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Summary. A potential theory on an infinite dimensional quadric hypersurface 
S is developed following L6vy's limiting procedure. For a given real sequence 
2 o0 { ,},=,  a quadratic form h(x) on an infinite dimensional real sequence space 

E is defined by h(x).'= lim 2 ,x , ,  x= (x l ,  x2, . . . )eE and a quadric hyper- 
N ~ c o  IY . : 1  

surface S is defined by S = { x a E ;  h(x)=c},  and the Laplacian Aoo on S 
is introduced by the limiting procedure. Instead of a direct use of zIoo, the 
Brownian motion ~(t)=(~l(t), ~2(t) . . . .  ), the diffusion process (~(t), px) on S 
with the generator Aoo/2 is constructed by solving a system of stochastic 
differential equations according to zto~. The law of large numbers for X,(t)  
�9 "=(2,, ~,(t)) is proved, and ergodic properties are discussed. 

0. Introduction 

Paul L6vy initiated a potential theory on an infinite dimensional space in his 
book [-5]. He gave an idea there to construct such objects as an infinite dimen- 
sional Laplacian and harmonic functions by a limiting procedure from the corre- 
sponding objects in R N, as N ~ o o .  His potential theory has, however, peculiar 
phenomena; harmonic functions e.g., can be discontinuous ([5], pp. 305-306). 

In the previous papers [2-4], the author intended to give a rigorous formula- 
tion of some aspects of L6vy's potential theory along L6vy's limiting procedure 
with the aid of an infinite dimensional Brownian motion B(t, to) 
:=(bl(t, co), bz(t, co) . . . .  ) on an infinite dimensional real sequence space E, where 
{b,(t, co)},~=l are mutually independent 1-dimensional Brownian motions. Actu- 
ally, in those papers, L6vy's infinite dimensional Laplacian is thought of as 
twice the infinitesimal generator of the B (t, co), and therefore harmonic functions 
in L6vy's sense can be interpreted by the B(t, co). 

Here we shall develop a potential theory on an infinite dimensional real 
hypersurface S of a diagonal quadratic form, as the quadric hypersurface S 
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seems to be the most important and accessible curved submanifold of E. First 
we shall introduce an infinite dimensional formal Laplacian A~ on S by a limit- 
ing procedure (N--, oo) from the finite dimensional Laplacian zlu on the corre- 
sponding finite dimensional quadric hypersurface SN. Next we shall construct 
an infinite dimensional Brownian motion ~(t) on S having J'~/2 as formal infini- 
tesimal generator. Then we shall define the Laplacian A-~ on S as twice the 
infinitesimal generator of ~(t), and develop the potential theory on S with the 
aid of ~ (t). 

Therefore, in this paper we shall construct Brownian motions ~ (t) on infinite 
dimensional quadric hypersurfaces S and shall study their laws of large numbers 
and ergodic properties. 

More precisely, we shall introduce a real sequence space E with the topology 
/ 1 N \t/2 

by semi-metrics {dN;I<-N-<~},  dN(x,y):=[N ~ (x.-y.)2 ) , doo(X,y) 
\ n = l  / 

:=lim sup dN(x, y) for x=(x l ,  x2 . . . .  ), Y=(Yl, Y2 .... )eE, and with the cylindrical 
N~oo  

o--algebra g. Next with the aid of a real bounded fixed sequence A.'={2,}2=1 
1 N 

(I,l.l < A, n__> 1) such that ~- ~ 6~,(da) converges weakly to a probability measure 
n = l  

y(da) as N ~ o o ,  we define E(A) as the subset of E consisting of all points 
1 N 

x=(x t, x2, . . . )eE such that ~ ~ 6(~ . . . .  ~(do-x dr/) converges weakly to a prob- 
~ ' n = l  

ability measure ~z~(da x dq) as N-+oo. (Here ~a stands for the measure having 
mass one at a.) Now we define a diagonal quadratic form h(x) as follows: 

N 

h(x):= lim ~ ~ 2.x~ for x =(xl ,  xz .... )eE(A). 
N ~ a o  n = I  

(o.~) 

Then the infinite dimensional quadric hypersurface S = Sc (ceR) is given by 

S.-= {x e E (a); h (x) = c}. (0.2) 

Now our next task is to construct the formal Laplacian zt'~ on S by the 
limiting procedure in the same way as [ 2 4 ] .  The counterpart of h(x) in R u 

1 N 
is considered to be h N ( x ) : = ~ 2 , x  2, x=(xl ,  ..., xu)eR u and the Riemannian 

N 

metric of R u to be ds~:= 1 ~ dx 2. Hence the Laplacian zt u on the quadric 
Nn=a 

hypersurface Smc:={xeRU; hN(x)= c} is given by 
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where 8/SvN denotes the outer normal differentiation of SN, ~ and K N is the 
mean curvature of SN,~. Therefore, by the limiting procedure A~ .'= lira AN/N, 
the formal Laplacian A~ on S is defined by N-~oo 

where 
n = l  n = l  

(0.3) 

