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S u n t o .  - La super]icie astratta di RiemanT~ di un dominio E, introdotta da Zariski, ~ uno spazio 
topologieo X(R)  il cui insieme sostegno consiste di tutti i sovranetli di valutazione di tL  
L'applicazione canoniea suriettiva ]~: X(R)  -> Spec(R), V ~-+ centro di V su t~, ~ un'appli.  
cazione chinsa, dunque Spec(/~) ~ uno spazio-quoziente di X(t~). I1 teorema prineipale di 
questo lavoro ~ il seguente: X(R)  ~ uno spazio spettrale, nel senso di M. Hochster, e ]~ 
un'applicazione spettrale. Inoltre, ]acendo uso della cosiddetta topologia eostruttibile, viene 
dimostrato chese  R ~ integralmente chinso e Spec(R) ~ uno spazio noetheriano allora ]~ 
un'applicazione aperta s e e  soltanto se 1~ ~ un going-down dominio. 

I .  - I n t r o d u c t i o n .  

One cornerstone of modern  algebraic geometry  is the s tudy of a commuta t ive  
r i ng / t  by  means of its set Spec (R) of prime ideals, equipped with the Zariski topology 
(as in [B, Definition 4, page 99]}. An older topological tool of Zariski is also available 
in case i~ is an integral don0ain, namely the abstract  Riemann surface X ( R )  whose 
underlying set is the collection of all valuat ion overrings of/~ (cf. S* in [ZS, page 113]). 
The purpose of this article is twofold: to s tudy the connection between Spec (R) 
and X ( R ) ,  and to modernize our understanding of abstract  Riemann surfaces via the 
category of spectral spaces and spectral maps (in the sense of [HI). 

As Lemma 2.1 demonstrates,  the tools are connected by  a continuous surjection 
/: X(/ t)  -~ Spec (R). Only rarely is ] a homeomorphism. Indeed,  if R is integrally 
closed, then  / is a homeomorphism if and only if B is a Prfifer domain (cf. Proposi- 
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tion 2.2). However ] is always a closed map (Theorem 2.5) and, as a result, ] realizes 
Spee (R) as a quotient space of X(/~) (cf. Corollary 2.6). Section 2 concludes by using ] 
to s tudy the passage of the ~ discrete Alexandroff ~) separation property (cf. [A, 
page 28]) between X(/~) and Spce(/~). 

Proposition 3.1 establishes tha t  f is an open map if and only if R is an FTO- 
domain (in the sense of [Pal). In  case/~ is integrally closed, openness of / may  be 
characterized using the constructible topology (Lemma 3.2(c).) One consequence 
(Theorem 3.3) is tha t  an integrally closed going-down ring (in the sense o f  [DP]) 
with :Noethcrian spectrum is an FTO-domain. Accordingly, Remark 3.4(b) constructs 
an ~TO-domain with exacting properties. As with most of this article's examples, 
this one depends on a pullback construction~ and so familiarity with [F] will be 
assumed. 

I t  is well-known (cf. [ZS~ Theorem 40, page 113]) tha t  X(R)  is always a quasi- 
compact T0-space. Wha t  more can be said? Theorem 4.1 gives the answer: X(R)  

is a spectral space. In  Corollary 4.5, a functorial variant follows: X(--)  may  be 
viewed as a functor from a category of integral domains to the category of spectral 
spaces and spectral maps which factors through the full subcategory of abstract 
l~iemann surfaces. 

Throughout , /~  denotes an integral domain with integral closure/~'  and quotient 
field K.  Any unexplained material is s tandard and may  be found in the texts cited 
as references. 

2 .  - Relating X(R)  a n d  Spec (_E). 

As a set, X(/~) is the collection of all valuation overrings of/~,  tha t  is, valuation 
domains V such t h a t / ~  c V c K.  A basis for the open sets in the canonical topology 
of X(R) is given by the sets 

E(xl, . . . , xn ) -~  {V E X(/~): x i~  V for each i : 1, ..., n} 

as (xl, ..., x~} ranges over the finite subsets of K. (Since 

E(xl ,  ..., x~) n E(yl ,  ..., y~) : E(xl ,  ..., x~, yl,  ..., y~) 

one does in fact obtain a topology.) Evident ly  X(R) is a To-space~ and in the usual 
way ([1:[~ page 53]) thus acquires the structure of a partially ordered set: V~<V~ 
if and only if V~ is in the closure of {V~}, tha t  is, if and only if V~ c V1. As recalled 
in the introduction~ X(/~) is quasi-compact. Since E(x~, ..., x ~ ) =  X(R[x~, ..., xn]) 
as topological spaces~ it follows tha t  X(/~) has an open basis consisting of quasi- 
compact opens; moreover, the typical quasi-compact open subset o f  X(R)  is the 
union of finitely many  sets of the form .E(x~, ..., x~). 

The relation between X(R)  and Spec (R) is forged with the function ] : fR: X(R)  --> 
-+ Spec (/~) defined as follows: if V ~ X (R)  and M is the maximal  ideal of V~ then 
](V) = M ~ R. In  other words~ ]~(V) is the center of V on .R. 
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LE~L~A 2.1. -- With  the above notat ion,  ]: X(R)  --> Spee (R) is surjeetive, continu- 
ous, order-preserving and order-reflecting. 

