
Everywhere-Regularity for Some Quasiiinear Systems 
with a Lack of Elliptieity (*) (*% 

pwT~ TOL~SDO~F (Bonn) 

S u m m a r y .  - I t  is shown that the derivatives o/ the solutions o/ eertai~ quasilinear degenerate 
elliptic systems are H51der.eontinuous, everywhere, in the interior o/ the domain. This work 
generalizes a result of K. Uhlenbeek [34]. 

1.  - I n t r o d u c t i o n  a n d  m a i n  re s u l t .  

In this paper, we show the C~,,-everywhere-regularity of vector valued func- 
tions ~ ~HX,~(T))----H~,~(~9; R ' )  (p ~ (1, oo)) solving quasilincar elliptic systems of 
the type  

fA f~l (1.1) (x, q(V~t))" b(Vu, V~o) dx = a~( x, U, Vu) '~ ~ dx , V 9 a C 2 ( ~  ) . 
i =  

Q t~ 

Here, ~Q is an open subset of R ~, b is a symmetric  and positive definite bilinear form 
with smooth coefficients depending on x ~ ~9 and 

q(v) = b(v, V) 

is the corresponding quadratic form. 
This work generalizes a result of K. UHZm~ECK [34] (1977). t ie r  paper contained 

two novelties. The first one was t ha t  she t reated a lack of elliptieity arising in con- 
nection with variat ional  integrals of the form 

12 

for p > 2. The second one is tha t  she obtained an everywhere-regularity result. 
~{er work originated an extensive s tudy of quasilinear elliptic equations having a 

lack of ellipticity like the Euler-equations of the variational integral (1.2), for p > 1, 
especially in the United States. L . C .  EvAns [8] (1981) and J. LEwis [24] (1981) 

(*) Entr~ta in Redazione il 15 ottobre 1982; versione riveduta il 22 gennMo 1983. 
(**) This research was supported by the Sonderforschungsbereieh 72 of the Deutsche 

Forschungsgemeinschaft. 
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showed the ~C~u-regularity for rather special equations. In the same year, lP. D~ 
Tm~LI?r [6] obtained an H2,~-regularity result, also fox" a special class of such equa- 
tions, l~inally, at the beginning of this year (1982), independently of each other, 
E. DI B ~ I ) ] ~ o  [7] and the author [32] proved the C~,~-regularity of the solutions 
of rather general quasilinear equations which are allowed to have such a lack of 
ellipticity. I t  should not be forgotten, however, that  N. URALTSEVA [35] obtained 
]~VANS ~ result already in 1968. 

l%r such equations and systems, C~,v-regularity is optimal. Namely, there are 
scal~r functions which minimize the variational integral (1.2), for p > 2, a.nd which 
do not belong to C~,,, if # e (0, 1) is chosen sufficiently close to one (el. [32]). 

In contrast to equations, everywhere-regularity cannot be obtained for general 
elliptic quasilinear systems. The counter-example of GIvs~I and ~IIRANDA [16] (1968) 
shows that it is generally impossible to obtain C,-everywhere-regularity for homo- 
genous quasilinear systems with analytic coefficients satisfying the usual ellipticity 
and growth conditions. Moreover, N]~6As [30] (1977) presents a vector valued func- 
tion e e H ~,~ which does not belong to C t and which minimizes the variational 
integral 

f . F ( V ~ )  d x  , 

D 

where /7 is analytic and satisfies the usual ellipticity and growth conditions, too. 
Nevertheless, one can obtain almost-everywhere-regularity for rather general quasi- 

linear elliptic systems. In 1968, this was proven by C. B. MOl~REY [28] and G~S~I- 
MrRA~])A [17]. These authors used a stretching argument which can be found 
already in the works of DE GIORGI [5] (1960) and As~agEN [1] (1968). Another 
approach is due to GIAQm2,r~r~t-Grus~I [11] (1968) and GIAQUIN~rA-MODIOA [15] (1979). 
In this one, inverse tt6]der-inequMities play an important part. All these results 
can be summarized as follows. A weak solution is regular near a point Xo, if its 
values are concentrated around some point u0, in a neighborhood of the point xo. 
One obtains Mmost-everywhere-reg~larity, because this smallness condition is sat- 
isfied almost everywhere. 

In 1977, K. UHLE?C]al~OK [34] obtained everywherc-C~,~-regularity for quasilinear 
elliptic systems of the type 

( 1 . 3 )  di,  {A(iwl . w }  = 0. 

Her important observation was that  IVu] 2 satisfies an inequality of the type  

} (1.4) lwnl 2: l 2 <_ o ,  

where the matrix (b~p) is uniformly bounded and uniformly positive definite in /2. 
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With the aid of (1.4), she showed that  

sup [Vui 
BR 

becomes smaller, if one shrinks the radius A of the ball BR down, unless the small- 
ness condition for regularity is satisfied. 

In 1979, P. A. IVnl~ [22] generalized U~E~BEOK'S result to quasilinear elliptic 
systems of the type 

(1.5) i d ~,~=, a7~ {a~e(x, ,*, ]V,~i ~) .,*~) = ](x, ,~, W,). 

He excluded, however, any degeneration of ellipticity. 
Similarly as K. UHLE~]3ECK and P. A. IVER% we derive that  q(Vu) is quasisub- 

harmonic, i.e. it satisfies an inequality of the type 

(1.6) fA(,, q(W)), lWu?. V(q(W)).w 2 d. + 
~Q 

+fa(x, q(W)). IVq(W)I"" G'(q(W)) �9 ~ dx =< 

<= e.fA(,, q(Vu)). Ivq(w~)l" G(a(v~)). IvwI" Iwl d, + lower order terms,  

for all ~v e C~(Y2) and all smooth, nondecreasing and nonnegative functions G~. Only 
from this inequality, we derive a Strong Maximum Principle. Apart from perturba- 
tion terms, it states that  

sup q(Vu) 
~R 

becomes smaller, if one shrinks~the radius R of the ball BR down, unless u is highly 
concentrated around some point which is just the smallness condition for regularity. 