1 N 
2 = (x:, x2 . . . .  )GS, (0.4) v (x):= lim ~ • 2, 2 x,,  x 

N~oo n = l  

1 N 

22~ 
N ~ o X n =  1 

Consequently the Brownian motion ~ (t, co),=(41(t, co), 42 (t, co) . . . .  ), the conser- 
vative diffusion process on S with the formal generator zt'~/2, will be given 
as solution of the following system of stochastic differential equations: 

d4n(t, co)= dw,(t, co) -2  2, 4,(t, co)/(2v(4(t, co))) dt, (n > 1) (0.5) 

where {w,(t)},~= 1 are mutually independent 1-dimensional standard Wiener pro- 
cesses. Then our first result is the following 

Theorem A. The solution r of (0.5) exists and the pathwise uniqueness of solu- 
tions of (0.5) holds. The Brownian motion (4(t),P x) on S exists and {4,(t)}~=1 
are mutually independent (PX)x~s. 

Now we shall introduce a time-inhomogeneous [ -  A, A] x R-valued diffusion 
process (X(t, co),P(~'")). Given x on the surface S and the Brownian motion 
~(t, co) starting at x, we can define a deterministic positive continuous function 
g(t, x) by 

g(t, x).'=v (~(t, co)) for any t > 0 a.s. (px). (0.6) 

We define (X (t, co), P("")) as the diffusion process with the infinitesimal generator 
L(t), (t>0): 

L(t) :=(1/2) ~ 2 / ~ / , / 2  (2 6 t/)/(2 ~7 (t, Z)) ~/~t/. (0.7) 

The superscript (a, q) denotes conditioning that X(0, co)= (a, q) a.s. P(""). 
Our law of large numbers can be stated as follows: 

Theorem B. Set 
x.(t, co),=(2., 4.(t, co)), (n > 1). (0.8) 

Then 6x.(. ~) converges weakly to a probability measure 1I ~ on C([0, oQ) 
n= 

[ - A ,  A] x R) as N ~ oe W-almost surely, (x G S), where 

c~ (y) FU(dy).'= ~ E (~' ") [~b (X('))] 7zx(da x dtl) (0.9) 

for any bounded continuous function ~ (y) on C([0, oo)~ [--A, A] x R). 

Now we shall describe the ergodic properties of the Brownian motion 
(4 (t), P~) on the S. 
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Theorem C. (1) I f  7(( -oo ,0) )>0,  ~(t) is transient and has no a-finite invariant 
measure. 

(2) ~(t) has an invariant probability measure #, if and only if 2~>0 for all 
n ~  1, and in this case # is unique and limE~r~b(~(t))] = y ~o(y)#(dy) for any xES 

t--~ O0 

and any bounded continuous measurable function c~ on S. 

1. Infinite Dimensional Quadric Hypersurfaces 

We shall begin with some definitions. Throughout this paper, 6~ denotes the 
measure having mass one at x. 

Definition 1.1. The space E consists of all sequences x = ( x l ,  x2, . . . )eR ~176 such 
1 N 

that s u p ~  ~ exp(fl[x,I)< oo for any f i>0  and that the probability measures 
N n = l  

1 N 
~ 5~,(dt/) on R converge weakly to a probability measure rt~(dt/) on R as 

n = l  

N ~ oo. The space E is endowed with the topology by the semi-metrics {dN(X, y); 
l_<N_<oo}: 

[ 1 N \1/2 
du(x, y ) := (N  Z (x,-- y,)Z) , do~ (x, y),=lira sup du(x, y) (I. 1) 

\ n = l  / N ~  

for x = ( x l , x z ,  ...), Y=(Yl,Y2 . . . .  )EE, and is equipped with the cylindrical a- 
algebra g. 

Throughout this paper, we shall fix a real bounded sequence A.'={ o,},= 1 
1 N 

(12,1<A, n > l )  such that the probability measures ~ ~ 5~.(da) on E--A,A] 
n = l  

converge weakly to a probability measure 7(da) on [ - -A ,A]  with ~({0})=0 

as N ~ o o ,  and we assume 2.'= lira 2 . =  faT(do-)>0 and call the ~ the spec- 
tral measure of the A. N-* ~ N ,  = 1 

Definition 1.2. The space E(A) consists of all points x=(x l ,  x2, . . . )eE such that 
1 N 

the probability measures ~- ~ 6(~ . . . .  )(do- x d~/) on I---A, A] x R converge weakly 
n = l  

to a probability measure lrx(do- x d~) on I - A ,  A] x R as N--*oo. 

Now the first assertion is the following 

Proposition 1.1. 

(I) E(A) is a do-closed measurable subset of the E. 

(II) 7r~(da • d~) is weakly d~o-continuous on E(A), as a function of x. 

