Brownian Motions on Infinite Dimensional Quadric Hypersurfaces

In the memory of my friend Ichiro Enomoto

Yoshihei Hasegawa

Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466, Japan

Summary. A potential theory on an infinite dimensional quadric hypersurface S is developed following Lévy's limiting procedure. For a given real sequence $\{\lambda_n\}_{n=1}^{\infty}$ a quadratic form h(x) on an infinite dimensional real sequence space E is defined by $h(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n x_n^2$, $x = (x_1, x_2, ...) \in \mathbb{E}$ and a quadric hypersurface S is defined by $S := \{x \in \mathbb{E}; h(x) = c\}$, and the Laplacian $\overline{\Delta}_{\infty}$ on S is introduced by the limiting procedure. Instead of a direct use of $\overline{\Delta}_{\infty}$, the Brownian motion $\xi(t) = (\xi_1(t), \xi_2(t), ...)$, the diffusion process $(\xi(t), P^x)$ on S with the generator $\overline{\Delta}_{\infty}/2$ is constructed by solving a system of stochastic differential equations according to $\overline{\Delta}_{\infty}$. The law of large numbers for $X_n(t)$ $:= (\lambda_n, \xi_n(t))$ is proved, and ergodic properties are discussed.

0. Introduction

Paul Lévy initiated a potential theory on an infinite dimensional space in his book [5]. He gave an idea there to construct such objects as an infinite dimensional Laplacian and harmonic functions by a limiting procedure from the corresponding objects in \mathbb{R}^N , as $N \to \infty$. His potential theory has, however, peculiar phenomena; harmonic functions e.g., can be discontinuous ([5], pp. 305–306).

In the previous papers [2-4], the author intended to give a rigorous formulation of some aspects of Lévy's potential theory along Lévy's limiting procedure with the aid of an infinite dimensional Brownian motion $B(t, \omega)$ $:=(b_1(t, \omega), b_2(t, \omega), ...)$ on an infinite dimensional real sequence space E, where $\{b_n(t, \omega)\}_{n=1}^{\infty}$ are mutually independent 1-dimensional Brownian motions. Actually, in those papers, Lévy's infinite dimensional Laplacian is thought of as twice the infinitesimal generator of the $B(t, \omega)$, and therefore harmonic functions in Lévy's sense can be interpreted by the $B(t, \omega)$.

Here we shall develop a potential theory on an infinite dimensional real hypersurface S of a diagonal quadratic form, as the quadric hypersurface S

seems to be the most important and accessible curved submanifold of E. First we shall introduce an infinite dimensional formal Laplacian \overline{A}_{∞} on S by a limiting procedure $(N \to \infty)$ from the finite dimensional Laplacian \overline{A}_N on the corresponding finite dimensional quadric hypersurface S_N . Next we shall construct an infinite dimensional Brownian motion $\xi(t)$ on S having $\overline{A}_{\infty}'/2$ as formal infinitesimal generator. Then we shall define the Laplacian \overline{A}_{∞} on S as twice the infinitesimal generator of $\xi(t)$, and develop the potential theory on S with the aid of $\xi(t)$.

Therefore, in this paper we shall construct Brownian motions $\xi(t)$ on infinite dimensional quadric hypersurfaces S and shall study their laws of large numbers and ergodic properties.

More precisely, we shall introduce a real sequence space **E** with the topology by semi-metrics $\{d_N; 1 \le N \le \infty\}$, $d_N(x, y) := \left(\frac{1}{N}\sum_{n=1}^N (x_n - y_n)^2\right)^{1/2}$, $d_\infty(x, y)$ $:= \limsup_{N \to \infty} d_N(x, y)$ for $x = (x_1, x_2, ...)$, $y = (y_1, y_2, ...) \in \mathbf{E}$, and with the cylindrical σ -algebra \mathscr{E} . Next with the aid of a real bounded fixed sequence $\Lambda := \{\lambda_n\}_{n=1}^{\infty}$ $(|\lambda_n| \le A, n \ge 1)$ such that $\frac{1}{N} \sum_{n=1}^N \delta_{\lambda_n}(d\sigma)$ converges weakly to a probability measure $\gamma(d\sigma)$ as $N \to \infty$, we define $\mathbf{E}(\Lambda)$ as the subset of **E** consisting of all points $x = (x_1, x_2, ...) \in \mathbf{E}$ such that $\frac{1}{N} \sum_{n=1}^N \delta_{(\lambda_n, x_n)}(d\sigma \times d\eta)$ converges weakly to a probability measure ability measure $\pi_x(d\sigma \times d\eta)$ as $N \to \infty$. (Here δ_a stands for the measure having mass one at a.) Now we define a diagonal quadratic form h(x) as follows:

$$h(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n x_n^2 \quad \text{for } x = (x_1, x_2, \ldots) \in \mathbf{E}(A).$$
(0.1)

Then the infinite dimensional quadric hypersurface $S = S_c$ ($c \in \mathbf{R}$) is given by

$$S := \{ x \in \mathbf{E}(\Lambda); h(x) = c \}.$$

$$(0.2)$$

Now our next task is to construct the formal Laplacian $\overline{\Delta}'_{\infty}$ on S by the limiting procedure in the same way as [2-4]. The counterpart of h(x) in \mathbb{R}^N is considered to be $h_N(x) \coloneqq \frac{1}{N} \sum_{n=1}^N \lambda_n x_n^2$, $x = (x_1, \dots, x_N) \in \mathbb{R}^N$ and the Riemannian metric of \mathbb{R}^N to be $ds_N^2 \coloneqq \frac{1}{N} \sum_{n=1}^N dx_n^2$. Hence the Laplacian $\overline{\Delta}_N$ on the quadric hypersurface $S_{N,c} \coloneqq \{x \in \mathbb{R}^N; h_N(x) = c\}$ is given by

$$\overline{A}_N := N(\partial^2/\partial x_1^2 + \ldots + \partial^2/\partial x_N^2) - (N-1) K_N \partial/\partial v_N - \partial^2/\partial v_N^2$$

where $\partial/\partial v_N$ denotes the outer normal differentiation of $S_{N,c}$ and K_N is the mean curvature of $S_{N,c}$. Therefore, by the limiting procedure $\overline{d}'_{\infty} := \lim_{N \to \infty} \overline{d}_N/N$, the formal Laplacian \overline{d}'_{∞} on S is defined by

$$\overline{\Delta}'_{\infty} := \sum_{n=1}^{\infty} \partial^2 / \partial x_n^2 - (\lambda/v(x)) \sum_{n=1}^{\infty} \lambda_n x_n \partial / \partial x_n, \qquad (0.3)$$

where

$$v(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n^2 x_n^2, \quad x = (x_1, x_2, \ldots) \in S,$$
(0.4)
$$\lambda := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n.$$

Consequently the Brownian motion $\xi(t, \omega) := (\xi_1(t, \omega), \xi_2(t, \omega), ...)$, the conservative diffusion process on S with the formal generator $\overline{\Delta}'_{\infty}/2$, will be given as solution of the following system of stochastic differential equations:

$$d\xi_n(t,\omega) = dw_n(t,\omega) - \lambda \lambda_n \xi_n(t,\omega) / (2v(\xi(t,\omega))) dt, \quad (n \ge 1)$$

$$(0.5)$$

where $\{w_n(t)\}_{n=1}^{\infty}$ are mutually independent 1-dimensional standard Wiener processes. Then our first result is the following

Theorem A. The solution $\xi(t)$ of (0.5) exists and the pathwise uniqueness of solutions of (0.5) holds. The Brownian motion $(\xi(t), P^x)$ on S exists and $\{\xi_n(t)\}_{n=1}^{\infty}$ are mutually independent $(P^x)_{x \in S}$.

