0 \leqq t \leqq \eta, 1-(i-1) \eta \leqq t^{\prime} \leqq 1-i \eta\right\}$. Then, using Corollary 3.1 in [2], with $\sigma_{E_{i}(\eta)}=(1-(i-1) \eta)^{\alpha}$, we have

$$
\begin{aligned}
P\left\{\sup _{E} \gamma\left(t, t^{\prime}\right)>u\right\} & \leqq \text { Const } \sum_{i=0}^{N} P\left\{\sup _{E_{i}(\eta)} \gamma\left(t, t^{\prime}\right)>u\right\} \\
& \leqq \text { Const } \sum_{i=0}^{N} i \psi\left(u / \sigma_{E_{i}(\eta)}\right) \\
& \leqq \text { Const } \sum_{i=0}^{N} \frac{(i+1)(1+i \eta)^{\alpha}}{u} \exp \left\{-\frac{u^{2}}{2(1-i \eta)^{2 \alpha}}\right\} \\
& \leqq \text { Const } \int_{0}^{1 / \eta} \frac{(y+1)(1-y \eta)^{\alpha}}{u} \exp \left\{-\frac{u^{2}}{2(1-y \eta)^{2 \alpha}}\right\} d y
\end{aligned}
$$

Using the method of Laplace to estimate this integral for large u, we get that it is asymptotically like $\left(\alpha \eta u^{3}\right)^{-1} \exp \left(-u^{2} / 2\right)$ and since $\eta=\mathcal{O}\left(u^{-1 / \alpha}\right)$ we get the desired result.

Next we consider the supremum of the process η over parallelograms.

Lemma 5. Let $\{X(t), t \geqq 0\}$ be a $F W P(\alpha), 0<\alpha \leqq 1$. Then

$$
\begin{equation*}
q(T, h, u)=P\left\{\sup _{\substack{0 \leq t \leq T \\ 0<t^{\prime}-t \leq h}}\left(X\left(t^{\prime}\right)-X(t) \geqq \sigma(h) u\right\} \leqq C_{\alpha} \frac{T}{\hbar} u^{(1 / \alpha)-1} e^{-u^{2} / 2}\right. \tag{2.4}
\end{equation*}
$$

for $u \geqq u_{0}$, where C_{α} is a constant which may depend on α but is independent of T and h.
Proof. The case $\alpha=1 / 2$ was considered in [6] (see also [13]). Let $0<\alpha<1 / 2$, $0<\varepsilon \leqq 1$ and $m=[T / \varepsilon h]$, then

$$
\begin{aligned}
q(T, h, u) & \leqq \sum_{j=0}^{m} P\left\{\sup _{\substack{j \in h \leqq \leq \leq(j+1) \varepsilon c \\
0<t^{\prime}-t \leqq h}} \gamma\left(t, t^{\prime}\right) \geqq \sigma(h) u\right\} \\
& \leqq(m+1) P\left\{\sup _{0 \leqq t<t^{\prime} \leqq h(1+\varepsilon)} \gamma\left(t, t^{\prime}\right) \geqq \sigma(h) u\right\} \\
& \leqq(m+1) P\left\{\sup _{\substack{ \\
0 \leqq t<t^{\prime} \leqq h(1+\varepsilon)}} \frac{\gamma\left(t, t^{\prime}\right)}{\sigma(h(1+\varepsilon))} \geqq \frac{u}{\sigma(1+\varepsilon)}\right\}
\end{aligned}
$$

and by Lemma 4 , for u sufficiently large this is bounded by

$$
\begin{aligned}
& \leqq \text { Const }(m+1)\left(\frac{u}{\sigma(1+\varepsilon)}\right)^{(1 / \alpha)-2} P\left(X(1) \geqq \frac{u}{\sigma(1+e)}\right) \\
& \leqq \text { Const } \frac{T}{\varepsilon h} u^{(1 / \alpha)-3} \exp \left\{-\frac{\mathrm{u}^{2}}{2(1-\varepsilon)^{2 \alpha}}\right\}
\end{aligned}
$$

and choosing $\varepsilon=1 / u^{2}$ one obtains (2.4) by means of a simple calculation.
For the case $1 / 2<\alpha<1$ the proof is divided in two steps. We consider first the process $\Delta\left(t, t^{\prime}\right)$ over the set $B=\left\{\left(t, t^{\prime}\right): 0 \leqq t \leqq T, t+h(1+\varepsilon) \leqq t^{\prime} \leqq t+h\right\}$ where $\varepsilon=1 / u^{1 / \alpha}$. Lemma 2 shows that for $\mathbf{t}=\left(t, t^{\prime}\right)$ and $\mathbf{s}=\left(s, s^{\prime}\right)$ in B and u large we have

$$
E\left(\Delta\left(t, t^{\prime}\right)-\Delta\left(s, s^{\prime}\right)\right)^{2} \leqq \frac{4\|\mathbf{t}-\mathbf{s}\|^{2}}{h^{2 \alpha}(1-\varepsilon)^{2 \alpha}} \leqq \frac{4^{1+\alpha}}{h^{2 \alpha}}\|\mathbf{t}-\mathbf{s}\|^{2}
$$