P~00F. -- By  <~ extension of valuations ~, ] is surjeetive (cf. [G~, Theorem 19.6]). 
Next ,  to check tha t  ] is continuous, it  is enough to show tha t  ]-~(X,) is open, where 
X~ = {P ~ Spec (/~): r ~ P}, r e R,  is a basic Zariski-open subset of Spee (/~). Wi thou t  
loss of generality, r r 0. Then ]-~(X~) = {( V, M) e X(/~) : r ~ M} = {(V, M) ~ X(R) : 
r -~ ~ M or r -~ is a unit  of V} --  E(r-~), which is open in X(/~), as desired. Finally, 
for g~ and V2 in X(/?), [G2, Theorem 17.6] assures tha t  ](V~)c ](V~) if and only if 
V~ c V~, tha t  is, if and only if VI~< Vs. Thus, f is both  order-preser~ing and order- 
reflecting, to complete the proof. 

In  view of Lemma 2.1, Spee (R) is the continuous image (v ia ] )of  a quasi-compact 
space, and is thus itself quasi-compact.  Besides giving this amusing proof of a well- 
known fact,  ] leads to other useful information, to which we now turn.  

l~eeall tha t  R is called an i-domain in case the contract ion map Spec (T) ~-* Spee (/~) 
is an injection for each overring T of _R; equivalently~ if and only if/?'p is a valuation 
domain for each P ~  Spee(/~) (cf. [Pa, Corollary 2.15]). I t  is well-known (ef. [G~, 
Theorem 19.t5]) tha t  the integrally closed /-domains are just  the Prfifer domains. 
As ]R is an injection whenever /~  is a Priifer domain and as X(/2) = X(R ' )  in general, 
the next  result is perhaps to be expected. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

P~o0F. 

(ii) 

(iii) 

P~0P0SITION 2.2. -- Let  ]: X ( / ~ ) - + S p e e ( R )  be the function introduced above. 
Then the following conditions are equivalent:  

] is a homeomorphism; 

] is an order-isomorphism; 

] is a bijeetion; 

f is an injection; 

For  each P ~ Spec (R), only one valuat ion overring of R dominantes Re; 

R is an /-domain. 

- (i) => (ii): Apply Lemma 2.1. 

(iiii) : Trivial. 

(iv): Trivial. 

(iv) <=> (v): V a X(/~) dominates Rp if and only if J(V) = P. 

(v) <=> (vi) : Combine the above remarks with [G~, Corollary 19.9] and [B, Theo- 
rem 1, page 376]. 

(vi) ~ ( i ) :  Assume (vi). B y  Lemma 2.1, it is enough to prove tha t  Iz = 
= ] (E(x l , . . . ,w .~ ) )  is open in Spee(R) for any ~ 1 , . . . , r  As ( v i ) ~ ( i v ) ,  
Y = N J(E(r Thus, without  loss of generality, n = 1 ;  write x for xl. Then 
Y - - { P  ~ Spee(/~): there  exists g ~ X(/?) such tha t  x ~ V and V dominates Re} 



104: D .  ]~.  D O B B S  - 1:~. F E D D E I ~  - ~ .  FOBTT.&EA: Abstract t t iemann sur/aces, etc. 

which, since ( v i ) ~  (v), is just {P e Spec(/~): x e/~'~}. Therefore, if I denotes the 
ideal (r ~/~: rx ~ R'} of R, we have that Y = (P ~ Spec (R) : I r P}, which is open 
in Spec (R). This completes the proof. 

The preceding result leaves open the question of what one may assert if ]~ is 
not an injection. Corollary 2.6 will show that ] permits Spec (R) to be obtained as 
an identification space from X(R). First, we pause to note a more trivial way to 
recover the space Spee (R) from the set X(R). 

I~M~I~  2.3. - Let Y(/~) be the set X(R) endowed with the coarsest topology 
making ]~: Y(R) --> Spec (R) continuous. (Since we saw in the proof of Lemma 2.1 
that E(r -~) =-]-I(X,), it follows that E(r-~), for 0 ~ e r ~ R ,  is a typical subbasic 
open set in Y(R).) The To-space canonically associated to IZ(/~) is Iz(/t)[T~ where 
V~V~ if and only if ] (V1)= ](V~). The function I7(/~)/~-~Spec(R) induced by ] 
is a homeomorphism. 

For a proof, it is enough to show that ], viewed as a map from I~ (R) to Spec(/t), 
is open; that  is, that  Z = ] (~  ]-I(X,,)) is open in Spec(/~) for each finite subset {r~} 
of R\{0} .  This is readily shown, for Z = {P e Spec(/~): there exists (V, M) E X(R) 
such that ](V) -= t ) and r~ ~ M for each i} = ~ X,,, which is indeed open in Spee (R). 

I t  was noted above that I~(/~) is not a To-space if ] is not an injection. By Propo- 
sition 2.2~ X(R) and !Z(R) are thus distinct if/~ is not an/-domain. A good illustration 
of this arises in case/~ is the local (Noetherian) ring at the singular point of a nodal 
plane curve. Then X(~) = {771, V~, K} where V~, V~ are distinct discrete rank 1 
valuation domains (such that I t ' =  V~(b V2 and K is the quotient field of /~). 
One may check that (V~ K} is open in the canonical topology of X(/~)~ but  the only 
open subsets of I7(2) are 0, Iz(R) and {K}. 