Now we shall introduce a time-inhomogeneous $[-A, A] \times \mathbf{R}$ -valued diffusion process $(X(t, \omega), P^{(\sigma, \eta)})$. Given x on the surface S and the Brownian motion $\xi(t, \omega)$ starting at x, we can define a deterministic positive continuous function $\tilde{v}(t, x)$ by

$$\tilde{v}(t, x) := v(\xi(t, \omega)) \quad \text{for any } t \ge 0 \text{ a.s. } (P^x).$$
 (0.6)

We define $(X(t, \omega), P^{(\sigma, \eta)})$ as the diffusion process with the infinitesimal generator $L(t), (t \ge 0)$:

$$L(t) := (1/2) \partial^2 / \partial \eta^2 - (\lambda \sigma \eta) / (2 \tilde{v}(t, \chi)) \partial / \partial \eta.$$

$$(0.7)$$

The superscript (σ, η) denotes conditioning that $X(0, \omega) = (\sigma, \eta)$ a.s. $P^{(\sigma, \eta)}$.

Our law of large numbers can be stated as follows:

Theorem B. Set

$$X_n(t,\omega) := (\lambda_n, \xi_n(t,\omega)), \quad (n \ge 1).$$

$$(0.8)$$

Then $\frac{1}{N}\sum_{n=1}^{N} \delta_{X_n(\cdot,\omega)}$ converges weakly to a probability measure Π^x on $C([0,\infty) \to [-A,A] \times \mathbf{R})$ as $N \to \infty$ P^x -almost surely, $(x \in S)$, where

$$\int \phi(y) \Pi^{x}(dy) := \int E^{(\sigma,\eta)} [\phi(X(\cdot))] \pi_{x}(d\sigma \times d\eta)$$
(0.9)

for any bounded continuous function $\phi(y)$ on $C([0, \infty) \rightarrow [-A, A] \times \mathbf{R})$.

Now we shall describe the ergodic properties of the Brownian motion $(\xi(t), P^x)$ on the S.

Theorem C. (1) If $\gamma((-\infty, 0)) > 0$, $\xi(t)$ is transient and has no σ -finite invariant measure.

(2) $\xi(t)$ has an invariant probability measure μ , if and only if $\lambda_n > 0$ for all $n \ge 1$, and in this case μ is unique and $\lim_{t \to \infty} E^x[\phi(\xi(t))] = \int \phi(y) \mu(dy)$ for any $x \in S$

and any bounded continuous measurable function ϕ on S.

1. Infinite Dimensional Quadric Hypersurfaces

We shall begin with some definitions. Throughout this paper, δ_x denotes the measure having mass one at x.

Definition 1.1. The space **E** consists of all sequences $x = (x_1, x_2, ...) \in \mathbf{R}^{\infty}$ such that $\sup_N \frac{1}{N} \sum_{n=1}^N \exp(\beta |x_n|) < \infty$ for any $\beta > 0$ and that the probability measures $\frac{1}{N} \sum_{n=1}^N \delta_{x_n}(d\eta)$ on **R** converge weakly to a probability measure $\hat{\pi}_x(d\eta)$ on **R** as

 $N \to \infty$. The space **E** is endowed with the topology by the semi-metrics $\{d_N(x, y); 1 \le N \le \infty\}$:

$$d_N(x, y) := \left(\frac{1}{N} \sum_{n=1}^N (x_n - y_n)^2\right)^{1/2}, \quad d_{\infty}(x, y) := \limsup_{N \to \infty} d_N(x, y)$$
(1.1)

for $x = (x_1, x_2, ...), y = (y_1, y_2, ...) \in \mathbf{E}$, and is equipped with the cylindrical σ -algebra \mathscr{E} .

Throughout this paper, we shall fix a real bounded sequence $\Lambda := \{\lambda_n\}_{n=1}^{\infty}$ $(|\lambda_n| \le A, n \ge 1)$ such that the probability measures $\frac{1}{N} \sum_{n=1}^{N} \delta_{\lambda_n}(d\sigma)$ on [-A, A] converge weakly to a probability measure $\gamma(d\sigma)$ on [-A, A] with $\gamma(\{0\})=0$ as $N \to \infty$, and we assume $\lambda := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n = \int \sigma \gamma(d\sigma) > 0$ and call the γ the spectral measure of the Λ .

Definition 1.2. The space $\mathbf{E}(A)$ consists of all points $x = (x_1, x_2, ...) \in \mathbf{E}$ such that the probability measures $\frac{1}{N} \sum_{n=1}^{N} \delta_{(\lambda_n, x_n)} (d\sigma \times d\eta)$ on $[-A, A] \times \mathbf{R}$ converge weakly to a probability measure $\pi_x (d\sigma \times d\eta)$ on $[-A, A] \times \mathbf{R}$ as $N \to \infty$.

Now the first assertion is the following

Proposition 1.1.

- (I) $\mathbf{E}(A)$ is a d_{∞} -closed measurable subset of the \mathbf{E} .
- (II) $\pi_x(d\sigma \times d\eta)$ is weakly d_{∞} -continuous on $\mathbf{E}(A)$, as a function of x.
- (III) $\pi_x(B)$ is \mathscr{E} -measurable in x for any $B \in \mathscr{B}(\mathbb{R}^2)$.

Proof. It holds that

$$\limsup_{N\to\infty} \left| \frac{1}{N} \sum_{n=1}^{N} \phi(\lambda_n, x_n) - \frac{1}{N} \sum_{n=1}^{N} \phi(\lambda_n, y_n) \right| \leq \left\| \frac{\partial \phi}{\partial \eta} \right\|_{\infty} d_{\infty}(x, y)$$

for any $x = (x_1, x_2, ...)$, $y = (y_1, y_2, ...) \in \mathbf{E}$ and $\phi(\sigma, \eta) \in C_0^{\infty}(\mathbf{R}^2)$, the space of realvalued C^{∞} -functions on \mathbf{R}^2 with compact supports. Here $\|\phi\|_{\infty}$ denotes the supremum norm of a function ϕ . Observing $\hat{\pi}_a(\mathbf{R}) = 1$ for any $a \in \mathbf{E}$, we have therefore the d_{∞} -closedness of $\mathbf{E}(A)$. The other assertions are obvious. \Box

Definition 1.3. An infinite dimensional diagonal quadratic form h(x) is defined by

$$h(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n x_n^2 \quad \text{for } x = (x_1, x_2, \ldots) \in \mathbf{E}(\Lambda);$$
(1.2)

the set $S = S_c$, $c \in \mathbf{R}$, defined by

$$S := \{ x \in \mathbf{E}(\Lambda); \ h(x) = c \}$$

$$(1.3)$$

is called an infinite dimensional quadric hypersurface or simply a quadric hypersurface.