In contrast to K. UHLEh*BECK and P. A. IVERT, We can apply our methods to 
more general systems. We also admit a lack oi ellipticity arising in Colmection with 
variational integrals of the form (1.2), for p < 2. 

Similar notions of quasisubharmonicity have been exploited also in other connec- 
tions to obtain regularity results. M. 5'[E~E~ [26] introduced a condition which 
implies that  Iu] ~ satisfies an inequality which is slightly weaker than (1.6). He used 
it for L~-bonnds for the solution itself. L. CAFFA~EL~I [2] realized that, for solu- 
tions u of certain semilinear systems studied by GIAQUINTA, HI:LDEBEANDT, V. YVAtYL, 
WrD~AN and W]:EGNEa (cf. [13], [21], [36], [37]), the functions In--uol 2 ~re sub- 
harmonic, where u0 belongs to a certMn set of (( test-vectors )). This observation 
enabled him to give a simpler proof of the O~-regularity result of HILDE:BRANDT- 
Wm~IAN [21]. Having finished the first version of this paper, the author [33] derived 
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a Strong 5,Iaximnm Principle for harmonic mappings from an inequali ty similar 
to (1.6). Thus he could simplify the proofs of ItI~DEBBANDT-J0sT-WID~AN [19] or 
G I ~ q m ~ T A - H r s ~ E B R a ~  [13]. 

~ow,  we come to an exact formulation of our assumptions. The bilinear form b 
has the form 

(1.7) b(~, ~') = ~ y~r .~'~ ' l a  q f l  �9 
a , f l = l  i , j =  l 

~'or some positive constants 2 and A, 

(1.s) 

(1.9) 

q(v) => ~. Iv[ ~ , Vv e R "~, Vx e r2, 

n h r 

~ , f l = l  i , i = l  

The function A satisfies 

(1.10) 

(1.11) 

(1.12) 

2. (z -[- t) r-~ < A(x,  t 2) < A.  (~ -[- t) ~-~ 

< ~A (x , t ) . t  <_ A . A ( x , t ) ,  (z - �89 t) = - - ~  

~ A  t) .t ~ ~ ~A ; ~i 7 (x, § ~ -  (x, t) i <= A. A(% t) 

for some x~[O, 1], some 19~(1,~176 all t > O  and all x e f 2 .  The right sides a * of 
(1.1) are Carath6odory-iunctions, i.e., they  are continous in u and Vu and measurable 
in x. In  addition to that ,  

hr 

(1.13) ~ Ia~(x, ~, ~)[ _< A. (1 @ [Uf) ~-~ , 
i = l  

for all x E D ,  v e R  ~ and a l l ~ R  ~'x. 

THEOREm. -- Let  B~ be a ball with radius /~ ~ (0, 1] such tha t  B3ac Sg. Then, 
there are positive constants o and # which depend only on n, N, 19, ~ and A such tha t  

(1.14) 

(1.15) 

~ ' ~ =  ess sup lVu?<= e .R .... f ( 1  + IVui)~ dx ,  
.B2R 

~s/'t 

IV~(x) - Vu(x')l < c. (1 + M). .~-~.  ix - x ' l , ' ,  

for  all solutions u~Hl.~(ff2) of (1.1) and all x, xreBg. 
: With  respect to applications, for example to harmonic mappings, the condition 
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( 1 . 1 3 )  is ~ unnatura l  )). 

(1.13') 

I t  should be replaced by 

hr 

W(x,~,~)I<=A'(1 + tvl) ~. 
i=1 

Moreover, the coefficients y~a and g~ should depend also on the solution u. 
(1.9) should be replaced by 

N 

(1.9') ~ [y~I~<~> + ~ lg"lo,<~>~ A .  
a-,fl= l i , j= l 

Thus, 

The counterexamples of HILDE]~RA~'D~-KAuL-WID~IA?r [20] and M. Sa:lCUWE [31] 
show, however, tha t  the conditions (1.7)-(1.8), (1.9'), (1.10)-(1.12)and (1.13') are 
not  sufficient for everywhere-regularity. Nevertheless~ there are a lot of eases in 
which one can show the Cg-regalarity of the weak solutions. The case p > n is 
trivial, by  Sobolev's imbedding theorem. In  the case p = n~ the Cz-regularity of 
minima follows from the work [12] of GIAQUI2~TA-GIUSTI. For  the case p ---- 2, there 
is a lot of literature, for example, the works [13], [21], [36] and [37] cited above 
in which the C,-regIllarity is proven under certain ~ smallness conditions ~. We 
think tha t  our proofs can be used in those eases, too, in order *o show the C~,z - 
regulari ty of the solutions. Some technical additions, however, are necessary. 

2 .  - P r e l i m i n a r i e s .  

Here and in the following, we want  to rewrite the system (1.1) in a more general 
form. For this, we introduce the notat ion 

(2.1) 
N 

~(x,v)  = A ( , ,  q(v)). Yr~(x ) .g"( , ) . ~ .  
fl=l J=l  

Then, (1.1) is equivalent to 

(2.2) a / ( x ,  Vu)"  q)ix a d x  = a i ( x ,  u ,  Vu )*~o  i d x  , }]~ ~ C 2 ( O  ) . 
=1 i = l  i 

O D 

From (1.7)-(1.11), one easily derives tha t  there are positive constants 2' and A' 
which depend only on n, N, p, 2 and A such tha t  

(2.3) 

(2.4) 

(2.5) 

~ :~ aa~(x,v).~j.~,>;,.(~+inl)~_~.l~l ~, 
c,,/~=l i,~'=1 q~  

i[ ,) ~9_)~ (x, < A'. (. + I<)~ -~ 
~,~ 1 ~,j = 1 ~ = 

~ ~a~ A "  , Y ~x~ (x, ~) < (~ + l~l) ~-~'l~l 
%.8=1 i = 1  ] 
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for M1 x ~ ~ ,  all ~ ~ R~'~\{O} and ~11 ~ ~ R~'C 

LEN3~A 2.1. - We can choose A' in such a way  tha~t 

(2 .6 )  ~ I < ( x ,  ~ ) -  * ' �9 , %(x, ,~)I <=A' (,~ + i,~l),-~. [wl" Ix - x'l 

for all ~/e R "'~ mid all x~ x ' e  D sa, t isfying 

I x -  x'l<= dist (x, @~). 

