Some Results about Smoothing Methods of Fourier Series (*) (**).

Leonede De Miohele - Delfiva Roux

Summary. - In this paper we compare the Fourier polynomial's approximation, in $C\left(T^{n}\right)$ or in $L^{p}\left(T^{n}\right)$, with that one obtained by a class of smoothing methods, which naturally arise in solving ill posed problems. It is also given a sharp evaluation of the above approximation in the space $\operatorname{Lip}(\alpha, C(T)), 0<\alpha<1$.

1. - Introduction.

Let us consider an integrable, sufficiently smooth, function f defined on the N-dimensional torus. In order to obtain both a good graphic representation and a good. L^{2} approximation of f, some years ago M. Frontini and L. Gotusso ([4], [5]) approximated f in the case $N=1,2$ by trigonometric polynomials obtained with a technique similar to that one used by D. L. Phillips [11] for smoothing the approximated solutions of an integral equation of the first kind.

This smoothing process was obtained by means of kernels of the form $\sum_{a}(1-$ $-\sigma P(n))^{-1} \exp (2 \pi i n t)$, where P is a suitable homogeneous polynomial of degree 4 and σ is a real positive smoothing parameter.

Many results were later obtained ([6], [3], [7]) on the subject, concerning the N-dimensional torus and general homogeneous polynomials of even degree k such that $P(x)>0$ for every $x \in R^{N}, x \neq 0$.

Briefly, we recall some of the mentioned results.
If $N \geqq 1$, let Z^{N} be the lattice of integer points of R^{N} and $T^{N}=R^{N} / Z^{N}$ the N-dimensional torus. Let us name B, indifferently, the Lebesgue space $L^{p}\left(T^{N}\right), 1 \leqq$ $\leqq p \leqq+\infty$, or the space of continuous functions $O\left(T^{N}\right)$ and denote their norm by $\left\|\|_{B}\right.$.

If $f \in L^{x}\left(T^{N}\right)$ and $\sigma>0$, let

$$
\begin{equation*}
f_{\sigma} \sim \sum_{n \in \mathbb{Z}^{N}} \frac{\bar{f}(n)}{\overline{1}+\sigma P(n)} \exp (2 \pi i n t), \quad i \in T^{N} \tag{1.1}
\end{equation*}
$$

[^0]Whenever $f \in B$, also $f_{\sigma} \in B$ and $H-f_{\sigma} \|_{B} \rightarrow 0$. Moreover, if k is big enough (e.g. $k>N$), the series (1.1) is absolutely and uniformly convergent to f_{σ} over T^{N}. Then in this case we can approximate every $f \in B$ as close as we want both by f_{σ} and by Fourier polynomials of f_{σ}, also in $L^{1}\left(T^{N}\right)$ and $O\left(T^{N}\right)$, where generally the approximation by Fourier polynomials fails.

In this paper we compare the approximation given in B by the above method and by more general other smoothing methods with that one given by Fourier polynomials.
2. - For every integer $m \geqq 0$ and for every real $\sigma \geqq 0$ let us set

$$
\begin{equation*}
P_{m, \sigma}=P_{m, \sigma}(f)=\sum_{|n| \leq m} \frac{f(n)}{1+\sigma P(n)} \exp (2 \pi i n t), \quad t \in T^{N} \tag{2.1}
\end{equation*}
$$

In the Introduction we observed that if $B=L^{1}$ or $B=C$ there exist functions such that the inequality

$$
\begin{equation*}
\left\|f-P_{m, \sigma}\right\|_{B} \leqq\left\|-P_{m, 0}\right\|_{B} \tag{2.2}
\end{equation*}
$$

is satisfied at least for sufficiently small σ and large m.
Nevertheless, this is not enough to ensure that $P_{m, \sigma}$ give an essentially better approximation of f than that one obtained by Fourier polynomials $P_{m, 0}$. Indeed for every smoothing method, by using the properties of the lacunary Fourier series can be easily proved the following theorem.