Then S is a d_{∞} -closed measurable subset of $\mathbf{E}(A)$.

Now we introduce another measure $\rho(d\sigma, x)$, which is repeatedly used later.

Definition 1.4. For each $x = (x_1, x_2, ...) \in \mathbf{E}(A)$, we put

$$\rho(d\sigma, x) := \int \eta^2 \, \pi_x(d\sigma \times d\eta), \tag{1.4}$$

$$v(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \lambda_n^2 x_n^2.$$
(1.5)

2. Laws of Large Numbers

In this section, we shall consider laws of large numbers for mutually independent continuous processes $\{\tilde{\xi}_n(t,\omega)\}_{n=1}^{\infty}$, which are obtained from the stochastic differential equations (0.5) by substituting a given continuous function $\hat{v}(t) > 0$ for the factor $v(\xi(t,\omega))$ of (0.5).

We begin with the following

Proposition 2.1. Put $\mathbf{T} := [0, T]^{\otimes p} = \{t = (t_1, ..., t_p); 0 \le t_i \le T, 1 \le i \le p\}, (T > 0)$ and assume that a family of random fields $\{X_n(t, \omega); t \in \mathbf{T}\}_{n=1}^{\infty}$ on a probability space (Ω, \mathcal{F}, P) satisfies the following conditions.

- (1) ${X_n(t,\omega)}_{n=1}^{\infty}$ are mutually independent random fields.
- (2) $\sup_{N} \frac{1}{N} \sum_{n=1}^{N} E[\|X_{n}\|_{T}^{r}] < \infty$ for some r > 1,

where $||x||_T := \sup_{t \in \mathbf{T}} |x(t)|$ for $x \in C(\mathbf{T} \to \mathbf{R})$.

- (3) $E[X_n(\cdot, \omega)] = 0, (n \ge 1)$ in the Bochner integral sense in $C(\mathbf{T} \rightarrow \mathbf{R})$.
- (4) The family $\{X_n(t,\omega); t \in \mathbf{T}\}_{n=1}^{\infty}$ is uniformly tight in $C(\mathbf{T} \to \mathbf{R})$.

Then the sample path of $\frac{1}{N} \sum_{n=1}^{N} X_n(t, \omega)$ converges to zero uniformly on **T** as $N \to \infty$ almost surely(*P*).

Proof. See [1] for the proof. \Box

Now we shall fix a point $x = (x_1, x_2, ...) \in \mathbf{E}(\Lambda)$ with v(x) > 0 and a continuous function $\hat{v}(t) > 0$ on $[0, \infty)$, and define a sequence of processes $\tilde{X}_n(t, \omega)$:= $(\lambda_n, \xi_n(t, \omega)), (n \ge 1)$ by

$$\widetilde{\xi}_n(t,\omega) := \exp\left(-\lambda \lambda_n \hat{u}(t)/2\right) \left(x_n + \int_0^t \exp\left(\lambda \lambda_n \hat{u}(s)/2\right) dw_n(s,w)\right), \qquad (2.1)$$

where $\{w_n(t)\}_{n=1}^{\infty}$ are mutually independent 1-dimensional standard Wiener processes on a probability space (Ω, \mathcal{F}, P) and

$$\hat{u}(t) := \int_{0}^{t} 1/\hat{v}(s) \, ds. \tag{2.2}$$

Next we shall introduce another diffusion process $(X(t, \omega), P^{(\sigma, \eta)})$ with state space $[-A, A] \times \mathbf{R}$ and generator $L(t), (t \ge 0)$:

$$X(t,\omega) := (\tilde{\sigma}(\omega), \zeta(t,\omega))$$
$$L(t) := (1/2) \frac{\partial^2}{\partial \eta^2} - (\lambda \sigma \eta)/(2 \hat{v}(t)) \frac{\partial}{\partial \eta}.$$
(2.3)

and

We shall fix
$$T > 0$$
, $\phi \in C_0^{\infty}(\mathbb{R}^{2p})$, and set

$$Z_n(t,\omega) := \phi(\tilde{X}_n(t_1,\omega),\ldots,\tilde{X}_n(t_p,\omega)) - E\left[\phi(\tilde{X}_n(t_1),\ldots,\tilde{X}_n(t_p))\right]$$

for $t = (t_1, \dots, t_p) \in \mathbf{T} = [0, T]^{\otimes p}$. Then we have

Lemma 2.2. For an integer r with $r/2 \ge p+1$, there exists a constant $c = c(p, r, \phi, T)^{1}$ such that $(n \ge 1)$

$$E[|Z_n(t) - Z_n(t')|^r] \le c \sum_{i=1}^p |t_i - t'_i|^{r/2}$$
(2.4)

for any $t = (t_1, ..., t_p), t' = (t'_1, ..., t'_p) \in \mathbf{T}$,

$$E[|Z_n(0)|^r] \leq (2 \|\phi\|_{\infty})^r.$$

¹ c(z) denotes a positive constant depending only on z in this paper

Proof. It holds that for $t > s \ge 0$

$$\begin{split} \tilde{\xi}_n(t) - \tilde{\xi}_n(s) &= (\exp(-\lambda \lambda_n(\hat{u}(t) - \hat{u}(s))/2) - 1) \tilde{\xi}_n(s) \\ &+ \exp(-\lambda \lambda_n \hat{u}(t)/2) \int_s^t \exp(\lambda \lambda_n \hat{u}(\tau)/2) dw_n(\tau, \omega), \\ \tilde{\xi}_n(t) - \tilde{\xi}_n(s) &= (1 - \exp(\lambda \lambda_n(\hat{u}(t) - \hat{u}(s))/2)) \tilde{\xi}_n(t) \\ &+ \exp(-\lambda \lambda_n \hat{u}(s)/2) \int_s^t \exp(\lambda \lambda_n \hat{u}(\tau)/2) dw_n(\tau, \omega). \end{split}$$

Hence by Jensen's inequality and Burkholder's one we have the following estimate for $t > s \ge 0$ and R > 0:

$$E[|\tilde{\xi}_n(t) - \tilde{\xi}_n(s)|^r; \tilde{\xi}_n(t) \text{ or } \tilde{\xi}_n(s) \in [-R, R]]$$

$$\leq 2^r (\exp(\lambda A(\hat{u}(t) - \hat{u}(s))/2) - 1)^r R^r + c(r) \exp(\lambda A \hat{u}(t) r/2) \left(\int_s^t \exp(\lambda A \hat{u}(\tau)) d\tau\right)^{r/2},$$

where supp $\phi \subset [-R, R]^{\otimes 2p}$. \Box

Therefore we have

Proposition 2.3.

$$\frac{1}{N}\sum_{n=1}^{N}\delta_{\bar{X}_{n}(t_{1},\,\omega)}(d\sigma_{1}\times d\eta_{1})\dots\,\delta_{\bar{X}_{n}(t_{p},\,\omega)}(d\sigma_{p}\times d\eta_{p})$$
$$\xrightarrow[N\to\infty]{}\int P^{(\sigma,\,\eta)}(X(t_{i})\in d\sigma_{i}\times d\eta_{i},\,i=1,\,\dots,p)\,\pi_{x}(d\sigma\times d\eta)$$
(2.5)

weakly in $\mathscr{P}(\mathbf{R}^{2p})$ for any $(t_1, \ldots, t_p) \in [0, \infty)^{\otimes p}$ a.s. (P), where $\mathscr{P}(\mathbf{R}^{2p})$ stands for the space of probability measures on \mathbf{R}^{2p} .