Our next major goal is to show that ]R is always closed. The following technical- 
ities, borrowed from [ZS~ pages 115-116], will help. By analogy with the construction 
of X(R)~ we let Y2(R) denote the collection of quasitocal overrings of/~; and topologize 
~9(R) by  taking as basic opens the sets ~(R[x~, ...,x~]), where {x~, ...,x~} r~nges 
over the finite subsets of K. By analogy with the construction of J~, define 
g = g~: tP(R) -~ Spec (R) by setting g(S) = M ~ tt  for each (S, M) ~ D(R). Next, 
let L ( R ) =  {/~: P c  Spee(R)} with the subspace topology inherited from tP(R), and 
let h = h~: L(R) ~ Spec (R) denote the restriction of g to L(I~). 

LEPTA 2.4. - W i t h  the above notation, h: L(/~) -~ Spec (/t) is a homeomorphism. 

PBOOF. -- Since h(i~p) = P, it is clear that h is a bijection. To see that h is con- 
tinuous, it is enough to show g is continuous. Consider the complement of the in- 
verse image of a closed set. If  I is an ideal of /~  and V(I) ---= {P ~ Spec (R): I c P} 
is the associated closed subset of Spec(R), then Y2(R)\g-I (V(I) )= {(S, M)E tP(/~): 
there exists r e  l \ ( M r ~ R ) }  = U {O(R[r-l]): o • r e I } ,  which is indeed open in 
Y2(/~), as desired. 
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Finally, to see tha t  h is open, we shall prove tha t  2 - =  Spee( l~) \h(L( t~)n 
c~ D(l~[x~, . . . ,x~])) is closed in Spec(R) for each finite subset {x~, ...,x~} of K.  
I t  will be convenient  to let  F(x~, . . . ,x . )  denote D(R)\/2(_R[x~,. . . ,x~]).  Then 
Y = h(L(R) n/~(x~,  ..., x.))  = [] h(L(/~) c~/"(x~)), and so we m ay  assume tha t  n ---- 1, 
with x denoting xl. Consider the ideal J---- {r ~ /? :  rx ~ _R} of /~. ~'or each P 

Spec (R), J c / )  if and only if x ~ Re, tha t  is, if and only if/~e ~-P(x). Consequently 
2- = V(J), which is Zariski-closed, completing the proof. 

THEO~E?,r 2.5. - JR: X(/~) --~ Spec (R) is a closed map. 

P~ooF. - We claim tha t  d: X(R) -+Z(R),  given by  d(V) = R,~n~ for each (V, M) 
X(/?), is a closed map. This follows by  applying [ZS, Lamina 4, page 116] since 

L(/~) is a (( complete model >> in the sense tha t  each element of X(/?) dominates some 
element of Z(/~). (Actually, the cited result in [ZS] shows tha t  X( /~ ) \{K}  ~ L(R) 
is closed, bu t  this readily yields our claim.) The theorem now follows from Lamina 2.4 
since f =- hd is a composite of closed maps. 

Define an equivalence relation .~ on X(/~) be decreeing V1 N V2 if and. only if 
]R(V1) =-JR(V2), and let X(t?)/...~ have the quotient  topology. Denote  the induced 
function X(t~)/-..--> Spec(/~) by  ]~. As Lamina 2.1 and Theorem 2.5 show tha t  ] 
is a continuous closed surjection, we immediately infer 

COrOLlArY 2.6. - With  the above notat ion,  jR: X(I~)/.~--~ Spec(_R) is a homeo- 
morphism. 

Ordinary separation properties are of no interest  for X(t~), since X(R) is a T~-spaee 
if and only if X(/~) is Hansdorff  if and only if /~ is a field. The crux is tha t  the 
closure of {K} in X(R) is the entire space, so tha t  K being a closed point  implies 
(by the existence of dominating valuat ion overrings) tha t  Spec (/~) = {0} and hence 
tha t  /~ is a field. (On the other  hand,  one sees similarly tha t  K is an o p e n - - t h a t  
is, i so la ted--poin t  in X(/?) if and only if K is a finite-type R-algebra, tha t  is, if and 
only i f / ~  is a G-domain in the sense of [K, Theorem 18]. In  a subsequent article, 
we shall re turn  to an intensive s tudy of G-domains via abstract  l~iemann surfaces.) 

Next ,  recall a more exotic separation proper ty :  a discrete Alexandro]f space is 
a To-space in which every intersection of (arbitrarily many)  open subsets is open. 
I t  is well-known (ef. [Pi, Proposit ion 1, section 5]) t ha t  Spec (_4) is discrete Alexan- 
droff (with respect to the Zariski topology) if and only if A is a g-ring. Moreover, 
[DFP, Theorem 2.16] shows how to retopologize any spectral set Spec (A) so as to 
give a canonical discrete Alexandroff structure. We now turn  to related m~tters 
involving X(_R). 

COrOLlArY 2.7. - (a) I f  X(/?) is a discrete Alexandroff space, then Spec (/~) is 
also discrete Alexandroff (and so R is a g-ring). 

(b) X(_R) is a discrete Alexandroff space if and only if each valuat ion overring 
o f /~  is a finite-type R'-algebra. 
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1)hooF. - (a) We shall show tha t  Y = [J Y~ is closed for each collection {Iz~} of 
closed subsets of Spec(R). Since ] is continuous, each ]-~(Y~) is closed in X(R), and 
so Z = [j ]-~(5/~) is closed by hypothesis. By  Theorem 2.6~ ](Z) is closed. However, 
since ] is surjeetive, ](Z) = Y. 

(b) Without  loss of generality, R ~ E' .  Assume tha t  each valuation overring 
of R is a finite-type /t-algebra. Then by [FV, Theorem 1], R ( : / ~ ' )  is a so-called 
strong G-domain and, in particular, both a g-ring and a Prfifer domain (cf. [~ar ,  
Theorem 2.2]). By  the above comments, Spee(R) is then discrete Alexandroff, and 
so the (( if )~ assertion follows by invoking Proposition 2.2. 

