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Summary. A potential theory on an infinite dimensional quadric hypersurface
S is developed following Lévy’s limiting procedure. For a given real sequence
{A.}22, a quadratic form h(x) on an infinite dimensional real sequence space

N
E is defined by A(x):= lim % > Anx2, x=(xy, X5, ...)eE and a quadric hyper-
N-owi¥ g
surface S is defined by S:={x€E; h(x)=c}, and the Laplacian 4, on §
is introduced by the limiting procedure. Instead of a direct use of A, the
Brownian motion £(6)=(&,(2), £,(¢), ...), the diffusion process (£(f), P¥) on S
with the generator 4,/2 is constructed by solving a system of stochastic
differential equations according to 4. The law of large numbers for X,(t)

=(4,, £,(t)) is proved, and ergodic properties are discussed.

0. Introduction

Paul Lévy initiated a potential theory on an infinite dimensional space in his
book [5]. He gave an idea there to construct such objects as an infinite dimen-
sional Laplacian and harmonic functions by a limiting procedure from the corre-
sponding objects in RY, as N —o0. His potential theory has, however, peculiar
phenomena; harmonic functions e.g., can be discontinuous ([5], pp. 305-306).

In the previous papers [2—4], the author intended to give a rigorous formula-
tion of some aspects of Lévy’s potential theory along Lévy’s limiting procedure
with the aid of an infinite dimensional Brownian motion B(t, w)
==(b, (t, ), b, (t, w), ...) on an infinite dimensional real sequence space E, where
{b,(t, w)}-, are mutually independent 1-dimensional Brownian motions. Actu-
ally, in those papers, Lévy’s infinite dimensional Laplacian is thought of as
twice the infinitesimal generator of the B(t, w), and therefore harmonic functions
in Lévy’s sense can be interpreted by the B(¢, w).

Here we shall develop a potential theory on an infinite dimensional real
hypersurface S of a diagonal quadratic form, as the quadric hypersurface S
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seems to be the most important and accessible curved submanifold of E. First
we shall introduce an infinite dimensional formal Laplacian A’ on S by a limit-
ing procedure (N —o0) from the finite dimensional Laplacian Ay on the corre-
sponding finite dimensional quadric hypersurface Sy. Next we shall construct
an infinite dimensional Brownian motion £(t) on S having A%, /2 as formal infini-
tesimal generator. Then we shall define the Laplacian A, on S as twice the
infinitesimal generator of £(t), and develop the potential theory on S with the
aid of &(p).

Therefore, in this paper we shall construct Brownian motions £(¢) on infinite
dimensional quadric hypersurfaces S and shall study their laws of large numbers
and ergodic properties.

More precisely, we shall introduce a real sequence space E with the topology

1 X 1/2
by semi-metrics {dy; ISN=Zo0}, dy(x, Y)::(N > (x,,—-y,,)2> , dyu(x,y)

=lim sup dy(x, y) for x=(xy, x5, ...), y=01, Y2, ...)EE, and with the cylindrical

N—w

o-algebra &. Next with the aid of a real bounded fixed sequence A:={4,}s>,

(14,1 =£ 4, n=1) such that % 121(5 1,(do) converges weakly to a probability measure
y{do) as N—oo0, we deﬁn;_E(A) as the subset of E consisting of all points
x=(xy, X5, ...)€E such that %ilé('l"’x")(da x dn) converges weakly to a prob-
ability measure 7, (do x dy) as n]\_f—>oo. (Here 6, stands for the measure having
mass one at a.) Now we define a diagonal quadratic form k(x) as follows:

h{x):=lim — z Ax2 forx=(x;,x;,...;cE{A). 0.1)

N— co
Then the infinite dimensional quadric hypersurface S=S, (ceR) is given by
S:={xeE(4); h(x)=c}. 0.2)

Now our next task is to construct the formal Laplacian A, on S by the
limiting procedure in the same way as [2-4]. The counterpart of h(x) in R¥

is considered to be hy(x): =N Z I X2, X =(xq, ..., xy)eRY and the Riemannian
n=1

1Y . .
metric of RY to be ds§:=— Y dx2. Hence the Laplacian A, on the quadric
NTN

n=1

hypersurface Sy .:=={xeR"; hy(x)=c} is given by

Ay =N(@2/0x3 + ...+ 0/0x2) — (N — 1) Ky 8/0vy— 0%/dV3,
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where 0/0vy denotes the outer normal differentiation of Sy, and Ky is the
mean curvature of Sy .. Therefore, by the limiting procedure A, = lim 4,/N,

the formal Laplacian A’ on § is defined by N=eo
A=Y, 0%/0x7 —(Afv(x)) Y, An Xy 0/0%,, (0.3)
n=1 n=1
where
v(x): —hm—Z/lz x=(x,, X, ...)ES, (0.4)
N—>co
1
A= lim — Z Jn-
N—>ao

