A C(lassification of Riemannian Manifolds
with Structure Greup Spin (7) (%)

MARIsA FERNANDEZ

Summary. — Riemannian manifolds with structure group Spin (7) are 8-dimensional ond have a
distinguished 4-form. In this paper, the covariant derivative of the fundamental 4-form
is studied, and it is shown that there are precisely four classes of such manifolds.

1, — Iniroduction.

An interesting little studied class of manifolds are the 8-dimensional Riemannian
manifolds with holonomy group Spin (7) [2].

For such a Riemannian manifold M, BoNAN [3] proved that its dimension must
be 8 and its Ricel curvature zero. Moreover, ([5], [11], [12], [13], [14]) there exists a
representation of Spin (7) on each tangent space of M defined by means of a 3-fold
parallel vector cross product.

The 3-fold vector cross products P can be considered as a natural generaliza-
tion of the almost-complex structures ([4], [8], [13], [14], [15]). Here, in the place
of the Kéhler form, one has a fundamental 4-form ¢ which, in special circumstances,
for example when P is parallel and M iz compact, generates cohomology in dimen-
gion 4.

There are no known nonflat examples of manifolds with holonomy group Spin (7).
Here we consider instead the class W of all 8-dimensional Riemannian manifolds M
for which the bundle of orthonormal frames with structure group 0(8) ¢an be reduced
to Spin (7). The existence of such reduction is equivalent to the existence of a
3-fold vector cross product on M [13]. Then, the class W containsall parallelizable
8-dimensional manifolds and is analogous to the class of almost Hermitian mani-
folds [17], and to the class of Riemannian manifolds with strueture group @, [9].
Within the class W one can search for analogs to the classes of almost Kéhler and
locally conformally equivalent to Kihler manifolds as well as analogs to some other
special types of almost Hermitian manifolds.

This search, done in g ’systematic way by using the method in [9] and [17], is
the principal subject of this paper. The idea is to study the representation of
Spin (7) on the space W of tensors having the same symmetries as the covariant

(*) Entrata in Redazione il 19 settembre 1984, Versione riveduta il 2 maggio 1985.
Indirizzo dell’A.: Universidade de Santiago, Departamento de Geometria e Topologia,
Facultade de Matematicas, Santiago de Compostela, Spain.
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derivative Vo of the fundamental 4-form ¢, next decompose this representation
into irreducible components, and then associate a subelass of W with each invariant
subspace of W.

In fact, by using the theory of root systems of semisimple Lie algebras, we show
that the representation of Spin (7) on W has only two irreducible components:
W= W,® W,. Thus, there are a total of 4 invariant subspaces of W, and hence 4
subclasses of W. The manifolds with parallel vector cross products are in the
class § corresponding to {0}. In contrast to what happens in the case of almost
Hermitian manifolds [17] and the Riemannian manifolds with structure group @, (9],
the following conditions are equivalent:

i) VP ==0;

if) Vo(P) (X, Y,Z)=0, forall X,Y,ZcX(M);
iii) dgp = 0;
iv) dp =

Finally, the class of manifolds with locally conformally parallel vector cross
products corresponds to W,.

In section 2, we discuss the algebra of the 3-fold veector cross products P, and
extend the definition of P so that P operates on k-vectors and k-forms. Represen-
tations of the Lie group Spin (7) and the relevance of the vector cross products into
the study of these representations are studied in section 3.

In section 4, we define the space W, and the decomposition W = W, W, is
established. In section b, we show how each invariant subspace of W corresponds
to a subelass of W, and define the 4 classes.

In section 6, we construct a certain tensor field » which measures the failure of a
manifold with vector cross product to be locally conformally related to a manifold
with parallel vector cross produet. A similar tensor field has been infroduced in {17]
for almost Hermitian manifolds, and in [9] for Riemannian manifolds with structure
group G,. Using » we determine which of the 4 classes are preserved under confor-
mal changes of metric. Finally, in section 7, we discuss the strictness of the four
inclusion relations between the classes. In fact, we show that three of the four are
striet. So for we have been unable to settle the strictness of the inclusion of § in W;.

Added in proof. — Recently we have also been able to show the strictness of the
inclusion ¥ cw,. The details will appear in a future paper.

I wish to thank Prof. A. GrAY and Prof. R. BRYANT for several very useful
discussions. h

2. — The algebra of 3-fold vector cross products on vector spaces.

In this section, we shall study the algebra of 3-fold veetor cross products P and
extend the definition of P so that P operates on k-vectors.
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DEFINITION ([7]). — Let V be a finite dimensional vector space over R with a
(positive definite) inner product {, >. A 3-fold vector cross product on V is a trilinear
map P: VXV XV —V satisfying

(2'1) <P(.a77 Y, 2), x) = <P(5’77 Y, 2)7 y> = <P(m7 Y, z)a =0 y
Jefz Lzy> <22 |
(2.2) | P(z, yy 2)]2 = det | <y, &> y]* <y, 2> ],

IO /N L b

for x,y,2€V.

Let A¥V) denote the k-th Grassmann space over V (i.e., the space generated
by the skew-symmetrie products v, A...Av;). It follows from (2.1) that Pz, y,2) is
antisymmetric in #, 4, 2. Hence P may be extended to a linear mapping P: A3(V) — V.,
For this reason we shall nsnally write P(zAy /%) instead of P(w, y,2). Furthermore,
the inner product ¢, > can be extended to A*V) by the formula

CON Ay WA AWy = deb (v, w;))
for vy, ooy Ui, Wy, ..., wx€V. Then, axiom (2.2) becomes
(2.3) [PAyAD)P = oAy Az]? .