(III) 7rx(B ) is g-measurable in x for any BeN(RE). 
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Proof  It holds that 

limsup 1 ~ 4 ) ( 2 , , X n ) _ 1 ~  ~b(2~,y,) < ~ do~(x,y) 
N ~ ~ 1 7 6  n = l  n = l  0o 

for any x = ( x l ,  x2 . . . .  ), Y=(Yl, Y2, ...)~E and qS(a, q)EC~(R2), the space of real- 
valued C~ on R 2 with compact supports. Here [[r denotes the 
supremum norm of a function q~. Observing ~ ( R ) =  1 for any aeE, we have 
therefore the d~-closedness of E(A). The other assertions are obvious. [] 

Definition 1.3. An infinite dimensional diagonal quadratic form h(x) is defined 
by 

h(x):= lim 1 ~ 2.x, a for x = ( x  1, x2 . . . .  )~E(A); (1.2) 
N ~ N . =  1 

the set S=Sc,  ceR ,  defined by 

S.'={xsE(A); h(x) = c} (1.3) 

is called an infinite dimensional quadric hypersurface or simply a quadric hyper- 
surface. 

Then S is a doo-closed measurable subset of E(A). 
Now we introduce another measure p(da, x), which is repeatedly used later. 

Definition 1.4. For each x = (xl, x2 .... )~E(A), we put 

p(da, x).'= ~ q2 nx(d a x dtl) , (1.4) 

v(x) . 1 N 2 e := hm ~ ~ 2, x,. (1.5) 
N ~ o 0  n = l  

2. Laws of Large Numbers 

In this section, we shall consider laws of large numbers for mutually independent 
(O oo continuous processes {~,(t, )},=1, which are obtained from the stochastic differ- 

ential equations (0.5) by substituting a given continuous function ~(t)>0 for 
the factor v(~(t, co)) of (0.5). 

We begin with the following 

Proposition 2.1. Put T.'=[0, TJ |  tp); O<-<_ti<=T, l<=i<p}, (T>0) 
and assume that a family of  random fields {X,(t, o9); tET}~= 1 on a probability 
space (0, ~ ,  P) satisfies the following conditions. 

(1) {X, (t, co)}~= 1 are mutually independent random .fields. 
! N 

(2) sups-  ~ E[IIX,  II) ] < co for  some r> 1, 
N I v  n =  1 



352 Y. Hasegawa 

where ]lXllT:=sup Ix(t)l for x e C ( T ~ R ) .  
t ~ T  

(3) E [ X , ( ' ,  co)] =0,  (n> 1) in the Bochner integral sense in C ( T ~ R ) .  

(4) The family {X,(t, co); teT},~=l is uniformly tight in C(T--+R). 
1 N 

Then the sample path of ~ ~ X,(t ,  co) converges to zero uniformly on T as N ~ co 
almost surely(P). ~, , = 1 

Proof See [1] for the proof. []  

Now we shall fix a point x = (x j, X 2 . . . .  ) e E(A) with v (x)> 0 and a continuous 
function ~3(t)>0 on [0, co), and define a sequence of processes J~,(t, co) 
�9 "=(2,, ~', (t, co)), (n> 1) by 

~,(t, co) ,=exp(-22, f t ( t ) /2) (x ,+iexp(22, f i (s ) /2)dw,(s ,w)  ), (2.1) 

t oo where {w.( )}, = 1 are mutually independent 1-dimensional standard Wiener pro- 
cesses on a probability space (f2,~, P) and 

fi(t):= i 1/z3(s)ds. (2.2) 
0 

Next we shall introduce another diffusion process (X(t, co), P(~'")) with state 
space [ -  A, A] x R and generator L(t), (t > 0): 

and 
x( t ,  co),=(~(co), ~'(t, co)) 

L(t),=(1/2) az/0~ 2 - ( 2  o- ~)/(2 ~ (t)) O/~?q. (2.3) 

We shall fix T > 0 ,  49E C ~( I I2V) ,  and set 

Z,(t, co),=49(2,(q,co), ...,~?,(tp, co))--E[49(X,(q),.. )~,(tv))] 

for t =(t l ,  ..., tv)sT = [-0, T] | 
Then we have 

Lemma 2.2. For an integer r with r / 2 > p + l ,  there 
=c(p, r, 49, T) I such that (n> 1) 

e x t s t s  a constant c 

P 

E [ IZ . ( t ) -  Z,(t')I ~] <=c ~ I t i -  t'i[ r/2 
i = 1  

(2.4) 

! 
for any t=(q ,  ..., tv), t' =(t] . . . .  , tp)eT, 

E [IZ.(0)lq ~(2  II011 co) ~- 

1 C(Z) denotes a positive constant  depending only on z in this paper 
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Proof It holds that for t > s > 0 

~', ( t ) -  ~, (s) = ( e x p ( -  2 2,(~ ( t ) -  ~ (s))/2) - 1) ~,,(s) 

+ exp ( -  2 2. ~ (t)/2) i exp ()~ 2. ~ (z)/2) dw. (% co), 
s 

~'. (t) - ~'. (s) = (1 - exp (). 2.(0(0 - a (s))/2)) ~'. (t) 

+ e x p ( -  2 2. t~ (s)/2) i exp(2 2. t~ (z)/2) dw.(z, co). 
s 

Hence by Jensen's inequality and Burkholder's one we have the following esti- 
mate for t>s>_O and R > 0 :  

E[[~.(t)--~.(s)lr; ~.(t) or ~.(s)~[--R,R]] 

=< U (exp (2 A (fi (t) -- tl (s))/2) -- 1)~ R ~ 

(! +c(r)exp(2Al~(t)r/2) exp(2Aa(z))&) ~/2, 

where suppqSc [ - -R ,R]  | []  

Therefore we have 

Propos i t ion  2.3. 

