Some Results about Smoothing Methods of Fourier Series (*) (*+).

LeonNeEDE DE MICHELE - DELFINA ROUX

Summary. — In this paper we compare the Fourier polynomial’s approwimation, in C(I) or
in LP(T7), with that one obtained by a class of smoothing methods, which naturally erise in
solving ill posed problems. It 4s also given o sharp evaluation of the above approximation
in the space Lip (o, O(T)), 0 < << 1.

1. - Introduction.

Let us consider an integrable, sufficiently smooth, funetion f defined on the
N-dimensional torus. In order to obtain both a good graphic representation and a
good. L? approximation of f, some years ago M. FRoNTINI and L. Gorusso ([4], [5])
approximated f in the case N ==1, 2 by trigonometric polynomials obtained with a
technique similar to that one used by D. L. Prirrirs [11] for smoothing the approx-
imated solutions of an integral equation of the first kind,

This smoothing process was obtained by means of kernels of the form > (1 —

— gP(n))~* exp (2mint), where P is a suitable homogeneous polynomial of degree 4
and ¢ is a real positive smoothing parameter.

Many results were later obtained ([6], [3],[7]) on the subject, concerning the
N-dimensional torus and general homogeneous polynomials of even degree k such
that P(x) > 0 for every z e RY, x 0.

Briefly, we recall seme of the mentioned results.

If ¥ =1, let Z~ be the lattice of integer points of B¥ and 7% = R¥/Z¥ the N-di-
mensional torns. Let us name B, indifferently, the Lebesgue space Lr(1T%), 1<
= p = - oo, or the space of continuous functions C(I¥) and denote their norm by
I L.

If fe LY(T%) and ¢ > 0, let

f(w)

1.1 ~ ——teox] (Z2arint teTy,
(1.1) fo ,,éﬂ 0P 5P (2
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Whenever fe B, also fs€ B and |f — follp— 0. Moreover, if  is big enough (e.g.
k> N), the series (1.1) is absolutely and uniformly convergent to f, over 7% Then
in this ease we can approximate every fe B as close as we want both by f, and by
Fourier polynomials of f,, also in L¥(T¥) and C(1%), where generally the approxima-
tion by Fourier polynomials fails.

In this paper we compare the approximation given in B by the above method
and by more general other smoothing methods with that one given by Fourier
polynomials.

2. — For every integer m = 0 and for every real ¢ = 0 let us set

fom) o v
2. -ma':PmG( == - — Qoin 4 'y
(2.1) P, ot f) lném T GP(mexp (2mint)y, 1eT

In the Introduction we observed that if B = L' or B = ( there exist functions
such that the inequality

(2.2) = Puoles if = Puols

is satisfied at least for sufficiently small ¢ and large m.

Nevertheless, this is not enough to ensure that P, = give an essentially better
approximation of f than that one obtained by Fourier polynomials P, 4. Indeed
for every smoothing method, by using the properties of the lacunary Fourier series
can be easily proved the following theorem.

THEOREM 1. — For every &> 0 there exists a function fe B (which is not a
trigonometric polynomial) with an absolutely convergent Fourier series such that
every polynomial

Q) = 3 a.f(n) exp (2mint), teT¥

[njsm
satisfies the inequality
| ; Ky ]

(23) ”f~_QlE>1if—6 ‘f’_-pm,ﬂ\u?
where

3 if B=ILe(T¥),1=p<?2

Ky={ pt if B=IsT"),2<p<-+ oo
1

it B= O(T%),
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3. — If f i3 a trigonometric polynomial of degree s=% 0, obviously (2.2) doesn’s
hold if m = s. Moreover, in the case B = (T, for every function f of the form

f(t) = 3 a,cos2ant, tel

n=0
with a,> 0 and 2 a, < -+ oo, It can easily be seen that (2.2) doesn’t hold whatever
is m>0 and ¢. "0
The following theorem shows that the same happens in the case B = LY(T).

