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A Semilinear Parabolic System in a Bounded Domain (*). 

M. ESCOBEDO(**) - M. A. HERRERO(***) 

Summary. - Consider the system 

(S) 

U t - -  A U  -~- V p , 

V t - -  A v -.~ U q , 

u(O, x) = uo (x),  

u(t, x) = v(t, x) = 0, 

in Q= { ( t , x ) , t > O ,  x e O } ,  

in Q,  

v(O, x) = v o(x) in O,  

when t >1 O, x �9 aO , 

where 0 is a bounded open domain in R N with smooth boundary, p and q are positive param- 
eters, and functions Uo(X), vo(x) are continuous, nonnegative and bounded. It is easy to 
show that (S) has a nonnegative classical solution defined in some cylinder QT = (0, T)  x 
with T <~ cr We prove here that solutions are actually unique i f  pq >I 1, or i f  one of  the initial 
functions uo , Vo is different f rom zero when 0 < pq < 1. In  this last case, we characterize the 
whole set of  solutions emanating f rom the initial value (uo, vo) = (0, 0). Every solution 
exists for  all times i f  O < pq <~ 1, but i f  pq > 1, solutions may  be global or blow up in f in i te  
time, according to the size of the initial value (Uo, Vo). 

1. - I n t r o d u c t i o n  and descr ipt ion  o f  resul ts .  

Let O be a bounded domain in F~ N (N/> 1) with smooth boundary aO. We shall con- 
sider here the following Cauchy-Dirichlet problem 

(1.1a) u t - ~ l u = v  p when t > 0 ,  x e O ,  

(1.1b) v t - ~ l v = u  q when t > 0 ,  x e t ) ,  

(1.2) u = v = O  if t~>0, x e a O ,  

(1.3) u(0, x) = uo(x); v(0, x) = Vo(X), ff x e t ) ,  
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where 

(1.4) p > 0, q > 0 and Uo(X), Vo(X) are continuous, nonnegative and bounded real 
functions. 

Equations (1.1) constitute a simple example of a semilinear reaction diffusion system 
exhibiting a nontrivial coupling on the unknowns u(t, x), v(t, x). These can be thought 
of as the temperatures of two substances which constitute a combustible mixture, 
where heat release is described by the power laws in the right-hand side of (1.1). 
While such a model is rather crude indeed, it represents a first step towards the un- 
derstanding of more realistic and complex processes, and as such it has been recently 
considered by several authors: cf. for instance [GKS1], [GKS2] and [FG]. 

Local (in time) existence of nonnegative classical solutions of (1.1), (1.3) is rather 
standard, and will be recalled briefly below. These will be denoted alternatively by 
(u(t x), v(t, x)) or (u(t), v(t)) in what follows. We shall concentrate here in the study of 
uniqueness and global existence for such solutions. In particular, we show 

THEOREM 1. - A s s u m e  that (1.4) holds. We then have 

a) I f  one of  the initial values Uo (x), Vo (x), is different f rom zero, or i f  pq >i 1, 
there exists a unique solution of  (1.1)-(1.3) which is defined in some time interval 
(O,T) with T <. + ~.  

b) I f  pq < 1 and Uo (x) = Vo (x) - 0, the set of  solutions of (1.1)-(1.3) consists 
of 

bl) The trivial solution u(t, x) = v(t, x) = O, 

b2) A solution (U(t, x), V(t, x)) such that U(t, x) > 0 and V(t, x) > 0 for  any 
t > 0  and x e t2, 

b3) A monoparametric fami ly  (U~(t, x), V,( t ,  x)) where tz is any positive 
number, U~(t, x) = U((t -t~)+ , x), V~(t, x) = V((t - ~)+ , x) and ~+ = max {~, 0}. 

We then consider the question of the life span of solutions. To this end, we shall 
say that u(t, x) (resp. v(t, x)) blows up in a time T < + :r if 

lira sup (max u ( t ,  x ) )  = + 
t ~ T xe t )  

(resp. lira sup (max v(t, x)) = + ~ ) .  
t ~' T x~t~ 

It is readily seen that if one of the functions (u(t), v(t)) blows up at t = T < + ~,  so 
does the other one. To proceed further, let ~ ~ > 0 the first eigenvalue of ( -  d) in t) 
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with homogeneous Dirichlet conditions, and let ~ be such that 

(1.5a) --/I ,~1 = ~.1~91 in t2, 

(1.5b) ~91 : 0 in C%Q, 

(1.5c) ~1 > 0 in ~ ,  ]~ l (X)dx  = 1 .  

We then have 

THEOREM 2. - A s s u m e  that (1.4) holds. Then 

a) I f  pq <<. 1, every solution of (1.1)-(1.3) is global in time 

b) I f  pq > 1, some solutions are global while some others blow up in f in i te  time. 
More precisely, 

(1.6) There exists C > 0 such that, i f  ~1 (x) is given in (1.5) and 

f (Uo(X) + Vo(X))~l(x)dx >t C, 
t2 

the corresponding solution (u(t), v(t)) of (1.1)-(1.3) blows up in a finite time 
T, 

(1.7) There exists K > 0 such that, i f  

(1.7) Huoli  + Ijvofi  -< g 

the corresponding solution (u(t),v(t)) of (1.1)-(1.3) exists for all times 
t > O .  

We now comment briefly on our results. Blow up for nonlinear evolution equations 
has deserved a great deal of interest ever since the pioneering papers [Ful], [Fu2]. In 
particular, it is well known that if Uo(X) is as in (1.4), the Cauchy-Dirichlet 
problem 

(1.8a) ut - Au = u p when t > 0, x ~ t) ,  

(1.8b) u(0, x) = Uo(X) when x e t~, 

(1.8c) u(t, x) = 0 if t >>- 0 and x ~ at2, 

is such that when 0 < p ~< 1 every solution is global in time, although uniqueness fails 
if 0 < p < 1 (cf. for instance [FuW]). When p > 1, there exist initial values for which 
solutions blow up in finite time. However, if Uo(X) is small enough, (1.8) has a unique 
solution which exists for all times: see for instance [F], [MW], [L1]. 