REMARK. — (2.3) does not mean that P is an isometry, but only an isometry on
decomposable vectors.

DEFINITION. — The fundamental 4-form ¢ of a 3-fold vector cross product P
is given by

P@AYNz W) = (P@AYNz), w)

for ,y,4, weV. (From (2.1) it follows that ¢ is skew-symmetric.)

ECoKMANN [7], WHITEHEAD [23], and BROWN-GRAY [4] have shown that if V
has a 3-fold vector cross product then necessarily dim ¥V = 4 or 8. When dim V = 4,
the study of P amounts to the study of the volume element of V, namely ¢, so we
restrict ourselves to the case dim ¥ = 8. In this case, it is well known ([4]) that
there are two non-isemorphic 3-fold vector cross products P, and P_, given ([4],
[25]) in terms of the Cayley numbers by

P+(m/\y/\z) = — x(fe) + (@, y>z -+ Y, 2w — {w, 2>y,
P_(wAyA2) = — (@) + <z, D2 + <y, Do — {7, 2>y,

for #,y,2€V, and where # —Z is the conjugation in Cay (that is, T = — & -
+ 2<®,1>1). The reason why there are two distinct 3-fold vector cross products
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is that the Cayley numbers are nonassociative. Furthermore, the automorphism
groups of P, and P_ are both isomorphic to Spin (7). We write ¢, for the funda-
mental 4-form of P_.
From now on, we shall write P when no distinction between P, and P_ is needed.
First, we shall write some elementary eonsequences of (2.1)-(2.3).

LEMMA 2.1. — We have

(2.4)  <(P@AyA=), PlaAyrw)> = eAYAZ, BAY AW
(2.8)  P@AyAP@AyAR) = — loAy|2e + <eAy, sA>y + YAz, y D,

for @, y,2, weV.
Furthermore, from (2.5) it follows

(2.6) PaAyAP(AYAP@AYAL)) = — loAy|*PlaAyAz) .

We now introduce a mapping p that will turn out to be the adjoint of P.

DerINITION. — The linear mapping p: V — A3(V) is given by
7
Py =~ 3 cheAPlennna

for x €V, and where {¢,, ..., ¢;} is any orthonormal basis of V.

LEMMA 2.2. — The mapping p hag the following properties

(i) p is the adjoint of P; that is for z eV, £ € A¥V) we have

<fp(w)a §> == (&, P(§)> ’
(i) P(p(x)) = Tw,
for ze V.
Proow. - (i) follows from (2.1), (2.3) and definiition of p. From (2.5) we obtain (ii).
Next, we shall define another linear mapping ¢ which will be useful in section 3.
DEFINITION. — The linear mapping ¢: A2(V) §A2(V) is given by '
' 7

q(@A\y) =} 2 e AP(e;\mAy)

=0

for @, y €V, and where {e,, ..., ¢;} is any orthonormal basis of V.
From (2.5) one has the following
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LeMMA 2.3. — The mapping ¢ satisfies
(i) <g@Ay), 2Aw) = (P@AYAZ), w);
(i) LglzAy), 2Ay> = 03

(i) Jg@Ay)|*= 3leAy]?;

for =, y, 2, weV.
Now, we extend P, p and ¢ to linear maps P: A**(V) — A¥V), p: AXV) —
— AV and ¢: AXV) — A V).

DEFINITION. — Let vy, ..., ¥5.,€ V. Then

PogA i NVps) = z (— 1)¢+j+1P(”i/\77]‘/\’Ul)/\'01/\~--/\@'A---/\7/}7'/\-~-/\Q/7‘z/\---A’0k+2 ’

1i<i<I<k+2 E

POA AT = 3 (= D) AB A ABA D 5
oA A} = - 1)HHIQ(%/\U;’)/\%/\---/\731‘/\---/\7;]‘/\---/\7% ’

and P: AFV) — A¥V), p: AHV) - A2(V) and q: A¥V) — A¥(V) are their cano-
nical linear extensions.
Note that the sequences

Ps P; Py

A"V - A3(V) - AS(V)T_ﬂ—_?_V
AV) T ANT) =2 AX)

are non-exact.
In particular, for w, z, ¥, 2€ V we have
peNy) = p@)A\y —py) Az,
p@AyNz) = S p(a)\YyAz,
YL

PwAzA\yA2) = S {P(wAxAy) A2} — PzAYAR) Aw ,
Yz
g(zAYyAz) = S qleAY)Nz,

xYz

where © denotes the cyclic sum.
. 8 .
Let A(V)= P A*V), and let % : A(V) — A(V) be the Hodge star operator.
k=0
Then % (A*V)) = A**V). Next, we determine the form s Py (Here the 4-form
% @, can be defined by

(% ) @AYAZAW) = @.(*(@AYAZAW))) .
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LeMyva 2.4,

(2.7) * QL= Lo, .