Moreover,  for every  ~ > 0, there  is ~ cons tant  A'~ depending on]y on n, N,  p~ ~ A 

and (3 such that 

(2.7) 
1 I 

o 

+ (i- t).v') at < 

<= As (~ + I~l)~-~. 1~1-~. i~ - ~'1, 
for all x e / 2  and  all U, ~]'e R ' \ { O }  satisfying 

(2.8) 

(2.9) 

(2.1o) 

I~1 ~ ~" I~'l. 

LE3rrL~ 2.2. - We  c~n choose ~' and  A'  in such a wuy tha t  

3a~ 

Z ~ (x, ~) ; �9 *. (~ + iwlP ~. :~ (b(w, ~))= �9 ~ 7~(x).~,, b(~, G) >= �9 
o~,fl,O,a = 1 i , i  = 1 u q f l  a =  1 

for all x ~ ~2, all U ~ R " r \ { O }  and all ~ = (~ ,  ..., ~,)E2g "'"'~r sat isfying 

LE~n~A 2.3. - We can choose 2' and A'  in such a way  tha t  

3T 

- ~ ' �9 ~ ~' (~ + 1~1 + I~'l) ~ - ~ ' I ~ - , ' P  (2 .11)  E E { ~ ( x , ~ )  ~ ( x , ~ ) } ( ~ - C ) = >  �9 
~ = 1  { = 1  

(2.12) ~ ~2 l < ( x , w ) -  ~(%,/)1 <= ( ~ +  1,71 + l~ ' l?-"  i ,~- : , f l ,  
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for a.ll x e ~ and all 7, ~ 'eR~'~'- Moreover, 

i /V 

(2.z3) ~ ~ {a:(x, 7) - a:(% v')}. ( 7 ~ -  7: ~) => Z .  17 - 7'1", 
0~=1 i = l  

provided that- 

(2.14) p => 2 .  

PROOF OF L E n A  2.1. - The inequality (2.6) is an easy consequence of (2.5). In  
order to prove (2.7), we pick a ~ > 0. By c, we denote a generic constant depending 
only on n, N, p, 1, A and ~. We split the proof by considering two cases. 

1-st Case. - 17 - 7'1 > �89 ]7[. 

In this case, 

1 

(2.15) ~v~a~(x'7) J 3 7 } ( X ' t ' 7  ~ - ( 1 - t ) ' 7 ' )  dtj<= 
0 

2-nd Case. - [~ -- 7']<= �89 I7[. 

In this case, 

1 

(2.16) 87 }Sa~ (x, 7) --~ ~a~ (x, 
O 

1 1 

- -  ~ ( x ,  

0 0 

1 

-!@} <- a~(x'7) +J]~(x, t .7§ dr<= 
O 

-<- ~. (~ + 171)~-~- <- ~ (~ + 17t) ~-~. I71 -~- I7 - 7 ' 1 .  

t .7 + ( 1 -  t).7 ~) dt = 

I 
s'7+(1--s)'t'~w(1--s)'(1--t)' "7') �9 ( l - - t )  '(~:,--~ 7:,'k) ds dt =< 

< ~" (~ + Ivt) ~-~" 17t -~" 1~ - ~ ' t .  

This obviously proves (2.7). 

PROOF OF LEi~-V!A 2.2. - There is a uniquely determined symmetric matrix 
-/~ = (r~) such that 

v = l  

Setting 

Q=I 
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we obtain that 

n N ~ai ~ ~2r ~ac~.t 

(2.17) 2. 2. ~-~n~' ~e'Ye~'~ = ~. 
t {  

The inequal i ty  (2.8) follows from (2.3), (2.17) and the fact  tha t  

for some c > 0 depending only on n, fl and A. 
In order to derive (2.9) and (2.10), we use the ident i ty  

(2.18) 
n a i  

fl,~,a = I i,~ = I 

This and (1.12) show tha t  (2.10) is true. For  (2.9), we remark  tha t  there  is a 
mat r ix  S ~- (s ~) such that ,  for 

f 

the following is true. 

(2.19) o < ~ ~, b(~, ~o).~,~.~.g~.~}.~,~.b(~,~) = ~,~.~ .b(~,~) <-- 
~,fl,O,a=l i , J = l  i = 1  ~r 

N fi '~ n b 
I 

iNow, we can conclude the proof of Lemma 2.2 stating that (2.9) follows from (1.12), 

(2.18) and (2.19). 

PROOF oF LEnA 2.3. - By (2.4), there is a constant v depending only on n, iV, 

p, t and /1 such that 

1 

I<(x, v ) -  ~(~, ~')1 _-< ~.f{~ + t. (l~I + I~'])} ~-2. In - ~ ' 1  dr. 
0 

This obviously implies tha t  (2.12) is true.  

For  (2.11) and !2.13), we m ay  suppose tha t  I,;'l ~ In]. This implies that ,  for all 
t e [0, -1] 

4 ' 
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The estimates (2.11) and (2.13) follow h'om (2.3), (2.20) and the inequality 

i 25 
{ ~ : ( x ,  ~)  - a:(x, ~')}. ( n l -  v:~) => 

~=1 i=1 
1/4 

0 

3. - Proof  o f  the Theorem. 

The statements of the theorem follow directly from Proposition 5.1 and 6.1, 
unless 

(3.1) p > 2. 