X dr/i ) c~2,(tp, ~)(dav x dr~p) 
n = l  

,SPW")(X(ti)edaixdr/i, i=1,  ...,p)Trx(daxdrl) (2.5) 
N ~ o o  

weakly in ~ (R 2") for any (tl . . . . .  tv)E[0, oo) | a.s. (P), where N(R 2") stands for 
the space of probability measures on R 2p. 

Proof Lemma 2.2 shows the uniform tightness of the family {Z,(t, co); teT}~~ 
for the qS~ C~ ~ (R 2p) by the Totoki-Kolmogorov criterion. Hence by Proposition 

1 N 
2.1, the sample path o f~-  ~ Z,(t, co) converges to zero uniformly on T as N ~ o o  

n : l  

almost surely(P). Since 

1 N 
lim ~ ~ E [q~ ()~, (q), ..., J~, (to))] 

N ~  n = l  

= ~ E (~'") [r ( x ( t o  . . . . .  x(t . ) ) ]  ~ ( d ~  x dr/) 

for any (q . . . .  , t.)~ [0, oo) | the proof is completed. [] 

Consequently we have 
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Theorem 2.4. For a.e. co(P), the probability measures 6~,(.,~) on C([0, ~ )  
= 

~ [ - - A , A ]  x R) converge weakly to a probability measure FU on C([0, ~ ) ~ [ -  
- A, A] x R) as N --+ ~ ,  where the H ~ is defined as follows: 

~ f (y)11~(d Y) '= S E ( " " ) [ f  (X  (" ))] n~(da x dtl) (2.6) 

for bounded continuous functions f on C([0, ~ ) ~  I--A, A] x R). 

Proof. With the aid of Proposition 2.3, it is sufficient for the proof to show 
for a.e. co(P) 

lira i n f ~  ~ Zto, c12(lX,(0, co)l)= 1, 
C~'oo N lV n =  1 

. 1 N 

lira h m s u p - -  ~, sup Ztp.~)(l~'.(t, co)-~'.(s, co)l)=0 
,~;o Iv oo Xn= 1 [s-t[<~ 

s , t<  T 

for any p, T > O. 
To this end, we choose L~, LE(L 1 <L2) for a given e>O so that r2~([L1, L2] ) 

> 1 -  e and [L~, L2] is a 7t~-continuity interval. Then the mutual independence 
of {~,(t, co)},~= 1 shows that for a.e. co(P) 

. 1 N 

h m s u p ~  Z Ztp, o~)( sup ]~.(t, co)-~.(s, co)l) 
N ~ n = l  Is-t[<=~ 

s , t<  T 

1 N 

=limsuP~7 Z P( sup ]~.(t)--~'.(s)l->_p) 
N oo IV n = l  I s - t [ < ~  

s,t<=T 

< 2 e for sufficiently small 6 > 0, 

because {~',(t, co); L1 <=Xn<=L2} is uniformly tight. [] 

We have the following proposition concerning the growth of test functions. 

Proposition 2.5 For any fl > O, 

1 N p ~ 

sups7 Z exp(fl Z [X . (6 ,  o1[ < oo ] 
N l ~ ' n = l  \ k = l  

(2.7) 

for t 1 . . . . .  tp >= 0 a.s. (P). 

Proof. The proof is immediate. [] 

Consequently Theorem 2.4 and Proposition 2.5 give 

2 zD denotes the indicator function of the set D 
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Theorem 2.6. Set 
 2(t, (2.8) 

Then we have the following assertions. 

n~(t,,o)(da x dtl)= ~ P(~"~')(X (t, co)eda x dq) nx(da' x dq') (2.9) 

for any t > 0 a.s. (P). 

p (da, ~(t, ~o))= Pt (da, x) for any t > 0 a.s. (P), (2.10) 
where 

fit(da, x),=exp(-)oaCt(t))(p(da, x)+ i exp(2a~(s))dsT(da)). (2.11) 

lim 1 N m~n~_ l(~n(t , 09) -  ~n(S, (.0)) 2 
N~ 

= ~exp(--Z a fi(t)) i exp(2 a t~(z)) dz 7(da) 
8 

+ S (exp(-- 2 a(~(t)-- 0 (s))/2)- 1) 2 fi~(da, x) (2.12) 

for any t >__s>_O a.s. (P). 