Proor. — Consider {1, €y ..oy 6} all orthonormal basis for V where 1 is the
identity in Cay, and such that ¢,e, ;= ¢,., for 7€ Z;; and let {6_,, 0, ..., 0, be
the dual basis. Then
(2.8) Py = O_ A (O ANOLNOs 4 Oo ABABg + O AOAD; 4 81 A0, A8, +

+ 01/\65/\66+ 02/\63/\65+ 03/\04/\66) :E
£ Oo AL AO N0 T 0o AOLAONOF Oy AO AO A Oy
+ 0o A0 NOs A0 0, A2 AOs A BT 0, A B3 AOL A BT 02 AOs N Os A B .

Applying the Hodge star operator to both sides of (2.8), we get (2.7).
LeMMA 2.5. — For P_: A4V) — A*(V) we have
(2.9) P,= 4P, .

ProoF. — This can be checked by choosing an orthonormal basis for V as that
in Lemma 2.4, and computing the maps P,. and P_.

3. — Some representations of Spin(7).

We shall describe, in this section, some representations of Spin (7) that will be
needed in the next section.

A simple method to describe the 8-dimensional representation of Spin (7) is by
meansg of the 3-fold vector cross products P. In fact,

Spin (7) = {g € 0(8)| PlgeAgyAge) = gP(aAyA2) for all w,9,2€V};

and the 21-dimensional irreducible representation of Spin (7) is the adjoint repre-
sentation.

Next, we shall consgider, for convenience, the covariant versions of P, p and ¢
which will be denoted by the same letters. Let 7* denote the dual space of V.

DEFINITION. — The mappings P: A¥V*) — AF(V*), p: A¥H(V*) > A¥(V*) and
q: A¥V*) — A¥(V*) are given by P(x) = aoP, p(fl) = fop and g{x) = xogq, for « €
€ A¥(V*) and fe A**(V*). (To avoid confusion we shall sometimes write Py, p:
and ¢.)
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Thus we have the following non-exact sequences:

Vo A3(V4) T AS(VH) T AY(V)
AV o ANV =2 A7)

We shall now determine the irreducible components of the inducedrepresenta-
tion of Spin (7) on each space A*¥(V*). First, let us note that the representations
of Spin (7) on A¥(V*) and on A%%#(V*) are the same because the Hodge star operator
%1 A¥(V*) — AS#(V*) i3 an isometry. (We are using on A*¥V*) the inner produect
(> given by

7

Cay B = 2 aleg A A6 )ples A N6

apeessin=0

where {¢, ..., ¢;; is an arbitrary Dbasis of V). Hence, it suffices to describe the
representations of Spin (7) on V*, A2(V*), A}V*), and A4 V*). The representation
of Spin (7) on V* is the irreducible 8-dimensional representation, but the representa-
tions of Spin (7) on A2(V*), A3(V*) and AYV*) are all reducible. In order to describe
the irreducible summands of these representations by means of the vector cross
product P, we first use Weyl’s formula (see for example [21]) to calculate the degrees
of the first ten irredueible representations of Spin (7). It can be verified that these
degrees are 1, 7, 8, 21, 27, 35, 42, 48, 105, 112. Next, we shall define the following
spaces

AV*) = {x e A(V*)|gx = 0},
Ay V*) = {xedX(V*)| a = ¢f for some B e A2(V*)},
A(VH) = {ae A3(V¥)|pa= 0},
( ) = {xeA(V*)|Ta = Ppa},
VE) = {o.},
A:+(V*> = {ze @) =0, 2=tz and
ki aleNesNex NP (e \esNex)) = O}’

><

1,

A; (V*) = {o e AYVH)| % & = — o},
A3 (V*) = {a e A(V*)| (A AyA2AP (@AYA\2)) = 0 for all o, y,2€ V},
(V) = {‘P—} y

(

(V*) = {oc eAYTVS)| p_ () =0, *o=— and

a(e:NesNesNP_(e)\e;)\ex)) = 0} )

VR

53 0

A3_(V%) :{oce/l4 (V¥ %00 = + o},
As_( = {x e VHV*)| a(a AYAeAP_(zAyA2)) = 0 for all z,y,ze V}.
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In order to check that Spin (7) acts irreducibly on these spaces it will be neces-
sary to make use of the theory of root systems of semigsimple Lie algebras. The
Dynkin diagram of the simple Lie algebra b, of Spin (7) is

o O >0

%1 Ko &3

where {oy, oy, o} is a system of simple roots, and o, = w;— s, 0= Wy— W5, t= W3,
<wi, w7'> - 6@'3'. Then

oy 0y . 1 . 2
Tl = 27 "3
{omy ) /2 3
foaJou] — 2 T 204

and the angle between oy, o is equal to z/2. We shall denote by 4, (i = 1, 2, 3)
the fundamental dominant weights, and by ¢, (¢ = 1,2, 3) the corresponding irre-
ducible representations. (In general for an extreme weight 4, ¢, will denote the cor-
responding irreducible representation.) It can be easily verified that these weights
are A= wy, Ay= 0; + 0, and A;= }(w, 4 w, -+ ©;). Moreover, ¢, has dimension 7.
@;, has dimension 21; it is the adjoint representation. g, has dimension 8; it can
be identified with the representation on V.
Now, a long but not difficult computation shows that:

i) the weights of (irreducibile) representation ¢, are
+h= tw, Fw; Fws 0;
ii) the weights of ¢, , i.e. the roots of b;, are

dh= o+ w), o+ @), Elogf ), Lo, +(w,— ),
+wy,  Elo— @),  Elw—w),  Fos, 00);

iii) the weights of ¢, are
+ A= i%(ﬂh'{’ W -+ W3) :]:%(ah -+ wy— ws) , i%‘(ah_ W, 4 ws)
i%‘("‘ Wy w0y -+ ws);

iv) the weights of the 48-dimensional irreducible representation ¢, ., are
i%‘(wl 4w, w5)(3) ﬁ:%(wl_l_ wy— w3)(3) , :i:%(wl_ Wy -+ @s)(3)