Theorem 1. - For every $\varepsilon>0$ there exists a function $f \in B$ (which is not a trigonometric polynomial) with an absolutely convergent Fourier series such that every polynomial

$$
Q(t)=\sum_{|n| \leqq m} \alpha_{n} \hat{f}(n) \exp (2 \pi i n t), \quad t \in T^{N}
$$

satisfies the inequality

$$
\begin{equation*}
\left\|\left.f-\left.Q\right|_{B}>\frac{K_{B}}{1+\varepsilon} \right\rvert\, f-P_{m, 0}\right\|_{B} \tag{2.3}
\end{equation*}
$$

where

$$
K_{B}= \begin{cases}\frac{1}{2} & \text { if } B=L^{p}\left(T^{N}\right), 1 \leqq p<2 \\ p^{-\frac{1}{b}} & \text { if } B=L^{p}\left(T^{N}\right), 2<p<+\infty \\ 1 & \text { if } B=C\left(T^{N}\right)\end{cases}
$$

3. - If f is a trigonometric polynomial of degree $s \neq 0$, obviously (2.2) doesn't hold if $m \geqq s$. Moreover, in the case $B=O(T)$, for every function $\frac{f}{f}$ of the form

$$
f(t)==\sum_{n=0}^{\infty} a_{n} \cos 2 \pi n t, \quad t \in T
$$

with $a_{n}>0$ and $\sum_{n=0}^{+\infty} a_{n}<+\infty$, it can easily be seen that (2.2) doesn't hold whatever is $m>0$ and $\sigma .{ }_{n=0}$

The following theorem shows that the same happens in the case $B=L^{1}(T)$.
Theorem 2. - There exist functions $f \in L^{1}(T)$ such that

$$
\begin{equation*}
f-P_{m, \sigma}\left\|_{1}>f-P_{m, 0}\right\|_{1} \tag{3.1}
\end{equation*}
$$

for every real $\sigma>0$ and for every positive integer m.
This theorem is a particular case of the following more general result.
Let $M:\left(\boldsymbol{R}^{+} \cup\{0\}\right) \times \boldsymbol{N} \rightarrow \boldsymbol{C}$ be such that $M(\sigma, 0)=1, \forall \sigma>0$ and $M(0, n)=1, \forall n \in \boldsymbol{N}^{+}$.
If $f \in L^{1}(T)$ let us set

$$
\begin{aligned}
& f_{\sigma}(t)=f_{\sigma, M}(t) \sim \sum_{n \in Z} M(\sigma,|n|) \hat{f}(n) \exp (2 \pi i n t), \\
& Q_{m, \sigma}(t)=Q_{m, \sigma, M M}(t)=\sum_{|n| \leqq m} M(\sigma,|n|) \hat{f}(n) \exp (2 \pi i n t) .
\end{aligned}
$$

Theorem 3. - Suppose that

1) $\quad M(\sigma, 1) \neq 1, \quad \forall \sigma>0 ;$
2) $\operatorname{Sup}_{\sigma>0}\left|\frac{1-M(\sigma, n)}{1-M(\sigma, 1)}\right|<+\infty, \quad \forall n \in \mathbf{N}^{+}$.

Then there exist functions $f \in L^{1}(T)$ (which are not trigonometric polynomials) such that

$$
\begin{equation*}
\left\|f-Q_{m, \sigma}\right\|_{1}>\left\|f-Q_{m, 0}\right\|_{1} \tag{3.2}
\end{equation*}
$$