3. A Nonlinear Integral Equation 

Let J /  stand for the family of finite measures p absolutely continuous with 
respect to 7 such that S a2 7(da)> 0, equipped with the weak convergence topolo- 
gy and the topological a-algebra. 

Given peal//, we shall show in this section the existence and the uniqueness 
of solutions u (t) of the following nonlinear integral equation: 

I 0 
(3.1) 

( u ) f  a exp ( -  2 a u) p (da) + ~ exp (2 a I/) w 01) dq 7 (da) = a p (da), 
I 0 

(3.2) 

w(u) i K(u-tl)W(q)dq= ~ a2exp(-2au)p(da) ,  
0 I 

(3.3) 

where I = [ - A, A]. 
First we notice the following propositions. 

Proposition 3.1. For the p(da), the following two integral equations are mutually 
equivalent in C([0, oo)): 
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where 
K(u) := ~ a 2 exp (-- 2 a u) 7 (da). (3.4) 

I 

Proof The proof  is obvious. []  

Proposition 3.2. The solution w(u) of the Eq. (3.3) in C([0, oo)) uniquely exists. 
It is a continuous, strictly positive global solution given by 

where 

w(u) = ~ W(u, ~) ~2 7(d~), (3.5) 
I 

u 

W(u, a):=exp(-2au)+ ~ F(u-t l)  e x p ( - 2 a t / )  dq 
0 

(3.6) 

with the resolvent kernel F ( u -  tl) of (3.3). 

Proof The proof is immediate. []  

Concerning the estimate of the w(u), we have 

Proposition 3.3. (I) Assume 7 ( [ - A ,  0))> 0. Then 

cl(exp(q u))/(Q + 2 A )  ~ O -2 p(da) 
I 

< w(u) < 2 exp((2 A + 72) u) ~ a 2 p (da), 
I 

where 
0 

Cl:= I ~176 72 := 5 ~176 �9 
- A  I 

(3.7) 

(II) Assume 7 ( I - A ,  0])=0.  Then 

A A 

c2 [. ~2p(do)<=w(u)<A ~ ,~p(d~), 
0 0 

(3.8) 

where c 2 is a strictly positive constant depending only on 7. 

Proof Assume 7 ( [ -  A, 0)) > 0. Then 

cl exp (ca ( u -  t/)) < F ( u -  tl) < 72 exp ((2 A + 72) ( u -  q)). 

Hence we have 

W(u, a) > (q/(c 1 + 2 a)) exp (q u) + (2 a/(q + 2 o-)) exp ( -  2 a u) 

W(u, a) > exp (cl u) for o- < 0, 

W(u,a)<=2exp((2A+72)u) for aE[--A,A] .  

Therefore we have (3.7) because of (3.5). 

for o-~0, 
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Next assume 7 ( [ - A ,  0])=0.  Denoting by Wl(u) the unique global solution 
of the following equation in C([O, oo)), we have W(u, a)>= W~(u) for any a>=O: 

Furthermore, 

W~ (u) -  i K(u--  rl) W101) d q = e x p ( -  2 A u). 
0 

09 

exp(--pu)  Wl(u)du/()~/(pA))--* 1 as p$0. 
0 

Hence c2-'= inf Wl(U)> 0, which proves the left-hand side of (3.8). An easy combi- 
u > 0  

nation of (3.2), (3.3) yields the right-hand side of (3.8). []  

Now we shall construct a global solution of (3.1) for peJ~ .  Denote by 
CI([0, T)), (0< T <  oo) the family of f(t)eCl([O, T)) with f (0 )=0 .  (if(0) means 
the right derivative at t = 0.) Then we can state the following 

Theorem 3.4. The Eq. (3.1), (peJg)  has a unique solution u ( t ) = u ( t, p) in Col ([0, T)) 
for any T~(O, c~], and the mapping (t, p )~u( t ,  p) is continuous on [0, oo) x ~ .  

Proof For the solution w(u) on [0, U) of (3.2), (0< U <  oo), we put 

T..=lim j w(t/) dr ,  (3.9) 
uTU 0 

and define a function u (t) on [0, T) as follows: 

u(0 
w(tT) dq = t. (3.10) 

0 

Then it is easily seen that u(t)e C~ ([0, T)) and 

u'(t) = 1/w(u(t)) on [0, T), (3.11) 

and therefore u(t)=u(t, p) is a solution of (3.1) on [0, T). 
ao 

Since ~ w(q)dq=oo by Proposition 3.3, we have a global solution u(t,p) 
of (3.1). o 

To show uniqueness of the solutions of (3.1), let u(t)eClo([0, T)), (0< T<  oo) 
be a solution of (3.1). Then we have 

where 
u'(t) = 1/f(t, p) on [0, T), 

f(t, p):= ~ a 2 exp(--Zau(t))  
I 

0 

(3.12) 

(3.13) 
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Hence by putting 
w(u(t)) = g(t, p), (3.14) 

we have the unique solution w(u) of (3.2) on [0, U), (U ,=lim u(t)). Furthermore 
t T T  

weconstructasolutionO(t) of(3.l)on[O,T') ,(T' ,=limiw(r/)dr/)by(3.10)with 
uTU 0 

the aid of w(u). Then it can be easily seen that T =  T' and u(t)=~(t) on [0, T), 
i.e. uniqueness of the solutions of (3.1). 