If  (3.1) holds, we cannot prove the estimates (1.14) and (1.15), directly. In this 
ease, however, the theorem can be easily derived from the next two lemmus. 

In the following, B~ stands for n ball with radius R satisfying 

(3.2) B ~ c  ,(2. 

LE)r~A 3.1. - Local Existence of Smooth Solutions. 

There is an Ro > 0 depending only on n, N, p, ~ and A such that  the following is 
true. If 

(3.3) /~ ~/~o , 

then, for any g E HI,~(B3R), there exists a solution u ~ H~,~(B3~) of the system (1.1) 
(or (2.2)) satisfying 

u - - - - g ,  on ~B3R. 

Moreover, the regularity result of the theorem holds for u. 
For the next lemma, let u be an a.rbitr~ry Hl,~(~9)-solution of the system (1.1) 

(or (2.2)). We set 

2 . A . ( 1  + l ~ l p  I , 

~ , ( x ,  7)  = - 2 . A . ( 1  + lvl)~ -1 , 

a~(x, u, Vu), 

if a'(% u, Vu) > 2 . A . ( 1  § l~l)~ -1 , 

if a'(x, ~, W )  =< - 2 .A .  (1 + I~l)" -1 , 

otherwise. 

By Lemma 3.1, there is an ~i ~0 depending only. on n, 5 r, p, ~ and A such that 
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there is a function ~ ff H~,~(B~) satisfying the regularity result of the theorem and 

(3,5) i ai(x, V~)'~ix~ ax : ~ ~i(x, v~)'~)i dx , V~) e C~(B3R) , 
=1 i=1 J i l l  

(3.6) 

provided tha t  

(3.7) R ~ R~. 

LEPTA 3.2. - Local Uniquess. 

Suppose tha t  (3.1) holds. 
p, ,% and A such tha t  

(3.8) 5 = ~ ,  in B3R, 

provided tha t  

(3.9) R G R2. 

PROOF OF LE~rA 3.1. - For e, h ~ (0, I], we set 

J (~)(X § heo~ ) -  t)(x))~=l,2,..,n , 
Vhv(x) h-1.  

L 0 ,  

where e~, e2, ...,e~ are the unit  vectors of R ". 

I/e, 

a G ( x ,  v) = - i I ~  , 

aqx ,  s, V~v),  

1#, 

a~(x, ~,, ~) = - 1/e , 

aqx ,  ~,, ~ )  , 

if d/st (x, ~B3R ) > h ,  

otherwise,  

l~ioreover, 

if a':(x, v, Vhv) >= i/s, 

if a~(x, v, V~,v) G -- I/s, 

otherwise, 

if a~(x,~,~)_>_ I# 

if a~(x, v, ~) G - i / s ,  

otherwise,  

We note tha t  the coefficients G,~,/ Gi and a~,~ s~tisfy the inequalities of Section 2 
' ~ ~nd aq The constant z, with the same constants 2% A' and A~ as the coefficients a~ 

Then there is an R ~  (0, R1] depending only on n, .u 

= �9 :~ ~ ( x ) . # ( x ) . v ~ .  
8=1 j= l  
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however, has to be replaced by  

~ =  z.-k e > 0 .  

From the  ~heory of monotone  operators (el. [18], [25]), we know tha t  there  ex- 

ists a funct ion %,~e H~,~(B~g) satisfying 

a;,~,( , V u h , A ' ~  dx = ai,~(x, u ~ , , J . ~  dx , 
= 1  i = 1  , =1 

B~a B ~  

Ith, e - -  g ,  O n  ~Bat~ . 

V~ ~ C$(B~,) , 

As the L~-norm of the a~,~ is bounded uniformly,  with respect  to h, one can easily 
show tha t  this is t rue  also for the H~'~(B~)-norm of the %,~. As ~ >  0, we can 

apply  Proposit ion 5.1 and 6.1, to %,~. Tiffs gives local C~,~-estimates for the %,~ 
which are independent  of h. Thus, we m ay  let  h tend  to zero in order to obtain a 
function u ~ H~,*(B3R) with H6lder-continous derivatives satisfying 

~v ~ x at(x, u,, Vu~).q~ dx ,  (3.10) ~ a~,~,( , Vu~). ' qJ~ dx = V~ e r , 
= 1  i = l  J i = l  

Ban B~ 

(3.11) u, = g ,  on ~B~R �9 

Now, i t  is easy to see tha t  Lem m a  3.1 is t rue,  if we can bound the H~'~(B3.)-norm 
of u~ uniformly with respect  to e. For  this, we insert  

~ = u ~ - - g  

into (3.10) and use Lemma  2.3. This gives tha t  

(3.12) f(1 + iv,,i)~ dx < ~.f(1 + !w~ 0,-~.{(1 + lvgI) + I - , -  gl} dx, 
BsR B,~ 

for  some constant  c depending only on n, N,  1), i and A. By  Sobolev's imbedding 
theorem,  there  is a c' depending only on n, N and p such tha t  

(3.13) 

Wi th  the aid of Young's inequali ty,  tile estimates (3.12) and (3.13) can be combined 
to the  desired bound for the H~'~(B~)-norm of the u~, if R is (~ sufficiently small ~). 

PRooF OF LEM~.~ 3.2. - We note  tha t  

~:(x, Vu) = a~(x, u, Vu) , if IVul __< 1 -}- 2. ]Vul, 
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nnd insert  (u - -  u) into (2.2) and (3.5). Thus we can use (1.13), (3.8) and Lemma 2.3 

to obtain tha t  

(3.~4) f l v ~ -  wl~ e~ =< ~ . f lv~ ,  v~l ~-~. l~-~t  ex, 
B3R B3R 

~or some e > 0 depending only on n, N, p, ~ and A. Moreover, by  Sobolev's im- 
bedding theorem, there  is another  constant  c' depending only on n, N and p such 

that 

(3.15) f l ~ -  ~l ~ e~_< ~ ' .~ . f lv~-  v<o e~. 