Conversely, assume tha t  X(R) is discrete Alexandroff. Since R = R',  [FV, 
Theorem 14] reduces our task to showing tha t  ~ is a strong G-domain. However, 
Spec(R) is discrete Alexandroff by  (a), and so by [~Iar, Proposition 2A], it suffices 
to prove t h a t / t  is a Prfifer domain. To this end~ let (V~} be the set of minimal val- 
uat ion overrings of/~.  As X(~) is discrete Alexandroff~ it follows readily tha t  each 
X(V~) is open in X(R). Since X(~) = [J X(V~) is quasi-compact, we see next tha t  
{V~} is finite. Thus, by  [K, Theorem 107], 1~ = R ' =  j~ V~ is a Prfifer domain, 
completing the proof. 

RE~A~IC 2.8. - (a) The reference to ~ '  in Corollary 2.7(b) is unavoidable. Indeed 
we produce next  an R for which X(R) is discrete Alexandroff but  some valuation 
overring of R is not a finite-type R-algebra. 

Begin with an infinite-dimensional algebraic field extension F c )5, and consider 
the formal power series ring V --~ JL~X~ ~ L -~ M, with M ~ XV.  Then R -~ F -~ M 
has the asserted properties. Indeed, X(R)-~ X(t~')-~ X(V) is homeomorphic to 
Spee(V) by Proposition 2.2, and, being a finite To-space, is hence discrete Alexan- 
droff. Moreover, V is not  algebra-finite over B since L is not algebra-finite over F.  

(b) The condition alluded to in (a) is, however, very useful. To reiterate: 
[FV, Theorem :[] demonstrates tha t  if each valuation overring of /~ is a finite-type 
/~-algebra, then R'  is a strong G-domain. I t  is interesting to note that ,  as in Corol- 
lary 2.7(b), the proof of the cited result depends on the quasi-compactness of X(R). 

(c) Pursuing an observation in the proof of Corollary 2.7(b), we find tha t  X(R) 
is a discrete Alexandroff space if and only if X(T) is open in X(/~) for each overring T 
of R. The reader can thence deduce the following addendum to Corollary 2.7(b): 
X(/~) is discrete Alexandroff if and only if for each valuation overring V of R, there 
exists a finite-type l~-algebra S contained between/~ and V such tha t  V is the integral 
closure of S. 

(d) I~ecall another exotic separation property:  a T0-space X is called Y~ in 
case, for each Y c X, the set of accumulation points of Y is closed. Any discrete 
Alexandroff space is a T~-space. I t  is not difficult to characterize when Spec (R) is 
a T~-space (cf. [FM, Proposition 1]); however, we do not have an equally neat  com- 
panion for Corollary 2.7(b) characterizing when X(/~) is T~. 
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We can, however, show tha t  X(/~) need not  be a T~-space in case Spec (R) is T~. 
To illustrate this, alter the construction in (a) by tak ing/~  to be algebraically closed 
in the larger field _5. I t  is easy to verify tha t  Spec (/~) --~ {0, M} is a T~-space by 
using the definition of Zariski topology. However, X(R) is not a T.-spaee since V 
is not an isolated point in the closure of V. To see this, assume on the contrary tha t  
(V} is the intersection of some E(x~, ..., x~) with the closure of V. Without  loss of 
generality, each x~ ~ ~ \ ~ ,  and so R[x~, ..., x,~] = S -~  M, where S ~ ~[xl ,  ..., x~] 
is not  a field (cf. [B, Corollary 3, pnge 354]). Taking W=/=L to be a valuation 
ring of L containing S (cf. [CT~, Theorem :[9.6]), we find tha t  W -~ M is in both 
E(x~, ...,x~) and the closure of V, the desired contradiction. (A degenerate case 
should be noted: if n ~-0,  select x ~ L \ ~  and use ~[x](~) in place of S i n  the above 
argument.) 

(e) We next  give the (( discrete Alexandroff ~) analogue of the result in (d); 
tha t  is, we shall show tha t  the converse of Corollary 2.7(a) is false. To this end, begin 
with a rational prime p, and let S denote the integral closure of Z,z in the algebraic 
closure of Q: As shown by Gilmer [G~, Example 1], S is a one-dimensional B~zout 
(hence, i - - )  domain with infinitely many  maximal  ideals. In  particular, S is not 
a g-ring and so X(S) (wh ich  is homeomorphic to Spee (S)) is not a discrete Alexan- 
droff space. ~ex t ,  let J(S) be the Jacobson radical of S and let 

be the induced injective integral ring-homomorphism. Take R to be the pullback 
of the diagram 

S 

-> s / J ( s )  

whose horizontal (resp., vertical) map is u (resp., the canonical projection). 
By  appealing to the topological characterization of R in [_~, Theorem 1.4], we 

find tha t  ~ is a one-dimensional quasilocal domain. In  particular, Spec(/2) is a 
discrete Alexandroff space. By  also appealing to [F, CoroNary ].5(5)], we have 
R ' =  S. Thus X(/~) ~ X(S) which, as we have seen, is not  discrete Alexandroff. 

3. - W h e n  f is  open.  

I~ecall tha t  if X(R) has the canonical topology, then f: X(/~) -+ Spec (/~) is closed 
in general (Theorem 2.5). :[~Ioreover, by retopologizing the set X(~),  one may  also 
view (~ ] )) as open (Remark 2.3). We next  s tudy openness of the genuine ], tha t  is, 
for X(R) with the canonical topology. 