Consequently the Brownian motion &(t, w):=(&,(t, w), &, (t, ), ...), the conser-
vative diffusion process on S with the formal generator A7,/2, will be given
as solution of the following system of stochastic differential equations:

dE,(t, ) =dw,(t, ) — 11, E,(t, @)/ Qu(E(t, ) dt, (n=1) (0.5)

where {w,(t)},% are mutually independent 1-dimensional standard Wiener pro-
cesses. Then our first result is the following

Theorem A. The solution ¢(t) of (0.5) exists and the pathwise uniqueness of solu-
tions of (0.5) holds. The Brownian motion (((t), P¥) on S exists and {&,(t)}2,
are mutually independent (P¥),g.

Now we shall introduce a time-inhomogeneous [ — 4, A] x R-valued diffusion
process (X (t, w), P ™). Given x on the surface S and the Brownian motion
E(t, w) starting at x, we can define a deterministic positive continuous function
7(t, x) by

{t, x)=v(¢(t,w)) foranyt=0a.s.(P%). (0.6)
We define (X (¢, w), P ") as the diffusion process with the infinitesimal generator
L(v), ¢z 0):

L(t)=(1/2) 8*/on* — (Ao n)/25 (¢, 1)) 6/0n. (©.7)

The superscript (o, 7) denotes conditioning that X (0, w)=(c, 1) a.s. P©?,
Our law of large numbers can be stated as follows:

Theorem B. Set

X, (t, @):=(4,, E,(t, w), (n=1). (0.8)
1 N
Then N Y Oy, (., wy COnverges weakly to a probability measure II* on C([0, )
n=1
—[—A4, A1 xR) as N— oo P*-almost surely, (xe8), where
foW I*(dy):=[ECP[$(X ()] ne(do x dn) (0.9)

for any bounded continuous function ¢(y) on C([0, 0)—[—A4, A]xR).

Now we shall describe the ergodic properties of the Brownian motion
(&(1), P*) on the S.
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Theorem C. (1) If y((—o0,0))>0, £(¢) is transient and has no o-finite invariant
measure.
(2) £(t) has an invariant probability measure p, if and only if 1,>0 for all
n=1, and in this case p is unique and im E*[¢(£(t)]= | ¢ (y) u(dy) for any xeS$
t—> oo

and any bounded continuous measurable function ¢ on S.

1. Infinite Dimensional Quadric Hypersurfaces

We shall begin with some definitions. Throughout this paper, J, denotes the
measure having mass one at x.

Definition 1.1. The space E consists of all sequences x=(x,, x,,...)JeR® such

1 N
that sup— Y exp(Blx,))< oo for any f>0 and that the probability measures

n=1
1 N
N Z _(dn) on R converge weakly to a probability measure #,(dn) on R as

N — 0. The space E is endowed with the topology by the semi-metrics {dy(x, y);
1SN=w}:

1/2

1 N
s =G G nP) + dallimsspdyny (L)

for x=(x;,%5,...), y=01,¥2,...)€E, and is equipped with the cylindrical o-
algebra &.

Throughout this paper, we shall fix a real bounded sequence 4:={4,}> ,
1 N

(J4s]=4, n=1) such that the probability measures N Y 8,.(do) on [—A4, A]
n=1

converge weakly to a probability measure y(do) on [—A, A] with y({0})=0

1
as N - oo, and we assume A:= lim — Z An={07(d6)>0 and call the y the spec-
tral measure of the A. oo N

Definition 1.2. The space E(A) consists of all points x=(x;, X,, ...)€E such that

1
the probability measures — z 0z, xy(do x dn) on [— A, A] x R converge weakly

to a probability measure nx(da xdnyon[—A, A] xR as N—co.
Now the first assertion is the following

Proposition 1.1.
(I) E(A) is a d-closed measurable subset of the E.
(1Y) = (do x dy) is weakly d ~continuous on E(A), as a function of x.
(XII) =, (B) is &-measurable in x for any Be B (R?).
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‘ 0
<