With  the aid of Young's inequali ty,  the estimates (3.14) and (3.15) can be com- 

bined to 

flw- v~l~ dx <= o, 
Bs~ 

provided tha t  _R is (~ sufficiently small ~. This obviously implies the uniquess result 

of Lemma  3.2. 

4. - Integrability of the second derivatives and quasisubharmonieity. 

In  this section, u stands for an arb i t rary  weak solution of (1.1) (or (2.2)). Hero 

and in the  following, we suppose tha t  

(4.1) ~ > 0 ,  if p > 2 ,  

(4.2) al(x, u, Vu) ~ L~(s for i = 1, 2, ..., N, if p > 2 .  

L ] ~ f A  4.1. - Integrability o] the Second Derivatives. 

The second derivatives of u are measurable functions and 

(4.3) (1 + Iwl)(~-~,~2.w~ ~ ~oo(s 

L E n A  4.2. - Quasisubharmonieity. 

There is a constant  e depending only on n, 2V, p, )~ and A such tha t ,  for every  
nonnegat ive function ~f e C~ ~ (s and every piecewise C~-function G: R -+ R satisfying 

(4.4) G(t) > O, V t e  R ,  

(4.5) G'(t)>= o,  Vt ~ R ,  

(4.6) G'(t) : 0 ,  Vt > to , 
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for some t o >  0, the  following est imate holds. 

(4.7) f(~ + Iv~tp -:. lw~i~.e(q(w)).v~ d~ + 
$2 

§ f(~ § IVul) ~-~.[v~(v~)I~.G'(q(v~) ).W,dx 
~9 

e. f (z § ]Vu]) ,-2. IVq(V~)]. O(q(Vu)) . IVy]. v dx + 
.Q 

+ e.f(1 + + iVvl)'9 ax + 

§ e.f(~ § IVulp+=.G'(q(Vu)).w~ d~ § 
T2 

+ e.f(~ + Iv~l),-~. lw~l'e(q(v~))'~ dx + 
t2 

§ c. f(1 § IVul),. IVq(Vu)l.O'(q(Vul).y~ ~ dx. 
9 

PgooF oF L~,m~_~ 4.1. - Already in the  classical book of MoJ~EY [27], it is 
proveu tha t  (4.1)~ (4.2) and (2.3)-(2.5) imply (4.3), in the case p > 2. (In [27], some 
differentiability of the  right sides a ~ is required. But ,  using the boundedness of 
the  a ~, it  is easily verified tha t  the differentiability is superflous.) In  contras~ to 
the  case p > 2~ the s ta tement  (4.3) must  be proven, if p ~ 2. 

For  this~ we set 

h -----h.%, 

%(x) = h-~. {v(x § ~ ) -  v(x)}, 

where eQ is the  0-th unit  vector  of R" and h =~ 0. B y  y), we denote an nrbitrary non- 
negative function belonging to C~~ We choose an h0 > 0 such that  we may  
insert 

into (2.2), for all h e (0, he]. Thus, we obtain tha t  

(4.s) c.f(1 § lVu(x)[ + [vu(x + h$lp-2, iVu~o(x)[.~.~(x) de 
fJ 

1 

~ f  ~ ~r i < y, (x + ha, t .W(x + ho) + (:t--t)- Vu(x)) .~,,~,(x).uto,~o(x) 
OD 

1 

Or2 

~_a'~(x § t.h~, Vu(x § {uIJx).~(x).~o(x)}dx~t-- 
i = 1  
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1 

~ ~=~ ~ axe 
0 .q  

1 

ff, , s - a'(x + ~. ae, u(~ + ~. he), Vu(~ + ~-ho))" {uU~) . ,~ (x ) }  & at ,  
0 D  

for some c > 0 independent of h. Moreover, by u inequality, 

(4.9) j l v % ( m )  1,. w~(x) 4x <_ (2 _ p)/u.  f ( ,  + }vu(x)} + tvu(x + ao)/),, w=~(~-~)(~,) ax + 
12 O 

+ p/2.j'(x + IV~(x)t + lW(x + ~)l) ~-~. lv%(x)I-'. ~-(~) ~x. 
f/ 

With the aid of (1.13), (2.3)-(2.5), (2.12) and Young's inequality, one can combine 
(4.8) and (4.9) to a uniform estimate for the quantity 

This proves  Shut L e m m a  4.1 is true, also in ~he case p ~ 2. 

PRoo~ oF L E ~  4.2. - We use the same notations as in the proof of Lemma 4.1 
and insert 

e~a~l 

into (2.2), where Vau is defined correspondingly to Vu. By (4.3), we may let h 
tend to zero in order to obtain that  

~,fl, e ,q~l  , '= 

fa 

+ 7 o o ' , < ' g ~  (~, v , , ) .  o' (q(v,,)) �9 v, ~ + ~ "ro~'~o" a(e (w, ) )  �9 v," v,,o ax - 

- a,(x, ~,, v~).  re." ~L" e ( q ( w ) )  �9 ~ }  a~ = 
q , a ~ l  

Q 
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~,~,~,o=~,~=~J@~ +~ ' <  [ d ~  ~ ( q ( W ) ) . ~ +  
D 

, @ �9 .r~+ G(q(W))" W.W~o} + Y~ "~7~ (~' vu) .a ' (q(Vu))  w~+ 2 

~,~,g = 1 _XQ 
D 

~9 

d x - -  

This, the ellipticity and growth conditions (1.13), (2.3)-(2.5) and 
imply (4.7). 

Lemma 2.2 

5. - Boundedness  o f  the  gradient. 

In  this section, ~t stands for an arbi t rary weak solution of (1.1) (o1" (2.2)). We 
suppose t ha t  (4.1) and (4.2) hold, because we will make use of Lemma 4.1. In  the 
following, B e stands for a ball with radius R a (0, 1] satisfying 

B3~ c D. 