for every real $\sigma>0$ and for every positive integer m.
Remarks. - 1) Obviously, condition 1) cannot be relaxed if (3.2) has to be satisfied for every $\sigma>0$ and $m>0$. If instead of 1) we require $M\left(\sigma, n_{0}\right) \neq 1, \sigma>0$ and we make the same assumption in 2), then the result holds for every $m>n_{0}$: Moreover, the proof of the theorem shows that the result is true also if 2) is verified only for $n=2^{k} n_{0}, k=1,2, \ldots$.
2) Theorem 3 can be applied, for instance, to the classical cases of Féjer and Poisson Kernels, whose Fourier transforms satisfy 1) and 2).
3) We can also apply Theorem 3 to the case $M(\sigma, n)=\hat{\mu}_{\sigma}(n)$ where $\{\mu(\sigma)\}_{\sigma>0}$ is a family of positive bounded measures which weak $*$ converges for $\sigma \rightarrow 0+$ to the unit mass measure $\delta(0)$. For instance, if $d \mu_{\sigma}(x)=(1 / \sigma) \varphi(x / \sigma) d x$, where φ is a sufficiently smooth positive function, supported in a neigbourough of the origin, whose integral is one, then (2.2) holds for every sufficiently large m. Indeed, the hypotheses of Th. 3 in the weaker form of the remark 1 are satisfied.

Another case in this scheme is that of convolution semigroups, i.e. a family $\left\{\mu_{\sigma}\right\}_{\sigma>0}$ of positive bounded measures with: a) $\left.\mu_{\sigma}(T) \leqq 1, \sigma>0 ; b\right) \mu_{\sigma} * \mu_{s}=\mu_{\sigma+s}$ $\sigma, s>0$; c) $\mu_{\sigma} \rightarrow \delta(0)$ for $\sigma \rightarrow 0^{+}$. (See e.g. [2], def. 8.1). From Th. 8.3 and 7.17 of [2] one can easily deduce that hypotheses of theorem 3 are satisfied, except for the trivial cases $\mu_{\sigma}=\delta(0), \sigma>0$.
4. - Now we come back to consider the smoothing method (1.1). We recall that if $f \in B$, for sufficiently large m, the polynomials $P_{m, \sigma}$ in (2.1) give us an as good approximation of f as we want. At present, we would like to give an estimate of such approximation, at least for some classes of functions.

An extimate of $\left\|f_{\sigma}-P_{m, \sigma}\right\|$ can be found for instance in [3], Th. 4 and [7], pp. 354-356. Here we obtain some evaluations of $\left\|f-f_{\sigma}\right\|$ for functions in Lipschitz classes.

A similar result for these classes was obtained in [9] and [14] in the case of Fejer sums.

We recall the definition of Lipschitz class. We say that $f \in B$ belongs to the Lipschitz class $K \operatorname{lip}(\alpha, B), 0<\alpha \leqq 1$ if we have

$$
\left\|\Delta_{u} f\right\|_{B} \leqq K\|u\|^{x}, \quad \forall u \in T^{N}
$$

where

$$
\left(\Delta_{u} f\right)(t)=f(t+u)-f(t)
$$

Theorem 4. - If $f \in K \operatorname{lip}(\alpha, B), 0<\alpha \leqq 1$, we have

$$
\begin{equation*}
\left\|f-f_{\sigma}\right\|_{s} \leqq K C_{\alpha, s} \sigma^{\alpha / k} \tag{4.1}
\end{equation*}
$$

Moreover, if $N=1$, there exists $M>0$ such that

$$
\begin{equation*}
\operatorname{Sup}_{f \in K \operatorname{lip}(\alpha, o(T))}\left\|f-f_{\sigma}\right\|_{\sigma}>M \sigma^{\alpha / k} . \tag{4.2}
\end{equation*}
$$

5. - In this section we give the proofs of the theorems.

Theorein 1. - Let $\varepsilon>0$ and $E \in Z^{N}$ a sidon set, [13], such that for every absolutely convergent series

$$
f(t)=\sum_{n \in E} a_{n} \exp (2 \pi i n t), \quad t \in T^{N}
$$

we have

$$
\sum_{n \in E}\left|a_{n}\right|<(1+\varepsilon)_{\|} f_{i \infty} .
$$

Such a set E may be, for instance, a lacunary set. (See e.g. [1], vol. 1, p. 179; vol. II, p. 246).