:I:%(‘— Wy + 0+ @5)(3) , ﬂ:’%(3w1 + @+ w3) :':%(3001 + wy— ws)
+1Bw, — s+ @s) 4 i%(swl—‘ Wy — W3) , i’lz“(wl 4 3w 1+ ;) 4
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:I:%(wl + 3w, — ws) , i%(_ W, + 3w, + ), i’lz‘(’* @+ 3wy— ;)
i%(ah 4+ wy 1 3w,) i‘.%(wx_ 0, + 3my) , i%(* W+ 0y 30,);
i%("‘ Wy~ 0y - 3ws);

v) the weights of the 27-dimensional irreducible representation ¢,; are

+o;, +w,, +ow;, w4 ), (o, + o), +(ws+ ),
+(w— w,) , + (o~ ws), -+ (w,— w3) , +2w; , +20, , +2a0;,
0(3);

vi) the weights of the 35-dimensional irreducible representation g, are

Ton(2),  E£0y(2), fw2), ot ), o+ w),
+(w,+ @) , flo— ), Elor—w), £(w—wy),
+(w; + o+ o) , +(w; + 03— ;) , t(0— W, + ws) ,
Hlo—w—w5), 0(3).
We write A, for the induced reducible representation on the k-th Grassmann

space A*(V*) over V¥. Then, by computing the weights of A%¢, , A%p, and Ag,,
one follows that

(3.1) Az%s =@, D@
{3.2) As?% = @142, D Ps,
(3.3) A2 = 9y, @ 037, D 9, D @

where ¢, is the 1-dimensional irreducible representation.
LeMmaA 3.1. — We have
(3.4) A(V¥) = ALV @ AYV*) .
Also Spin (7) acts irreducibly on A%(V*) and
dim AYV*) =21, dim A2(V*) = 7.
ProoF. — Using definition of ¢ it can be verified that (3.4) holds and that the

spaces A3(V*) have the stated dimensions. That Spin (7) acts irreducibly on AX(V*)
is immediate from (3.1).
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LemmA 3.2. — We have the following orthogonal direct sum
(3.5) AXV*) = AL(VH) @ A3(V*) .
Also Spin (7) acts irreducibly on A}(V*) and
dim A3(V*) = 48, dim A3(V*) = 8.
Proor. — From Lemma 2.2 (ii) we obtain
(3.6) poPy =TI,

where I: A¥(V*) — A% V*) denotes the identity map. Using (3.6) it is easy to
verify that 7P,op, and I;— 7Pop, are projections of A3(V*) onto A}V*) and
A3(V#), respectively. This proves (3.5).

Again using (3.6), one deduces that P,: V*—A3(V*) is injective and p,: A3 V*) —
—> V* is surjective. Furthermore, Image P,= A}(V*). Thus, AY(V*) and A3(V*)
have the stated dimensions. These representations of Spin (7) are irreducible by (3.2).

LemmA 3.3. - We have the following orthogonal direct sum

3.1 AXV*) = AL (V)@ A3, (V¥) @ A5 (VF) © A (V) =
= A} (V¥)@ A3 (V¥)® A (V) @ 4, (V)

Also Spin (7) acts irreducibly on each space A} (V*) and
dm AL (V¥ =1, dimA(V*) =27, dimAS(V*) =35, dim AL (V) =7.

Proor. — Let P, be the 3-fold vector cross product on V. From definition of
P.: A}(V*) — A4V*¥), it is not difficult to prove that Image P, = A} (V*), and
that P, maps A3(V*) injectively into A, (V*). Hence dim A; (V*) =7, and then
the subspace U of A4V), annihilated by A (V*) and generated by the elements
of the form sAyAZAP (8AYA2), ®, ¥, 2€V, has dim U = 63,

Now, let us consider the mapping P, : AY(V) — A*V). Since dim U = 63 and
U Ckernel P_ it follows that U = kernel P,. Using (2.8) and Lemma 2.5 we obtain
P (A+(V)) = P_(¢¥) = 0, where ¢ is the dual element of the fundamental
4-form g, .

Let ¢ denote the subspace of A4V) given by

C={(cAXV)| % &= + & and <& ¢*> = P £ =0}.

It is easy to verify that kernel P, = {¢¥} ® A**(V)@® ¢ and this sum is orthogonal
direct.
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Considering the dual spaces of {¢i}, A*(V) and O (i.e. the spaces A3 (V¥),
A3 (V*) and A3 (V¥), respectively) we get (3.7). Furthermore, all the spaces have
the stated dimensions. Using (3.3), it is obvious that Spin (7) aects irreducibly on
A% (V*). Similarly, we obtain the decomposition

ANVH) = A3 (V) @ A, (V) @ A3 (V) @ A3 (V¥)

if P_ is the vector cross product on V.

4. ~ The space of covariant derivatives of the fundamental 4-form.

The eovariant derivative Ve of the fundamental form ¢ of a 3-fold vector cross
produet on a 8-dimensional manifold iy a covariant tensor of degree 5 which has
various symmetry properties. In this seection, we shall define a finite dimensional
vector space W that will consist of those tensors that posses the same symmetries,
and study the decomposition of W into irreducible components under the natural
representation of Spin (7).