Proof. Lemma 2.2 shows the uniform tightness of the family $\{Z_n(t, \omega); t \in \mathbf{T}\}_{n=1}^{\infty}$ for the $\phi \in C_0^{\infty}(\mathbf{R}^{2p})$ by the Totoki-Kolmogorov criterion. Hence by Proposition 2.1, the sample path of $\frac{1}{N} \sum_{n=1}^{N} Z_n(t, \omega)$ converges to zero uniformly on \mathbf{T} as $N \to \infty$ almost surely(*P*). Since

$$\begin{split} \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} E\left[\phi\left(\tilde{X}_{n}(t_{1}), \ldots, \tilde{X}_{n}(t_{p})\right)\right] \\ &= \int E^{(\sigma, \eta)} \left[\phi\left(X(t_{1}), \ldots, X(t_{p})\right)\right] \pi_{x}(d\sigma \times d\eta) \end{split}$$

for any $(t_1, \ldots, t_p) \in [0, \infty)^{\otimes p}$, the proof is completed. \square

Consequently we have

Theorem 2.4. For a.e. $\omega(P)$, the probability measures $\frac{1}{N} \sum_{n=1}^{N} \delta_{\tilde{X}_{n}(\cdot, \omega)}$ on $C([0, \infty))$

 \rightarrow [-A, A] × **R**) converge weakly to a probability measure Π^x on $C([0, \infty) \rightarrow [-A, A] \times \mathbf{R})$ as $N \rightarrow \infty$, where the Π^x is defined as follows:

$$\int f(y) \Pi^{x}(dy) := \int E^{(\sigma, \eta)} [f(X(\cdot))] \pi_{x}(d\sigma \times d\eta)$$
(2.6)

for bounded continuous functions f on $C([0, \infty) \rightarrow [-A, A] \times \mathbf{R})$.

Proof. With the aid of Proposition 2.3, it is sufficient for the proof to show for a.e. $\omega(P)$

$$\lim_{\delta \downarrow 0} \inf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^{N} \chi_{[0,C]}^{2} (|\tilde{X}_{n}(0,\omega)|) = 1,$$

$$\lim_{\delta \downarrow 0} \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sup_{\substack{|s-t| \le \delta \\ s,t \le T}} \chi_{[\rho,\infty)} (|\tilde{\xi}_{n}(t,\omega) - \tilde{\xi}_{n}(s,\omega)|) = 0$$

for any ρ , T > 0.

To this end, we choose $L_1, L_2(L_1 < L_2)$ for a given $\varepsilon > 0$ so that $\hat{\pi}_x([L_1, L_2]) > 1 - \varepsilon$ and $[L_1, L_2]$ is a $\hat{\pi}_x$ -continuity interval. Then the mutual independence of $\{\tilde{\xi}_n(t, \omega)\}_{n=1}^{\infty}$ shows that for a.e. $\omega(P)$

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{[\rho,\infty)} (\sup_{\substack{|s-t| \le \delta \\ s,t \le T}} |\tilde{\xi}_n(t,\omega) - \tilde{\xi}_n(s,\omega)|)$$

=
$$\lim_{N \to \infty} \sup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} P(\sup_{\substack{|s-t| \le \delta \\ s,t \le T}} |\tilde{\xi}_n(t) - \tilde{\xi}_n(s)| \ge \rho)$$

$$\le 2\varepsilon \quad \text{for sufficiently small } \delta > 0,$$

because $\{\tilde{\xi}_n(t,\omega); L_1 \leq x_n \leq L_2\}$ is uniformly tight. \square

We have the following proposition concerning the growth of test functions. **Proposition 2.5** For any $\beta > 0$,

$$\sup_{N} \frac{1}{N} \sum_{n=1}^{N} \exp\left(\beta \sum_{k=1}^{p} |\tilde{X}_{n}(t_{k}, \omega)|\right) < \infty$$
(2.7)

for $t_1, \ldots, t_p \geq 0$ a.s. (P).

Proof. The proof is immediate. \Box

Consequently Theorem 2.4 and Proposition 2.5 give

 $^{^{2}}$ χ_{D} denotes the indicator function of the set D

Theorem 2.6. Set

$$\widetilde{\xi}(t,\omega) := (\widetilde{\xi}_1(t,\omega), \widetilde{\xi}_2(t,\omega), \ldots) \in \mathbf{R}^{\infty}.$$
(2.8)

Then we have the following assertions.

$$\pi_{\xi(t,\,\omega)}(d\sigma \times d\eta) = \int P^{(\sigma',\,\eta')}(X(t,\,\omega) \in d\sigma \times d\eta) \ \pi_x(d\sigma' \times d\eta')$$
(2.9)

for any $t \ge 0$ a.s. (*P*).

$$\rho(d\sigma, \tilde{\xi}(t, \omega)) = \hat{\rho}_t(d\sigma, x) \quad \text{for any } t \ge 0 \text{ a.s. } (P), \tag{2.10}$$

where

$$\hat{\rho}_t(d\sigma, x) := \exp(-\lambda \sigma \,\hat{u}(t)) \left(\rho(d\sigma, x) + \int_0^t \exp(\lambda \sigma \,\hat{u}(s)) ds \,\gamma(d\sigma) \right).$$
(2.11)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (\tilde{\xi}_n(t,\omega) - \tilde{\xi}_n(s,\omega))^2$$

= $\int \exp(-\lambda \sigma \,\hat{u}(t)) \int_s^t \exp(\lambda \sigma \,\hat{u}(\tau)) \,d\tau \,\gamma(d\sigma)$
+ $\int (\exp(-\lambda \sigma(\hat{u}(t) - \hat{u}(s))/2) - 1)^2 \,\hat{\rho}_s(d\sigma, x)$ (2.12)

for any $t \ge s \ge 0$ a.s. (*P*).

3. A Nonlinear Integral Equation

Let \mathcal{M} stand for the family of finite measures ρ absolutely continuous with respect to γ such that $\int \sigma^2 \gamma(d\sigma) > 0$, equipped with the weak convergence topology and the topological σ -algebra.

Given $\rho \in \mathcal{M}$, we shall show in this section the existence and the uniqueness of solutions u(t) of the following nonlinear integral equation:

$$\int_{I} \sigma \exp(-\lambda \sigma u(t)) \left(\rho(d\sigma) + \int_{0}^{t} \exp(\lambda \sigma u(s)) \, ds \, \gamma(d\sigma) \right) = \int_{I} \sigma \rho(d\sigma), \quad (3.1)$$

where I = [-A, A].