Therefore, if $1 \leqq p<2$ we have

$$
f-P_{m, 0}\left\|_{p} \leqq\right\| f-P_{m 0} \leqq f f-Q\left\|_{2} \leqq 2(1+\varepsilon)\right\| f-Q \|_{p}
$$

if $2<p<+\infty$, then

$$
\left\|f-P_{m, 0}\right\|_{p} \leqq \sqrt{p}(1+\varepsilon)\left\|f-P_{m, 0}\right\|_{2} \leqq \sqrt{p}(1+\varepsilon)_{i} \mid f-Q\left\|_{2} \leqq \sqrt{p}(1+\varepsilon)\right\| f-Q \|_{p}
$$

if $p=\infty$ then

$$
\left\|f-P_{m, 0}\right\|_{\infty} \leqq \sum_{\substack{n \in E \\|n|>m}}|\hat{f}(n)| \leqq \sum_{\substack{n \in E \\|n| \leqq m}}\left|1-\alpha_{n}\right||\hat{f}(n)|+\sum_{\substack{n \in E \\|n|>m}}|\hat{f}(n)| \leqq(1+\varepsilon)\|f-Q\|_{\infty},
$$

q.e.d.

The proof shows that for $2<p<+\infty$ (2.3) holds for every trigonometric polynomial of degree less than or equal to m.

Theorem 3. - Let $\left\{a_{n}\right\}$ be a sequence of real positive numbers such that for every $n>1$ we have

$$
\begin{equation*}
a_{n}<2^{-(2 n-1)} K_{2^{n-1}}^{-1} \tag{5.1}
\end{equation*}
$$

where

$$
K_{n}=\sup _{\sigma>0} \frac{1-M(\sigma, n)}{1-M(\sigma, 1)}
$$

and moreover

$$
\begin{equation*}
a_{n}<2^{-(2 n-2 m+1)} a_{m}, \quad \forall m=1,2, \ldots, n-1 \tag{5.2}
\end{equation*}
$$

Let us consider the function

$$
f(t)=\sum_{n=1}^{\infty} a_{n} \sin 2^{n} \pi t, \quad t \in T
$$

For this kind of functions it suffices to consider $Q_{k \sigma}$ where $k=2^{n}, n \in \boldsymbol{N}^{+}$. Let us set $Q_{2^{n}, \sigma}=R_{n, \sigma}$. Then for every $m>0$ and $n=1,2, \ldots, m$

$$
\left(f-R_{m, 0}\right)(t)=-\left(f-R_{n, 0}\right)\left(2^{-n}-t\right) ;
$$

therefore $R_{m, 0}$ satisfies the following conditions

$$
\int_{0}^{1} \sin 2^{n} \pi t \operatorname{sgn}\left(\left(t-R_{m, 0}\right)(t)\right) d t=0
$$

for $n=1,2, \ldots, m$. This implies that $R_{m, 0}$ is a best L^{1} approximation of f in the class V_{m} of the polynomials of the form $\sum_{n=1}^{m} a_{n} \sin 2^{n} \pi t\left({ }^{(1)}\right.$. Consequently

$$
\begin{equation*}
\left\|f-R_{m, \sigma}\right\|_{1} \geqq\left\|f-R_{m, 0}\right\|_{I}, \quad \sigma>0 \tag{5.3}
\end{equation*}
$$

Because f is not a Chebychev set on (0,1), the polynomial of best approximation of f in V_{m} may not be unique; then we have to prove that in (5.3) the strict inequality holds.

To this aim let us consider

$$
\begin{equation*}
f-R_{m, \sigma}=\sum_{n=1}^{m} a_{n}\left(1-M\left(\sigma, 2^{n-1}\right)\right) \sin 2^{n} \pi t+\sum_{n>m} a_{n} \sin 2^{n} \pi t=\Sigma_{1}+\Sigma_{2} \tag{5.4}
\end{equation*}
$$