Therefore, by Lemma 1

$$
\begin{align*}
P\left\{\sup _{B} \gamma\left(t, t^{\prime}\right)>\sigma(h) u\right\} & \leqq P\left\{\sup _{B} \Delta\left(t, t^{\prime}\right)>u\right\} \\
& \leqq C_{3} \frac{T}{h} u^{(1 / \alpha)-1} \exp \left(-\frac{u^{2}}{2}\right) \tag{2.5}
\end{align*}
$$

for u large and some constant C_{3} which may depend on α. We still have to consider the supremum of γ over the set $D=\left\{\left(t, t^{\prime}\right): 0 \leqq t \leqq T, t<t^{\prime} \leqq t+h(1-\varepsilon)\right\}$. Let $m=\left[\frac{T u^{1 / \alpha}}{h}\right]$, then

$$
\begin{aligned}
P\left\{\sup _{D} \gamma\left(t, t^{\prime}\right)>\sigma(h) u\right\} & \leqq \sum_{j=0}^{m} P\left\{\sup _{\substack{j \varepsilon h \leq t \leq(j+1) \varepsilon h \\
0<t^{\prime}-t \leqq h(1-\varepsilon)}} \gamma\left(t, t^{\prime}\right)>\sigma(h) u\right\} \\
& \leqq(m+1) P\left\{\sup _{0 \leqq t<t^{\prime} \leqq h} \gamma\left(t, t^{\prime}\right)>\sigma(h) u\right\}
\end{aligned}
$$

and by Lemma 3 , for u sufficiently large this is bounded by

$$
\begin{align*}
& \leqq 2(m+1) P\{X(1) \geqq u\} \\
& \leqq \text { Const } \frac{T}{h} u^{(1 / \alpha)-1} \exp \left\{-\frac{u^{2}}{2}\right\} \tag{2.6}
\end{align*}
$$

Finally, combining (2.5) and (2.6) we obtain (2.4).
Lemma 6 (Berman, Plackett, Slepian [1, 9, 14]). Let $\left\{X_{i}, i=1, \ldots, n\right\}$ be centred, stationary Gaussian r.v.'s with $E X_{i}^{2}=1$ for all i and $E X_{i} X_{j}=r_{i j}$. Let $I(c,+1)=[c$, $\infty)$ and $I(c,-1)=(-\infty, c)$. If $c_{i} \in \mathbb{R}, i=1, \ldots, n$ denote by F_{i} the event $\left\{X_{i} \in I\left(c_{i}\right.\right.$, $\left.\left.\varepsilon_{i}\right)\right\}$ where ε_{i} is either +1 or -1 . Let $K \subset(1, \ldots, n)$, then:
i) $P\left\{\bigcap_{i \in K} F_{i}\right\}$ is an increasing function of $r_{i j}$ if $\varepsilon_{i} \varepsilon_{j}=+1$, otherwise it is decreasing.
ii) If $\left\{K_{l}, l=1, \ldots, s\right)$ is a partition of K then

$$
\left|P\left\{\bigcap_{i \in K} F_{i}\right)-\prod_{l=1}^{m} P\left\{\bigcap_{i \in K_{l}} F_{i}\right\}\right| \leqq \sum_{i \leqq l<m \leqq s} \sum_{j \in K_{l}} \sum_{j \in K_{m}}\left|r_{i j}\right| g\left(c_{i}, c_{j} ; r_{i j}^{*}\right)
$$

where $g(x, y ; r)$ is the standard bivariate Gaussian density with correlation r and $r_{i j}^{*}$ is a number between 0 and $r_{i j}$.

The proof of the following version of the Borel-Cantelli lemma can be found in [12].

Lemma 7. Let $\left(G_{n}, n \geqq 1\right)$ be a sequence of events. If
i) $\sum_{n=0}^{\infty} P\left(G_{n}\right)=\infty$
ii) $\liminf _{n \rightarrow \infty} \frac{\sum_{1 \leqq i<k \leqq n}\left[P\left(G_{i} \cap G_{k}\right)-P\left(G_{i}\right) P\left(G_{k}\right)\right]}{\left(\sum_{1}^{n} P\left(G_{i}\right)\right)^{2}}=0$
then $P\left(G_{n}\right.$ i.o. $)=1$.
The following lemma is a consequence of the proof of Lemma 2.3 in [10], taking $a=1$.