—io
for any x=(x,, X5, ...), Y=(1, ¥, ...)€E and ¢ (o, n)e C¥(R?), the space of real-
valued C*-functions on R? with compact supports. Here |¢| ., denotes the

supremum norm of a function ¢. Observing #,(R)=1 for any acE, we have
therefore the d-closedness of E(A). The other assertions are obvious. [

Proof. 1t holds that

1 X 1
lim sup | Y Oy, X,.)—ﬁ Y O va)
n=1 n=1

N—o

do (X, y)

Definition 1.3. An infinite dimensional diagonal quadratic form h(x) is defined
by

h{x): —l1m121 x2  forx={(x;,x,,...)€eE(4); (1.2)

N—'oo
the set S=S,, ceR, defined by
S={xeE(4); h(x)=c} (1.3)

is called an infinite dimensional quadric hypersurface or simply a quadric hyper-
surface.

Then S is a d,-closed measurable subset of E(A4).
Now we introduce another measure p(do, x), which is repeatedly used later.

Definition 1.4. For each x=(x,, x,, ...)eE(4), we put

pldo, x)= [ n*n(do x dy), (1.4)
N

p()= lim — ¥ 222 (1.5)
N"OONn—l

2. Laws of Large Numbers

In this section, we shall consider laws of large numbers for mutually independent
continuous processes {&,(t, )}, which are obtained from the stochastic differ-
ential equations (0.5) by substituting a given continuous function #(t)>0 for
the factor v(E(¢t, w)) of (0.5).

We begin with the following

Proposition 2.1. Put T:=[0, T]®?={t=(t,, ..., t,); 0=;<T, 1<i<p}, (T>0)
and assume that a family of random fields {X ,(t, ); teT} _, on a probability
space (2, %, P) satzsﬁes the following conditions.

(1) {X,(t, )}, are mutually independent random fields.

2) supiZE[lan||§~]<oo for some r>1,
N N

n=1
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where || x| r:=sup|x(t)| for xeC(T—R).
teT

(3) E[X,(-,w)]=0, (n=1) in the Bochner integral sense in C(T —>R).
(4) The family {X,(t, w); teT}%, is uniformly tight in C(T - R).

1 N
Then the sample path of — Y X, (t, w) converges to zero uniformly on T as N — o

almost surely(P). n=1

Proof. See [1] for the proof. [

Now we shall fix a point x=(x;, x5, ...)e E(4) with v(x)>0 and a cont~inuous
functio~n ?(1)>0 on [0, ), and define a sequence of processes X,(t, ®)
=4y, Calt, @), (n21) by

E,(t, o):=exp(— 1A, 1(t)/2) (x,, -+ f exp (A 4, 4(s)/2) dw,(s, w)), 2.1
0

where {w,(t)},%, are mutually independent 1-dimensional standard Wiener pro-
cesses on a probability space (2,%, P) and

t
a(t):= | 1/6(s) ds. 2.2)
0
Next we shall introduce another diffusion process (X (t, @), P*?) with state
space [ — A4, A] x R and generator L(t), (t=0):
X (t, ):=(6 (w), {(t, »))

L(1):=(1/2) 8*/on*— (Ao m/(26(8)) 6/0n. (2.3)

We shall fix T>0, peCg (R?P), and set

and

Zn(tﬂ (D)==¢)(Xn(l'1, ('O)a B Xn(tp: w))_E[d)(Xn(tl)a ey Xn(tp))]

for t=(t,...,t,)eT =[0, T]®".
Then we have

Lemma 22. For an integer v with r/2=p+1, there exists a constant c
=c(p,r, ¢, T)! such that (n=1)

E[|Z, (&)= Z, () ]sc ) |t~ (2.4)

i=1
forany t=(ty,...,t,), t' =(t}, ..., tp)eT,

E[Z,0T=2l¢llw)-

1 ¢(z) denotes a positive constant depending only on z in this paper
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Proof. It holds that for ¢t >5>0
&)~ &,(5)=(exp(— A 2, (4 (1) — #(s))/2) — 1) &,(5)

+exp(—A4,4(t)/2) j exp(A 4, 6(t)/2) dw,(t, w),
&)= Zu(8)=(1 —exp(2 4, (6()) — #4(5))/2)) &, (1)
+exp(—44,4(s)/2) j"t exp(4 4, 14(z)/2) dw,(t, w).