We may always suppose $a_{1}=1$ and $1-M(\sigma, 1)>0$. By (5.1) we have

$$
\begin{aligned}
& \Sigma_{1}=\sum_{n=1}^{m} a_{n}\left(1-M\left(\sigma, 2^{n-1}\right)\right) 2^{n-1} \sin 2 \pi t \prod_{s=1}^{i-1} \cos 2^{s} \pi t= \\
&=(1-M(\sigma, 1)) \sin 2 \pi t\left\{1+\sum_{n=2}^{m} \frac{1-M\left(\sigma, 2^{n-1}\right)}{i-M(\sigma, 1)} 2^{n-1} a_{n} \cdot \prod_{s=1}^{n-1} \cos 2^{s} \pi t\right\} \geqq \\
& \geq(1-M(\sigma, 1)) \sin 2 \pi t\left\{1-\operatorname{sgn}(\sin 2 \pi t) \sum_{n=2}^{m} 2^{-n}\right\} \geqq \\
& \geqq(1-M(\sigma, 1)) \sin 2 \pi t\left\{1-\frac{1}{2} \operatorname{sgn}(\sin 2 \pi t)\right\}
\end{aligned}
$$

From (5.2) we obtain

$$
\begin{aligned}
\Sigma_{2}=\sin 2^{m+1} \pi t\left\{a_{m+1}+\sum_{n=2}^{m} 2^{n-1} a_{m+n}\right. & \left.\prod_{s=1}^{n-1} \cos 2^{m+s} \pi t\right\} \geqq \\
& \geqq a_{m+1} \sin 2^{m+1} \pi t\left\{1-\operatorname{sgn}\left(\sin 2^{m+1} \pi t\right) \sum_{n=2}^{\infty} 2^{-n}\right\} \geqq \\
& \geqq a_{m+1} \sin 2^{m+1} \pi t\left\{1-\frac{1}{2} \operatorname{sgn}\left(\sin 2^{m+1} \pi t\right)\right\}
\end{aligned}
$$

Let us set
$\varphi_{m, \sigma}(t)=(1-M(\sigma, 1))\left\{1-\frac{1}{2} \operatorname{sgn}(\sin 2 \pi t)\right\} \sin 2 \pi t+$

$$
+a_{m+1}\left\{1-\frac{1}{2} \operatorname{sgn}\left(\sin 2^{m+1} \pi t\right)\right\} \sin 2^{m+1} \pi t
$$

$\left.{ }^{(}{ }^{1}\right)$ See e.g. [12], p. 104, th. 4.2 or [8], p. 104, Cor, 1.5,

By (5.4) we have

$$
f(t)-R_{m, \sigma}(t) \geqq \varphi_{m, \sigma}(t), \quad \forall t \in T
$$

Because

$$
\left(f-R_{m, \sigma}\right)(t)=-\left(f-R_{n, \sigma}\right)(1-t), \quad \forall t \in T, \quad \forall m>0
$$

the last inequality gives

$$
\begin{align*}
\int_{0}^{1} \sin 2 \pi t \operatorname{sgn}\left(f(t)-R_{m, \sigma}(t)\right) d t \geqq 2 \int_{0}^{\frac{1}{2}} \sin 2 \pi t \operatorname{sgn}(f(t) & \left.-R_{m, \sigma}(t)\right) d t \geqq \tag{5.5}\\
& \geqq 2 \int_{0}^{\frac{1}{ \pm}} \sin 2 \pi t \operatorname{sgn} \varphi_{m, \sigma}(t) d t
\end{align*}
$$

Now we check the sign of $\varphi_{n, \sigma}$ in ($0, \frac{1}{2}$).
For every $k, 0 \leqq k \leqq 2^{m-1}-1$ let

$$
I_{k}=\left(\frac{k}{2^{m+1}}, \frac{k+1}{2^{n+1}}\right)
$$

and let

$$
I_{k}^{\prime}=\left(\frac{1}{2}-\frac{k+1}{2^{m+1}}, \frac{1}{2}-\frac{k}{2^{m+1}}\right) .
$$