108 D . E .  DOBBS - 1%. FEDD:~ - ~ .  FO~A~A: Abstract Riemann sur]aces, etc. 

I t  will be convenient  first to recall some background material.  (For  ~dditional 
background,  see [DP] and [Pal.) R is said to be a going-down ring (write: /~ is a 
GD-domain) in case the extension R c T has the going-down proper ty  for each over- 
ring T of R. Priifer domains and one-dimensional integral domains are the n~tural 
examples of going-down rings. ~ollowing [Pal, we say similarly tha t  /~ is an open 
(resp., ]inite-type open; resp., simple open) domain in case the contract ion map 
Spec(T)  -+ Spec(/~) is open for e~ch overring T of R (resp., for each such T which 
is ~ finite-type ]~-algebra; resp., for each T of the form T ~ R[u], u ~ K).  Let t ing 
FTO and SO denote (< finite-type open ~> and ~ simple open ~>~ respectively, we know 
(cf. [Pa, p~ge 19]) tha t  

open domain ~ FTO-domain  ~ SO-domain ~ GD-domain;  

and tha t  the first of these implications cannot  be reversed, even if/~ is quasi-semilocal. 
I t  is not  known whether  the other  two implications m ay  be reversed in general. 
As Papick  [Pa, Corollary 3.37] has shown, they  are reversible i f /~  is quasi-semilocal. 
We contr ibute  another  instance of reversibility in Theorem 3.3: the case of integrally 
closed /~ with Noether ian spectrum. A key step is taken  in 

PROPOSXTIO~ 3.1. -- ]R is an open map if and only i f /~ is an FTO-domain.  

P~OOF. - For  each finite subset {xl, ..., x~} of K, there is a commuta t ive  diagram 

E(~I , . . . ,  ~ )  ~- X(/~) 

Spec (/~[x~, ..., ~ ] )  ~. ~ Spee(/~) 

in which the top horizontal  map is the  inclusion, v is given by  the Spec functor,  and 
the lef t -hand vertical map is the (surjective) restriction of 1. I f  R is an FTO-domain,  
the image of any such v is  open in Spec (/~). Hence ] sends each basic open subset 
of X(/~) to an open set, and so ] is an open map. 

Conversely, assume tha t  ] is open. To show tha t  /~ is an FTO-domain,  a basic 
f~et about  the Zariski topology [B, Corollary, page 101] reduces us to proving tha t  
the image, say I7, of the composite 

Spec (~[yl ,  ..., y~, 8-1]) -~ Spec (R[y~, ..., ~,~]) -~ Spee (~) 

is open for each finite subset {Yl, ..., Y~} of K and nonzero element s ~ ~[yl ,  ..., y~]. 
However ,  taking {xl , . . . ,  x~} ~- {Yl, . . . ,  Y~, s-~}, we see from the above diagram tha t  

---- ](E(zl ,  ... ~ x~)). By the hypothesis on ], Iz is therefore open in Spec (R), complet- 
ing the proof. 
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The following material will be helpful. For  an ideal I of R ,  let V ( I ) =  
---- {PESpec(R):  I c P }  and D(I) = S p e c ( R ) \ V ( I ) ,  as usual. For  x e K ,  set (R: x) = 
-~ { r e R :  rxC_R}. Here is the main ingredient: an amenable set (over R) is, by  
definition, a subset of Spec (R) of the form 

(D(R: x,) n xT1)) 
= 1 

arising from a finite subset (x~, ..., x.} of K~{0}.  A final piece of notation:  Spec (R)c 
denotes the set Spec(/~) endowed with the constructible topology~ in the sense 
of [EGA]. (This coincides with the result of applying the patch topology construction 
[H, page 45] to the Zariski topology on Spee(R).) 

LE)~A 3.2. - Let  R be integrally closed. Then: 

(a) For  each finite subset (xl, ..., x.} of K~ the complement in Spec(R) of 
](E(xl, . . . , x , ) )  is an amenable set over /~ .  

(b) Le t  /~ be the amenable set constructed via (xl, ..., x~} c K~(0}.  Then 
the following two conditions are equivalent: 

(i) P is closed in Spee(~);  

(ii) P is closed in Spee(R)o and the image of Spec (R[x~, ..., x.]) ~> Spee(R) 
is stable under  generization. 

(e) The following five conditions are equivalent: 

(i) ]~ is an open map; 

(ii) For  each x e K,  the set {/~ e Spee (R) : x ~ P/~p} is closed in Spee (/~); 

(iii) Each amenable set over ~ is closed in Spec (R); 

(iv) The image of Spec (tt[xl, ..., x~]) -~ Spee (R) is stable under generization 
for each (x~ ... ~x.} c K and each amenable set is a constructible set; 

(v) /~ is a GD-domain ~nd each amenable set is a eonstructible set. 