First we notice the following propositions.

Proposition 3.1. For the $\rho(d\sigma)$, the following two integral equations are mutually equivalent in $C([0, \infty))$:

$$\int_{I} \sigma \exp(-\lambda \sigma u) \left(\rho(d\sigma) + \int_{0}^{u} \exp(\lambda \sigma \eta) w(\eta) \, d\eta \, \gamma(d\sigma) \right) = \int_{I} \sigma \, \rho(d\sigma), \quad (3.2)$$

$$w(u) - \int_{0}^{u} K(u-\eta) w(\eta) d\eta = \int_{I} \sigma^{2} \exp(-\lambda \sigma u) \rho(d\sigma), \qquad (3.3)$$

where

$$K(u) := \int_{I} \sigma^{2} \exp(-\lambda \sigma u) \gamma(d\sigma).$$
(3.4)

Proof. The proof is obvious. \Box

Proposition 3.2. The solution w(u) of the Eq. (3.3) in $C([0, \infty))$ uniquely exists. It is a continuous, strictly positive global solution given by

$$w(u) = \int_{I} W(u, \sigma) \sigma^{2} \gamma(d\sigma), \qquad (3.5)$$

where

$$W(u,\sigma) := \exp(-\lambda \sigma u) + \int_{0}^{u} \Gamma(u-\eta) \exp(-\lambda \sigma \eta) d\eta$$
(3.6)

with the resolvent kernel $\Gamma(u-\eta)$ of (3.3).

Proof. The proof is immediate. \Box

Concerning the estimate of the w(u), we have

Proposition 3.3. (I) Assume $\gamma([-A, 0)) > 0$. Then

$$c_{1}(\exp(c_{1} u))/(c_{1} + \lambda A) \int_{I} \sigma^{2} \rho(d\sigma)$$

$$\leq w(u) \leq 2 \exp((\lambda A + \gamma_{2}) u) \int_{I} \sigma^{2} \rho(d\sigma), \qquad (3.7)$$

where

$$c_1 := \int\limits_{-A}^{0} \sigma^2 \gamma(d\sigma), \qquad \gamma_2 := \int\limits_{I} \sigma^2 \gamma(d\sigma).$$

(II) Assume $\gamma([-A, 0]) = 0$. Then

$$c_2 \int_0^A \sigma^2 \rho(d\sigma) \leq w(u) \leq A \int_0^A \sigma \rho(d\sigma), \qquad (3.8)$$

where c_2 is a strictly positive constant depending only on γ .

Proof. Assume $\gamma([-A, 0)) > 0$. Then

$$c_1 \exp(c_1(u-\eta)) \leq \Gamma(u-\eta) \leq \gamma_2 \exp((\lambda A + \gamma_2)(u-\eta))$$

Hence we have

$$W(u, \sigma) \ge (c_1/(c_1 + \lambda \sigma)) \exp(c_1 u) + (\lambda \sigma/(c_1 + \lambda \sigma)) \exp(-\lambda \sigma u) \quad \text{for } \sigma \ge 0,$$

$$W(u, \sigma) \ge \exp(c_1 u) \quad \text{for } \sigma \le 0,$$

$$W(u, \sigma) \le 2 \exp((\lambda A + \gamma_2) u) \quad \text{for } \sigma \in [-A, A].$$

Therefore we have (3.7) because of (3.5).

356

Next assume $\gamma([-A, 0]) = 0$. Denoting by $W_1(u)$ the unique global solution of the following equation in $C([0, \infty))$, we have $W(u, \sigma) \ge W_1(u)$ for any $\sigma \ge 0$:

$$W_1(u) - \int_0^u K(u-\eta) W_1(\eta) \, d\eta = \exp(-\lambda A \, u).$$

Furthermore,

$$\int_{0}^{\infty} \exp(-p u) W_{1}(u) du/(\lambda/(p A)) \to 1 \quad \text{as } p \downarrow 0.$$

Hence $c_2 := \inf_{u \ge 0} W_1(u) > 0$, which proves the left-hand side of (3.8). An easy combi-

nation of (3.2), (3.3) yields the right-hand side of (3.8). \Box

Now we shall construct a global solution of (3.1) for $\rho \in \mathcal{M}$. Denote by $\hat{C}_0^1([0, T))$, $(0 < T \le \infty)$ the family of $f(t) \in C^1([0, T))$ with f(0) = 0. (f'(0) means the right derivative at t = 0.) Then we can state the following

Theorem 3.4. The Eq. (3.1), $(\rho \in \mathcal{M})$ has a unique solution $u(t) = u(t, \rho)$ in $\hat{C}_0([0, T])$ for any $T \in (0, \infty]$, and the mapping $(t, \rho) \rightarrow u(t, \rho)$ is continuous on $[0, \infty) \times \mathcal{M}$.

Proof. For the solution w(u) on [0, U) of (3.2), $(0 < U \leq \infty)$, we put

$$T := \lim_{u \uparrow U} \int_{0}^{u} w(\eta) \, d\eta, \qquad (3.9)$$

and define a function u(t) on [0, T) as follows:

$$\int_{0}^{u(t)} w(\eta) \, d\eta = t. \tag{3.10}$$

Then it is easily seen that $u(t) \in \hat{C}_0^1([0, T])$ and

$$u'(t) = 1/w(u(t))$$
 on [0, T), (3.11)

and therefore $u(t) = u(t, \rho)$ is a solution of (3.1) on [0, T).

Since $\int_{0}^{\infty} w(\eta) d\eta = \infty$ by Proposition 3.3, we have a global solution $u(t, \rho)$ of (3.1).

To show uniqueness of the solutions of (3.1), let $u(t) \in \hat{C}_0^1([0, T))$, $(0 < T \leq \infty)$ be a solution of (3.1). Then we have

$$u'(t) = 1/\tilde{v}(t, \rho)$$
 on $[0, T)$, (3.12)

where

$$\tilde{v}(t,\rho) := \int_{I} \sigma^{2} \exp(-\lambda \sigma u(t))$$
$$\cdot \left(\rho(d\sigma) + \int_{0}^{t} \exp(\lambda \sigma u(s)) \, ds \, \gamma(d\sigma)\right) > 0.$$
(3.13)

Hence by putting

$$w(u(t)) = \tilde{v}(t, \rho), \qquad (3.14)$$

we have the unique solution w(u) of (3.2) on [0, U), $(U := \lim_{t \uparrow T} u(t))$. Furthermore

we construct a solution $\tilde{u}(t)$ of (3.1) on [0, T'), $\left(T' := \lim_{u \uparrow U} \int_{0}^{u} w(\eta) d\eta\right)$ by (3.10) with the aid of w(u). Then it can be easily seen that T = T' and $u(t) = \tilde{u}(t)$ on [0, T), i.e. uniqueness of the solutions of (3.1).