To our knowledge, no such a complete picture of the situation concerning unique- 
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ness and blow up was available for (1.1)-(1.4) prior to this work. For instance, unique- 
ness is indeed straightforward if p i> 1 and q >I 1, and rather easy to prove if pq >I 1 
(cf. Lemma 2.1 below). However, it requires of some elaboration in the c a s e  
0 < pq < 1. On the other hand, the blow-up result in Theorem 2 can be proved by 
means of a technique already used in [GKS2] if p > 1 and q > 1. A somewhat different 
method is required though when one of the constants p, q, is allowed to be less than 
one. 

We wish to conclude this Introduction by comparing (1.1)-(1.4) and (1.8) with the 
corresponding Cauchy problems in the whole space. This last situation is character- 
ized by the onset if critical blow-up parameters, i.e., by the fact that in some range of 
the parameters p and q (resp. p), every nontrivial solution blows up in finite time. In 
particular, if we replace (1.8) by 

(1.9a) ut - zlu = u p if 

(1.9b) u(0, x) = Uo(X) if 

t > 0 ,  x e R  N, N > ~ I ,  

X ~  R N, 

where Uo(X) is as before, it turns out that every solution of (1.9) with Uo(X) ~ 0 blows 
up in finite time if I < p ~< 1 + 2IN, whereas global existsence and blow up coexist if 
p > 1 + 2IN. Indeed, solutions are global if 0 < p ~< 1, but non unique if uo(x) - 0 and 
0 < p < 1; cf for instance [Ful], [KST], [AW], [AE], .... A similar situation holds for 
the Cauchy problem (CP) corresponding to (1.1), (1.3), (1.4), where every nontrivial 
solution blows up in finite time if pq > 1 and max{p, q} > ~ 2 / N ( p q - 1 ) - 1  
(see [EH1]). We refer to [L2] for a survey on the role of critical parameters in evolu- 
tion problems, and to [EL] for recent work on more general systems. 

As to the number of solutions of (CP), it has been proved in [EH2] that 

i) If  Uo(X)-~O or Vo(X)~O, solutions are unique. Uniqueness also holds in 
p q > l  when u o = v 0 - 0 .  

ii) When 0 < pq < 1, the set of solutions of (CP) with zero initial value is given 
by 

u(t; s) = C l ( t  - s)(P+ +l)/(1-pq),  v(t; s) = C2(t - s)(q+ +l)/(1-pq), 

where 

O<<.s<.t, C ~ - p q = ( 1 - p q F + l ( p +  l ) - l ( q +  l) -p, C 2 = C ~ ( 1 - p q ) ( q +  l) -1. 

Notice the analogy between these results and those in Theorem 1. However, the 
core of the proof of uniqueness (which consists in the analysis of the situation where 
0 < pq < 1) is different for the cases t~ = R N and t~ bounded. In particular, our argu- 
ments of[EH2] do not carry through here. 

Finally, the plan of this paper is as follows. Some preliminary facts (including 
suitable comparison tools) are gathered in Section 2 below. Uniqueness is then 
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proved in Section 3 in the case 0 < pq < 1, while global existence and blow up make 
the content of Section 4. 

2.  - P r e l i m i n a r i e s .  

In this Section we shall state some basic facts and obtain auxiliary results which 
will later be used in the main proofs. By a nonnegative classical solution of (1.1)-(1.3) 
(a nonnegative solution, for short) in some cylinder QT = (0, T) • t~ with T ~< + ~,  
we shall mean a pair of nonnegative C 1' 2 functions (u(t, x), v(t, x)) such that they sat- 
isfy (1.1)-(1.3) in ST. Existence and uniqueness of nonnegative solutions is straight- 
forward if p 1> 1 and q I> 1. For instance, consider the associated integral system 

(2.1a) 
t 

u(t) = S(t)uo + f S(t - s)[v(s)lP-lv(s)ds = ~l(v), 
0 

t 

(2.1b) v(t) = S(t) vo + ~ S(t - s )  l u ( 8 ) l  q - 1 U ( S )  ds - ~2(u), 
0 

where for any function f e  L l(t~), S ( t ) f  denotes the solution of 

u t - / l u = O  in (0 ,  ~ )  • t~, 

u(0, x ) = f ( x )  int~,  u ( t , x ) = O  in [0, ~ ) •  

This notation will be retained henceforth. As in [EH1], we now take T > 0 fixed, but 
otherwise arbitrary, and consider the set 

ET = { ( U ,  V):[0, T] ---)L~(t~) • L ~(t~) such that Ill(u, v)ll I < + ~}  

where 

rll(u, v)lH = sup (Iru(t)llo + IIv(t)lr ). 
O<~t<~T 

For simplicity, we shall often write II II instead of II II| Clearly, E is a Banach space, 
and P T = { ( U , v )  e E T : u > ~ O , v ~ O }  is a closed subset of ET. Let BR = 
= {(u, v) ~ ET: Ill(u, v)ll[ < R}. One then readly sees that, i fR  > 0 is large enough and 
T > 0 is sufficiently small, ~(u, v) = (~l(V), ~2(u)) is a strict contraction of BR A ET 
into itself, whence the result. 