Now we shall show the (t, p)-continuity of u(t, p). Assume that there exist 
sequences t ,>0 ,  p . ~  ( n > l )  and to_-_0, p o ~ ,  e > 0  such that l i m t . = t o ,  

n~'ao 

l imp.  = Po weakly, and [u(t,, p,)-U(to, Po)[ ~ e for n > 1. Here {u(t,, P,)}2=I are 
ntoo 

bounded by Proposition 3.3 through (3.12), (3.14). Therefore by Proposition 
3.3 again the dominated convergence theorem can be applied to show 

lim inf =o.,,.) u<t~176 Po) dr/ I w(r/,p.)dr/- I >=Cela2po(da), 
n-* oo 0 0 

where C = c  2 in the case 7(I--A, 0))=0 and C=Cl/(Cl+2A ) in the case 7([ 
--A, 0))> 0. This induces an obvious contradiction through (3.10). []  

Also ~(t, p) depends in a continuous way on (t, p), because of (3.13). 
Now put 

u(t, x),=u(t, p(., x)), (3.15) 

g(t, x),=iT(t, p(.,  x)), (3.16) 

for xeE(A) with v(x)> 0, abusing slightly notations. 
Then we have the following 

Corollary 3.5. The mappings (t, x)--* u(t, x) and g(t, x) are measurable and continu- 
ous on the set [0, m) x {xsE(A); v(x)>0}, with respect to the d~-semi-metric. 

4. Brownian Motion on the Quadric Hypersurface S 

In this section, by making use of the preceding results, we shall construct Brow- 
nian motion (4 (t, ~o), W) on the quadric hypersurface S = Sc (c ~ 0) or ~o = {x ~ So; 
v (x) > 0}. 

First we shall show the existence of a solution ~(t, co).'=(~l(t, co), ~2(t, (n), ...) 
of the following system of stochastic differential equations: 

~n(t, ~ ) =  r CO) + w,(t, ~) 

-- i 2 2. ~.(s, co)/(2v(~(s, r ds, 
0 

( n > l )  (4.1) 
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on a complete probability space (f2, if, P; fi0. 
Let W(t, co)=(w 1 (t), Wz(t , co),...) be the sequence of mutually independent 

1-dimensional ~,-adapted standard Wiener processes satisfying 

E[W(t  +h)-W(t) l f~t]=O for any t ,h>O. 

Now we are in a position to state 

Definition 4.1. A process ~(t, co) defined on the complete probability space 
(Q, ~, P; ~t) is called a solution of (4.1), if the following conditions (i), (ii) are 
satisfied. 

(i) ff(t)=(~i(t), ~2(t), ...) is a ~r conservative continuous process on 
S. 

(ii) (~(t))t>__o satisfies (4.1) with probability one. 

Now we have 

Theorem 4.1. We are given a sequence W(t)= (wl (t), w 2 (t), ...) of mutually indepen- 
dent 1-dimensional Nt-adapted standard Wiener processes on the complete probabil- 
ity space ([2, ~, P; Nt). Next  put for any x = (x l, x2 , . . . ) eS  

~(t,  co):=(~(t, co), ~(t ,  co),...), 
~(t ,  co):=exp (-- 22,  u(t, x)/2) 

" (x ,+iexp(22 ,u ( s , x ) /2 )dw, ( s ,  co) ), 

(4.2) 

(4.3) 

where u(t, x) is the global solution in C~([0, T)) of (3.1) with p=p(da,  x). Then 
the process ~*(t) is a solution of (4.1) with ~x(0)=x a.s.. 

Proof Applying Theorem 2.6 to ix(t, co), we have 

where 
g(t, x)=v(~x(t, co)) for any t=>0 a.s., (4.4) 

A 

F(t, x) = ~ a 2 ~t(da, x). (4.5) 
- A  

Hence by (3.12), Ito's formula shows that {~(t)},% i satisfies (4.1). Appealing 
to Theorem 2.6 again, we can see that ix(t, co) is a continuous (qt-adapted process 
on S. [] 

Next we shall show the pathwise uniqueness of solutions for (4.1). 