Lemma 8 (Qualls-Watanabe). Let $\{X(t), t \geqq 0\}$ be a real centred Gaussian process with $E X^{2}(t)=1$, which satisfies

$$
E(X(t)-X(s))^{2} \geqq C_{4}|t-s|^{2 \alpha}
$$

for $0 \leqq s, t \leqq T, 0<|t-s|<\delta_{2}$ where $0<\alpha \leqq 1$. Then

$$
\liminf _{u \rightarrow \infty} \frac{P\left\{Z_{u}(T)>u\right\}}{T \psi(u) c(u)} \geqq C_{4}^{1 / 2 \alpha} H_{\alpha}
$$

where $Z_{u}(T)=\max _{0 \leqq k \leqq m} X(k / c(u)), m=[T c(u)], c(u)=u^{1 / \alpha}$ and $0<H_{\alpha}<\infty$ is a constant which does not depend on T.

3. Proof of Theorem 1

A. $I_{\alpha}(\phi)<\infty \Rightarrow \phi \in U U C\left(Y_{5}^{*}\right)$

The proof is similar to the convergent half of Theorem 1 in [6] and some details will be omitted. We may assume without loss of generality, that $1 \leqq \phi(t) \leqq t^{1 / 4}$ for all large t. Define the increasing sequence $T_{k}, k \geqq 0$ by

$$
T_{k}=T_{k-1}\left(1+\phi^{-2}\left(T_{k-1}\right)\right)
$$

where T_{0} is chosen large enough so that $\phi\left(T_{0}\right) \geqq 1$. Define

$$
B_{k}=\left\{\sup _{T_{k-1} \leqq t \leqq T_{k}} \sup _{0 \leqq s \leqq a\left(T_{k}\right)}(X(t+s)-X(t)) \geqq \sigma\left(a\left(T_{k-1}\right)\right) \phi\left(T_{k-1}\right)\right\} .
$$

If T_{0} is large we can use Lemma 5 to bound the probability of this event:

$$
P\left(B_{k}\right) \leqq C_{\alpha} \frac{T_{k}-T_{k-1}}{a\left(T_{k}\right)}\left(\frac{a\left(T_{k-1}\right)}{a\left(T_{k}\right)}\right)^{1-\alpha} \phi^{\frac{1}{\alpha}-1}\left(T_{k-1}\right) \exp \left\{-\frac{1}{2}\left(\frac{a\left(T_{k-1}\right)}{a\left(T_{k}\right)}\right)^{2 \alpha} \phi^{2}\left(T_{k-1}\right)\right\}
$$

and since $a\left(T_{k}\right) \leqq a\left(T_{k-1}\right)\left(1+\phi^{-2}\left(T_{k-1}\right)\right)$ we obtain

$$
\begin{aligned}
P\left(B_{k}\right) & \leqq \text { Const } \frac{T_{k}-T_{k-1}}{a\left(T_{k}\right)} \phi^{\frac{1}{\alpha}-1}\left(T_{k-1}\right) \exp \left\{-\frac{\phi^{2}\left(T_{k-1}\right)}{2}\right\} \\
& \leqq \text { Const } \int_{T_{k-2}}^{T_{k-1}} \frac{(\phi(t))^{(1 / \alpha)-1}}{a(t)} \exp \left\{-\frac{\phi^{2}(t)}{2}\right\} d t
\end{aligned}
$$

Therefore $I_{\alpha}(\phi)<\infty \Rightarrow \sum_{n=0}^{\infty} P\left(B_{n}\right)<\infty$ and the Borel-Cantelli lemma implies by a standard argument that $\phi \in U U C\left(Y_{5}\right)$. A similar proof shows that $\phi \in \operatorname{UUC}\left(Y_{5}^{*}\right)$.
B. $I_{\alpha}(\phi)=\infty \Rightarrow \phi \in U L C\left(Y_{1}\right)$

Let $\beta=\lim _{t \rightarrow \infty} \frac{a(t)}{t}$, if $\beta=1$ then Theorem 5 in [15] implies the result. Assume $\beta<1$ and define an increasing sequence $T_{k} \uparrow \infty$ by

$$
\begin{aligned}
0<\frac{a\left(T_{0}\right)}{T_{0}}<\beta^{\prime} & =\frac{1+\beta}{2}, & & \phi\left(T_{0}\right)>1 \\
\xi\left(T_{k}\right) & =T_{k}-a\left(T_{k}\right)=T_{k-1}, & & k \geqq 1 .
\end{aligned}
$$