P~oo~ ~. - (a) Without  loss of generality, each x~ is nonzero and n > l .  Evidently,  
S p e e ( R ) \ i ( E ( x l , . . . ,  x,)) is just  

/7 : [j  {p ~ Spee(R): x~ ~ V for each V ~ X(R)  such tha t  V dominates Re}. 
i = : 1  

We claim tha t  ig coincides with 

z = (p Spcc 
i = 1  
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To see this, note first tha t  if P ~ Z \ Y ,  then there exists an index i an4 a valu- 
ation ring (V, M) dominating Re such tha t  x~: 1 ~ P/~p and x~ E V. Then x7 ~ ~ MV~ = M  
and 1 ~ xT. I x ~  M V =  M, the desired contradiction. Conversely, suppose tha t  
P c ~V. Then for some index j, x~ -1 is in the maximal ideal of each valuation over- 
ring V tha t  dominates Rp. By  [G2, Corollary 19.9], the intersection of all such V 
is R'~, which is just Rp since we have assumed tha t  ~ == R'. As xj~Bp and x T ~ p ,  
it follows tha t  x T ~  PJ~e; tha t  is~ P ~ Z. This proves the claim. 

For  each x ~ K ~ { 0 } ,  the set {P~Spee (R) :  x~PR~}  may be expressed as 
{ P c  Spec(/~): xeR~}  (h { P c  Spee(R): x -~ ~_/~}; tha t  is, as D((R: $)) 5~ V((R: x-~)). 
Accordingly, Z is the amenable set constructed via {x~, ... ,x~}. 

(b) By appeal to [DFP, Lemma 2.5(b)]~ it is enough to prove tha t  _F is stable 
under specialization if and only if the image, say W, of Spec (R[x~, ..., x.]) -+ Spec (~) 
is stable under generization. The former condition is equivalent to S p e c ( R ) \ F  
being stable under generization; tha t  is, by the explicit calculation in (a), equivalent 
to ](E(x~, ..., x,)) being stable under generization. I~Iowevcr, we have seen from the 
commutat ive diagram in the proof of Proposition 3.1 tha t  ](E(x~, ..., x,)) coincides 
with W. 

(e) (i) ~ (if) <=> (iii): Since E(xl, ..., x.), with {xl, ..., x~} c K\{0} ,  is a typical  
basic open subset of X(R),  the desired equivalences follow from the proof in (a) 
tha t  Spec(~)\](.E(xl,  ..., x , ) ) =  Z is the amenable set constructed_ via (xl, ..., x~}. 

:Next, a general observation: each amenable set F is open in Spec(R)o. By  the 
nature  of the closed sets in Spec (R)c (cf. [DFP, page 559]), this may  be seen by recal- 
ling, for F constructed via {xl, ..., x,} c K \{0} ,  tha t  Spcc(R) \ / r  is the image of 
Spee (~[x~, . . . ,xn])-+Spee(R).  Accordingly, by  [EGA, 7.2.12(ii), page 337], P is 
a constructiblc set if and only if 2~ is closed in Spec (R)c. 

(iii) <=> (iv): Combine the preceding observation with (b). 

(v) ~ (iv): Trivial. 

(iii) ~ (v): Since (iii) implies both (iv) and (i), it is enough to invoke Proposi- 
tion 3.1 and the fact tha t  each l~TO-domain is a GD-domain. The proof is complete. 

THEOI~:EM 

space. Then 

(i) f. 

(ii) 

(iii) /~ 

(iv) 2~ 

(v) 

3.3. - I~et /~ be integrally closed., such tha t  Spec (_/~) is a l~oetherian 
the following conditions are equivalent: 

is an open map; 

is a GD-domain; 

is an FTO-domain;  

is an SO-domain; 

The image of Spec(/~[xl, ..., x,])--~ Spec(R) is stable under generization 
for each subset {xl~ ..., x~} of K.  
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t~ooF.  - S i n c e  Spee (R) is Noetherian, constructible sets may  be characterized 
as the finite unions of locally closed sets ([5{at, page 39]). I t  is therefore clear tha t  
each amenable set is a construetible set. Lemma 3.2(c) thus yields ( v ) ~  (i). In  
addition, Proposition 3.1 and the above remarks give (i) ~ (iii) ~ (iv) ~ (if) => (v). 
The proof is complete. 

I~E~'~A~K 3.r -- (a) By Proposition 3.1 and the remarks preceding it~ ]~ is an open 
map for each quasiloeal going-down ring R. In  particular, if _~ is a pseudo-valuation 
domain, then ]~ is an open map. (Recall tha t  an integral domain ~ is called apseudo- 
valuation domain [DF] if ~ has a valuation overring V such tha t  Spec (/~) -- Spee(V) 
as sets.) Thus, the ring ~ ~ M introduced in Remark 2.8(a) admits an open ], 
although /~ ~- M does not satisfy the riding hypotheses in Theorem 3.3. 

(b) There exists an integral domain /~ such tha t  (i) R is integrally closed; 
(if) Spec (B) is Noetherian; (iii) ]R is an open map but  not a homeomorphism; and (iv) 
/~ is not  an open domain. To indicate such a construction, let _~ c L be distinct fields, 
with ~ algebraically dosed in L. Let  V = L -~ M be a valuation domain (with 
maximal  ideal M) such that~ as a partially ordered set under inclusion, Spee(V) 
is isomorphic to {0} u {1, �89 �89 ...} with the natural  order inherited from Q. Then 
/~ = ~ -[- M has the asserted properties. 

Indeed, by  the lore of the D -4- M construction (cf. [G~]), /~ - - / Y  is not a valu- 
ation domain and Spee(~) = Spee(V) as sets. In  particular, R is not  an /-domain 
and so, by Proposition 2.2, J is not a homeomorphism. Since R is a pseudo-valuation 
domain, (a) shows however tha t  ] is an open map. Moreover, V has ascending chain 
condition on prime (radical) ideals. Spec(V) is therefore a Noetherian space, as 
must  be its homeomorphie copy Spee (/~). Finally, since the partially ordered set 
Spee (R) is not  well-ordered, (iv) follows from the criterion in [Pa, Theorem 3.16]. 