P~oPosI~ION 5.1. - Boundedness o/ the Gradient. 

There is a constant  c depending only on n, N, p, 2 and A such tha t  

ess sup IVut'< c . ~  .... f 0  + lVuIP dx .  
~2R 

(5.1) 

PROOF. - We set 
B ~  

~ = 1 + max {0, ~(Vu) - 1 } ,  

~ = 2 "/~ q- 2 - i ' /~ ,  

B ~ =  Bn, , 

s~ = ~ . n q ( n -  1)~, 

for i ~ h  r U {0}. By c, we denote a generic constant  which may  depend only on 
n, N, p~ 2 and A. 

The idea of this proof is due to g. •OSER [21]. Namely,  the boundedness of the 
gradiente follows from a simple recursion formula for the integrals 

(5.2) fw ~' & .  
B~ 

16 - A n n a l i  eli Matemat@a 
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In order to establish this one, we assume that the  integral  (5.2) is bounded,  for 
some i e N k ) { 0 } .  We pick a t 0 > 0  and set 

if i e N, and 

t 
0 ,  for t G 1 ,  

O(t) = t " - ~ / 2 -  1 ,  for t ~ [1, to + 1] ,  

ts,-,/2 for t ~ to @ 1 , ~0 ' 

o ( t )  = 

0 ,  for t _ < l ,  

t - - l ,  for t ~ [ 1 , 2 ] ,  

1 ,  for t > 2 ,  

if i = 0. Moreover, we choose a nonnegat ive function ~p e C~(D) satisfying 

~o = 1 ,  in Bi+1 

supp ~ c B~+~, 

IV~l g e'/~-1"2 i in R" - -  , * 

We note tha t  

(1 + IV~l) ~ ~ IV<~ ~ w ,  

e(q(Vu)) = e ( w ) ,  

whenever G(q(Vu)):/= 0, and tha t  

fw,~-~,~,. IWl ~. ~(q(W~)) �9 w~ dx ~ ~.f~,~-~)~,. IW@. G(q(Vu)) 'Y )~ dx . 

Thus, we can use (4.7) and Young's inequali ty:  to obtain t h a t  

f w (~-')j~" ]Vwl 2" G(w).~p dx + f~(~-~", lVw [" G'(w).~' dx <= 

< c.R-~.2'~,  fw~1,, o(~) ax + e. n-' .  2". J'w~,+~ ax. 

The right hand side of this inequal i ty  can be bounded independent ly  of to > 0, in 
terms of the integral  (5.2). Therefore,  we may  let  to tend  to  infinity. This gives the  
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estimate 

(5.3) f l V ( w " / • .  W)[~ dx =< ./~-~.2"~.[w " dx. O'8t 

From (5.3) and Sobolev's imbedding theorem, one derives the desired recursion 
formula 

{R_." " "l 1l~,+, ~ JWS'+:L dX~ {~2i'si*e}l/s'X{~--n.f~)8'~X} lls' 

This implies tha t ,  for all i E N, 

{ R - ' .  ej w,~ dx~ ~/*' ~- c. {!~-". f w~ dx} ~/~ 

which proves (5.1). 

6. - H~lder-cont inuity  o f  the gradient. 

In  this section, u stands for an arbi t rary weak solution of (1.1) (or (2.2)). We 
suppose t ha t  (4.1) and (4.2) hold, because we will make use of Lemma 4.1. In the 
following, B~. stands for a ball with radius R e (0, 1] satisfying 

(6.1) B3" C ~ .  

In  addition to tha t ,  we introduce the notations 

U~ = (meas B,) -1. f Vu dx , 
~r 

Q~ = ess sup q (V~) ,  
Br 

~' = 1/(s.p). 

P~OP0SZTZON 6.1. - HSlder-Continuity of the Gradient. 

There are positive constants e and # which both depend only on n, N, p, ~ and A 
such tha t  

(6.2) I r a (x ) -  W(Xo)l =< c.(1 § Q~,)./~-~. I x -  Xo]~, 

for all x e B~, where xo is the center of B~. 
Proposition 6.1 is an easy consequence of the following two propositions. 
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PxoPOSlTIO~ 6.2. - There are positive constants e, # and e depending only on 
n, N, p, 2 ~nd A such tha t  the inequalities 

f U 2 (6.3) IVu-- ~/,] dx <= e.Q~.R ~ 
B.~I~ 

q(v~/,) >= ~.Qi , in B~ , 

Q~ >= R / , 

(6.4) 

(6.5) 

imply tha t  

(6.6) Ira(x)- Vu(x0)l = e.Q..R-.. I x -  Xot. , 

for all x ~B~,  where xo is the  center of B~.  

PROPOSITIO~ 6.3. - Strong Maximum Principle. 

Choose an e > 0. Then~ there  is a positive constant  ~ depending only on n, iV, 
p, 2, A a.nd e such tha t  (6.3)-(6.5) are t rue  or t h a t  

(6.7) 2 < 2 ~-1. . R g .  Q~/, = (1 - (~).Q~ + (1 + Q~) 

I m p ) .  6.1. - Inverse HOlder Inequality. 

Suppose tha t  

(6.8) Q~ >= i" /~ ' '  

and let V e R ~'~ satisfy 

(6.9) 2 .Q~>=q(V)=>~.Q~,I  ~ in B z .  

Then~ there  is an exponent  s > 2 and a constant  e which both  depend only on n, s 

p~ ). ~nd A such tha t  

+.1o) flw - vi. e .R. , ' - . , , ' . ( f lw-  vi' + �9 
.B R I ~ .B ,s 

LEivr~i 6.2. - l~ee~rsion Formula. 