Hence by Jensen’s inequality and Burkholder’s one we have the following esti-
mate for t>s=0 and R>0:

E[E®—E6)I; &0 or E(9e[—R,R]]
=2(exp(A A@(1)—4(s)/2)—1)' R

r/2

+c(r)exp(L Ad(f) r/2) (jt exp(4 A7) d’E) ,

where supp ¢ <[ —R, R]®2?7, [

Therefore we have

Proposition 2.3.

1 N
N Z X nlt1, ©) (doy xdn,) .. 55(,,(zp,w)(d0'p X dnp)

N—>§P(“’")(X(ti)edoi xdn;, i=1,...,p)n.(do x dn) (2.5)

weakly in Z(R??) for any (ty, ..., t,)€[0, 0)®” as.(P), where Z(R*?) stands for
the space of probability measures on R??.

Proof. Lemma 2.2 shows the uniform tightness of the family {Z,(t, w); teT};Z,

for the ¢eCy (R*?) by the Totoki-Kolmogorov criterion. Hence by Proposition
N

2.1, the sample path of N Y Z,(t, w) converges to zero uniformly on T as N — o0
n=1

almost surely(P). Since

1 o o
z\gl—l}goﬁ Z E[¢(Xn(t1)> s Xn(tp))]

=[ECP[H(X (1), ..., X (t,)] mx(do x dn)
for any (t, ..., t,)€[0, 0)®?, the proof is completed. [

Consequently we have
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1 N
Theorem 2.4. For a.e. w(P), the probability measures N Y 0x,0.0 00 C([0, )
n=1

—[—A4, A] xR) converge weakly to a probability measure II* on C([0, 0)—[
— A, A] xR) as N — o0, where the II* is defined as follows:

§ SO I*(dy):= f E@PLf(X (-] m.(do x dn) (2.6)

for bounded continuous functions f on C([0, c0)—[—A4, A] X R).

Proof. With the aid of Proposition 2.3, it is sufficient for the proof to show
for a.e. w(P)

1

lim 1nf Zx[o (1 X,0,w))=

Cto N

lim lim sup— z sup X[,, oo)(|f (t, ®)— &, (s, w)) =0
L0 N-w net ls—tl
5, t<T

for any p, T >0.

To this end, we choose L, L,(L; <L,) for a given ¢>0 so that #,([L,, L,])
>1—¢ and [L,, L,] is a #,-continuity interval. Then the mutual independence
of {&,(t, )}, shows that for a.e. »(P)

. 1Y - >
lim Supﬁ Z Ao, oo)( sup |€n (t5 (D)— én (Sa (D)')
N-ow a=1 ls—t]<é

s,tsT

1
_11msup ZP( sup 1Z,()—&,(s)|2p)
N—ow n:1 |s—t| <6
5,t<T

<2¢ forsufficiently small § >0,
because {&,(t, w); L; <x,< L,} is uniformly tight. []

We have the following proposition concerning the growth of test functions.

Proposition 2.5 For any >0,
1 X L
sup- > exp(ﬁ Y 1X, (s w)|)< o0 (2.7
N Np= k=1
forty,...,t,=0as.(P).
Proof. The proof is immediate. [

Consequently Theorem 2.4 and Proposition 2.5 give

2y, denotes the indicator function of the set D
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Theorem 2.6. Set
E(t, w)=(&,(t, w), &, (t, @), ...)eR™. (2.8)

Then we have the following assertions.
Tz, wy(do x dn)= [ P""(X (t, w)edo x dn) n (do’ x dn) 2.9
for any t 20 as. (P).

p(do, &E(t, w))=p,(do,x) foranyt=0as. (P), (2.10)
where

p.(do, x):==exp(— Ao i(t)) (p (do, x)+ _fl exp(Loti(s)ds y(da)). (2.11)
0

lim % é(&n(t, w)—E,(s, )

= [exp(—Ao a(t)) [ exp(Ao 4(z)) dty(do)

+ j(exp(—2a(@()—0(s))/2) — 1)’ p,(do, x) 2.12)

for any t=2520 a.s. (P).

3. A Nonlinear Integral Equation

Let # stand for the family of finite measures p absolutely continuous with
respect to y such that { a?y(de)>0, equipped with the weak convergence topolo-
gy and the topological g-algebra.