Lemma 4.2. Put for x = ( x l ,  x2 . . . .  )eS, 

b(x) '=()01 Xl, 22 x2 . . . .  )/v(x)eR ~176 (4.6) 
Then for x, y e S 

doo (b (x), b (y)) <- (A/v (x)) (2 + ~ )  dco (x, y). (4.7) 

Proof The proof is immediate. []  
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Theorem 4.3. Fix xES. Let ~(t, co).'=(~x(t, co), ~2(t ,  co) . . . .  ) be a solution of  (4.1) 
with ( ( 0 ) = x  a.s. on the complete probability space (g2, ~, P; (~t) and let ~( t )  be 
the solution of (4.1) on the (f2, fq, P; Nt). Then we have 

~(t, co)=~x(t, co) foranyt>=Oa.s.(P). (4.8) 

Proof By the continuity of ((t, co), ix(t, co) on S, there exists almost surely a 
constant c (x, T, co) > 0 for any T > 0 such that 

d~(~x(t, co), ~ (t, co))<=c(x, T, co) i d~o(ix( s, co), ~(s, co)) ds, 
0 

t N T  

with the aid of (4.1) and Lemma 4.2. Hence we have d~(~x(t, co),((t, co))=O 
a.s. by Grownwall inequality. Consequently v(((t, co))=v(r co))=~(t, x) a.s., 
which shows (4.8) through (4.1). []  

Now we put for a bounded measurable function f on S 

f (z) pt(x, dz) ,=E [ f  (ix(t))]. (4.9) 
S 

Then we have 

Proposition 4.4. For a bounded measurable function f on S and s, t > O, 

E [ f  ( iX(s + t)) l Ns] (co)= ~ f (z) pt(y, dz) a.s., 

where y :=iX(s, co). 

Proof By Theorem 4.3, we have 

(4.10) 

( ) ~,~ (s + t) = exp ( -  2 2, u (t, i x(s))/2) i x (s, co) + ~ exp (2 2, u (% ~x (s))/2) dw, (s + "c) , 
0 

(4.11) 

t > 0  a.s. for any s>0 ,  which shows (4.10). []  

Now the law px, (x~S) on cg:=C([-0, oo)~S)  induced by the solution ix(t) 
with ix(0)= x a.s. is well defined. Then by putting 

i(t, w):=w(t) for w~Cg, 

fi~ ~~ 

(4.12) 

(4.13) 

and denoting by fit, f f  the completion of f io ,  f ro  as usual, we can see 

Theorem 4.5. (cg, ~ ,  f i ,  i(t), px) with the state space S is a diffusion process with 
the Feller property: if f ( x )  is a bounded continuous measurable function on S, 
so is E x [ f ( i  (t))], (t >= O; fixed). 
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Proof The diffusion property is easily seen by Proposition 4.4. Hence we have 
only to show the Feller property. Let {X,(co)}2=l be mutually independent ran- 
dom variables on the probability space (s .% P) with law N(0, 1) and put 

Y(~, co).'=(Yl(X, co), Y2(~, co) . . . .  ) 

,) Y.(x, co):=exp(--22.u(t,x)/2) x .+ exp(22.u(s,x))dsX.(co 

for X - ~ - ( X 1 ,  X 2 . . . .  ) ~ S  and a fixed t>0 .  Then the law of ({x(t),P) is identical 
with the one of (Y(x), P). 

X oo Now we are given { k}k=xcS such that Xk converges to a point aeS as 
k ~ o e .  Then applying the strong law of large numbers to the independent ran- 
dom variables {Y,(xk)-Y,(a)},~=l, we can see that Y(Xk) converges to Y(a) as 
k ~  oe a.s.. Hence by the dominated convergence theorem, we have 

lim E [f(Y(Xk))] = E [f (Y(a))] .  [ ]  
k--* oo 

Definition 4.2. The diffusion process ((g, ~ 4 ,  ~(t, co), px) with the state space 
S is called the Brownian motion on S. 

5. Ergodie Properties of the Brownian Motion ~ (t, co) 

In this section, we shall study the ergodic properties of the Brownian motion 
~(t, co)= (~j (t, co), 42 (t, 60) . . . .  ) on the quadric hypersurface S = Sc (c 4 = 0) or So. 

We shall begin with 

Proposition 5.1. (i) Assume 7 ( [ - A ,  0))> 0. Then we have 

o ( ) 
t ~. a27(da)<g(t,x)<F(O,x)+ 2 A +  cr22(dcr ) t 

- A  - A  

for anyt>O. (5.1) 

(ii) Assume 7((0, A])= 1. Then 

l img(t ,x)=2c forx~Sc,(c>O). 
t+oo 

(5.1) 

Proof Assume 7 ( [ -  A, 0)) > 0 and put 

A ( t ) 
17+ (t, x).'= j" a 2 exp(-- 2 a u(t, x)) p (da, x) + S exp(2 a u(s, x)) ds 7 (da) , 

0 0 

~7_(t,x).'= j a2exp(--2~u(t,x)) p(da, x)+ exp(2au(s,x))dsy(da).  
- A  0 
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Then we have the estimate (i) from the following ones: 

0 0 A 

a2y(da)<F'_(t,x)<ZA+ ~ a27(da), g'+(t,x)< ~ a27(da). 
- A  - A  0 

Next assume 7 ( [ - A ,  0))=0. An application of the Laplace transform to 
the both sides of (3.3) with p=p( ' , x )  shows limw(u)=2c, which yields (5.2) 
through (3.14). []  ,~o~ 

Furthermore, in the case ~((0, A]) = 1, we set 

Sc'.={x~Sc; p(da, x)=(c/a)y(da), a > 0 } ,  (c>0). (5.3) 

Then we have 

Proposition 5.2. Assume 7((0, A]) = 1. 
(i) ~(t, co) is a conservative diffusion process on the do~-closed measurable subset 

(ii) ~(t, oJ)(Egc for any t >O a.s. (W), if x~Sc, xr 

Proof Notice that p(da, x)=(c/a)~(da), (a>0)  is equivalent to g(t, x ) = 2 c  for 
any t>0 .  []  

Now we proceed to study the ergodic properties of the Brownian motion 
r on So. 