Let first consider an even k; in I_{k}, $\sin 2 \pi t$ and $\sin 2^{m+1} \pi t$ are positive; therefore

$$
\varphi_{m, \sigma}(t)>0, \quad \forall t \in I_{k}
$$

In l_{k}^{\prime} the function $\sin 2 \pi x$ has a positive minimum if $k>0$; for $k=0$ we have $\sin 2 \pi x>0, \forall x \in I_{k}^{\prime}, x \neq 0$. On the contrary, $\sin 2^{m+1} \pi x$ is negative in the interior of I_{k}^{\prime} and zero on the boundary. Then for σ small enough there exists $I_{k, \sigma}^{\prime} \subset I_{k}^{\prime}$ such that

$$
\varphi_{m, \sigma}(t)<0, \quad \forall t \in I_{k, \sigma}^{\prime \prime}, \quad \varphi_{m, \sigma}(t)>0, \quad \forall t \in I_{k}^{\prime} \mid I_{k}^{\prime \prime}
$$

Moreover, $I_{k, \sigma}^{T} \uparrow I_{l}^{\prime}$ if $\sigma \rightarrow 0^{+}$.
Then, by a simmetry argument, we easily obtain

$$
\begin{equation*}
\int_{I_{k} \rightarrow I_{k}^{\prime}} \sin 2 \pi t \operatorname{sgn} \varphi_{m, \sigma}(t) d t>0 \tag{5.6}
\end{equation*}
$$

for every $\sigma>0$ and even $k, 0 \leqq k \leqq 2^{m-1}-1$.
For odd k, analogous considerations prove that $\varphi_{m, \sigma}(t)>0, \forall t \in I_{k}^{\prime}$ and that for σ small enough there exists an interval $I_{k, \sigma}^{\prime \prime} \uparrow I_{k}$ for $\sigma \rightarrow 0_{+}$such that $\varphi_{m, \sigma}(t)<0$ in $I_{k, \sigma}^{\prime \prime}$ and $\varphi_{m, \sigma}(t) \geqq 0$ in $I_{k} / I_{k, \sigma}^{\prime}$.

Therefore, (5.6) holds for every $\sigma>0$ and for every $k, 0 \leqq k \leqq 2^{m-1}-1$.

Then

$$
\int_{0}^{\frac{1}{\hbar}} \sin 2 \pi t \operatorname{sgn} \varphi_{m, \sigma}(t) d t>0, \quad \forall \sigma>0
$$

and by (5.5)

$$
\int_{0}^{1} \sin 2 \pi t \operatorname{sgn}\left(f(t)-\mathcal{R}_{m, \sigma}(t)\right) d t>0, \quad \forall \sigma>0
$$

Consequently, $R_{m, \sigma}$ is not a best L^{1}-approximation of f in the class $V_{m 2}\left({ }^{2}\right)$ whatever is $\sigma>0$. Then in (5.3) for every $\sigma>0$ the strict inequality holds, q.e.d.

Theorem 4. - Let $G \in L^{1}\left(R^{N}\right)$ be the function whose Fourier transform is $\hat{G}=$ $=(1-P)^{-1}$. (See [3], th. 5.) Let us set

$$
\begin{aligned}
& G_{\sigma}(x)=\sigma^{-N / k} G\left(\sigma^{-1 / k} x\right) \\
& K_{\sigma}(x)=\sum_{n \in Z^{N}} G_{\sigma}(x+n)
\end{aligned}
$$

Let f^{*} the continued periodic function of f on R^{N}. Then
$f_{\sigma}(x)=K_{\sigma} * f(x)=\int_{R^{s i}} K_{\sigma}(u) f(x-u) d u=\int_{R^{N}} G_{\sigma}(u) f^{*}(x-u) d u=\int_{R^{N}} f^{*}(x+u) G_{\sigma}(-u) d u$.
Therefore

$$
\begin{aligned}
&\left\|f-f_{\sigma}\right\|_{B}=\left\|\int_{R^{N}}\left(f^{*}(x+u)-f^{*}(x)\right) G_{\sigma}(-u) d u\right\|_{B} \leqq \int_{R^{N}}\left\|A_{u} f\right\|_{B}\left|G_{\sigma}(-u)\right| d u \leqq \\
&\left.\leqq K \int_{R^{N}} \frac{\|u\|^{\alpha} \left\lvert\, G\left(\left.\frac{-u}{\sigma^{N / k}} \right\rvert\,\right.\right.}{\sigma^{1 / k}}\right)\left.\left|d u=K \sigma^{x / k} \int_{R^{N}}\right| x\right|^{\alpha}|G(-x)| d x
\end{aligned}
$$