We define also

$$
\begin{array}{rlrl}
\delta_{k} & =\left[\phi^{1 / \alpha}\left(T_{k}\right)\right] \quad \delta_{k}^{\prime}=\left[\lambda \delta_{k}\right] & 0<\lambda<1 ; k \geqq 1 \\
\tau_{k, j} & =\frac{j a\left(T_{k-1}\right)}{\delta_{k}} \quad t_{k, j}=T_{k-1}+\tau_{k, j} & j=1, \ldots, \delta_{k}^{\prime} ; k \geqq 1 \\
G_{k} & =\left\{\max _{1 \leqq j \leqq \delta_{k}^{\prime}} Y_{i}\left(t_{k, j}\right)>\phi\left(T_{k}\right)\right\} . &
\end{array}
$$

Suppose that s and t belong to the interval $\left[T_{k-1}, T_{k-1}+\lambda a\left(T_{k-1}\right)\right]$ and $s \leqq t$. We shall show that there exists a constant $D_{\alpha}>0$ such that

$$
\begin{equation*}
E\left(Y_{1}(t)-Y_{1}(s)\right)^{2} \geqq D_{\alpha} \frac{(t-s)^{2 \alpha}}{a^{2 \alpha}\left(T_{k-1}\right)} \tag{2.8}
\end{equation*}
$$

Start with

$$
\begin{align*}
& E\left(Y_{1}(t)-Y_{1}(s)\right)^{2} \\
& =\frac{2 \sigma\left(a_{t}\right) \sigma\left(a_{s}\right)+\sigma^{2}\left(t-s+a_{t}-a_{s}\right)+\sigma^{2}(t-s)-\sigma^{2}\left(a_{t}+t-s\right)-\sigma^{2}\left(a_{s}-t+s\right)}{\sigma\left(a_{t}\right) \sigma\left(a_{s}\right)} \tag{2.9}
\end{align*}
$$

and consider

$$
\sigma^{2}\left(a_{t}+t-s\right)+\sigma^{2}\left(a_{s}-t+s\right)=\left(a_{t}+t-s\right)^{2 \alpha}+\left(a_{s}-(t-s)\right)^{2 \alpha}
$$

Using Taylor's theorem we get, for some $0<\theta<(t-s)$, that this is

$$
\begin{align*}
= & a_{t}^{2 \alpha}+a_{s}^{2 \alpha}+2 \alpha\left(a_{t}^{2 \alpha-1}-a_{s}^{2 \alpha-1}\right)(t-s)+\alpha(2 \alpha-1)(t-s)^{2}\left(\left(a_{t}+\theta\right)^{2 \alpha-2}\right. \\
& \left.+\left(a_{s}-\theta\right)^{2 \alpha-2}\right) . \tag{2.10}
\end{align*}
$$

If $0<\alpha<1 / 2$ this expression is bounded above by $a_{t}^{2 \alpha}+a_{s}^{2 \alpha}$ and

$$
\begin{aligned}
(2.9) & \geqq \frac{\left(t-s+a_{t}-a_{s}\right)^{2 \alpha}+(t-s)^{2 \alpha}-\left(a_{t}^{\alpha}-a_{s}^{\alpha}\right)^{2}}{a_{t}^{\alpha} a_{s}^{\alpha}} \\
& \geqq \frac{\left(t-s+a_{t}-a_{\mathrm{s}}\right)^{2 \alpha}+(t-s)^{2 \alpha}-\left(a_{t}-a_{\mathrm{s}}\right)^{2 \alpha}}{a_{t}^{\alpha} a_{s}^{\alpha}} \\
& \geqq \frac{(t-s)^{2 \alpha}}{a_{t}^{\alpha} a_{s}^{\alpha}} \geqq \frac{(t-s)^{2 \alpha}}{a^{2 \alpha}\left(T_{k-1}\right)} .
\end{aligned}
$$

If $1 / 2<\alpha<1$ then $\left(a_{t}^{2 \alpha-1}-a_{s}^{2 \alpha-1}\right) \leqq\left(a_{t}-a_{s}\right)^{2 \alpha-1}$; also $\theta<(t-s)<\lambda a\left(T_{k-1}\right)$ $\leqq \lambda a_{s} \leqq \lambda a_{t}$, and $a_{t}-a_{s} \leqq t-s$, hence

$$
\begin{align*}
(2.10) & \leqq a_{t}^{2 \alpha}+a_{s}^{2 \alpha}+2 \alpha(t-s)^{2 \alpha}+\alpha(2 \alpha-1)(t-s)^{2 \alpha}\left(\left(\frac{t-s}{a_{t}}\right)^{2-2 \alpha}+\left(\frac{t-s}{(1-\lambda) a_{s}}\right)^{2-2 \alpha}\right) \\
& \leqq a_{t}^{2 \alpha}+a_{s}^{2 \alpha}+(t-s)^{2 \alpha}\left(2 \alpha+\alpha(2 \alpha-1)\left(\lambda^{2-2 \alpha}+\left(\frac{\lambda}{1-\lambda}\right)^{2-2 \alpha}\right)\right) \tag{2.11}
\end{align*}
$$