We now have 

LEMMA 2.1. - Assume that (1.4) holds. Then there exists T <<. + ~ such that (1.1)- 
(1.3) has a nonnegative solution (u(t, x), v(t, x)) in QT. Moreover, such solution is 
unique i f  pq >~ 1. 
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PROOF. - We have just  recalled the case p i> 1 and q ~> 1. If  one of the parameters 
p, q is less than one, but pq >>. 1, it is still possible to set up a contraction mapping ar- 
gument. Indeed, assume for definiteness that  0 < p  < 1 < ( l /p)~< q, and for any 
given T > 0, set XT = {u[0, T]--~ L | such that  ]]]u[[] = sup I[u(t)]] < + ~ }, X~ = 

O<.t<.T 
= {u ~ XT: U >t 0} and BR = {u e X~ = II]u]]] < R}. Recalling (2.1), it will suffice to show 
that  for R > 0 large enough and T > 0 small enough, the mapping 

( ; ~(u)(t) =S( t )uo  + I S ( t  - s) S(s)Vo + S(s - ~)u(~)~d~ ds, 
o o 

is a strict contraction from B R N X~ into itself. Using mean value theorem, it follows 
that  

(o, t (! ) (2.2) (~(u) - ~(~))(t) < pq S ( t -  s) S(s - z)(0u + (1 - 0)~)q de ~. 

for some 0 = O(s) e (0, 1). We now notice that  

(2.3) For  any nonnegative and integrable functions f i g ,  and any r ~> 1, there 
holds 

S(t) fg <. Ilfll~ (S(t)gr) ~/~. 

Let  us assume (2.3) for the moment and continue. I t  then follows from (2.2) and 
(2.3) that, if u, ~ e BR ~ X~. , 

t 

IH~(u)- ~(~)11l ~ pqlllu -~lll I HS(s - ~)(ou + (1 -0)~) qd~lF ~. 

0 

8 

"I ]IS(s - -  ~ ) (OU + ( 1  - -  O)u)q]](q-Wqd~d8 <~ 
o 

<<. pq]llu - ~]]]R pq-1C(T), 

where C(T)--~ 0 as T o  0, whence the result. To check (2.3), we set ~o(t) = (S(t)fg),  
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0)1(t) = Ilfll~ S( t )g  ~, and notice that  

(co~)t- ~(o7) = - r ( r -  1)oJ ~-2 IVo~l 2 ~< 0,  

(~ol)t - d(col) = 0, 

~ r = ~ O l = 0  in [0, ~ ) x 3 a g ,  

whereas ~ ( 0 ,  x) = (fg)~(x) ~ ]lfll~ g~(x) = OJl(O, x), so that  the result follows at once 
by comparison. Finally, existence is obtained for the case pq < 1 by means of an ap- 
proximation procedure as in [EH1], Theorem 2.1: if, for instance, 0 < p < 1 and q I> 1, 
we replace (1.1a) by 

ut - 3u = g~ (v) when t > 0, x e ~9 

where, for any positive integer n, g~ (r) is a nondecreasing function such that  g~ (r) = 
= r p i fr  >>- 1/2n,  I g~ (r~) - g~ (r~) I ~< C~ I rl - r2 ] for any r~/> 0 and r2/> 0, and gn (s) I' s p 
at any s I> 0 as n ~ ao. Replacing also Vo by (vo + 1/n), we obtain a unique solution 
(Un(t , x), Vn(t , X)) of the corresponding Cauchy-Dirichlet problem. Furthermore,  

us( t ,  x) <~ u~(t,  x) ,  Vn(t, x) <<- vm(t, x) if n >>- m 

and the conclusion follows by letting n ~ ~ .  We omit further details. �9 

The following comparison result will be useful in the sequel 

LEMMA 2.2. - Assume that (1.4) holds, and let (u(t, x), v(t, x)) be a solution of  
(1.1)-(1.3) in a cylinder QT = (0, T) x f2 with T > 0. Suppose that (ut(t, x), v2(t, x)) is 
a solution of  (1.1) in QT such that 

u l (O,x )  > u o ( x ) ,  Vl(0, x) >v0(x)  in ~ ,  

ul ( t ,  x) > O, vl(t ,  x) > 0 in [0, T) x 3t~. 

Then 

ul (t, x) > u(t, x) and Vl (t, x) > v(t, x) in QT. 

PROOF. - It  suffices to consider the case where u l (0 ,  x ) =  Uo(X)+ 8, vl(0, x ) =  
= v0 (x) + ~ and ul (t, x) = vl (t, x) = ~ on [0, T) • a~,  where ~ is any fixed (but other- 

wise arbitrary) positive constant. Then, by continuity, there exists z > 0 such 
that  

ul (t, x) > u(t, x) and vl (t, x) > v(t, x) in Q~ = t) • (0, ~). 

We now argue by contradiction. Let  

~1 = inf{t:  there exists x e t~ such that  ul( t ,  x)<<. u(t, x)} 

ze = inf{t:  there exists x e t ~  such that  vl(t ,  x) <<. v(t, x)} 
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and let z = rain{z1, ~2}. Clearly, ~ > 0 and either Ul(0" , y) = u(z, y) o r  Vl(~- , y) = 
= v(z, y) at some y e t~. Sett ing z = Ul - u, 0 = Vl - v, one readily checks that  

zt - Llz > 0 in Q:, 0t - k0 > 0 in Q: 

and since z, 0, are positive at the parabolic boundary of Q:, it follows that  z(z, x) > 0, 
0(~, x) > 0 everywhere in ~. This concludes the proof. �9 

We next specialize to the case 0 < pq < 1, and consider the auxiliary func- 
tions 

~( t) = (5 + C~I-pq)I(p+ I)" t) (p+ W(1-pq), 

v (  t ) ~- (~ + Cg 1-pq)/(q + l) . t )  (q + l)/(1-pq) , 

(2.4a) 

(2.4b) 

where 

(2.4c) 

(2.4d) 

(2.4e) 

(2.4f) 

C1 = (1 - p q  )(1-pq)/(p + l) (p + 1 ) -  l/(1-pq) ( q + 1)-P/(1-Pq), 

C2 = (1 - pq)(q+l)/(1-pq) (q + 1)-l/(1-pq) (p  § 1)-q/(1-pq), 

I1 o11= + 1, fl(q+i)l(1-pq) >. Ilvoll= + 1, 

-- ~C~ 1 -pq)l(p + 1). c~pq-  1)/(q + 1). 