Given pe.#, we shall show in this section the existence and the uniqueness
of solutions u(t) of the following nonlinear integral equation:

[ o exp(—Aau() (p(da)+ { exp(Aou(s) dsy(da))= fop(de), (3.1
I 0

I

where I=[— A, A].
First we notice the following propositions.

Proposition 3.1. For the p(do), the following two integral equations are mutually
equivalent in C([0, o0)):

[ oexp(—Aou) (p(da)+ | exp(Aan)w(n) dy y(da))= {opdo), (3.2)
I 0

I

w()— | Ku—n)wn)dn= [ o’ exp(—2iou) p(do), (3.3)
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where
K(u):= | 0% exp(— Ao u)y(do). (3.4)
I
Proof. The proof is obvious. []

Proposition 3.2. The solution w(u) of the Eq. (3.3) in C([0, o0)) uniquely exists.
It is a continuous, strictly positive global solution given by

ww)= | W(u, o) 6*y(do), (3.5
where

W(u, g):=exp(—Aou)+ f]“(u—n) exp(—Aan)dn (3.6)

with the resolvent kernel I'(u—n) of (3.3).
Proof. The proof is immediate. []
Concerning the estimate of the w(u), we have
Proposition 3.3. (I) Assume y([—A,0)>0. Then
c(expley w)/(c, + 4 A4) If ¢’ p(do)

<w(w)<2exp(A4A+y,)u) | o p(do), 3.7)

I
where

0
cii= [ o®y(do), .= | o’y(do).

—A

(IT) Assume y([—A,0])=0. Then
c; fﬂzp(dﬂ)éww)é/l fap(dUL (3.8)
0 0

where c, is a strictly positive constant depending only on 7.
Proof. Assume y([ — 4, 0))>0. Then
crexp(e(u—n) S I'(u—n) <y, exp(AA+7,) (u—n).
Hence we have
W(u, 0)Z(c fic, + o) expl(c )+ (Ao/(c,+ o)) exp(—Aou) for 620,
W(u,o)zexp(c,;u) for 620,
Wu,0)S2exp(AA+y,)u) for oe[—A4, A].

Therefore we have (3.7) because of (3.5).
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Next assume y([ — 4, 0])=0. Denoting by W(u) the unique global solution
of the following equation in C([0, c0)), we have W(u, g) = W {(u) for any ¢ =0:

Wi(w)— | K(u—n) Wi(n) dn=exp(—7Au).
0
Furthermore,

§ exp(—pu) Wy (w)du/(i/(pA)—>1 as plO.
0

Hence ¢, := inf W] (1) >0, which proves the left-hand side of (3.8). An easy combi-

uz0

nation of (3.2), (3.3) yiclds the right-hand side of (3.8). [

Now we shall construct a global solution of (3.1) for pe.#. Denote by
CL([0, T)), (0< T< o) the family of f(£)e C*([0, T)) with f(0)=0. (f(0) means
the right derivative at t=0.) Then we can state the following

Theorem 3.4. The Eq. (3.1), (pe.#) has a unique solution u(t)=u(t, p) in C}([0, T))
for any Te(0, oo, and the mapping (t, p) ~>u(t, p) is continuous on [0, c0) x 4.

Proof. For the solution w(u) on [0, U) of (3.2), (0< U £ 0), we put

T:=lim j w(n) d, (3.9)

ullUg

and define a function u(t) on [0, T) as follows:
u(t)
[ wmdn=t. (3.10)

0
Then it is easily seen that u(t)e C§([0, T)) and
w(O)=1/wu() onl0,T), (3.11)
and therefore u(t)=u(t, p) is a solution of (3.1) on [0, T).

Since | w(n)dn=oco by Proposition 3.3, we have a global solution u(z, p)
of (3.1). ©

To show uniqueness of the solutions of (3.1), let u(t)e C}([0, T)), (0 < T=< o)
be a solution of (3.1). Then we have

W(H)=1/3(t,p) on [0,T), (3.12)
where
o(t, p):= | o* exp(— Lo u(?)

-(p(da)+ fexp(/lau(s)) dsy(do‘)>>0. (3.13)
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Hence by putting
w(u(®)=20(, p), (3.14)

we have the unique solution w(u) of (3.2) on [0, U), (U:=lim u(t)). Furthermore
1T

we construct a solution #(t) of (3.1) on [0, T"), (T’:zlim j w(n)dn) by (3.10) with
utU g

the aid of w(u). Then it can be easily seen that T=T" and u(¢)=d(t) on [0, T),
i.e. uniqueness of the solutions of (3.1).