On the other hand, since $1<2 \alpha<2$, we have $\left(t-s+a_{t}-a_{s}\right)^{2 \alpha} \geqq(t-s)^{2 \alpha}+\left(a_{t}-a_{s}\right)^{2 \alpha}$ and using this and (2.11) in (2.9) we get

$$
\begin{equation*}
\geqq \frac{2 a_{t}^{\alpha} a_{s}^{\alpha}+2(t-s)^{2 \alpha}+\left(a_{t}-a_{s}\right)^{2 \alpha}-a_{t}^{2 \alpha}-a_{s}^{2 \alpha}-(t-s)^{2 \alpha}\left(2 \alpha+\alpha(2 \alpha-1)\left(\lambda^{2-2 \alpha}\left(1+(1-\lambda)^{2 \alpha-2}\right)\right)\right)}{a_{t}^{\alpha} a_{s}^{\alpha}} \tag{2.9}
\end{equation*}
$$

but $\left(a_{t}-a_{s}\right)^{2 \alpha} \geqq\left(a_{t}^{\alpha}-a_{s}^{\alpha}\right)^{2}=a_{t}^{2 \alpha}+a_{s}^{2 \alpha}-2 a_{t}^{\alpha} a_{s}^{\alpha}$. Choosing $0<\lambda<1$ so that $D_{\alpha}=2$ $-2 \alpha-\alpha(2 \alpha-1) \lambda^{2-2 \alpha}\left(1+(1-\lambda)^{2 \alpha-2}\right)>0$ we get

$$
E\left(Y_{1}(t)-Y_{1}(s)\right)^{2} \geqq D_{\alpha} \frac{(t-s)^{2 \alpha}}{a^{2 \alpha}\left(T_{k-1}\right)}
$$

and (2.8) is proved.
Now for $q \in[0,1]$ define

$$
V_{k}(q)=Y_{1}\left(T_{k-1}+q \lambda a\left(T_{k-1}\right)\right)
$$

Then (2.8) implies that for p and q in $[0,1]$

$$
E\left(V_{k}(p)-V_{k}(q)\right)^{2} \geqq D_{\alpha} \frac{\left(|p-q| \lambda a\left(T_{k-1}\right)\right)^{2 \alpha}}{a^{2 \alpha}\left(T_{k-1}\right)}=D_{\alpha} \lambda^{2 \alpha}|p-q|^{2 \alpha}
$$

On the other hand

$$
P\left(G_{k}\right)=P\left\{\max _{1 \leqq j \leqq \delta_{k}^{\prime}} V_{k}\left(j / \delta_{k}\right)>\phi\left(T_{k}\right)\right\}
$$

and using Lemma 8 we see that if T_{0} is sufficiently large there exists a positive constant C_{α}^{\prime} such that for all k we have

$$
\begin{align*}
P\left(G_{k}\right) & \geqq C_{\alpha}^{\prime} \delta_{k} \psi\left(\phi\left(T_{k}\right)\right) \\
& \geqq \text { Const } \phi^{\frac{1}{\alpha}-1}\left(T_{k}\right) \exp \left\{-\frac{\phi^{2}\left(T_{k}\right)}{2}\right\} \\
& \geqq \text { Const } \frac{T_{k}-T_{k-1}}{a\left(T_{k}\right)} \phi^{\frac{1}{\alpha}-1}\left(T_{k}\right) \exp \left\{-\frac{\phi^{2}\left(T_{k}\right)}{2}\right\} \\
& \geqq \int_{T_{k}}^{T_{k+1}} \frac{(\phi(t))^{(1 / \alpha)-1}}{a(t)} \exp \left\{-\frac{\phi^{2}(t)}{2}\right\} d t \tag{2.12}
\end{align*}
$$

and $I_{\alpha}(\phi)=\infty \Rightarrow \sum_{n=0}^{\infty} P\left(G_{n}\right)=\infty$. To show that $P\left(G_{k}\right.$ i.o. $)=1$ we still have to prove (2.7). It is easy to see that

$$
P\left(G_{j} \cap G_{k}\right)-P\left(G_{j}\right) P\left(G_{k}\right)=\left(P\left(G_{j}^{\prime} \cap G_{k}^{\prime}\right)-P\left(G_{j}^{\prime}\right) P\left(G_{k}^{\prime}\right)\right.
$$