A routine computation shows then that  

(2.5a) ut - /~u  - ut = v p 

(2.5b) vt - ~v =- vt = u q 

for any t > 0 ,  

for any t > 0 .  

F rom Lemma 2.2, we obtain the following comparison result  

(2.6) Le t  (u(t), v(t)) be a solution of (1.1)-(1.4) in some cylinder QT with T > 0, and 
assume that  0 < pq < 1. Then 

u(t) < ~(t) and v(t) < ~(t) in QT. 

Notice that  (2.6) implies that  any solution of (1.1)-(1.4) can be continued for all t imes 
in the case 0 < pq < 1. We next  show 

LEMMA 2.3. - Assume that 0 < pq < 1 and Uo (x) -~ or vo (x) -~ 0 in t~. Then 

(2.7a) u(t) >I C l t (p§  1 ( t )  in t) for  any t > O, 

(2.7b) v(t) >I C2t(q+l)/(1-Pq)Sl(t) in ~ for any t > O, 

where C1 and C2 are given in (2.14), and h = S1 (t) is the solution of ht - Ah = 0 in 
(0, ~ )  • ~ which satisfies h(O, x) = 1 in ~ and h(t, x) = 0 in(O, ~ )  • at~. 
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PROOF. - Suppose for definiteness that  u0 (x) ~ 0 and 0 < p < q < 1. To show a), 
we first observe that  

(2.8) If  0 < q < 1, (S(t) uo)q >I S(t)u q. 

The proof of (2.8) is similar to that  of (2.3) and will be omitted. We then argue as 
in [EH2], Lemma 2. Since u(t) >I S(t)uo in ~9, it follows from (2.1) that  

whence 

t 

v(t) >I I S(t - s)(S(s)u~)ds 
0 

t 

u(t) >>- I sPS(t - s)(S(s)uJ)Pds 
0 

which in turn yields 

>>- tS(t) u~ 

t p  +1 
-~---i S( t) ugq 

( ~ 1 )  p/(1-pq) 
Ak+l >1 , Bk+l >I (p + 1)-U(1-pq)(1 _ pq)W(1-pq), 

letting k - ~  ~ ,  it follows from (2.9) that  

u(t) >t Clt(P+l)/(1-Pq)S(t)Z(Uo) in ~2 for any t > 0, 

where C1 is given in (2.4) and Z(Uo) = 1 where Uo > 0, and zero otherwise. I f  Uo (x) 
vanishes somewhere, we still have that  u(t) > 0 and v(t) > 0, for any t > 0. In particu- 

Since 

( p ~ ) q ( 1 ) t q ( P + l ) + l S ( t ) u ~  q2. v(t) >I q(p + 1) + 1 

I terat ing the previous procedure, we obtain 

(2.9a) u(t) >i Ak + 1Bk. 1 t Yk.1S(t)(uo )pqk+l 

where 

(2.9b) ]'k = (P + 1)((Pq) k + (pq)k-1 + ... + pq + 1) 

I I'Ik-1 X)((Pq) j + (pq)j-1 + + + 1)-(pq) k-l-i)p (2.9c) Ak+l = \j=o(P + ... Pq , 

(2.9d)Bk+l = (p + 1) -(1 -(Pq)k§ + pq)_(pq)k-~ ((pq)k + (pq)k-1 + ... + 1)-1. 
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lar, for any sequence {t~ } of positive numbers such that lim t~ = 0, we see that 
n---> oo 

u(t+t~)>~C~t(P+l)/(l-Pq)S~(t) in t~ for any t > 0 ,  

so that (2,7a) follows by letting n ~ ~.  The proof of (2.7b) is similar. �9 

We next show that (1.1)-(1.4) has a maximal solution if 0 < pq < 1. 

LEMMA 2.4. - Assume that 0 < pq < 1. Then there exists a solution (UM(t), VM(t)) 
of  (1.1)-(1.4) such that, i f  (u(t), v(t)) is any other solution there holds 

u(t) <. UM(t) and v(t) <. VM(t) i n  Q = ( 0 ,  ~ ) x ~ ' .  

PROOF. - Let ~(t), ~(t) be the functions given in (2.4). We now define the se- 
quences {Un }, {V~ } as follows. To start with, Ul and vl solve respectively 

ut - Au = ~P in Q, vt - ~lv = ~q in Q,  

u(O, x) = Uo(X) in t) ,  v(O, x) = Vo(X) in ~9, 

u ( t , x ) = O  in [0, o o ) x t )  v ( t , x ) = O  in [0, ~ ) x t ~  

whereas, for j /> 2, uj and vj are the respective solutions of 

u t -  Au= v~_i in Q, v t -  Av= uy_l in Q, 

u ( O , x ) = u o ( x )  in t~, v ( O , x ) = v o ( x )  in t~ ,  

u ( t , x ) = O  in [0, ~ ) x a t ~  v ( t , x ) = O  in [0, ~ ) x a t ~ .  

It is then readily seen that, for any n ~> 3 

>I ul >t u2 >i ...Un >I ... 

~ V 1 ~ V 2 ~ . . . V  n ~ . . .  

and that for any T > 0, we may select C = C(T, Uo, Vo) > 0 such that 

sup (llUn(t)llHl(~) + IlVn(t)llHl(~ )) <~ C < + oo 
O<~t<~T 

Therefore there exist functions (UM, VM) such that 

UM(t) = lim us( t ) ,  VM(t)---- lira v~(t),  
n.--.> o~ n - o  ~ 

(UM(t, X), VM(t, X)) solve (1.1)-(1.4). 