Now we shall show the (t, p)-continuity of u(t, p). Assume that there exist
sequences £,=0, p,e# (n=1) and t,=0, poe.#, ¢>0 such that lim¢,=t,,

nto

lim p,=p, weakly, and |u(t,, p,) —u(to, po)l = ¢ for n=1. Here {u(t,, p,)};>, are

ntoo
bounded by Proposition 3.3 through (3.12), (3.14). Therefore by Proposition
3.3 again the dominated convergence theorem can be applied to show

u(tn; Pr) u(to, po)

liminf| | w(,p)dn— [ win,po)dn|ZCefa®po(da),
0 0

n-> oo

where C=c, in the case y([—4,0)=0 and C=c,/(c;+4A4) in the case y([
—A,0))>0. This induces an obvious contradiction through (3.10). O

Also #(t, p) depends in a continuous way on (¢, p), because of (3.13).
Now put

u(t, x)=u(t, p(+, x)), (3.15)
B(t, x):=0(t, p(-, x)), (3.16)

for xeE(4) with v(x) >0, abusing slightly notations.
Then we have the following

Corollary 3.5. The mappings (t, x) - u(t, x) and #(t, x) are measurable and continu-
ous on the set [0, c0) x {x€E(4); v(x)> 0}, with respect to the d ,-semi-metric.

4. Brownian Motion on the Quadric Hypersurface §

In this section, by making use of the preceding results, we shall construct Brow-
nian motion (£(t, ), P*) on the quadric hypersurface S=S,(c=0) or S, = {x€S,;
v(x)>0}.

First we shall show the existence of a solution {(t, w):=({,(t, ), {, (¢, w), ...)
of the following system of stochastic differential equations:

cn (t: CO) = Cn (0: CL)) +w, (t: CO)

— [ 2 la(s, )20 (s, ) ds,  (nz1) (4.1)
0
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on a complete probability space (2,9, P; %,).
Let W(t, w)=(w,(t), w,(t, w), ...) be the sequence of mutually independent
1-dimensional %,-adapted standard Wiener processes satisfying

E[W({it+h—W()|%]=0 forany t,h=0.

Now we are in a position to state

Definition 4.1. A process [(t,w) defined on the complete probability space
(Q2,9,P; %) is called a solution of (4.1), if the following conditions (i), (ii) are
satisfied.

(1) L) =((1), {,(), ...) is a %,adapted conservative continuous process on
S.

(i) (£());» o satisfies (4.1) with probability one.

Now we have

Theorem 4.1. We are given a sequence W(t)=(w(t), w,(t), ...) of mutually indepen-
dent 1-dimensional 9,-adapted standard Wiener processes on the complete probabil-
ity space (2,%, P; 9,). Next put for any x=(x,, x,,...)€S

&t ) =&t w), &3(5, ), ...), (4.2)
S (t, w)=exp(— A4, u(t, x)/2)
. (x,, + ft exp(4 4, u(s, x)/2) dw,(s, w)), 4.3)
0

where u(t, x) is the global solution in C§([0, T)) of (3.1) with p=p(do, x). Then
the process £*(t) is a solution of (4.1) with £*(0)=x ass..

Proof. Applying Theorem 2.6 to *(t, ), we have

#t, xy=v(&*(t, w)) for any t=0 as., 4.4)
where
5(t,x)= | ®p,(do,x). (4.5)
-4

Hence by (3.12), Ito’s formula shows that {&}(f)}%, satisfies (4.1). Appealing
to Theorem 2.6 again, we can see that £*(¢, w) is a continuous %,-adapted process
onS. [

Next we shall show the pathwise uniqueness of solutions for (4.1).