Let us consider the space V*¥® A4(V*), and let W be the subspace of V*& AL V*)
defined by

= {a e V*@ AYV*)| a(w, xAYyN2AP@AyA2)) = 0 for all w, @, y, 2€V} .
Levma 4.1, — dim W = 56.

ProoF. — Clearly W is naturally isomorphic to V*® A3V*). Since dim V*= 8
and dim A5(7V*) = 7 by Lemma 3.3, the result follows.
We note that there is a natural inner produet on W given by

7

lay By = z a(n, s\ \er/\€)B(eny i\ 0\ \€1) s

hytyd, k=0

where {¢, ..., ¢;} is an arbitrary orthonormal basis of V.
It will also be useful to consider linear maps Ly: W — A3(V*), and L;: W — V*
given by

7
Ly(a)(mwAyA2) = E ofe;, e.ANTAYAS) ,
i=0

7

z oc( e;/\6;/\ ), 61’/\67‘/\670/\90)’

z,y,k G

for @, y,2€V, o€ W. First, we shall study the properties of those maps.

8 ~ Annali di Malematica
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LEMMA 4.2. — We have
7

(4.1) L@ =— Y ofe, eAeAPleAe,fe)A\e) = 6(poLy)(o)(x) ,

isd k=0

for xeV, aecW.

PROOF. — Substituting P(¢;/\e;A¢e;) for e, in the definition of L, and using (2.5),
we obtain

42) L)) =

iyd

a(P(ei/\ej/\-P(ei/\ei/\ek))9 ei/\ej/\P(ei/\ej/\elc>/\x) ==

0

M" ‘TM«

{a((— 1 + 0% ex, esNe AP(e: A Ne) Na) +

??‘

=0

( ik 517 61] 61) €; /\6 /\P(e /\6 /\ek)/\w) +

’b

(
OC( ik ]7 u €y €5 /\6 /\.P(@ /\ea/\ek)/\w)}
z d(elcy ei/\ei/\P(ei/\ej/\ek)/\w) =
fo=

iyds k=0

7
z oc(ei, 6j/\6k/\-P(e’i/\ej/\ek)/\m) :

It=0

ll

iyd

On other hand, from definition of p: V — A*(V), we see that

(poLy)(0)(@) = — 5

%)

05(61‘7 34;/\33'/\%/\1)(37'/\%/\97)) = ¢ L(a)(w) ,

0

"M~

which proves (4.1).

LuMMA 4.3. — Let be o € W, and suppose there is a constant a such that

(4.3)  a(P@AYA2), sAYN2AW) =
= a{a(z, PrAyA2) ANy A2 Aw) — (Y, PxAyA2) AmAzAw) +
+ (2, P@AyA) AeAyAw)}

tor all w, 4,2, weV. I ¢+~ — % then (poLs)(a) = 0.

ProOF. — From Lemma 4.2 and equation (4.3) we obtain

Ly(x

S
GDH—-‘

(poLy)(e)(@) = ;z a(P(eahosex)y s EsNExAT) =

isd 0

7
S {fe; PlesAesher) Aeshexha) — afes, Ple:fesNex) NesNexA\w)
=

0

Gil@

i85

(ek) Ple, /\ei/\ek)/\ez'/\ej/\m)} = _ELl(“)(m = — 3a(poLs)(a){z) ,

hence the lemma follows.
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We now define two subspaces W, and W, of W by

Wy= {eeW| Lyw) = 0 or poLya) = 0},
W= {a € W| 28a(w, 2, AL, AT N\Tg) =
4
= > (— i {poLy(a) (@) p(w Az A AEN . Aw) +
i=1
-+ T<w, wi>L3(o:)(w1/\.../\9‘ci/\.,./\m4)} .
The usual representation of Spin (7) on V induces a representation of Spin (7)

on W. We shall show that W, and W, are the two irreducible components of this
induced representation. First, we need several lemmas.

LEMMA 4.4. — W N A5(V*) = {0}.

PrOOF. — Let be e W A3(V*), and w, #, 9, 2€ V. If 2= AP(wAxA\y), then
for any w €V we have

a(wAsAYAZAY) = Ja(u A\wABAYAPwAZAY)) = 0
Therefore w, @, ¥, 2 and PwAxAy) may be assumed to be orthogonal, and then
{w, 2, 9, 2, PlwAz\Y), PwAx\z), PwAyAz), P(eA\yAz)} forms an orthogonal basis
for V. Thus alwAzAyAzAu) = 0 for all ue V. Hence «x = 0.

LEMMA 4.5. — Suppose x € W with Ly(e) # 0 and

(4.4) X1, BN\ B N\CA\Dy) = (— 1)iﬂ{“(POL:s)(“)(%)9”(”/\%/\---921'/\-"/\”4) -+

+ 0w, @) Lo(o) (@ N\ AEN AT Y

VR

1

k3

for w, @y, @y, %3, 5,€ V. Then a =1/28, b =1/4 and PpL,y(x) = 7L,{«).

PROOF. — In (4.4) we consider a = e, @,= ¢;, #,= ¢, ¥, = P(e,\e;\e;) and
take the sum over ¢,5, k=0, ..., 7. Then

(4.3) (1680 — 24b) pLy(ot)(w) = 0,

and thus Ta = b.
Applying (4.4) and (4.5), we compute Ly(x)(yA2zAu) and get

(4.6) (1 — 35a) Ln(er) = — aPpLy(cc) .