The last integral exists ([3], th. 5); then (4.1) holds.
Let now be $N=1$: in this case $P(x)=P_{k}(x)=x^{k}, k=2,4, \ldots$ For every $h=1,2, \ldots, k / 2$, let us set

$$
\varepsilon_{h}=\frac{(2 h-1) \pi}{k}, \quad a_{h}=\sin \varepsilon_{h}, \quad b_{h}=\cos \varepsilon_{h}
$$

We have ([10], p. 5):

$$
\begin{aligned}
& G(x)=G_{k}(|x|)=\frac{2 \pi}{k} \sum_{n=1}^{k / 2} \sin \left(\varepsilon_{h}+2 \pi b_{h}|x|\right) \exp \left(-2 \pi a_{h}|x|\right) \\
& K_{\sigma}(x)=K_{\sigma, k}(x)=\frac{2 \pi}{k \sigma^{1 / k}} \sum_{n \in \mathbb{Z}} \sum_{n=1}^{k / 2} \sin \left(\varepsilon_{h}+\frac{2 \pi b_{h}}{\sigma^{1 / k}}|x+n|\right) \exp \left(-\frac{2 \pi a_{h}}{\sigma^{1 / k}}|x+n|\right) .
\end{aligned}
$$

$\left(^{2}\right)$ See e.g. [12], p. 103, th. 4.2 or [8], p. 104, Cor. 1.5,

Let us consider the function

$$
f_{\alpha}(t)= \begin{cases}t^{\alpha} & 0 \leqq t<\frac{1}{2} \\ (1-t)^{\alpha} & \frac{1}{2} \leqq t<1\end{cases}
$$

Then for every $\alpha, 0<\alpha \leqq 1, f_{\alpha} \in \operatorname{Lip}(\alpha, C(T))$ and we have

$$
\begin{aligned}
&\left\|f_{\alpha, \sigma}\right\|_{\infty}=\left\|K_{\sigma} * f_{\alpha}\right\|_{\infty} \geqq\left|K_{\sigma} * f_{\alpha}(0)\right|= \\
&=\frac{4 \pi}{k \sigma^{1 / k}}\left|\int_{0}^{+\infty} \sum_{h=1}^{k / 2} \sin \left(\varepsilon_{h}+\frac{2 \pi b_{k}}{\sigma^{1 / k}} x\right) \exp \left(-\frac{2 \pi a_{k}}{\sigma^{1 / k}} x\right) f^{*}(x) d x\right|= \\
& \left.=\frac{4 \pi}{k} \right\rvert\, \int_{0}^{+\infty} \sum_{h=1}^{k / 2} \sin \left(\varepsilon_{h}+2 \pi b_{n} x\right) \exp \left(-2 \pi a_{h} x\right) f_{\alpha}^{* /\left(\sigma^{1 / k} x\right) d x \mid \geqq} \\
& \geqq \frac{4 \pi \sigma^{\alpha / k}}{k}\left|\int_{0}^{1 / 2 \sigma^{2 / k}} \sum_{h=1}^{k / 2} x^{\alpha} \sin \left(\varepsilon^{u}+2 \pi b_{h} x\right) \exp \left(-2 \pi a_{h} x\right) d x\right|- \\
&-\frac{4 \pi}{k}\left|\int_{1 / 2 \sigma^{2 / k}}^{\infty} \sum_{h=1}^{k / 2} \sin \left(\varepsilon_{h}+2 \pi b_{h} x\right) \exp \left(-2 \pi a_{h} x\right) f_{\alpha}^{*}\left(\sigma^{1 / k} x\right) d x\right| \geqq \frac{4 \pi \sigma^{\alpha / k}}{k} I_{1}-\frac{4 \pi}{k} I_{2}
\end{aligned}
$$