Lemma 4.2. Put for x=(x;, x,,...)€S,

b(x):=(Ay X1, 43 X5, ...)/v(x)eR®, (4.6)
Then for x, yeS
do, (b(x), b(n) = (4/v(x)) 2+]/ v(x)/v(y)) doo (x, y)- (4.7)

Proof. The proof is immediate. []
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Theorem 4.3. Fix xeS. Let {(t, w)=({{t, w), {5, w),...) be a solution of (4.1)
with {(0)=x a.s. on the complete probability space (2,%, P;%,) and let &*(t) be
the solution of (4.1) on the (2,9, P; %,). Then we have

[(t,wy=E,"(t, 0y foranyt=0as. (P). 4.8)
Proof. By the continuity of {(t, ), £*(t, w) on S, there exists almost surely a
constant c¢(x, T, w)>0 for any T >0 such that

de, (&7 (t, ), (1, 0) Zclx, T w) ft Ao (E¥(s, 0), {(s, w))ds, =T

with the aid of (4.1) and Lemma 4.2. Hence we have d (&¥(t, w), {{t, w))=0
a.s. by Grownwall inequality. Consequently v({(t, w))=v(&* (¢, w))=73(t, x) a.s.,
which shows (4.8) through (4.1). O

Now we put for a bounded measurable function f on S
[ £(@) pex, d2):=E[f(E*()]- (4.9)
S
Then we have
Proposition 4.4. For a bounded measurable function f on S and s,t 20,
E[f(&*(s+D) %] (@)= [ f(2) p.(y, d2) as., (4.10)

where y:=E&*(s, w).

Proof. By Theorem 4.3, we have

EX(s+ )= exp(— A iy u(t, E(5))/2) (f::(s, o)+ [ exp(d Ay uls, E()/2) dwa(s+ r)),
1]

4.11)
t 20 a.s. for any s=0, which shows (4.10). []

Now the law P*, (xeS) on €:=C([0, c0)—S) induced by the solution £*(z)
with £&*(0)=x a.s. is well defined. Then by putting
Et,w)=w(t) forwe%, 4.12)

FO=0(E(s); 551,  FO=a(E(s); s<00) (4.13)

and denoting by %, % the completion of £°, #° as usual, we can see

Theorem 4.5, (¢, &, #,, £(t), P¥) with the state space S is a diffusion process with
the Feller property: if f(x) is a bounded continuous measurable function on S,

so is EX[f(£()], (¢ 2 0; fixed).
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Proof. The diffusion property is easily seen by Proposition 4.4. Hence we have
only to show the Feller property. Let {X,(w)},~; be mutually independent ran-

n=1

dom variables on the probability space (2, ¢, P) with law N(0, 1) and put

Y(x, 0):=(Y;(x, w), Y,(x, ®), ...)

Y, (x, w):=exp(— A 4, ult, x)/2) <x,, +]/jl exp(A 2, u(s, x))ds X,,(cu))
0

for x=(x{, x,,...)éS and a fixed t=0. Then the law of (£*(¢), P) is identical
with the one of (Y(x), P).

Now we are given {x;};>; =S such that x, converges to a point a€S as
k—o0. Then applying the strong law of large numbers to the independent ran-
dom variables {Y,(x;)—Y,(a)}=,, we can see that Y(x,) converges to Y(a) as
k— oo a.s.. Hence by the dominated convergence theorem, we have

Im ELf(YCo))1=ELf(Y(@)]. O

Definition 4.2. The diffusion process (¢, %, #,, £(t, w), P¥) with the state space
S is called the Brownian motion on §.

5. Ergodic Properties of the Brownian Motion &(z, »)

In this section, we shall study the ergodic properties of the Brownian motion
E(t, w)=(&,(t, w), &,(t, w), ...) on the quadric hypersurface S=S§, (¢ +0) or ;.
We shall begin with

Proposition 5.1. (i) Assume y([ — 4, 0)) >0. Then we have
0 4
t | o®y(do)<5(t, x)=7(0, x)-f—(/lA + | o? y(dcr)) t foranyt=0. (5.1)
—A —A
(i) Assume y((0, A])=1. Then

limd{t,x)=4c forxeS,{c>0). {5.1)

t—~>

Proof. Assume y([ —A4,0))>0 and put

A

7.(t, x):= | o?exp(— Ao u(t, x)) (p(do, x)+ ftexp(/lau(s, x)) dsy(do)),

0

[0} t
T_(t,x):= [ o?exp(—Aoult, x))(p(do’, x)+ | exp(Lou(s, x)) dsy(da)).

—A
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Then we have the estimate (i) from the following ones:

0 0 A
[ ?ydo)ST_(t, )44+ [ o*y(do), ¥.(tx)Z [ o?y(do).
—A —A 0

Next assume y([—A4,0))=0. An application of the Laplace transform to
the both sides of (3.3) with p=p(-, x) shows lim w{u)=2¢, which yields (5.2)
through (3.14). [ ure

Furthermore, in the case y((0, A])=1, we set
S.:=={xeS.; p(do, x)=(c/o)y(dq), >0}, (c>0). (5.3)

Then we have

Proposition 5.2. Assume y((0, AD)=1.