Hence, applying p to both sides of (4.6), we obtain & — 1/28, and then b — 1/4.
Finally, substituting the value of « in (4.6) we find PpLy(e) = 7L(x).
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LevMMA 4.6.
4.7) W, kernel Ly = {0},
(4.8) Won Wy= {0},
(4.9) kernel Ly = {0} .

PROOF. — (4.7) is an obvious consequence of the defining condition of the space
W,. In order to prove (4.8) let x € Wy W,; then L,(a) = 0. Now, by using (4.1),
(4.7) and lemma 4.5, we see that Ly(«) = 0. Hence from (4.7) we have « = 0. On
the other hand, it is easy show that

LW c AXV*) and Ly (W,) c A3(V*).

Since the spaces L;(W,) and L,(W,) both are invariants under the induced represen-
tation of Spin (7) on A3(V*), it follows, from Lemma 3.2, that

LWy = AXV*)  and Ly (W,) = AYV*).

Hence from (4.7), we get dim W,>48 and dim W,= 8. Now (4.8) and Lemma 4.1
imply (4.9).

THEOREM 4.7. — We have W= W,® W,. This direct sum is orthogonal, and
it iy preserved under the induced representation of Spin (7) on W. The induced
representation of Spin (7) on W, is irreducible and

dim W, =48, dim W,==8.

ProOF. — In the Lemma 4.6 the dimensions of W, have been calcnlated, and
also it has been proved that W = W, @® W,, where the sum is direct and o1thogonal.

Obviously, the representation of Spir (7) on W is ¢, @ ¢, . Since the weights
of this representation are

tior+ w4 wy)(4) , o+ w0 w4, , 3o — 0+ 0)4),
+3H— o+ 0yt 0)4),  £3Bw+ @+ @), +3Bw; + w,— wy)
+3(8w;— 0+ wy) £330, — wp— w3} +3(01+ 3w+ ws)
+3 (01 + 3w:— w3) 3= o1 8w+ w5) £ 0+ 3w — @),
+ 3w + wa+ 3w5) 4 oy — 0.+ 3ws) , +3(— o1+ @+ 30y)

:’:%("‘ W, — Wz -+ 3ws) ,
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we have
(4.10) 91,80 $2,= 91,0 Pr, 44, -

Therefore, W= W,® W, is the decomposition of W into irreducible components
under the natural action of Spin (7). Moreover, ¢, and ¢, ., are the irreducible
representations corresponding to W, and Wi, respectively.

5. — The four classes of 8-dimensiona! Riemannian manifolds with a 3-fold vector
cross product.

Using the results obtained in the previous sections, we now establish a classifica-
tion of 8-dimensional Riemannian manifelds with a 3-fold vector cross product.

Let M be a O 8-dimensional Riemannian manifold with metric {, ). Denote
by X(M) the Lie algebra of C* vector fields on M, and by F(M) the algebra of C°
functions on M. For each m e M the tangent space at w will be denoted by M,,,

DEFINITION, — We say that (M, {, >) has a 3-fold vector cross product P if each
tangent space M, has a 3-fold vector cross product P,: M,XM,X M, — M,,
and the mapping m — P, is C%.

It is clear that P gives rise to a tensor field P: X(M) XX (M) XX (M) — X(M)
of type (3,1), which satisfies

(5.1) PX, Y, 2), X) =<(PX, Y,2), Y) =<PX,Y,2),2)=0

Xl &Y X, 2
(5.2) [P, X, Z)|P = det § <X, X) [Y[2 <Y, 2],
&, Xy (Z,Y) |zZ]

for all X, ¥, Z ¢ X(M).
Furthermore, the algebraic study carried out in the previous sections can ob-

viously be extended to manifolds. We note that the fundamental 4-form ¢ becomes
a differential 4-form on M.

Let V denote the Riemannian connection of ¢, . The covariant derivatives
VP and Vg are given by

(3.3)  Vw(P)X, Y, Z) = Vu(P(X, Y, 2)) — P(V,X, Y, Z) — P(X, Yy Y, Z) —
~ P(X, Y, Vy2Z),
(5.4)  Volo)(W, X, ¥, Z) = Ufp(W, X, ¥, Z)} — (Vo W, X, ¥, Z) —
— (W, Vo X, ¥, Z) — (W, X, YV, ¥, Z) — (W, X, ¥, Vo Z)
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for U, W, X, ¥, Ze X(M). From (5.3) and (5.4) one has
(5.5) Volp)(W, X, ¥, Z) = (Vo(P)YW, X, T), Z),

and so the study of the covariant derivatives of P is equivalent to that of the
covariant derivatives of the fundamental 4-form g.

LeMma 5.1,

(5.6) VU(S”)(W’ X, Y Z)=— VU((P)<X7 W, Y, Z)=— VU(?’)(W) Y, X, Z) =
- = VU(?’)(W7 X: Zy Y) ’

67 Vo)X, Y, 2 PX,Y, Z) =0,

for all U, W, X, ¥, Z € £(}M).

PrROOF. — (5.6) is easily checked from (b.4). (5.7) is proved by applying the
vector field W to both sides of (5.2) and using (5.3) and (5.5).

We shall henceforth write Vi (PYXAYAZ) for Vyu(P) (X, ¥, Z), etc.