(c) In  view of Theorem 3.3 and (b), it  seems useful to record an example in 
which R =/: B',  Spee (~) is Noetherian, and ]R is open but  not a homeomorphism. 
For this purpose, it  is enough to consider the r ing/~ in Example 2.8(c). (More mun- 
dane examples abound via, for instanc% the D ~ M-construction.) indeed,  since R 
is one-dimensional (hence, a GD-domain) and quasilocal, it  is easy to see tha t  R 
is an open domain (of. [Pa, Theorem 3.16]). In  particular, /~ is an FTO-domain;  
so, by Proposition 3.1, ] is open. ?,{oreover, Proposition 2.2 assures tha t  ] is not a 
homeomorphism since /~ is not an /-domain. The remaining assertions are clear. 

4. - Abstract  R i e m a n n  surfaces are spectral spaces. 

Following [H], we say tha t  a topological space X is a spectral space in case X 
is homeomorphic to Spec (A), with the Zariski topology, for some commutative ring A 
(not necessarily an integral domain). A continuous map X ~ [g between spectral 
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spaces is culled a spectra~ map in case inverse images of arbi t rary  quasi-compact 
open subsets of Y are quasi-compact.  We m ay  now state our main result. 

T~E0~E~ ~.1. - X(R) is a spectral space and f~: X(R) --> Spec (R) is a spectral map. 

The proof of Theorem 4.1 must  await some definitions and prel iminary results. 
For  each finite subset {x~, . . . ,x.},  let B(x~, . . . , x . )  denote ~he closed subset 

X(/~) \E(x~,  ..., x~) of X(/~). For  each subset S of K,  let A (S) denote ithe closed 
subset N {B(x): x ~ K ~ S }  of X(R). For  each subset Y of X(R),  let G(Y) denote 
the subset (_J {V: V e Y} of K.  ~ o t e  in general tha t  

r A = {w w U {v: v r}}. 

Finally, we shall say tha t  a subset ~Y of X(R) is saturated in case A (~ (Y ) ) -~  Y' 

LEPTA 4.2. - Let  Y be an irreducible closed subset of X(R). Then:  

(a) Y is saturated.  

(b) Let  x ,  y ~ K and set I ---- [-] {M~: (V, My) c ~Y}. Then if xy c I ,  either x E I 
or y ~ I .  

Pt~ooF. - (a) I f  not,  then there exists B ~ B(yl, . . . ,y~) such tha t  Y c B  and 
B(x) r B for each x ~ K ~ G ( Y ) .  I f  n ~ 1, then y----y~c G(Y), there exists V e :Y 
such tha t  y ~ V, and so V r B(y), contradicting :Y c B. Hence n>~2. By  the above 
reasoning, ~- r B(y,) for each i. ~Tow, since B ~ (_J B(y,),  we m ay  decompose Y as 
[_j ( Y n B(y~)), a union of finitely many  proper  closed subsets, contradict ing irre- 
ducibility of Y. 

(b) Suppose not. As x r I and the elements of Y are valuation domains, one 
readily verifies tha t  x -~ ~ W for some W s Y; thus, Y r B(x-~). Similgrly, Y r B(y-~). 
As x y ~ I ,  each V 6  Y is such tha t  either x-~r  V or y-~r  V; tha t  is, :Y cB(x  -~) w 
w B(y-~). Accordingly, :Y decomposes as the union of Y (~ B(x -1) and Y n B(y -~) 
contradict ing irreducibility, to complete the proof. 

I f  (V, M) e X(]~), then the fact  tha t  ] is continuous and closed (Lemma 2.1 and 
Theorem 2.5) assures tha t  ] sends the closure of {V} to precisely the closure of {M}. 
To some extent ,  this suggests 

P~oPosiTIO~ 4.3. - E~,ch irreducible closed subset Y of X(/~) has a generic point.  

P u o o ~ .  - F ix  W e  Y and set I = f-] {My: (V, 1V/v) e -I7}. By  Lemma 4.2(b), 
S ~ W ~ I  is a mult ipl icat ive subset of W, and so V1 ~ Ws is a valuation overring 
of W. I t  suffices to prove tha t  the closure of {V1} is Y (as Y will then have generic 
point  V1). 

I f  x ~ I  and y e W ,  then Lemma 4.2(b) assures tha t  ~ y E I  (lest y - l ~ Z c M w  
and 1 ---- y-ly ~ Mw, a contradiction). Thus Z is a (prime) ideal of W. Consequently, 
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the maximal  ideal of V~ is I W ~ - I .  As I 2 ~ ( M v :  V e  Y} and each V is avulu-  
ation domain, one readily verifies tha t  V1 c (.J {V: V ~ 17} ---- G(Y). Pu t  differently, 
V~ ~A(G(Y)), and so Lemma 4.2(a) yields V~ E I z. I t  now suffices to show tha t  the 
closure of {V~} contains each V ~ Y; tha t  is, to show tha t  V c V~ for each V ~ Y. 
Since M v ~ I  , this follows directly from [G~, Theorem 17.6(v)], and the proof is 
complete. 