where G^{\prime} is the complement of G.
If $0<\alpha<1 / 2$ the variables $Y\left(t_{j, i}\right)$ and $Y\left(t_{k, i}\right)$ are negatively correlated if $j<k$ -1 , and in that case by Lemma $6, P\left(G_{j}^{\prime} \cap G_{k}^{\prime}\right) \leqq P\left(G_{j}^{\prime}\right) P\left(G_{k}^{\prime}\right)$, which is sufficient for (2.7). If $1 / 2<\alpha<1$, using Lemma 6 we get

$$
\begin{equation*}
P\left(G_{j} \cap G_{k}\right)-P\left(G_{j}\right) P\left(G_{k}\right) \leqq \sum_{l=0}^{\delta_{i}^{\prime}} \sum_{m=0}^{\delta_{k}^{\prime}} \rho\left(t_{j, l} ; t_{k, m}\right) g\left(\phi\left(T_{j}\right), \phi\left(T_{k}\right) ; \rho^{*}\left(t_{j, l} ; t_{k, m}\right)\right) \tag{2.13}
\end{equation*}
$$

where $\rho\left(t_{k, l} ; t_{k, m}\right)=E\left(Y_{1}\left(t_{k, l}\right) Y_{1}\left(t_{j, m}\right)\right)$. This correlation can be written as

$$
\rho\left(t_{j, l} ; t_{k, m}\right)=\frac{1}{2 Q^{\alpha} R^{\alpha}}\left(P^{2 \alpha}+H(Q, R)\right),
$$

where $P=\sum_{i=j}^{k-1} a\left(T_{i}\right)+\frac{m}{\delta_{k}} a\left(T_{k-1}\right)-\frac{l}{\delta_{j}} a\left(T_{j-1}\right)-a\left(t_{j, l}\right), Q=a\left(t_{j, l}\right), R=a\left(t_{k, m}\right)$ and $H(U, V)=(P+U+V)^{2 \alpha}-(P+U)^{2 \alpha}-(P+V)^{2 \alpha}$. By Taylor's theorem

$$
H(Q, R)=-P^{2 \alpha}+2 \alpha(2 \alpha-1) Q R P^{2(\alpha-1)}+S
$$

where $\quad S=\frac{2 \alpha(2 \alpha-1)(2 \alpha-2)}{3!}\left((Q+R)^{3}(P+\theta R+\theta Q)^{2 \alpha-3}-Q^{3}(P+\theta Q)^{2 \alpha-3}\right.$ $\left.-R^{3}(P+\theta R)^{2 \alpha-3}\right)$ for some $0<\theta<1$. It is easy to see that

$$
S \leqq \frac{2 \alpha(2 \alpha-1)(2 \alpha-2)}{3!} Q^{3}(P+\theta Q)^{2 \alpha-3}
$$

and

$$
H(Q, R) \leqq-P^{2 \alpha}+3 \alpha(2 \alpha-1) Q R P^{2 \alpha-2}
$$

whence

$$
\begin{aligned}
\rho\left(t_{j, l} ; t_{k, m}\right) & \leqq \operatorname{Const} \frac{Q R P^{2 \alpha-2}}{Q^{\alpha} R^{\alpha}} \\
& \leqq \operatorname{Const}\left(a\left(t_{j, l}\right) a\left(t_{k, m}\right)\right)^{1-\alpha}\left(\sum_{i=j+1}^{k-1} a\left(T_{i}\right)\right)^{2 \alpha-2} \\
& \leqq \operatorname{Const}\left(\frac{a\left(T_{j}\right) a\left(T_{k}\right)}{\left(\sum_{i=j+1}^{k-1} a\left(T_{i}\right)\right)^{2}}\right)^{1-\alpha}
\end{aligned}
$$

since $\beta<1$ we may assume, without loss of generality, that $a_{1}<1$, and then $T_{k}\left(1-a_{1}\right) \leqq T_{k-1}$ which implies $a\left(T_{k}\right) \leqq\left(1-a_{1}\right)^{-1} a\left(T_{k-1}\right)$ and

$$
\begin{aligned}
\rho\left(t_{j, l} ; t_{k, m}\right) & \leqq \operatorname{Const}\left(\frac{a\left(T_{j}\right)}{\sum_{i=j+1}^{k-1} a\left(T_{i}\right)}\right)^{1-\alpha} \\
& \leqq \operatorname{Const}(k-j-1)^{\alpha-1} \equiv \eta_{j k}
\end{aligned}
$$

as long as $k>j+2$. We define

$$
\rho_{j k}=\sup _{1 \leqq I \leqq \delta_{j}^{\prime}} \sup _{1 \leqq k \leqq \delta_{k}^{\prime}} \rho\left(t_{j, l} ; t_{k, m}\right) .
$$