Suppose tha t  (6.8) holds and let V and s be as in Lemma 6.1. Then, there  is a 
constant  c depending only on n, iV, p, A and A such tha t  the following is true. For  

each a ~ (O, ~], there  is a V,~ R ~'~ satisfying 

] v o -  V]~ <= e. l~-.. f Jvu - v] ~ dx , (6.11) 
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(6.12) f [ v u -  vol ~ a z <  e.(~,,+2, f l v u -  vt~ dx + 
IL~ R .B R 

BR BR 

P~ooF oF PROPOSITION 6.2. - Wi th  the aid of Lem m a  6.2, we can determine a 
a e (0, ~], an e ' >  O, an ~ * >  O and a c*>  0 only in dependence on n, iu p, 2 and A 
such tha t  the following is t rue,  for 

.R~ = a~.lt/4 , 

B ~ =  B:~. 

There are constant  vectors Wo, W~, ..., W~ such tha t  

(6.13) 

(6.14) 

W 0 = U1~/4 , 

f 1.er.D2 .7l~n+1/2 .~--n f R-" . N u - -  W~+~l ~ dx < ~ o , ~  ..~ ~+~ = + ~ �9 IVu- -  W~I ~ d x ,  
B~+~ 1~ 

]w~+~- w,]~<= c*,2~7." . f  lvu - WiV dx , 
l h  

for i = O, 1, . . . ,k ,  provided tha t  

(6.15) Q~ > R~'I~ , 

(6.16) R -n, " f  ]Vu - -  Wil" dx _~ e' .Q~, , 
Bt 

(6.17) 2 .O~-> q(W}) > ~.Q2 in B~ 

for i : 0, 1, ..., k. ~ow,  it  is easy to see tha t  one can find an e > O depending only 
on n, N, p, ~ and A such tha t  (6.15)-(6.17) remain valid, for all i ~ N, if (6.3)-(6.5) 
hold. The inequal i ty  (6.13) shows tha t  there  are positive constants c r and # which 
depend only on n, N, p, 2 and A such tha t  

(6.18) f lvu -- Uri ~ dx < c'O 2 .r2~+ . 

for all r e (O,/~], provided tha t  (6.3)-(6.5) hold, for the e determined above. The 
constants appearing in (6.18) do not  depend on the center of the  ball B~. Therefore, 
the  conclusion of Proposit ion 6.2 follows from the above considerations and a yell 
known criterion for HSlder-continous functions due to S. CA~rPA~ATO [3]. 
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In  the following proofs, we will often use the  inequal i ty  

(6.19) (1 -}- Q~),-1 < 2~+~.R-�89 (~r _}_ Q~)~-2.Qa 

which is an easy consequence of (6.8). 

P~ooF oF LEm~A 6.1. - Le t  C~ be an arb i t rary  cube with side length r > 0 such 
that 

~..c B. .  

In  the following, e stands for a positive generic constant  depending only on n, N, 
p,  2 and A. 

We choose a nonnegat ive function ~ e C~(R")  satisfying 

yJ = 1 , in C~, 

suppw c C~,  

[V~[g e . r  -1 ,  in  R"  , 

~nd set 

where V ~ (V1, V~, ..., V~). 

fu ~ V~,. wo = (meas C:~) -1. - -  xr dx , 

Clr  

r162 

w(x) = u(x) - ~ V ~ . x ~ -  Wo , 
g = l  

We insert  

~---= w.~  ~ 

into (2.2). This gives tha t  

~ ( a i ( x ,  W) - as V)}-w~. ~ dx = 

= - 2 .  ~ {a~(x,W)-a~(x, V)}.w~o.y.y~oax + a'(x,u, Vu).w'.y~ax. 
=1 i=1  

Q ~2 

With the aid of~(1.13), (6.9), (6.19), Lemma 3.3 and u inequali ty,  we obtain 
tha t  

f lVwi~ dx _< e.r-~, f (wp dx + c.Q~.~2 ..+1. 
Cr C~r 
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To this, we apply  Sobolev's imbedding theorem. This gives that  

f ]Vwl~ dx ~ e.r-,~J(~-l).{ f ]Vw]~(~-l)J, dx}'/('-l)+ c.Q~.r~+l . 
Cr C2r 

:Now, we can make use of the  local version of (< Gehring's Lemma >> [7] which is due 
tO GIAQUINTA-MODICA [15]. I t  s tates tha t  

Gr C2r 

for some s > 2 depending only on n, N, p, t and A. This obviously proves the  
conclusion of Lemma 6.1. 

PROOF OF L E n A  6.2. - By  e, we denote a generic constant  depending only on 
n, N, p, 1 and A. In  the following, v is the  H1,~-solution of 

~ ~ d  [~a~]~ (Xo, V).v~o} = 0  , in B~/~, (6.20) 
~,fl=l J=l 

for i -~ 1~ 2, ..., _IV and 

(6.21) v ~ u , on ~B~/~, 

where Xo is the  center of B~. We pick a a e ( 0 , ~ ]  and set  

V~---- (meas Bon)-l.fVv dx. 
BaR 

In  order to prove the recursion formul~ (6.11), we use the function 

~(x) = v(x)- ~ V~.x~. 
cr 

The definitions imply tha t  z~ solves the system (6.20) and that  

~(x) = u(x)- ~ V~.x~, on ~B~/~. 
~ 1  

We note that ,  by  (6.9) and the ellipticity and growth conditions (2.3) and (2.4), the 
sys tem (6.20) is strongly elliptic. 5Ioreover, its coefficients are constants. There- 
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fore, we can apply some well known results on linear elliptic systems to obtuin that  

BM~ BM~ 

IVu --  Vt ~ dx. 