(i) &(t, w) is a conservative diffusion process on the d -closed measurable subset
S..

(i) &(t, w)¢S, for any t=0 as. (P*), if xeS,, x¢8..

Proof. Notice that p(do, x)=(c/6)y(do), (6 >0) is equivalent to #i(t, x)=Ac for
any t=0.

Now we proceed to study the ergodic properties of the Brownian motion
(W on S,.

Proposition 5.3. (i) Assume y([ — 4, 0))>0. Then &(t) has no o-finite invariant mea-
sure on S,.

(i) Assume y((0, 4])=1 and there is one 1,50 at least. Then &(t) on S, has
no invariant probability measure.

Proof. Use Proposition 5.1(1) in the case (i). [J

Remark. Assume 7((0, A])=1 only. Then there exists a probability measure v
on S, such that

ffv@dx)= | B [f(¢@)]v(dx), 120 (5.4)
S Se

holds for any d_-continuous bounded measurable function f(x) on S,.

Next we shall introduce the following condition:
4,>0, (n=21) and

lim —11\7 i exp(B/A,) = fexp(ﬂ/a) y(do) for any >0. (5.5)

N—wo

Deflnition §.1. Ugder the condition (5.5), we denote by u the induced measure
by {(w)=({}(w), {5(w), ...) on R, where {(,(w)};=; are mutually independent
random variables on the (2, ¢, P) with law N(0, ¢/4,) respectively.

Then we have
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Proposition 5.4. Assume the condition (5.5). Then u is an invariant probability

measure of &(t) and supp(u)<S,.
Proof. In fact

Ty (d0 X dy) = exp{—n%/2c/e))dny(do) as.(P). []

1
(2nc/o)'’?

Theorem 5.5. Assume the condition (5.5). Then

tlim EX[o(E@)]= [ ¢(y) u(dy), xeS,
Sfor any bounded continuous measurable function ¢ on S,.
Proof. First observe that

E*[$CEWI=E[6CM)], (x=(x1,x;,...), 120),

where £(t, w)=(,(t, w), &,(t, w), ...) is given by

£.(t, @)=exp(~ 1 2, u(t)/2) (x,, +]/ e exp(2 du(s) ds Cufo )

Next we define ¢(a, 1), (3, = 0) by

$ (o, 1) ==<l/(o/c) exp(—Aou(t)) jt exp(Aou(s)) ds— 1)2.
0

Then by #i(t, x)<c A4, we have ¢ (o, () A/A+1)

(5.6)

(5.7)

(5.8)

(5.9)

Now Kolmogorov’s law of large numbers shows that for any £>0 there

exists a >0 such that [0, §) is a y-continuity set and

llmsup— S B 1) gZ(w)<(1ﬂ+1)2 [ ¢/oy(do)<

N-w 1<n<N
In<é

for any t=0 a.s. (P). Next Proposition 2.1 can be applied to show

Y B, ) (Cl)—c/A,)

1=n<N
in>0d

N

converges to zero uniformly on any compact set of t as N — oo a.s. (P), and

11m— Y $(}»",t)—jd)(a,t)c/ay(da)—»O as t— 0.

N-oN 1<n<N
An> 8



364 Y. Hasegawa

Hence we have

lim lim 1 i GOy ) 2 (0)=0 as.(P),
Nn=1

t—ow N

which shows
limd (&(t, w), (@) =0 as.(P). (5.10)

t—=

Furthermore it is immediate that dy(&(t, ), {(w))—0 as t —» o0 as. (P), (N < o0).
Therefore the dominated convergence theorem completes the proof. [

Consequently we have the following

Corollary 5.6. (i) Under the condition (5.5), the £(t) on S, has a unique invariant
probability measure.

(il) Assume that the Brownian motion £(t, w) on S, has the standard Gaussian
white noise as its invariant measure. Then S;={xeE(A); d ,(x,0)=1}.

Finally it should be noted that the invariant probability measure u of &(t, w)
on S, is supported by the restricted part S, of S,, if it exists. This is just in
concordance with P. Lévy’s observation [5], because the invariant probability
measure of the Brownian motion £(f) on S, can be thought of as the area
of the hypersurface S,.
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