Let now (u,v) be any other solution of (1.1)-(1.4). By Lemma 2.2, we certainly 
have 

u(t) < ~(t) ,  v(t) < ~(t) in Q. 
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Assume now that u <. uj, v <. vj in Q for some j I> 1. Then 

(uj+l - u)t - / l (u j+l  - u) =v~ - v p >I 0 in Q, 

u j + l - u = O  if xEf2 and t = 0  or xE3t~ and t > 0 ,  

where upon uj+l >>- u in Q, and similarly vj+~ >>. v in Q. Letting j --) cr the last state- 
ment in the Lemma follows. �9 

Let now a(t, x), b(t, x) be smooth functions such that, for some v > 0, 

(2.10a) - 1  <~ a(t, x) <~ 1 

(2.10b) - 1  ~< b(t, x) ~ 1 

and consider the system 

(2.11a) ut - Au = a(t, x ) v  p 

(2.11b) 

(2.11c) 

in Q~ = [0, v] • ~9, 

in Q~ 

in Q~ = (0, v) z f2, 

vt - Au = b(t, x ) u  q in Q~, 

initial and boundary conditions (1.2), (1.3), under assumptions (1.4). 

We then have 

LEMMA 2.5. - Assume  that conditions (2.10) hold, and let (U M (t), VM (t)) be the 

max ima l  solution of  (1.1)-(1.4) obtained in L e m m a  2.4. Then, i f  (u(t), v(t)) is a non- 
negative solution of  (2.11), we have 

u(t)  <. UM(t) , v(t) <~ VM(t) in Q~. 

PROOF. - Let (un, Vn) be the sequence leading to (UM, V M) in the proof of Lemma 
2.4. Set us = ~, vl = ~. We first observe 'that 

(2.12) u < ~ and v < ~ in Q~. 

Indeed, u < ~ (resp. v < ~) holds in f~ at t = 0, and is satisfied at af2 for any t > 0. 
Then (2.12) follows by means of a contradiction argument as in the proof of Lemma 
2.2. We then proceed by induction as in the comparison result in Lemma 
2.4. �9 

Let )~1 > 0 be the first eigenvalue of ( -  3) with homogeneous Dirichlet conditions, 
and let el(X) be a function such that 

(2.13a) -3~bl = ;~1~bl in f2, 

(2.13b) ~1 = 0 in at),  

(2.13c) 0 ~ ~1 ~ 1, [V~b~l is bounded in f~. 
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We are now prepared to show that maximal solutions are positive, thus extending the 
corresponding result obtained in [FuW] for the scalar problem (1.8). 

LEMMA 2.6. - Suppose that 0 < pq < 1, and let (UM, VM) be the solution obtained 
in Lemma 2.4. Then 

(2.14) UM(t)>O and VM(t)>O in Q = ( 0 ,  ~ )  •  

Moreover, there exist ~ > 0 and ~ > 0 such that 

( 2 . 1 5 a )  UM(t , X) >~ ($t~1 (X)2) (p+I)/(1-pq) in Q: = (0, z) • t} , 

( 2 . 1 5 b )  vM(t , X) ~ (~t~l(X)2) (q+l)/(l-pq) in Q~. 

PROOF. - It suffices to examine the case where uo = vo - 0. Consider the auxiliary 
functions 

u~ (t, x) = (~t~ 1 (x) ~ )(P + ~)/~1 -~q~, 

V~ (t, X) = (~t~l(X) 2)(q+l)/(i-pq). 

Clearly, u~ = v~ = 0 in t} if t = 0, and in at} if t > 0. Furthermore, 

(u~) t -  ~]u~= a~(t, x)v~ in Q, 

(v~)t - ]v~ = b~(t, x)uq~ in Q, 

where 

( ( p + l  , 2 2 ( p + 1 )  1 ( 
[ ( q + l  2(q+ 1 ) ) ( 2 ( q + 1 ) - 1 )  ) bs(t' x)-~ \~ 1-pq)~2-~ (1--pq)~1t~21- i----pq (~xl )  2t ~' 

so that (2.11) holds provided that ~ and t are small enough. It then follows from Lem- 
ma 2.5 that 

UM(t, X) >t u~(t, X), VM(t, X) >I v~(t, X) in Q: 

for some z > 0 and s > 0 small enough, and this in turn implies (2.14). �9 

3. - E n d  o f  the  p r o o f  o f  T h e o r e m  1. 

In this Section we shall conclude our analysis of uniqueness of solutions of (1.1)- 
(1.4). In view of Lemma 2.1, it only remains to consider the case where 0 < pq < t, an 
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assumption to be retained henceforth. Moreover, it will suffice to show that positive 
solutions are unique. This is done in our next result  

LEMMA 3.1. - There exists a unique solution (u(t), v(t)) o f  (1.1)-(1.4) such that 
u(t) > O and v(t) > O in Q = (O, ~ ) x t~. 

PROOF. - The existence s tatement  has been already proved in Lemma 2.4. As to 
the uniqueness we shall proceed by contradiction, and assume that (Ul, Vl) and 
(u2, v2) are two such solutions. We shall distinguish two cases 

Case I: Uo = Vo =- O. 

By (2.6), we have that, for i = 1, 2 

vi ( t )  < (8 ~- C(1-pq)/(q+l)t) (q+l)/(1-pq) in Q, 

where 8, C~, are given in (2.4). Using the integral equation (2.1a), we obtain 

t 

ui (t) < I S(t  - r)(fl + C(21 -Pq)/(q + 1) r)p(q + 1)/(1 -pq) dr <~ 

o 

1 

(8 Jr" C(l-Pq)/(q+ l) t )P(q+ l)/(1-pq) 1 81 ( t - r) dr  

o 

with $1 (t) def'med in (2.7), and i = 1, 2. Since 

t 

f $1 (r) dr = S 1 (t) - 1, 
o 

it follows that, for any given T > 0 and any m > 1, 

t 

~ S, ( r )dr  e L ~ ((0, T); W~m(t~)) 
0 

whence 

t 

= (~ _{_ C(21 - pq)/(q + 1 ) t ) p ( q + l ) / ( 1 - p q )  f $1 (T) dr  

o 

(3.1a) + C(21-pq)/(q+l) t) (q+l)/(1-pq) S 1 (r) dr  --> 0 as t --> 0,  
o C1 (~) 

and analogously, 

II f dr cl(~) 
(3.1b) (~ + C~ 1-pq)/(q+i) t) (q+l)/(1-pq) S 1 (r) ---> 0 as t --> 0.  