THEOREM 2. — There exist functions fe LY(T) such that
(3'1) ‘f— Pi)l,GHl > lf— Pm,OHl

for every real ¢ > 0 and for every positive integer m.
This theorem is a particular case of the following more general result.
Let M: (R* U {0}) X N->C be such that M(s, 0)=1, Yo>0and M(0,n) =1, ¥neN™.
If fe LYT) let us set

1) = f, ()~ > Mo, n))f(n) exp (2zint)

nex

Qo) = Q.. (1) = 3 Mo, |n|) f(n) exp (2mint) .

[njs=m

THEOREM 3. — Suppose that
1) M(o,1)#1, Vo> 0;

| /
)Supul M(o,n)|

T ety Yne N7,
>0 }1_‘3/“0‘7 )‘ + <

Then there exist functions fe LYT) (which are not trigonometric polynomials)
such that

(32) ”I—'Qm on1> if Qm OJ[
for every real o > 0 and for every positive integer m.

REMARKS. — 1) Obviously, condition 1) cannot be relaxed if (3.2) has to be
satisfied for every o > 0 and m > 0. If instead of 1) we require M(o, n,)%1,6 >0
and we make the same assumption in 2), then the result holds for every m > n,:
Moreover, the proof of the theorem shows that the result is true also if 2) is verified
only for n = 2kn,, k=1, 2, ....

2) Theorem 3 can be applied, for instance, to the classical cases of Féjer and
Poisson Kernels, whose Fourier transforms satisfy 1) and 2).
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3) We can also apply Theorem 3 to the case M(q, n) = fls(n) Where {u(0)},.
is a family of positive bounded measures whieh weak % converges for ¢ — 0 4 to
the unit mass measure §(0). For instance, if dus(w) = (1/o)@(x/o) dx, where ¢ is a
sufficiently smooth positive function, supported in a neigbourough of the origin,
whose integral is one, then (2.2) holds for every sufficiently large m. Indeed, the
hypotheses of Th. 3 in the weaker form of the remark 1 are satisfied.

Another case in this scheme is that of convolution semigroups, i.e. a family
{14} o Of positive bounded measures with: a) us(T) =1, 6> 05 b) uy* p, = pty,
6, 8> 0; ¢) e — 0(0) for ¢ — 07, (See e.g. [2], def. 8.1). From Th. 83 and 7.17
of [2] one can easily deduce that hypotheses of theorem 3 are satisfied, except
for the trivial cases ps= 6(0), o> 0.

4, - Now we come back to consider the smoothing method (1.1). We recall
that if f € B, for sufficiently large m, the polynomials P, in (2.1) give us an as good
approximation of f as we want. At present, we would like to give an estimate of
such approximation, at least for some classes of funetions.

An extimate of [f,— P, | ean be found for instance in [3], Th. 4 and [7],

pp. 354-356. Here we obtain some evaluations of [f — fo|| for functions in Lipschitz

classes.
A similar result for these classes was obtained in [9] and [14] in the case of Féjer

SUmSs,
We recall the definition of Lipschitz class. We say that fe B belongs to the
Lipschitz elass K lip («, B), 0 <« =1 if we have
1{Auf“B§KuuﬂN y VuETN
where
(4,00) =1t + u)—f(t) .
THEOREM 4. — If fe K lip (¢, B), 0 <« = 1, we have

x/k

(4.1) = 1,1,= KO, o

oy N

Moreover, if N =1, there exists M > 0 sueh that
(4.2) Sup  ||f — follo> Mo*'™.
7&K Hip (2, 0(1))
5. — In this section we give the proofs of the theorems.

THEOREM 1. ~ Let ¢ > 0 and ¥ = Z¥ a Sidon set, [13], such that for every ab-
solutely convergent series

fty = 3 a, exp (2zint), teI¥

nel
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we have

2 [ < {1+ &)f|e

it )

Such a set B may be, for instance, a lacunary set. (See e.g. [1], vol. 1, p. 179;
vol. II, p. 2486).
Therefore, if 1 < p < 2 we have

= Puolo = [f— Proo= 1] — @:= 2(1 + &) |f — @;

if 2 <p <~ oo, then

If = Puolo= VPO + o)f = Popla= VDL + &) |f = Q= VP + &) — Qs
if p = co then
ff= Proles 3 fml= 3 L—alfn)] + X1f@)] = (1 + &)f — @l
Lo |n]>m o] m [#]>m

The proof shows that for 2 < p < -+ <o (2.3) holds for every trigonometric poly-
nomial of degree less than or equal to m.