Now congider the natural 8-dimensional representation of Spin (7) on each tan-
gent space M,, and let W, be the space

W= {a e MiQ® AYM})| a{w, sAyAzAP@AYA2)) = 0 for all w, z,y,2€ M,} .

Then the induced representation of Spin (7) on W, has the {wo components W,,,
Was a8 described in section 4. It is possible to form from these two a total of four
invariant subspaces of W, (including {0} and W,,).

DEFINITION. — Let M be a 8-dimensional Rismannian manifold with a 3-fold
vector cross product. For m € M, let U, denote one of the four invariant subspaces
of W,,. Then A will denote the clags of all 8-dimensional Riemannian manifolds
with a 3-fold vector cross product such that (Vg),€ U, for all me M.

In order to make this definition meaningful, one must note that for any 8-dimen-
sional Riemannian manifold M with a 3-fold vector cross product, (Vg),e W, for
all m e M by virtue of (5.6) and (5.7).

The class corresponding to W,,, will be denoted by W,;. & will also correspond
to {0} and W to W,.

REMARK. — There are obvious analogies between some of these classes and the
corresponding ones for almost Hermitian manifolds [17], and for the 7-dimensional
Riemannian manifolds with a 2-fold vector cross product [9]. Nevertheless, Lem-
ma 4.4 implies that if Vy(p)(WAXAYAZ) =20 for all W, X, ¥, Zc X(M), then
Vo = 0. That is, the class NT of 8-dimensional Riemannian manifolds with a
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3-fold nearly parallel vector cross product, defined by analogy with the nearly
Kihler manifolds in [17], is actually the class . This was proved in [13] by a
different method.

Let d and 6 be the exterior differential and the coderivative of the Riemannian
manifold M. If 5 is a 4-form on M we have the following explicit formulas for dy
and dy

(5.8)  AQUAWAXAYANZ) = Vop)(WAXNYNZ) — Va)(UANXANYNZ) +
+ VoW UAWAYAE) — Vg UAWAXNZ) + Vi UAWAXAY),

7
(5.9) MXNYNED) = — 3 Vs mENINYND),
i=0

%

for U, W, X, Y, ZcX(M). Here {E,, ..., E,} is an arbitrary local frame filed.
Now, assume that M has a vector cross produet P with fundamental 4-form ¢,
then we note that

(5.10) dp = — Ly(Ve) ,

7

(6.11) L,(Vo)(X) = z V_P(E'i/\Ej/\Ek)((;D)(Ei/\Ej/\—Elc/\X)7
0

tyd, k=
for X € X(M). Using (5.10), (5.11) and Lemma 4.2 it follows that
(5.12) Ly(Vg) = — 6p(dp) .
Also, we have
LEMMA 5.2, - dp = 0 if and only if dp = 0.

PrOOF. ~ We write the 3-form dp in terms of the exterior differential d and of
the Hodge star operator %

(5.13) dp=—%d*g.

Then, applying Lemma 2.4 to (5.13), we get the result.

REMARK, — Let AF and 8% be the classes of 8-dimensional Riemannian manifolds
with a 3-fold vector cross product satisfying dp = 0 and dp = 0, respectively. Then
from Lemma 5.2 we have A% = 8F. Furthermore, (4.9) and (5.10) imply that if
op = 0, then Vg = 0. Hence we get § = NF = AT = §7.
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THEOREM 5.3. — The defining relations for each of the four classes are given in
table 1 below

TaBiE 1.

Olass ' Defining relations

F=NGF=AT = 8F Vg =0
(or dp = 0, or dp = 0)
W, | L(Vp)= 0 (or pdp= 0)
W,= CF 28 V(N X A X A XA X)) =
= —_ji (— 1 p dp(X)p(WAZI A AZA AL +
o + TW, XD (X3 A AX A A X}
W= W, W, No relation

6. — Conformal changes of metric.

In this section, we determine which of the 4 classes are preserved under a con-
formal change of metric. Let M be a 8-dimensional Riemannian manifold with
metric {, >; and let ¢, >® be a metric on M conformally related to {, > via

(6.1) G0 =16"(, >,

where o€ F(M). It is well known ([11], [12]) that the connections V° of (, )
and V of {,) are related by

(6.2) VWY=V, Y+ (Xo)¥ + (Yo) X — (X, ¥) grad o,
for X, ¥ ¢ X(M), and where grad o € X(M) is the vector field such that (X, grad o) =
= Xo for X e X(M).

Suppose that (M, {,>) has a 3-fold vector cross product P. Let P° be a 3-fold
vector cross produet on (M, {, > and fe F(M) such that P°= fP. Then

[P XAYAZ) = [XANYNE|" = | XNTNZ|* = ¢ [P(XAYNZ)|* =
= |P(XAYAZD)™,
for X, ¥, Z € ¥(M). Thus we must have f*= ¢*°. This leads us to the following

DEFINITION. — Let M be a 8-dimensional Riemannian manifold with metrics
{4, £, conformally related by (6.1). Let P be a 3-fold vector cross product
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on (M, {,>), then

(6.3) P'= ¢ P,

is a 3-fold vector cross product on (M, {, >®). In this case we say that P and P°
are conformally related.