We start evaluating I_{1}. From [10], p. 10 and p. 121 we obtain

$$
\int_{0}^{+\infty} \pi x^{\alpha} \sin \left(\varepsilon_{h}+2 \pi b_{h} x\right) \exp \left(-2 \pi a_{h_{1}} x\right) d x=\frac{1}{(2 \pi)^{\alpha+1}} \Gamma(\alpha+1) \sin \left((\alpha+1) \frac{\pi}{2}-\alpha \varepsilon_{n}\right) .
$$

Since $0<\varepsilon_{h}<\pi$, we have $0<(\alpha+1)(\pi / 2)-\alpha \varepsilon_{h}<\pi$.
Then for δ sufficiently small, for every $\sigma<\bar{\sigma}$ we have

$$
I_{1}=I_{1}(\sigma)>\delta>0
$$

On the other hand we have
$X_{2}<\int_{1 / 2 \sigma^{1 / k}}^{+\infty} \sigma^{-\alpha / k} \sum_{h=1}^{k / 2} \exp \left(-2 \pi a_{h} x\right) d x=\frac{\sigma^{-\alpha / k}}{2} \sum_{h=1}^{k / 2} \frac{1}{a_{h}} \exp \left(\frac{-2 a_{h} \pi^{2}}{\sigma^{1 / k}}\right)=\sigma(1) \quad$ for $\sigma \rightarrow 0^{+}$.
Therefore, there does exist $M>0$ such that for every $\sigma<\sigma_{0}(k)$ (4.2) holds.

REFERENCES

[1] N. K. Barx, A treatise on trigonometric series, vol. I, II, Pergamon Press, Oxford and London, 1964.
[2] C. Berg - G. Forst, Potential Theory on Looally Compact Abelian Groups, SpringerVerlag, Berlin, 1975 ,
[3] L. De Mrchene - L. Gotusso - D. Roux, Some theoretical results suggested by numerical experience, Approximation theory and applications, Research Notesin Mathematics, 133, Pitman Advanced Publishing Program, Boston, 1985, pp. 14-29.
[4] M. Frontini - L. Gotusso, Sul lisciaggio di rappresentazioni approssimate di Fourier, Pubbl. IAC, serie III, n. 208, 1981.
[5] M. Frontini - L. Gotuzso, Lisciaggio di rappresentazioni approssimate, Pubbl. IAC, serie III, n. 218, 1982.
[6] L. Gotusso - D. Roux, Remarks on a smoothing problem, Atti Accad. Scienze Torino, 118 (1984), pp. 136-142.
[7] L. Gotusso - D. Roux, On an approximation problem by trigonometric polynomials, Rend. Circ. Mat. Palermo, II, 8 (1985), pp. 345 -357.
[8] B. R. Kripke - T. J. Rivlin, Approximation in the metric of $L^{1}(X, \mu)$, Trans. Amer. Math. Ser., 119 (1965), pp. 101-122.
[9] S. M. Nikol'skir, The approximation of junctions by trigonometric polynomials, Trudy Matem. Inter. Akad. Nauk SSSR, no. 15, 1945.
[10] F. Oberhettinger, Tabellen zur Fourier Transformation, Grundleheren der Math. Wissenschafts, Band XC, Berlin-Göttingen-Heidelberg, Springer, 1957.
[11] D.L. Phiclips, A technique for the numerical solution of certain integral equations of the first lind, J. Ass. Comput. Mech., 9 (1962), pp. 84-97.
[12] J. R. Rice, The approximation of functions, vol. I: Linear theory, Addison-Wesley, Reading (Massachusetts), 1964.
[13] W. Rudin, Fourier analysis on groups, Interscience publishers, Wiley and Sons, New York and London, 1962.
[14] V. A. YUDIN, The approximation of funations of many variables by their Féjer's sums, Math. Notes (1973), pp. 490-496.

[^0]: (*) Entrata in Redazione il 27 novembre 1986.
 (**) Work supported by Italian M.P.I.
 Indirizzo degli A.A.: Dipartimento di Matematica, Università, Via C. Saldini 50-20133 Milano.