THEOREM 3. — Let {a,} be a sequence of real positive numbers such that for every
n>1 we have

(5.1) a,n< ZA(ZH'—”K;;L
where
—_— Jf[ Y :
X, — Sup 1 (ayn)

o>0 1 — M(o, 1)
and moreover

(5.

S

) t, < 2-C@u-tnilg  Ym=1,2,...,m—1.
Let us consider the function

oo
= > a,sin2at, tel.
n=1

For this kind of functions it suffices to consider @,, where k=2% neNT,
Let us set @, =F, . Then for every m>0 and n=1,2,...,m

(f— Buo)(l) = — (f = Bpo)(27"— 1) ;
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therefore R, , satisfles the following conditions

1

f §in 20t sgn ((f— Ruo)(t) dt = 0
o

for n=1,2,...,m. This 1mp11es that R, , is a best L? apprommamon of f in the

m

class V,, of the polynomials of the form Z“n sin 27t {}). Consequently

n=1

(5'3) | ”f"' Rm,ul.il = “f'— Rm,oﬁl ’ c>0.

Because f is not a Chebychev set on (0,1), the polynomial of best approximation
of f in V,, may not be unique; then we have to prove that in (5.3) the strict ine-
quality holds.

To this aim let us consider

(54) j—R z W(1— M(, 2 sin 27t + 3 @, sin 27t = 5y + 5, .

n>m

We may always suppose ¢,=1 and 1— M(s,1)> 0. By (5.1) we have

m i—1
2= 3 a,(1 — Mg, 2"1)) 2" ! sin 2ot ﬂ COs 2ot =

n=1

. L — N{ 0- gn— 1) n—1
= (1 — M(c, 1)) sin 27t ! fn—1 $ DSl s >
(1 (6,1)) sin 27 { gz T M) Uy ];[leos nt}_

> (1 — HM{g, 1)) sin Znt{l — sgn (sin 2m7t) E 2—”} =

n=2

= (1 — Mo, 1)) sin 2mt{l — £ sgn (sin 2xt)} .

From (5.2) we obtain

n—1

22~ Sln‘ 2m+1nt{ 171+1+ 2 ‘?n 1a/ m4-n H Cos ‘)m+8ﬂt}

n=2

!l\/

(=]
= a,,,, 8in 277 1ot {1 — sgn (8in 2m+1gg) 2 }

= Ay S0 2771t {1 — § sgn (sin 2mtig)}
Let us set
Po(t) = (1 — M(o,1)){1 — § sgn (sin 2at)} sin 20t
“+ @pia{l — } sgn (sin 27F1zt)} sin 2mHiag .

(*) See e.g. [12], p. 104, th. 4.2 or [8], p. 104, Cor. 1.5,
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By (5.4) we have
) — R, (1) Z ¢,0(t), Ytel.
Because

(f— Rm,a)(t) - (f“ Rm,a)(l - 1), Vie T7 Vm >0

the last inequality gives
1 . i

(5.5) sin 2zt sgn (f(t) — R, ,(¢)) dt g 2J‘sin 2zt sgn (f(t) — R, (1) dt =

0 0

1
=2 f sin 27t sgn @, ,(¢) dt .
0

Now we check the sign of ¢, , in (0, §).
For every k, 0 k< 2 1—1 let

. L k4
ol 59

Smt1? gmtl

oo {1 k11 &
L= 9 Qmt1 ’ 2 Qmt1 ’

Let first consider an even k; in I, sin 27t and sin 27+af are positive; therefore

and let

(Pm,a(t) >0, Vie Il; .