Now we shall show the (t, ρ) -continuity of $u(t, \rho)$. Assume that there exist sequences $t_n \ge 0$, $\rho_n \in \mathcal{M}$ $(n \ge 1)$ and $t_0 \ge 0$, $\rho_0 \in \mathcal{M}$, $\varepsilon > 0$ such that $\lim_{n \to \infty} t_n = t_0$, $\lim_{n \to \infty} \rho_n = \rho_0$ weakly, and $|u(t_n, \rho_n) - u(t_0, \rho_0)| \ge \varepsilon$ for $n \ge 1$. Here $\{u(t_n, \rho_n)\}_{n=1}^{\infty}$ are bounded by Proposition 3.3 through (3.12), (3.14). Therefore by Proposition

3.3 again the dominated convergence theorem can be applied to show

$$\liminf_{n\to\infty}\left|\int_{0}^{u(t_n,\rho_n)}w(\eta,\rho_n)\,d\eta-\int_{0}^{u(t_0,\rho_0)}w(\eta,\rho_0)\,d\eta\right|\geq C\varepsilon\int\sigma^2\rho_0(d\sigma),$$

where $C = c_2$ in the case $\gamma([-A, 0]) = 0$ and $C = c_1/(c_1 + \lambda A)$ in the case $\gamma([-A, 0]) > 0$. This induces an obvious contradiction through (3.10).

Also $\tilde{v}(t, \rho)$ depends in a continuous way on (t, ρ) , because of (3.13). Now put

$$u(t, x) := u(t, \rho(\cdot, x)),$$
 (3.15)

$$\tilde{v}(t,x) := \tilde{v}(t,\rho(\cdot,x)), \qquad (3.16)$$

for $x \in \mathbf{E}(\Lambda)$ with v(x) > 0, abusing slightly notations.

Then we have the following

Corollary 3.5. The mappings $(t, x) \rightarrow u(t, x)$ and $\tilde{v}(t, x)$ are measurable and continuous on the set $[0, \infty) \times \{x \in \mathbf{E}(\Lambda); v(x) > 0\}$, with respect to the d_{∞} -semi-metric.

4. Brownian Motion on the Quadric Hypersurface S

In this section, by making use of the preceding results, we shall construct Brownian motion $(\xi(t, \omega), P^x)$ on the quadric hypersurface $S = S_c(c \neq 0)$ or $\mathring{S}_0 = \{x \in S_0; v(x) > 0\}$.

First we shall show the existence of a solution $\zeta(t, \omega) := (\zeta_1(t, \omega), \zeta_2(t, \omega), ...)$ of the following system of stochastic differential equations:

$$\zeta_n(t,\omega) = \zeta_n(0,\omega) + w_n(t,\omega) - \int_0^t \lambda \lambda_n \zeta_n(s,\omega) / (2v(\zeta(s,\omega)))) ds, \quad (n \ge 1)$$
(4.1)

on a complete probability space $(\Omega, \mathcal{G}, P; \mathcal{G}_t)$.

Let $W(t, \omega) = (w_1(t), w_2(t, \omega), ...)$ be the sequence of mutually independent 1-dimensional \mathscr{G}_t -adapted standard Wiener processes satisfying

$$E[W(t+h) - W(t)|\mathscr{G}_t] = 0 \quad \text{for any } t, h \ge 0.$$

Now we are in a position to state

Definition 4.1. A process $\zeta(t, \omega)$ defined on the complete probability space $(\Omega, \mathcal{G}, P; \mathcal{G}_t)$ is called a solution of (4.1), if the following conditions (i), (ii) are satisfied.

(i) $\zeta(t) = (\zeta_1(t), \zeta_2(t), ...)$ is a \mathscr{G}_t -adapted conservative continuous process on S.

(ii) $(\zeta(t))_{t\geq 0}$ satisfies (4.1) with probability one.

Now we have

Theorem 4.1. We are given a sequence $W(t) = (w_1(t), w_2(t), ...)$ of mutually independent 1-dimensional \mathscr{G}_t -adapted standard Wiener processes on the complete probability space $(\Omega, \mathscr{G}, P; \mathscr{G}_t)$. Next put for any $x = (x_1, x_2, ...) \in S$

$$\xi^{x}(t,\omega) := (\xi^{x}_{1}(t,\omega),\xi^{z}_{2}(t,\omega),\ldots),$$

$$\xi^{x}_{n}(t,\omega) := \exp(-\lambda \lambda_{n} u(t,x)/2)$$
(4.2)

$$\cdot \left(x_n + \int_0^t \exp(\lambda \lambda_n u(s, x)/2) dw_n(s, \omega) \right), \tag{4.3}$$

where u(t, x) is the global solution in $\hat{C}_0^1([0, T))$ of (3.1) with $\rho = \rho(d\sigma, x)$. Then the process $\xi^x(t)$ is a solution of (4.1) with $\xi^x(0) = x$ a.s..

Proof. Applying Theorem 2.6 to $\xi^{x}(t, \omega)$, we have

$$\tilde{v}(t, x) = v(\xi^{x}(t, \omega))$$
 for any $t \ge 0$ a.s., (4.4)

where

$$\tilde{v}(t,x) = \int_{-A}^{A} \sigma^2 \hat{\rho}_t(d\sigma, x).$$
(4.5)

Hence by (3.12), Ito's formula shows that $\{\xi_n^x(t)\}_{n=1}^{\infty}$ satisfies (4.1). Appealing to Theorem 2.6 again, we can see that $\xi^x(t, \omega)$ is a continuous \mathscr{G}_t -adapted process on S. \Box

Next we shall show the pathwise uniqueness of solutions for (4.1).

Lemma 4.2. Put for $x = (x_1, x_2, ...) \in S$,

$$b(x) := (\lambda_1 x_1, \lambda_2 x_2, \ldots) / v(x) \in \mathbf{R}^{\infty}.$$

$$(4.6)$$

Then for $x, y \in S$

$$d_{\infty}(b(x), b(y)) \leq (A/v(x)) (2 + 1/v(x)/v(y)) d_{\infty}(x, y).$$
(4.7)

Proof. The proof is immediate. \Box

Theorem 4.3. Fix $x \in S$. Let $\zeta(t, \omega) := (\zeta_1(t, \omega), \zeta_2(t, \omega), ...)$ be a solution of (4.1) with $\zeta(0) = x$ a.s. on the complete probability space $(\Omega, \mathcal{G}, P; \mathcal{G}_t)$ and let $\zeta^x(t)$ be the solution of (4.1) on the $(\Omega, \mathcal{G}, P; \mathcal{G}_t)$. Then we have

$$\zeta(t,\omega) = \xi^{x}(t,\omega) \quad \text{for any } t \ge 0 \text{ a.s. } (P).$$
(4.8)

Proof. By the continuity of $\zeta(t, \omega)$, $\xi^{x}(t, \omega)$ on S, there exists almost surely a constant $c(x, T, \omega) > 0$ for any T > 0 such that

$$d_{\infty}(\xi^{x}(t,\omega),\zeta(t,\omega)) \leq c(x,T,\omega) \int_{0}^{t} d_{\infty}(\xi^{x}(s,\omega),\zeta(s,\omega)) \, ds, \quad t \leq T$$

with the aid of (4.1) and Lemma 4.2. Hence we have $d_{\infty}(\xi^{x}(t,\omega),\zeta(t,\omega))=0$ a.s. by Grownwall inequality. Consequently $v(\zeta(t,\omega))=v(\xi^{x}(t,\omega))=\tilde{v}(t,x)$ a.s., which shows (4.8) through (4.1). \Box

Now we put for a bounded measurable function f on S

$$\int_{S} f(z) p_t(x, dz) := E[f(\xi^x(t))].$$
(4.9)

Then we have

Proposition 4.4. For a bounded measurable function f on S and s, $t \ge 0$,

$$E[f(\xi^{x}(s+t))|\mathscr{G}_{s}](\omega) = \int f(z) p_{t}(y, dz) \text{ a.s.}, \qquad (4.10)$$

where $y := \xi^x(s, \omega)$.