o 

Let  ~I (X)  be a function satisfying (2.13). I t  then follows from (3.1) that  
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u~ (t + s) - u2 (t) i> 0,  

V 1 (t + s) " v 2  (t) >I 0,  

We now fix T > 0, and for t e [0, T] we set 

w(t) = ul (t + s + ~(s)), 

~(t)  = u2 (t + ~(s)) ,  

Recalling (3.4), we have that 

(3.5) _w(o)/> ~ ( o ) ,  

~( t )  = vl (t + s + z(s))  

-5(t) = v~ (t + z ( s ) ) .  

_~(o) ~> ~(o). 

Suppose now that 0 < p, q < 1. We then consider the equation for (5  - w), multiply 
both sides there by ( 5  - w)+ and integrate over t~. Using mean value theorem as well 
as (2.7) and (3.3), we arrive at 

f I (3.6a) - ~  ( ~  - w)2+ dx  + ]D(g; - w_)+ [2dx = (-~P - coP)(g; - w_)+ dx  <. 

t~ t~ t) 

P r (0~ + (1 - 0) co )p - l (~  - co)+ (w - w)+  dx ~ C ~ +p-1 (~  _ o))+ (w - w)+  dx 
, /  . /  

D 

where ~ > O, 0 e (0,1), and here and henceforth C will denote a generic constant de- 

C "7 I (~  -- cO)2 dx  -{- C~ f ~2(p-1)(~ _ w )2  d x ,  

For  any C > 0, there exists to such that, if t ~< to 

t 

I (3.2a) (fl -~- C(1-pq)/(q+l)t) (q+l)/(1-pq) S l ( 8 ) d s  ~ C~1 in t~, 
0 

t 
(3.2b) (~ + C~l-pq)/(q+l)t)(q+l)/(1-pq) ~ Sl(s)ds <~ C~1 in t~. 

0 

On the other hand, by comparison 

(3.3) Si(t) t> e-~ltq~l(X) in Q. 

Therefore, taking into account (2.7), (3.2) and (3.3), it follows that 

(3.4) For  any fixed s ~ (0, 1), there exist v = v(s) such that  lim z ( s ) =  0 and, for 
s-+0 

t <<. v, 

us (t + s) - u l  (t) >i O, 

V 2(t + S) -- V l ( t )  ~ O. 
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pending only on s, p and q. Arguing in a similar way, we obtain 

(3.6b) -~  (~ _ 0))2+ dx + ID(~ - 0))+ [2dx <~ 

cf f <~ T (~  - w)2+ d x  + C~ ~ 2 ( q - 1 ) ( ~  _ 0))2 dx .  

We now observe that, by Hardy's inequality (cf. for instance [LM], p. 76) and stan- 
dard properties of the eigenfunction ~bl, we have that, if h e H~(t)), 

dx K I [Dh[edx,  fill 
Q t) 

for some K = Kff]) > 0. Since 0 < p, q < 1, we may select s > 0 small enough such 
that adding up (3.6a) and (3.6b) yields that E(t)  = ~(-5 -0))2+ dx satisfies 

t~ 

E ' ( t )  < CE(t) 

whereas, by (3.5), E(0) = 0. Therefore E(t) = 0 for t e [0, T], whence 5(t)  ~< w(t) and 
~(t) ~< 0)(t) in [0, T]. Letting s $ 0 we finally obtain 

u2(t) <<. ul ( t ) ,  v2(t) <<. vl(t)  in [0, T] 

and, since the roles of ul and u2 (resp., vl and ve) can be exchanged, we also have that 
ul ( t )  <~ us(t)  and vl(t)<~ v2(t) in [0, T] under our current assumptions. The case 
where, say, p < 1 < q, is similar. 

Case II: (uo, v0)~(0 ,  0). 

We argue again by contradiction, and assume that (1.1)-(1.4) has two different sol- 
utions, namely (u(t),v(t)) and the maximal solution ( u i ( t )  , VM(t)) constructed in 
Lemma 2.4. Clearly, it will suffice to show that 

(3.7) uM(t) <<. u( t) ,  VM(t) <- v(t) in Q. 

To this end, we set 

wl( t )  = UM(t) -- u( t ) ,  w2(t) = VM(t) -- v(t) 

and suppose to start with that 0 < p, q < 1. Then wl, w2 satisfy 

(3.8a) (Wl)t - ~wl ~< w~ in Q, 

(3.8b) (w2)t - ~1w2 ~< w~ in Q, 

(3.8c) w l ( t , x ) = w 2 ( t , x ) = 0  if t = 0  and xe t~ ,  or if t > 0  and x e a ~ .  
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(3.9a) 

(3.9b) 

(3.9c) 

By Lemma 2.5, we certainly have that 

w1 ~< (01, w2 ~< (02 

We then define functions f and g as follows 

Let ((01, (02) be the unique positive solution of 

((01)t -/1(01 = (0~ in Q, 

((02)t - A~o2 = c% q in Q, 

( 0 1 ( t , x ) = ( 0 2 ( t , x ) = O  if t = 0  and xe t~ ,  o r i f t > 0  and x e a t ) .  

mQ. 

f =  (01 - Wl ~- (01 --  U M ( t )  + u( t )  >I O, 

g = (02 - w2 = (02 - VM(t) + v(t)  >I 0 

and claim that f and g satisfy 

(3.10a) 

(3.10b) 

(3:10c) f ( t ,  x)  = g(t ,  x)  = 0 

f t -  A f  ~ g p in Q, 

g t -  Ag >l f p  in Q, 

if t = 0  and xe t~ ,  or if t > 0  and x e t ~ .  