In 1; the funetion sin 27z has a positive minimum if k¥ > 0; for ¥ = 0 we have
sin 2ax >0, Voe 17’; , s 0, On the contrary, sin 27*+!zz is negative in the inferior
of I, and zero on the boundary. Then for o small enough there exists I,’:,G g I, such
that

(pm,c(t) < 0 ’ Vt € I;;,c ? (pm,o'(t) > 0 ? Vt € II;/I;: *

Moreover, Iy 41, if 0 — 07,
Then, by a simmefry argument, we easily obtain

(5.6) fsin 2t sgn @, (1) dt >0
Ilc‘rl;c

for every 0 > 0 and even k, 0 < k<< 271— 1.

For odd %, analogous considerations prove that ¢, (f) >0, Vie I, and that for o
small enough there exists an interval I, ,1I, for o — 0, such that ¢, ()< 0 in
I, and ¢, ()= 0 in /I, ,.

Therefore, (5.6) holds for every o > 0 and for every &, 0 = k< 2771~ 1,
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Then

£

jsin 2rtsgn @, B dt>0, Vo>0
0

413
fe2d

and by (

L _
fsin 2nt sgn (f(t) — B, ,(H) dt>0, Vo>0.

0

Consequently, E, ; is not a best L*-approximation of f in the class V, (?) what-
ever is ¢ > 0. Then in (5.3) for every o > 0 the strict inequality holds, q.e.d.

THEOREM 4. — Let & € LY{(RY) be the function whose Fourier transform is G =
= (1— P)~L. (See [3], th. 5.) Let us set

Go(a) = o~V k@ (o Veg) ,

Ko(w) = 3 Go(w -+ n) .

neg™

Let f* the continued periodic function of f on R¥. Then

fol@) == Ks% f(2) =ng(u)f(m — ) duy :f Go(u) f¥(w — u) du =ff*(w + 4)Go{— u) du .
RN RN

M

Therefore

= tla= | [ (700 + 0= 140 Galm) )] < [1AALIGo— w0 s

RY RN
™ (=
<K f e o1

RN

The last integral exists ([3], th. 3); then (4.1) holds.
Let now be N =1: in this case P(z) = P,(®) = a*, k= 2,4, ... For every
h=1,2,.., k2, let us set

du = Ko‘“”“f[a:]“lG’(-— z)| dw .

RY

(2h —1)m .
&, = T a,==8ine,, b,=cosg,.
v

> sin (e, + 2ab,|x|) exp (— 2mazlx])

n
27 k2o - 27h 2ma
Kslw) = K, (x) == - z Z sin (Sh - wa @ -+ n|jexp (_ Gl/kh e+ nj) .

(%) See e.g. [12], p. 103, th. 4.2 or [8], p. 104, Cor. 1.5,
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Let us consider the function
1 0t<}
f“(t) = B 1 o 1<
(I—-t)y i=t<1.
Then for every «, 0 < a =<1, f, & Lip (o, C(T)) and we have
faalo= [Eo# ful w2 Kok fu(0)] =
dm | [ 2 27h, 2ra, \ L. ’
=i f ;lem (eh -+ E;R'—”T) exp (- c:l /k’ x) fla) do) =
0
47 e , e
== Y sin (e, -+ 2ab,z) exp (— 2aa,2) fi(c** ) do| =
g h=1
1/201/k
dmo® (R
= k Y x*sin (¢ + 2abyx) exp (— 2na,z) do| —
K=1
4 ¢ k2 : 4 alk 4
— IS sin (o 2abyz) exp (— 2am) (0% @) do| 2 ”]f’ Il~~_177“-1.2.
./1/2'11/;1 v
We start evaluating I;. From [10], p. 10 and p. 121 we obtain
- o 1 . 7
2% sin (&, - 2mh,2) exp( — 2ma,x) div = W] (o0 + 1) sinf{a 4+ 1) 5~ &) .
0

Since 0 < ¢, <@, we have 0 < (a 4 1)(%/2) — ag, < .
Then for & sufficiently small, for every ¢ < & we have

Ii=1Le)>d0>0.

On the other hand we have

+ oo

I, < f U-MkhZ1 exp (—-“ 27’6&71.”6) de = —’Ell—h"

1/20%/%

= g1 for 07,
R o(1) or ¢ —>

%2 O—a/k B2 1 — 2,7
S ()
Therefore, there does exist M > 0 such that for every o < oy(k) (4.2) holds.
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