Proof. By Theorem 4.3, we have

$$\xi_n^x(s+t) = \exp\left(-\lambda \lambda_n u(t, \xi^x(s))/2\right) \left(\xi_n^x(s, \omega) + \int_0^t \exp\left(\lambda \lambda_n u(\tau, \xi^x(s))/2\right) dw_n(s+\tau)\right),$$
(4.11)

 $t \ge 0$ a.s. for any $s \ge 0$, which shows (4.10). \Box

Now the law P^x , $(x \in S)$ on $\mathscr{C} := C([0, \infty) \to S)$ induced by the solution $\zeta^x(t)$ with $\zeta^x(0) = x$ a.s. is well defined. Then by putting

$$\xi(t, w) := w(t) \quad \text{for } w \in \mathscr{C}, \tag{4.12}$$

$$\mathscr{F}_t^0 := \sigma(\xi(s); s \le t), \qquad \mathscr{F}^0 := \sigma(\xi(s); s < \infty)$$
(4.13)

and denoting by $\mathscr{F}_t, \mathscr{F}$ the completion of $\mathscr{F}_t^0, \mathscr{F}^0$ as usual, we can see

Theorem 4.5. ($\mathscr{C}, \mathscr{F}, \mathscr{F}_t, \xi(t), P^x$) with the state space S is a diffusion process with the Feller property: if f(x) is a bounded continuous measurable function on S, so is $E^x[f(\xi(t))], (t \ge 0; fixed)$.

Proof. The diffusion property is easily seen by Proposition 4.4. Hence we have only to show the Feller property. Let $\{X_n(\omega)\}_{n=1}^{\infty}$ be mutually independent random variables on the probability space (Ω, \mathcal{G}, P) with law N(0, 1) and put

$$Y(x, \omega) := (Y_1(x, \omega), Y_2(x, \omega), \dots)$$

$$Y_n(x, \omega) := \exp(-\lambda \lambda_n u(t, x)/2) \left(x_n + \sqrt{\int_0^t \exp(\lambda \lambda_n u(s, x)) \, ds} \, X_n(\omega) \right)$$

for $x = (x_1, x_2, ...) \in S$ and a fixed $t \ge 0$. Then the law of $(\xi^x(t), P)$ is identical with the one of (Y(x), P).

Now we are given $\{x_k\}_{k=1}^{\infty} \subset S$ such that x_k converges to a point $a \in S$ as $k \to \infty$. Then applying the strong law of large numbers to the independent random variables $\{Y_n(x_k) - Y_n(a)\}_{n=1}^{\infty}$, we can see that $Y(x_k)$ converges to Y(a) as $k \to \infty$ a.s.. Hence by the dominated convergence theorem, we have

$$\lim_{k \to \infty} E[f(Y(x_k))] = E[f(Y(a))]. \square$$

Definition 4.2. The diffusion process $(\mathscr{C}, \mathscr{F}, \mathscr{F}_t, \xi(t, \omega), P^x)$ with the state space S is called the Brownian motion on S.

5. Ergodic Properties of the Brownian Motion $\xi(t, \omega)$

In this section, we shall study the ergodic properties of the Brownian motion $\xi(t, \omega) = (\xi_1(t, \omega), \xi_2(t, \omega), ...)$ on the quadric hypersurface $S = S_c (c \neq 0)$ or \mathring{S}_0 . We shall begin with

Proposition 5.1. (i) Assume $\gamma([-A, 0)) > 0$. Then we have

$$t\int_{-A}^{0}\sigma^{2}\gamma(d\sigma) \leq \tilde{v}(t,x) \leq \tilde{v}(0,x) + \left(\lambda A + \int_{-A}^{A}\sigma^{2}\gamma(d\sigma)\right)t \quad \text{for any } t \geq 0.$$
(5.1)

(ii) Assume $\gamma((0, A]) = 1$. Then

$$\lim_{t \to \infty} \tilde{v}(t, x) = \lambda c \quad \text{for } x \in S_c, (c > 0).$$
(5.1)

Proof. Assume $\gamma([-A, 0]) > 0$ and put

$$\tilde{v}_{+}(t,x) := \int_{0}^{A} \sigma^{2} \exp(-\lambda \sigma u(t,x)) \left(\rho(d\sigma,x) + \int_{0}^{t} \exp(\lambda \sigma u(s,x)) \, ds \, \gamma(d\sigma) \right),$$
$$\tilde{v}_{-}(t,x) := \int_{-A}^{0} \sigma^{2} \exp(-\lambda \sigma u(t,x)) \left(\rho(d\sigma,x) + \int_{0}^{t} \exp(\lambda \sigma u(s,x)) \, ds \, \gamma(d\sigma) \right).$$

Then we have the estimate (i) from the following ones:

$$\int_{-A}^{0} \sigma^2 \gamma(d\sigma) \leq \tilde{v}'_{-}(t,x) \leq \lambda A + \int_{-A}^{0} \sigma^2 \gamma(d\sigma), \quad \tilde{v}'_{+}(t,x) \leq \int_{0}^{A} \sigma^2 \gamma(d\sigma).$$

Next assume $\gamma([-A, 0])=0$. An application of the Laplace transform to the both sides of (3.3) with $\rho = \rho(\cdot, x)$ shows $\lim_{u \to \infty} w(u) = \lambda c$, which yields (5.2) through (3.14).

Furthermore, in the case $\gamma((0, A]) = 1$, we set

$$\overline{S}_c := \{ x \in S_c; \ \rho(d\sigma, x) = (c/\sigma) \ \gamma(d\sigma), \ \sigma > 0 \}, \quad (c > 0).$$
(5.3)

Then we have

Proposition 5.2. Assume $\gamma((0, A]) = 1$.

(i) $\xi(t, \omega)$ is a conservative diffusion process on the d_{∞} -closed measurable subset \tilde{S}_c .

(ii) $\xi(t, \omega) \notin \tilde{S}_c$ for any $t \ge 0$ a.s. (P^x) , if $x \in S_c$, $x \notin \tilde{S}_c$.

Proof. Notice that $\rho(d\sigma, x) = (c/\sigma) \gamma(d\sigma)$, $(\sigma > 0)$ is equivalent to $\tilde{v}(t, x) = \lambda c$ for any $t \ge 0$. \Box

Now we proceed to study the ergodic properties of the Brownian motion $\xi(t)$ on S_c .