Pl~ooF of THEOREM 4.1. -- Spectral spaces have been characterized by HOOESTER 
[H, Proposition 4] as the quasi-compact To-spaces X such tha t  X has a quasi-compact 
open basis closed under finite intersection and each irreducible closed subspace of X 
has a generic point. By  Proposition 4.3 and the remarks in the first paragraph of 
section 2, X(R) satisfies these conditions of t toehster  and, accordingly, is a spectral 
space. Moreover, to see tha t  ]~ is a spectral map, it is enough to recall f rom the 
proof of Lemma 2.1 tha t  ]-~(X,~ w ... w X , ~ ) =  [_J ~(r~ -~) is a quasi-compact open, 
for each finite subset {r~, ..., r~} of R\{0}.  The proof is complete. 

]%]~AnK 4.4. - (a) Of course, each saturated subspace of X(R) is closed. In  view 
of Lemma 4.2(a), it  is therefore interesting to note tha t  a saturated subspaee need 
not  be irreducible. To see this, let {V~, ..., V.} be a finite collection of n~>2 pairwisc 
incomparable valuation overrings of R. I t  is well-known tha t  if W ~ X(R) satisfies 
W c V1 w ... w V,,  then W c V~ for some index i. (The point is tha t  Mw o ~ My.) 
Consequently, if we put  Y = [ J { v i } ,  it follows tha t  A ( G ( Y ) ) ~ - { W e X ( R ) :  
Wc[_J V~}-~ U { W e X ( / t ) :  WcV~} = Y; tha t  is, IZ is saturated. I t  is evident 
tha t  Y is not irreducible. 

(b) We next  record a point of contact with the condition mentioned in 
Remark 2.8(a), (b). l~'amely, if each valuation overring of _~ is a finite-type R-algebra, 
then each closed subspace of X(R) is saturated. To see this~ it is enough to show, 
for any  (possibly infinite) subset {V~} of X(R), tha t  Y = U (V~} is saturated. To 
this end, consider any  W ~  A (G(Y)). By hypothesis, W ~- R[xl, ..., x,] for some 
finite subset {xl, ..., x,,} of ]s :For each i, l K i K n ,  choose an index ~i so tha t  x~ e V~: 
this is possible since W c [J Vs. As W c V~ u ... ~ )V~,  the result recalled in (a) 
supplies j, 1 K y K n ,  such tha t  WcV%. Then W ~ ( V ~ j } c  Y, so tha t  Iz is indeed 
saturated,  as desired. 

(c) In  view of Theorem 4.1, [H, Proposition 10] assures tha t  X(/~) is (homeo- 
morphie to) an inverse limit of finite To-spaces. This is striking since X(R) \ (K}  
is the inverse limit of the complete models [ZS, Theorem 41, page 122]. 

(d) Here is an application of the full force of Theorem 4.1: by  invoking [I=I~ 
Proposition 15], we recover the implication (ii) ~ (i) in Proposition 2.2. 

Finally, we make X(--)  a funetor and thereby obtain a categorical formulation 
of Theorem 4.1. 
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C0~OLLA~Y 4.5. - Le t  D be the category whose objects form the class of all 
integral domains and whose morphisms are the inclusion maps. Le t  Z be the category 
of all abstract  l~iemann surfaces of integral domains, viewed as a full subcategory 
of the category S of spectral spaces and spectral maps. Then:  

(a) The object assignment 2 ~-~X(2) extends to a cont ravar iant  functor  

X: D--> Z. 

(b) Let  I :  Z - ~ S  be the inclusion functor.  Then {/R: 2 ~  Ob(D)} gives a na- 
tural  t ransformation from I X  to Spec, viewed as contravar iant  functors D - ~ S .  

P~OOF. - (a) Consider integral domains 2 a T (where, as usual, K denotes the 
quotient  field of 2 ) .  I f  V e X ( T ) ,  it is well-known tha t  V ( ' ~ K e X ( R ) .  (Cf. [G~, 
Theorem 19.16(a)]. Note  tha t  the corresponding assertion fails if one excludes K 
by definition from membership in X (2 ) ,  since easy examples exist with K c V 
quot ient  field of T.) Thus, if i:  2 - +  T is the inclusion map,  we m a y  define a 
function X(i):  X(T) --~ X(2)  by V ~-~ V n K.  I t  is evident  tha t  X(i) is cont inuous  
since, with self-explanatory notation,  we have X(i)-~(~(x~, ..., x~)) -~/~T(xx, ..., x~). 
As a quasi-compact open subset of an abstract  Riemann surface is just  a union of 
finitely many  basic open sets, this equat ion also shows tha t  X(i) is a spectral map. 

Now (a) follows easily. 

(b) We must  show, in the above notation,  tha t  

IX(T)  f~ > Spec(T) 

IX(R)  ~ Spec (2) 

is a commuta t ive  diagram. Observe first tha t  if (V, 57)~ X(T)  then iV (~ K is the 
maximal  ideal of V ( ~ K .  Thus ]R(IX(i)) sends V to (57 ~ K) ~ 2 ---- 57 ~ 2 .  As 
(Spec(i)) fr sends V to (57 (~ T) n 2 : 57 (~ 2 ,  the proof is complete. 

We close with a categorical remark:  Spee is not  invertible on the category of 
abstract  l%iemann surfaces. This means (cf. l i t ,  pages 43-44]), in the above nota- 
tion, tha t  there is no contravar iant  func to r /~  from Z to the category of commuta-  
t ive rings such tha t  I is natural ly  equivalent  to (Spec)F.  For  a proof, apply the 
criterion in [H, Proposit ion 3(a)] to Z: it is enough to choose R as any  integral domain 
other  than  a field and to observe tha t  K, the image of X(K) -+ X(2) ,  is a non- 
closed point.  

[A] 
[B] 
[DF] 
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