This inequality obviously implies (6.11). 
In order to prove tile recursion formula (6.12), we use the function 

From the differentiul equation (2.2), one deriYes that  

O = a~(x, u, Vu). w ~ dx - -  {a~(x, Vu) --  a~(Xo, Vu)}. w'~. ax - -  
J e ~ = l  i = 1  

/2 /2 

1 

f f ~ Oa~ - -  i i , /~__10~ (XO' t ' v u  - ~  ( ~ - - t ) ' ' V ) ' ( ~ J x ,  - ~7~'' w t  - -  v M �9 , ,  d x  , 
,fl=l 

~20 

This~ (6.20) und (6.21) imply that  

f ~ ~ 8a~ 

,~= ~ i,J= ~ ~]~ 
D 

= 5 {~'~(x, w )  - ~'~(~o, v~)}. ws a~ + 
i=1 =1 t=1 

�9 9 O 

1 

- -  ~ - -  X x ,~  dx j j  ~,~=~,~=~[0~ @~ @ o , t . w  + (1 t ) .g)  " (~L-  g~) w' . 
9 0  

To this, we apply (1.13), (2.3), (6.19), Lemm~ 2.1 and 2.3, Sobolev's imbedding 
theorem and u inequulity, to obtain that  

f Ivw], ax g e .Q;  ~. f I w  - v l '  dx + e . Q i . n , + ~ .  
BRI~ BRI~ 

With the aid of Lemma 6.1 and H61der's inequality, we derive from the last 
inequality that  

BRI2 BR .BR 

Already at the beginning of this proof, we noted that  (6.20) is a, strongly elliptic 
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system with constant  coefficients. Therefore,  v satisfies an est imate due to S. CAH- 

FA~A~O [3], namely  

(6.23) f l w -  VolOd  =< vt dx f Iw-  vl dx. 
Bu .B.e/~ .B,R. 

By means of the  inequal i ty  

]v~ - v~]~ =< 2. lVw? + e.  tvv - v~? ,  

the  estimates (6.22) and (6.23) can be combined to (6.12). For  the  proof of Proposi- 
t ion 5.3, we need the following lemma. 

LElVI~A 6.3. - Suppose tha t  (6.5) holds. Then, there  is a constant  e depending 
only on n, iV, p, ~ and A such t h a t  

(6.24) f ] V q ( W ) p §  IWut~'{q(W) - k}dx<= 
A~,r 

= ~) -. (q~ - Z~) ~.me~s A~:,~, + c't~ -~' (1 + q2)~..meas A k,e , 

for all 

where 

0 < ~ - < Q i ,  

O ~ r ~ r ' g R ,  

Ak., = (x e S~iq(W) > k}. 

PnOOF oF LEPTA 6.3. - We choose a nonnegat ive function F e C~(R')  satisfying 

~o ~- 1 ,  in Br ,  

~p = 0 ,  outside B~,, 

[V~[ =< d.  (r ' - -  r) -1 , in R",  

for some constant  e' depending only on n. Moreover, we set 

G(t) ~- m zx  ( t - -  k, O) . 

InsertAng these functions F and G into (4.7), one easily obtains (6.24), with the  aid 
of (6.19) and u  inequahty .  

P~ooF OF P~OFOSlTIO% 6.3. - During this proof, c stands for ~ generic constant 
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depending only on n, _u p, 2 und A. We will suppose tha t  (6.5) holds and tha t  

(6.25) ~ g /~0 , 

for some Re ~ 0 which depends only on n, N, p, 2, A and e and which will be de- 
termined later  on. Iff~mely, in the  other c~ses, there  is nothing to show. 

Le t  us consider the  inequuli ty  

(6.26) me~s A(~_~)Q~,nI2~ (1 - -  a ) 'meas  B~/z, 

where a e (0, ~] and where Ak. ~ is defined as in Lemma 6.3. F rom Lemma 6.3 and 
Proposit ion 4 of [32], we know tha t  (6.7) holds, for some 8 > 0 depending only 
on n, N, p, E, A and a, if (6.26) is wrong.  

Hence, we may  suppose tha t ,  in addition to (6.5) ~nd (6.25), the  inequal i ty  
(6.26) holds, for some a e (0, 1] which depends only on n, N, 19, 2, A and s ~nd which 

we will determine l~ter on. 
IJemmu 6.3 und (6.5) imply tha t  

(6.27) 

~or all ~ e (0, ~-]. By  (1.8) and (1.9), it  is eusy to construct  ~ funct ion V such tha t  

v = v u ,  if q(Vu) >_ 7/S.Q~, 

V = 0 ,  if q(Vu) ~ 3 / 4 . Q ~ ,  

l v v ] ' <  e ' lWui  ~ , 

in B R. provided tha t  1~ is sufficiently small. We set 

Vo = (meas BnId) -~. ~ V dx 

A2 = A(l_o)o~, n/~ �9 

From (6.26), (6.27), Sobolev's imbedding theorem nnd the properties of V, we derive 
tha t  

Ba D A1u A~ 

A1 

e . ~ .  f tv~ui  2 ax < 
As 
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This, (6.26) und the  properties of V imply tha t  

(6.28) f Iw -  v.~pex<= f Iw-  ~op~X<= 
2~RI~ 2~n14 

f IW- up + IV- Vop dx <= c.~z,~-,.QI.Ro + c.Q~._~§ _<_ 2. 

s 

~Ioreover, f rom (1.8), (1.9), (6.26) and (6.28), one derives thgt  

(6.29) ~/q(x, ~7~4) > (1 --  c-_~). (meas B~j~)-~. fv'q(y, U ~ )  dy __> 

__> (1 - ~._~)- (meas B ~ ) - I .  I~ /~ ( - (~  _ ~. I W ~ -  ~ 1  ~ -->-- 
~/~ 

_> (z - -  c..~). Q~- {(]~ - -  ~)~-- ~. ~1~(~(~-~))_ c. ~ } ,  

for all x ~ B ~ ,  if R is sufficiently small. The inequalities (6.28) ~nd (6.29) imply 
tha t  (6.3) and (6.4) ~re true, if (6.25) ~nd (6.26) hold, for some 2go > 0 a.nd some 
a > 0 which depend only on n, N,  p, ),  A ~nd e. Moreover, (6.5) holds, by  ~ssump- 
tion. Hence , we can conclude the  proof, been.use we discussed the other cases, 
alrea.dy ~t the beginning of the proof. 
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