Using this we see that (2.13) is bounded by

$$
\frac{\delta_{j}^{\prime} \delta_{k}^{\prime} \eta_{j k}}{2 \pi\left(1-\rho_{j k}^{2}\right)^{1 / 2}} \exp \left\{-\frac{\phi^{2}\left(T_{j}\right)+\phi^{2}\left(T_{k}\right)-2 \hat{\rho}_{j k} \phi\left(T_{j}\right) \phi\left(T_{k}\right)}{2\left(1-\hat{\rho}_{j k}^{2}\right)}\right\}
$$

where $\hat{\rho}_{j k}$ is the value of $\rho\left(t_{j, l} ; t_{k, m}\right)$ which maximises the exponent. For our purpose it is sufficient to consider, for c fixed,

$$
\begin{aligned}
& \sum_{k=c}^{n} \sum_{j=1}^{k-1}\left[P\left(G_{j} \cap G_{k}\right)-P\left(G_{j}\right) P\left(G_{k}\right)\right] \\
& \leqq\left(\sum_{k=c}^{n} \sum_{j=1}^{k-v_{k}}+\sum_{k=c}^{n} \sum_{j=k-v_{k}}^{k-1}\right) \frac{\delta_{j} \delta_{k} \eta_{j k}}{2 \pi\left(1-\rho_{j k}^{2}\right)^{1 / 2}} \exp \left\{-\frac{\phi^{2}\left(T_{j}\right)+\phi^{2}\left(T_{k}\right)-2 \hat{\rho}_{j k} \phi\left(T_{j}\right) \phi\left(T_{k}\right)}{2\left(1-\hat{\rho}_{j k}^{2}\right)}\right\}
\end{aligned}
$$

where $v_{k}=\left[\left(\phi\left(T_{k}\right)\right)^{4 /(1-\alpha)}\right]$. The first sum is bounded by

$$
\sum_{k=c}^{n} \sum_{j=1}^{k-v_{k}} \frac{\eta_{j k} \phi\left(T_{k}\right) \phi\left(T_{j}\right)}{\left(1-\rho_{j k}^{2}\right)^{1 / 2}} \delta_{k} \psi\left(\phi\left(T_{k}\right)\right) \delta_{j} \psi\left(\phi\left(T_{j}\right)\right) \exp \left\{\phi^{2}\left(T_{k}\right) \eta_{j k}\right\}
$$

and using (2.12) this is bounded by

$$
\text { Const } \sum_{k=c}^{n} \sum_{j=1}^{k-v_{k}} \frac{\eta_{j k} \phi^{2}\left(T_{k}\right)}{\left(1-\rho_{j k}^{2}\right)^{1 / 2}} \exp \left\{\phi^{2}\left(T_{k}\right) \eta_{j k}\right\} P\left(G_{k}\right) P\left(G_{j}\right)
$$

but $k-j \geqq v_{k}$ implies $\eta_{j k} \phi^{2}\left(T_{k}\right) \leqq$ Const $v_{k}^{\alpha-1} \phi^{2}\left(T_{k}\right) \leqq$ Const $\phi^{-2}\left(T_{k}\right)$. Therefore, the sum above is bounded by

$$
\text { Const } \phi^{-2}\left(T_{c}\right) \exp \left\{- \text { Const } \phi^{-2}\left(T_{c}\right)\right\} \sum_{k=c}^{n} \sum_{j=1}^{k-v_{k}} P\left(G_{k}\right) P\left(G_{j}\right)
$$