To check (3.10a), we notice that ft - Af = (0~,  v]~ + v p. We then take advantage of 
the following elementary inequality, which is recalled for instance in [AE], Corollary 
2.20 

(3.11) Let 0)2, V M and v nonnegative quantities such that (02 + v >~ v M (02 ~ VM and 
V <- VM. Then i f 0 < p < l ,  (0~ - v~  + v p >~ ((02 - vM + vF.  

Obviously, the same argument yields (3.10b) at once. We now remark that (3.9) 
and (3.10) strongly suggest that 

(3.12) f~> (01 and g >i (02 in Q, 

which in turn implies (3.7) by the very definition o f f  and g. However, to derive (3.12) 
some care is needed. The crucial point consists in showing that 

(3.13) f > 0  and g > 0  in Q. 

Actually, if (3.13) fails, we should have f =  g = 0 in Q~ = (0, z) • t~ for some z > 0. 
But then, recalling the definition of f and g, we would obtain 

((01 -~ U) q ---- U~I : (VM) t  -- ArM ---- ((02 -[- V)t -- A((02 + V) = (0~ + U q in  Qv ,  

(092 -~ V) p -~" U~I ---- (UM)t  -- AUM "-~ ((01 -~- U)t -- A((01 -~- U) ~- (0~ -{- U p in Q~, 

which is impossible, since by assumption (01, (02, U and v are strictly positive in Q~. 
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We then may repeat the arguments in Lemma 2.3 to show that 

(3.14a) f>~ Clt(p+I)/(1-Pq)sI(t) in t) for any t > 0, 

(3.14b) g >i C2t(q+l)/(1-Pq)sl(t) in t) for any t > 0, 

(cf. (2.7)). As next step, we proceed by showing that 

(3.15) There exists a solution of (3.9), (~1, ~2), such that 

Cl t (P+I ) / (1 -pq ) s I ( t )  <~ ~1  <<-f in Q, 

C2t(q+l)/(1-Pq)sl(t) <- -~2 <- g in Q. 

Once (3.15) is obtained, the proof is concluded under our current assumptions. In- 
deed, by the uniqueness result established in Step 1, we have that ~1 = 0)1, ~2  ---- 0)2, 

so that (3.12) follows. To show (3.15), we notice that, if we set h i ( t ) =  
~- C l t (p + I)/(1-pq) S 1 ( t ), h 2 ( t ) • C 2 t (q + l )/(1-pq) s I ( t ), there holds 

C 1 (p + 1) tp(l+q)/(l_pq)s1 ( t )  ~ (C2t(q+l) / (1-pq)s  I ( t ) )  p -~ h$ ( h l ) t - A h l -  1 - p q  

and, in a similar way 

(he)t - Ah2 ~< hi q. 

We now define sequences {0)J},{0)J} as follows. To begin with, 0)~ solves 

(3.16a) ut - / l u  = gP in Q,  

(3.16b) u = 0  t = 0 ,  x ~ 2 a n d i f t > 0  a n d x ~ a t ~ .  

In view of (3.15) 7 we readily see that 

(3.17) 

As to 0)~, it solves 

together with (3.16b), so that 

(3.18) 

hi(t) <. 0)~ <<. f . 

vt - Av = f q in Q 

h2 (t) ~< 0)~ ~< g. 

The sequence {0)J } (resp. {0)J }) is then defined by induction as in the proof of 
Lemma 2.4. Namely, for j 1> 2, 0)J solves (3.16a) (with gP replaced by 0)~-1) and 
(3.16b). In this way, (3.17) holds for any 0)~, and since (3.18) is satisfied for any 0)~, 
the result follows by letting j --. ~ .  This concludes the proof in the case where 0 < p, 
q < l .  

It then remains to consider the situation where, for instance, 0 < p < 1 ~< q. Some 
modifications are required for the previous argument to work in such case, and we 
now proceed to sketch them briefly. Let (u(t),v(t)) and (UM(t), VM(t)) be as before. 
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We first claim that we may assume without loss of generality that there exists T > 0 
such that 

U M (t) q - u(t)q 
(3.19) ~< 1 if t ~< T. 

UM (t) -- u( t )  

Indeed, set ~ = )~UM, -5 = ~VM, W = )~U and o) = flv, where ~ and fl are real parameters 
to be determined presently. We have that 

Furthermore 

(-~--~O)t A('~--CO)----~)'-q(~)q--wq) ( ~ ) - w ) ' ~ ) - w  

1 

~)~ ,q ( ~q - wq ) = ~)~ -q q I (O~ T ( 1 -  O) w)q- l dO <~ q ~  - l M , 
w w o 

for some M > 0, which depends only on the bound for UM in QT. It therefore suffices to 
select ~ and fl such that 

)~fl-1 < 1, qfl)~-1M < 1 

to obtain that functions wl(t), w2 (t) defined just as before satisfy (3.8) with q = 1 
there. We then set q = 1 from (3.8) on, and notice that the previous approach contin- 
ues to work under the present circumstances. For instance, one still has that 

(3.20) o~2 <<- VM 

in (3.11), although (COl, ~2) and (UM, VM) satisfy now different systems of equations. 
Indeed, if {~o j } and {v~ } are the sequences leading to ~o 2 and VM in the proof of Lem- 
ma 2.4, we see that, since C2 < 1, 

V 1 ~ (1  "~- C (1-pq)/(q+l)t) (q+l)/(1-pq) ~ (1 + C(21-p)/2 t) 2/(1-p) = o) 1, 

and this first inequality provides the foothole whereupon a suitable iteration argu- 
ment leading to (3.20) can start. We omit further details. �9 

We conclude this Section by stating the following description of solutions of (1.8) 
in the sublinear case p < 1, which can be obtained by means of a simplified version of 
our previous arguments. 