Proposition 5.3. (i) Assume 7 ( [ - A ,  0))> 0. Then ~ (t) has no a-finite invariant mea- 
sure o n  S c. 

(ii) Assume 7((0, A] )=  1 and there is one 2 , < 0  at least. Then ~(t) on Sc has 
no invariant probability measure. 

Proof Use Proposition 5.1 (i) in the case (i). [] 

Remark. Assume 7((0, A] )=  1 only. Then there exists a probability measure v 
on S~ such that 

f(x) v(dx)= ~ E~Ef(r v(dx), t>=O (5.4) 
S~ S~ 

holds for any d~-continuous bounded measurable function f(x) on Sc. 

Next we shall introduce the following condition: 

Z ,>0 ,  ( n > l )  and 
N A 

l<ml,~lexp(fl/Zn)=~exp(fl/a)7(da) o for any f l>0.  (5.5) 

Definition 5.1. Under  the condition (5.5), we denote by # the induced measure 
by ~'(co)=(~'l(co), ~'2(co), ...) on R ~, where {~',(e))}~=l are mutually independent 
random variables on the (g2, ~f, P) with law N(0, c/2,) respectively. 

Then we have 
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Proposition 5.4. Assume the condition (5.5). Then t~ is an 
measure of ~ (t) and supp (#) ~ S~. 

Proof In fact 

1 
n~(o~)(da x dtl) - (2n C/O') 1/2 exp(-- tl2/(2c/a)) dr 17(da) 

invariant probability 

a.s. (P). [] (5.6) 

Theorem 5.5. Assume the condition (5.5). Then 

lim EX [~b(r = ~ r p(dy), xeS~ 
t ---~ aO 

(5.7) 

for any bounded continuous measurable function (o on S~. 

Proof First observe that 

E~Er =EEr (x=(x , ,  x 2 . . . .  ), t=>0), 

where ~(t, co)=(~l(t, co), ~z(t, co),...) is given by 

(5.8) 

~,(t, co)'=exp(- 2 2n u(t)/2) (xn + ]/ /  2n/c / exp(2 2nu(s)) ds ~,(co)). (5.9) 

Next we define ~(a, t), (a, t>0)  by 

(1/ )2 qS(a, t).'= (a/c)exp(-2au(t)) ~ exp(2au(s))ds-1 . 
0 

Then by g(t, x)<=cA, we have ~(a, t) =<(l/A/2 + 1) 2. 
Now Kolmogorov's law of large numbers shows that for any e > 0  there 

exists a 6 > 0 such that [-0, 6) is a 7-continuity set and 

1 6 

lim s u p ~  ~ ~(2n, t) ~'~(CO)=<( A ~ +  1) z 5 c/g ?(da)<e 
N ~ o o  l < _ n ~ N  0 

;r < 6 

for any t=>0 a.s. (P). Next Proposition 2.1 can be applied to show 

1 
Z t) (co)- c/X.) 

l<_n<_N 

converges to zero uniformly on any compact set of t as N ~ ~ a.s. (P), and 

A 

lim ~1 ~, ~ (2 , , t )=  ~ r 
N-,~oN l<-n<--N 

2x> ~ 

as t ~ o o .  
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Hence we have 

1 N 

lim lira ~ ~, q~(2,, t )~2(co)=0 a.s. (P), 
t ~ a o  N o~ n=l 

which shows 

limd~(~'(t, co), ~(co))=0 a.s. (P). (5.10) 
t ~ O 0  

Fur the rmore  it is immediate  that  dN(~(t, co), ~'(co))~0 as t--+oo a.s. (P), ( N <  oo). 
Therefore the domina ted  convergence theorem completes the proof. [ ]  

Consequent ly  we have the following 

Corol lary 5.6. (i) Under the condition (5.5), the ~(t) on Sc has a unique invariant 
probability measure. 

(ii) Assume that the Brownian motion ~(t, co) on Sc has the standard Gaussian 
white noise as its invariant measure. Then S~ = {x~E(A);  do~(x, 0 ) =  1}. 

Final ly it should be noted that  the invariant  probabi l i ty  measure/~ of  ~(t, co) 
on S~ is suppor ted  by the restricted par t  S~ of  Sc, if it exists. This is just  in 
concordance  with P. L6vy's observat ion  [5], because the invariant  probabi l i ty  
measure of  the Brownian  mo t ion  ~(t) on  S~ can be thought  of  as the area 
of  the hypersurface Sc. 
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