and for c sufficiently large this is bounded by

$$
\delta\left(\sum_{k=1}^{n} P\left(G_{k}\right)\right)^{2}
$$

The second sum is

$$
\begin{aligned}
& \sum_{k=c}^{n} \sum_{j=k-v_{k}}^{k-1} \frac{\delta_{j} \delta_{k} \eta_{j k}}{2 \pi\left(1-\hat{P}_{j k}^{2}\right)^{1 / 2}} \exp \left\{-\frac{\phi^{2}\left(T_{j}\right)+\phi^{2}\left(T_{k}\right)-2 \hat{\rho}_{j k} \phi\left(T_{j}\right) \phi\left(T_{k}\right)}{2\left(1-\hat{\rho}_{j k}^{2}\right)}\right\} \\
& =\sum_{k=c}^{n} \sum_{j=k-v_{k}}^{k-1} \frac{\eta_{j k} \phi^{\frac{1}{\alpha}}\left(T_{k}\right) \phi^{\frac{1}{\alpha}+1}\left(T_{j}\right) \psi\left(\phi\left(T_{j}\right)\right)}{2 \pi\left(1-\rho_{j k}^{2}\right)^{1 / 2}} \exp \left\{-\frac{\left(\phi\left(T_{k}\right)-\hat{\rho}_{j k} \phi\left(T_{j}\right)\right)^{2}}{2\left(1-\hat{\rho}_{j k}^{2}\right)}\right\} \\
& \leqq \text { Const } \sum_{k=c j=k-v_{k}}^{n} \sum^{k-1} \phi^{\frac{1}{\alpha}+1}\left(T_{k}\right) \phi^{\frac{1}{\alpha}}\left(T_{j}\right) \psi\left(\phi\left(T_{j}\right)\right) \exp \left\{-\phi^{2}\left(T_{k}\right)\left(\frac{1-\rho}{1+\rho}\right)\right\}
\end{aligned}
$$

where ρ is the largest covariance among the terms considered. Let $B=\left(\frac{1-\rho}{1+\rho}\right)^{2}$ >0. Then if c is large enough this is

$$
\begin{aligned}
& \leqq \text { Const } \sum_{k=c}^{n} v_{k} \phi^{\frac{1}{\alpha}+1}\left(T_{k}\right) \phi^{\frac{1}{\alpha}}\left(T_{k-v_{k}}\right) \psi\left(\phi\left(T_{k-v_{k}}\right)\right) \exp \left\{-B \phi^{2}\left(T_{k}\right)\right\} \\
& \leqq \text { Const } v_{c} \phi^{\frac{1}{\alpha}+1}\left(T_{c}\right) \exp \left\{-B \phi^{2}\left(T_{c}\right)\right\} \sum_{k=c-v_{c}}^{n} P\left(G_{k}\right) \\
& \leqq \text { Const } \sum_{k=1}^{n} P\left(G_{k}\right)
\end{aligned}
$$

We have shown that given $\delta>0$, for c large

$$
\sum_{k=c}^{n} \sum_{j=j}^{k-1} P\left(G_{j} \cap G_{k}\right)-P\left(G_{j}\right) P\left(G_{k}\right) \leqq \delta\left(\sum_{k=1}^{n} P\left(G_{k}\right)\right)^{2}+\text { Const } \sum_{k=1}^{n} P\left(G_{k}\right)
$$

and this is enough to prove (2.7).
Acknoweledgements. The author thanks the reface for his remarks that have led to improvements in this work.

References

1. Berman, S.M.: Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist. 35, 502-516 (1964)
2. Berman, S.M.: An asymptotic bound for the distribution of the maximum of a Gaussian process. Ann. Inst. Henri Poincaré 21, 47-57 (1985)
3. Berman, S.M.: The maximum of a Gaussian process with nonconstant variance. Ann. Inst. Henri Poincaré 21, 383-391 (1985)
4. Csörgö, M., Révész, P.: How big are the increments of the Wiener process?. Ann. Probab. 7, 731-743 (1979)
5. Orey, S.: Growth rate of certain Gaussian processes. In: Proc. Sixth Berkeley, Symposium Math. Stat. Prob., vol. 2, pp. 443-451. Berkeley: University of California Press 1971
6. Ortega, J., Wschebor, M.: On the increments of the Wiener process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 65, 329-339 (1984)
7. Ortega, J.: On the size of the increments of non-stationary Gaussian processes. Stochastic Proc. Appl. 18, 47-56 (1984)
8. Ortega, J.: Comportamiento asintótico de los incrementos de los procesos de Wiener fraccionarios. Actas II Congreso Latinoamericano Prob. Est. Mat., pp. 195-215, Caracas: Equinoccio 1986
9. Plackett, R.L.: A reduction formula for normal multivariate integrals. Biometrika 41, 351-360 (1954)
10. Qualls, C., Watanabe, H.: Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43, 580-596 (1972)
11. Qualls, C., Watanabe, H.: Asymptotic properties of Gaussian random fields. Trans. Am. Math. Soc. 177, 155-171 (1973)
12. Rényi, A.: Probability theory. Amsterdam: North-Holland 1970
13. Révész, P.: On the increments of Wiener and related processes. Ann. Probab. 10, 613-627 (1982)
14. Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41, 463-501 (1962)
15. Watanabe, H.: An asymptotic property of Gaussian processes. Trans. Am. Math. Soc. 148, 233-248 (1970)

Received June 1, 1987; received in revised form February 24, 1988

[^0]: * Research partially financed by CONICIT, Proyecto S $1-1372$. This work was completed while the author was visiting the Universite de Paris-Sud, Orsay, France