COROLLARY 3.2. -Assume  that 0 < p < 1. Then, i fuo  ( x ) ~  0, there exists a unique 
solution of  (1.8). When uo--O,  the set of  solutions of  (1.8) consists of  

1) the trivial funct ion  u(t, x ) =  O, 

2) a solution U(t, x) which is positive in Q = (0, or • t~, 
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3) a monoparametric family  { U~ (t, x)}, where [x is any positive number and 
v~(t, x) = v((t - ~ ) §  x). 

4. - Global  e x i s t e n c e  and b low up. 

We have already seen that  every solution is global if 0 < pq < 1 (cf. the remark 
following (2.6)). If, say, p < 1, there holds 

(4.1) I f  (u(t), v(t)) is a solution of (1.1)-(1.3), and 0 < pq < 1, the function z(t) = 
= v(t) + S(t)u~/p is such that  

z~ - ~lz ~< 2q(l-P)(1 + t)qz pq <- 2(1-P)(1 + t)q(1 + z). 

The proof of (4.1) follows from the representation formulae (2.1) and the concavity 
estimate (2.8); see [EH1], Lemma 3.1 for details. 

When pq > 1, global existence of solutions spreading from small initial values fol- 
lows from a slight modification of a well known argument  for the scalar equation (1.8). 
Let  go(X) be the unique solution of 

-Ag o = 1 in ~ ,  

g 0 = 0  in OD. 

Clearly, 0 ~< go ~< C for some C > O. If  we define now 

~(x) = a(1 + go(X)), ~(x) = b(1 + go(X)), 

with a > 0, b > 0, we readily check that  

~Tt - A~7 - ~P I> 0,  ~t - ~1~ - ~Tq I> 0 in Q 

provided that  0 < a pq-~ <<. (1 + C) -(~+pq) and b p ~< (1 + C) -(I+p+pq). Then if I[u011~ ~< 
<~ a/2 and IIv o II| <~ b/2, the corresponding solution (u(t), v(t)) exists for all times, as can 
be seen by means of the argument  in the proof of Lemma 2.2. 

We finally consider the case of large initial values, and prove 

LEMMA 4.1. - Assume that pq > 1, and let gl(x)  be the function defined in (1.5). 
Then there exists C > 0 such that, i f  

I (Uo(X) + Vo(X))gl(x)dx >t C, 

the corresponding solution (u(t), v(t)) of (1.1)-(1.4) blows up in finite time. 

PROOF. - The case where p > 1 and q > 1 can be obtained as in [GKS2]. To deal 
with the general situation, we suppose without loss of generality that  0 < p < 1 < q 
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and uo(x)~sO. We then make use of (2.1), (2.8) and 
obtain 

(4.2) u(t) >>- S(t)uo + ~S(t  - s) S(s - ~)u(~)qd~ ds >i 
o 

Write now 

HSlder's inequality, to 

S(t) Uo + I sp-1S(t  - s) S(s - ~) u(z) qp dr ds >I 
0 

(So t s 

>I S(t) uo + f s p- 1 S(t - s) S(s - ~) u(~F q d~ ds = 
0 

t s 

= S(t)uo + I I sP-1S(t - a)u(zFqdc~ds. 
O0 

(u(t) ,  ~D1) "~ f u ( t  I X ) ~ l ( X ) d x .  
t) 

Multiplying both sides in (1.1a) by ~I(X),  and integrating in space 
yields 

( u ( t ) ,  ~D1) ~ e-~t(Uo, ~D1). 

We then deduce from (4.2) that 

t s 

(u(t), 91) >I e -~ t (uo ,  91) + ~ I sP-le-~'(t-:)(u(z)Pq' ~ l ) d z d s  >~ 
O0 

whence 

(4.3) 

Se not 

and time 

t 8 

O0 

8 

e-~t (u( t ) ,  91) >>" (uo, 91) + I f sp-le-~(1-pq)(e-~l:u(cr)' ~l)Pqdzds" 
O0 

8 

0 0 

x ( t )  ---- e ~l(1-pq)t, f( t)  = (e~ltu(t), 91). 
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We readily check that  

whence 

that  is to say 

i.e., 

I f  we write now 

t 
h'( t)  = t p-1 f Z(s) f(s)Pq ds,  

0 

h " ( t ) = t P - l f ( t F q z ( t ) - ( ~ - ) h ' ( t )  

(fPqz)(t) = (tl-P h ' )  ' , 

Z ~l/Pq ((tl-P h ') ') = f>>- (Uo, 9 1 )  -~- h 

( t l -Ph ' )  ' >>- Z((Uo, 91) + h) pq. 

ao = (Uo,  ~ 1 ) ,  g(t) = (uo, ~1) + h(t).  

We are finally led to 

(4.4) ( t l -Pg'( t))  ' >i z(t)g(t) pq. 

We now conclude as in [K], Thin. 1. Suppose that  u(t, x) can be continued for all 
times, and in particular is well def'med for t ~ [1, 2]. From (4.4), we deduce that  there 
exists m > 0 such that  

t 
(t2(1-P)g'(t)) 2 = g ' (1) 2 + 2 f (s~-Pg '(s))(sl-Pg'(s)) '  ds >~ 

1 
t t 

~> g'(1) 2 + 21  sl Pz(s)g(s)Pqg'(s) ds ~> g'(1)2 + 2m Ig(8),qg'(s)ds = 
1 1 

= g ' (1 )  2 + - -  2m 
1 + p q  

(g( t )pq + 1 -- g(1)pq + l ) 

whence, setting t = 2 

g(2) 2 

I (  2~m (rPq+l-g(l)Pq+ll-l/2dr~ 1 8p-lds ~ O" (4.5) g '  (1) + 1 + pq 
g(1) 1 

Since I(1 + rPq+l)-l/2dr < + ~ ,  we see at once that  (4.5) cannot possibly hold if g,(1) 
0 
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is large enough, which in turn holds if (u0, 91) is sufficiently large. �9 
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