Let ¢, ¢* denote the fundamental 4-forms corresponding to P and P°, and let
p, p° be the corresponding adjoints. Also let d, 6° denote the coderivatives of (, >,
{y >Y, respectively

LemumaA 6.1. — We have

(6.4) ¢’ =g,
(6.5) p’=¢*p,

(6.6)  VI(g")(XiA Ko XA X,) = 64"{Vw(<79)(X1/\Xz/\X3AX4) +
4 o~
+ S (— DX o) g(WA X A A KA AXL - (W, XQP(XI/\.../\XZ-/\.../\X4)G)} ,
i=1

for W, X,, X,, X;, X,e X(M),
(6.7) PP(XNVNE) = e p(XATAZ) + 4P(X\TAZ)o),
for X, Y, ZeX(M),

(6.8) P3G = p dp + 28 do

(6.9) dg® = {4 do\g + dp} .

PRrROOF. — Equation (6.4) is an obvious consequence of (6.1) and (6.3). Taking
the exterior derivative of (6.4) we get (6.9). Equation (6.5) follows from (6.1), (6.3)
and from the fact that if {E,, ..., H,} is a frame field on an open subset of (M, {, ),
then {¢™°E,, ..., ¢ °H,} is a frame field on an open subset of (M, {,>0). (6.6) follows
from (5.4), (6.2) and (6.4). From (6.6) and (5.9) we deduce (6.7); and from (6.5),
(6.7) and Lemma 2.2 (ii), we obtain (6.8).

Next we shall introduce a tensor field » that will turn out to be a conformal
invariant for 3-fold vector ecross products. A similar tensor field bas been introduced
in [17] for almost Hermitian manifolds, and in [9] for the Riemannian manifolds
with structure group G,.

DEFINITION. ~ Let M be a 8-dimensional Riemannian manifold with metrie ¢,
and vector cross product P. Then » is the covariant tensor field of type (5, 0)
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given by

(6.10) »(W, X, X5, X, X)) = V() (N AXAXNXY) +
4
+1/28 3 (— 1)+ p Sp(X ) p(WA XA AKX A AX) +
i=1

4+ KW, Xy (5(])(X1A.../\X,-/\.../\X4)} s
for W, X, X,, X;, X, X(M).

LEMMA 6.2. — Suppose (P, {,>) and (P, {, > are conformally related. Then
the corresponding tensor fields » and +° satisfy +0 = ¢*».

PROOF. — This follows from Lemma 6.1 and equation (6.10).

DEFINITION. —~ Let U be one of the four classes given in table I. Then UL will
denote the class of all manifolds locally conformally related to manifolds in W. In
other words, (M, P, {, >®) €U if and only if for each m € M there exists an open
neighborhood V of m such that (V, P, {, »%) is conformally related to(V, P, {, >) € U.

THEOREM 6.3. — For any U given in table 1 we have UWC W, @ W. Thus
UL = W if and only if W,CWU. Henece the conformally invariant classes are W,
and W.

Proor. — The defining condition for each of the classes mentioned in the state-
ment of the Theorem can be rewritten in terms of ». From table 1 we have

MeW, ifand onlyif v=20.

7. — Inelusion relations.

In this section, we establish the strictness of gome of the inclusions among the
four classes.

First we note that the special unitary group SU(3) = U(3) N Si(3, C) is a par-
allelizable 8-dimensional manifold, and hence SU(3) € W.

It is well known (see, for example, [19, p. 515]) that the Lie algebra su(3), of
SU(3), is & compact real form of simple Lie algebra si(3, C). Thus ({19, p. 181])
the killing form B of su(3) is strictly negative definite, being in fact equal to the
restriction of Killing form of si(3, C) to sw(3)xsu(3). Therefore, ([19, p. 1877),
B(X, ¥)=6Tr(XY) for all X, ¥ esu(3). Furthermore, the bilinear symmetric
form — B defines a bi-invariant metrie on SU(3).

On the other hand, since su(3) is a 8-dimensional vector space over R with a
(positive definite) inner product, it follows that su(3) has a Cayley multiplication,
and hence the two 3-fold vector cross products P, given as in section 2. We deter-
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mine P identifying su(3) with the space Cay by means of the orthonormal basis
{1, €, ..., &} of su(3) given by

i 0 0 L 0 1 0

1= —— 0 Go=——|—1 0 0
V12 8 g » RV o o0 o

L 0 0 1 L0 0 0

o=—=| 0 0 0}, e=—x|{0 0 1
2 V12 '

Vi 1 0 0 0 —1 0

1 [ 0 0 1 0 % 0

es==-10 —2i 0 = ——1i 0 0
6 ’ ’

0 0 i viz 0 0 0

L0 N (0 0 0

es=—=0 0 o), e=—=[0 0 i

V12 i 0 o V12 o i o

Then, it can be verified that the 8-dimensional Riemannian manifold 8U(3),
with the bi-invariant metrie defined by — B and the 3-fold vector cross produets P,
is not in the class W, nor in the class W,. (In fact, the covariant derivative Ve,
of the fundamental form ¢, does not satisfy the defining relations given in table I
for these classes.) Furthermore, SU(3) ¢ T because H(SU(3), R) == {0}.

THEOREM 7.1. — The following inelusion relations are striet: ¢ W,, W, U W,c
c W@ W,.

Proor. — Consider R® with the two 3-fold parallel vector cross products, and
SU(3) as before. Let (R®)® denote the manifold RS with a nontrivial change of con-
formal metrie. Then, we have

(R&)ee W,— 7
SU@B)e W,® W,— W, U W,.
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