Proposition 5.3. (i) Assume $\gamma([-A, 0]) > 0$. Then $\xi(t)$ has no σ -finite invariant measure on S_c .

(ii) Assume $\gamma((0, A]) = 1$ and there is one $\lambda_n \leq 0$ at least. Then $\zeta(t)$ on S_c has no invariant probability measure.

Proof. Use Proposition 5.1 (i) in the case (i). \Box

Remark. Assume $\gamma((0, A]) = 1$ only. Then there exists a probability measure v on S_c such that

$$\int_{S_c} f(x) v(dx) = \int_{S_c} E^x [f(\zeta(t))] v(dx), \quad t \ge 0$$
(5.4)

holds for any d_{∞} -continuous bounded measurable function f(x) on S_c .

Next we shall introduce the following condition:

$$\lambda_n > 0, \ (n \ge 1) \text{ and}$$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp(\beta/\lambda_n) = \int_{0}^{A} \exp(\beta/\sigma) \gamma(d\sigma) \text{ for any } \beta > 0.$$
(5.5)

Definition 5.1. Under the condition (5.5), we denote by μ the induced measure by $\tilde{\zeta}(\omega) = (\tilde{\zeta}_1(\omega), \tilde{\zeta}_2(\omega), ...)$ on \mathbb{R}^{∞} , where $\{\tilde{\zeta}_n(\omega)\}_{n=1}^{\infty}$ are mutually independent random variables on the (Ω, \mathcal{G}, P) with law $N(0, c/\lambda_n)$ respectively.

Then we have

362

Proposition 5.4. Assume the condition (5.5). Then μ is an invariant probability measure of $\zeta(t)$ and $\operatorname{supp}(\mu) \subset \widetilde{S}_c$.

Proof. In fact

$$\pi_{\tilde{\zeta}(\omega)}(d\sigma \times d\eta) = \frac{1}{(2\pi c/\sigma)^{1/2}} \exp(-\eta^2/(2c/\sigma)) \, d\eta \, \gamma(d\sigma) \quad \text{a.s.} (P). \quad \Box \qquad (5.6)$$

Theorem 5.5. Assume the condition (5.5). Then

$$\lim_{t \to \infty} E^{x} [\phi(\xi(t))] = \int \phi(y) \,\mu(dy), \quad x \in S_{c}$$
(5.7)

for any bounded continuous measurable function ϕ on S_c .

Proof. First observe that

$$E^{x}[\phi(\xi(t))] = E[\phi(\hat{\xi}(t))], \quad (x = (x_{1}, x_{2}, ...), t \ge 0),$$
(5.8)

where $\hat{\xi}(t, \omega) = (\hat{\xi}_1(t, \omega), \hat{\xi}_2(t, \omega), ...)$ is given by

$$\widehat{\xi}_n(t,\omega) := \exp(-\lambda \lambda_n u(t)/2) \left(x_n + \sqrt{\lambda_n/c} \int_0^t \exp(\lambda \lambda_n u(s)) \, ds \, \widetilde{\zeta}_n(\omega) \right). \tag{5.9}$$

Next we define $\tilde{\phi}(\sigma, t), (\sigma, t \ge 0)$ by

$$\widetilde{\phi}(\sigma,t) := \left(\sqrt{(\sigma/c) \exp(-\lambda \sigma u(t))} \int_{0}^{t} \exp(\lambda \sigma u(s)) ds - 1 \right)^{2}.$$

Then by $\tilde{v}(t, x) \leq c A$, we have $\tilde{\phi}(\sigma, t) \leq (\sqrt{A/\lambda} + 1)^2$.

Now Kolmogorov's law of large numbers shows that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that $[0, \delta)$ is a γ -continuity set and

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{\substack{1 \le n \le N \\ \lambda_n \le \delta}} \widetilde{\phi}(\lambda_n, t) \widetilde{\zeta}_n^2(\omega) \le (\sqrt{A/\lambda} + 1)^2 \int_0^{\delta} c/\sigma \gamma(d\sigma) < \varepsilon$$

for any $t \ge 0$ a.s. (P). Next Proposition 2.1 can be applied to show

$$\frac{1}{N}\sum_{\substack{1\leq n\leq N\\\lambda_n>\delta}}\widetilde{\phi}(\lambda_n,t)\left(\widetilde{\zeta}_n^2(\omega)-c/\lambda_n\right)$$

converges to zero uniformly on any compact set of t as $N \rightarrow \infty$ a.s. (P), and

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\substack{1 \le n \le N \\ \lambda_n > \delta}} \widetilde{\phi}(\lambda_n, t) = \int_{\delta}^{A} \widetilde{\phi}(\sigma, t) c/\sigma \gamma(d\sigma) \to 0 \quad \text{as } t \to \infty.$$

Hence we have

$$\lim_{t\to\infty}\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\widetilde{\phi}(\lambda_n,t)\widetilde{\zeta}_n^2(\omega)=0 \quad \text{a.s.} (P),$$

which shows

$$\lim_{t \to \infty} d_{\infty}(\hat{\xi}(t,\omega), \tilde{\zeta}(\omega)) = 0 \quad \text{a.s.} (P).$$
(5.10)

Furthermore it is immediate that $d_N(\hat{\xi}(t,\omega), \tilde{\zeta}(\omega)) \to 0$ as $t \to \infty$ a.s. (P), $(N < \infty)$. Therefore the dominated convergence theorem completes the proof.

Consequently we have the following

Corollary 5.6. (i) Under the condition (5.5), the $\xi(t)$ on S_c has a unique invariant probability measure.

(ii) Assume that the Brownian motion $\xi(t, \omega)$ on S_c has the standard Gaussian white noise as its invariant measure. Then $S_c = \{x \in \mathbf{E}(A); d_{\omega}(x, 0) = 1\}$.

Finally it should be noted that the invariant probability measure μ of $\xi(t, \omega)$ on S_c is supported by the restricted part \tilde{S}_c of S_c , if it exists. This is just in concordance with P. Lévy's observation [5], because the invariant probability measure of the Brownian motion $\xi(t)$ on S_c can be thought of as the area of the hypersurface S_c .

Acknowledgement. The author thanks Professors Tadahisa Funaki and Izumi Kubo for their invaluable advice. Proofs of Theorem 4.3 and Proposition 4.4 are due, in part to Professor T. Funaki.

References

- 1. Daffer, P.Z., Taylor, R.L.: Laws of large numbers for D[0, 1]. Ann. Probab. 7, 85-95 (1979)
- Hasegawa, Y.: Lévy's functional analysis in terms of an infinite dimensional Brownian motion. I. Osaka J. Math. 19, 405-428 (1982)
- Hasegawa, Y.: Lévy's functional analysis in terms of an infinite dimensional Brownian motion. II. Osaka J. Math. 19, 549-570 (1982)
- Hasegawa, Y.: Lévy's functional analysis in terms of an infinite dimensional Brownian motion. III. Nagoya Math. J. 90, 155-173 (1983)
- 5. Lévy, P.: Problèmes concrets d'analyse fonctionnelle. Paris: Gauthier-Villars 1951

Received November 5, 1986; in revised form July 4, 1988

364