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Stieltjes Integral Inequalities of Gronwall Type
and Applications (*).

L. H. ErBe - QiNneKA1 KoNG

Summary. — We oblain estimates for solutions of integral inequalities of Gronwall type invelving
Stieltjes integrals and their inverse inequalities. From these we oblain some new results for
integral inequalities for Riemann integrals and functional integral inequalities. Extensions
are also given to Bihari type integral inequalities.

1. -~ Introduction.

In the study of existence, uniqueness, stability, boundedness, and certain other
aspects of the qualitative behavior of solutions of differential and integral equa-
tions, integral inequalities often play a fundamental role, Moreover, since integral
inequalities of Stieltjes type may include, as special cases, Riemann as well ag
funectional integral inequalities, it seems reasonable that such results would be of
use. However, there seem to be relatively few results dealing with integral inequal-
ities of Stieltjes type. In [4] the authors obtain a result for modified Stieltjes inte-
grals which however does not hold in general and in [5] some results are given which
are somewhat incomplete since the integrals involved may not exist (cf. Theorem 3.1

i
and 3.2—if «(?) has a discontinuity from the right (left) then so also does f K(c) du(c)).

There appears to be a similar problem in [2] with Lemma 5).

In this paper, by modifying the conditions in [5], we discuss a more general kind
of integral inequalities of Gronwall type involving Stieltjes integrals and their in-
verse inequalities, from which we derive some results on integral inequalities for
Riemann integrals and functional integral inequalities of the same type. As an ap-
plication several properties of solutions of a second order retarded differential equa-
tion are obtained by using the given inequalities. We also indicate extensions to
more general Bihari-type integral inequalities of Stieltjes type.

(*) Entrata in Redazione il 18 maggio 1988.
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2. ~ Basic results.

For convenience in the proofs, we first introduce two properties of Stieltjes
integrals.

ProPERTY 1. - Let «(t), (¢) € C[a, b] and suppose u(t) is of bounded variation
t

on [a,b]. TLet B(t) = o+ [(s) du(s). Then
0

[4 b

Joutyapte) = oty pte) antr

PROPERTY 2. ~ Let off), u(t) € Cla, b] and suppose u(f) is of bounded variation
on [a, b] and f(¢) is of bounded variation on the range of u(f) and has a continuous
derivative. Then

b b

f (1) B (w(t)) du(t) = f ou(t) dp(ut)) .

a

We now give three basic results of this paper.

THEOREM 1. — Suppose
i) z{f) is continunous and strictly increasing on [0, oo) and 7{t)<t,
ii) u(?, 8) is defined on [0, co) X[7(0), o), and continuous and nondecreas-
ing in s,
ifi) f(t) and g(t)>0 e C[0, o), ®()>0 € C[7(0), o),
iv) @(t) = ¢{t) for 1€ [7(0), 0], where @(t) is a given continuous function.
If

()
&) a(t) <f(6) + 9(t) [als) d,u(l, o

(0)

for 0<t<k < oo, then

(t) (t)

@) at)<ft) + 9)[#6) exp | [glo) do(uik, 0))] d,uik, ») +
! (1)

+ gOR(0); b, ¢) exp [ [g(s) d,ulk, )]
0
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for 0<i<k << co, where f(t) = ¢g(t) = 0 when %e [7(0), 0],

(1)
R(t; , o) = f w(s) d,u(k, ) .

7(0)

ProoF. —~ From (1) we have
) w(t)<f(t) + g} B(¢; k, x) .

When 0<s<k << oo,

8

(4) ols)exp [~ fg(a> dou(l, )| <T1(5) -+ 98)Ris; by 2)] 0xp | [—g(o) dsu(h, )]

0

So when 7Y(0)<i<k << oo, noting that E(i; k, ) is nondecreasing in ¢, and by Prop-
erties 1 and 2, we get '

(5) ﬁ; R(s; &, @ exp[ fg(a dou(k, a)]d ulk, )

z(t) s

= —[Ris; 1y 2) oxp [~ [9(0) doutl, )] 4,(~ | 10)doulh, 0)) =
: 0

0 0

(%)
= 0fR(s k,z)d, exp[ fg o) dou(k, 0)]

<—Tf(gﬁ(f‘1(8); k, ) d, exp [— f 9(0) dsulk, 6)] =

1] 4]
7(t)
— R{t; , 2) exp|— [9(0) doulk, )| + B(z(0); Ty 9) +

0

—]—](te)xp [— fs 9(0) dou(k, a)] d,B(z(s); k, @) =
0 0
= — R(t; b, 2) exp [—T.Z(o) doulk, o) + R(x(0); by g) +

0

z(t) 8

4 f (s) exp [— f 9(0) doulk, a)] d,ulk, s) .

0
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Integrating both sides of (4) with respect to u(k, +) from 0 to z(¢), and combining
with (5), we can see when T=Y0)<t<k < oo,

=(#) =(t)
R(t; b, o)< [f(s) exp | [9(0) deull, o) duuk, ) +

0 3
z{t)

+ R(z(0); b, ) exp | [9(0) douik, 0)] -

0

Substituting the above expression into (3), we obtain the conclugion for 7-1(0)<
<t<k < oo.
When 0<t< v%0) and #<k from {1) we have

(t) 0
w(t) <f(t) + g(t)J @(s) d,ulk, s) <f(t) + g(t) f @(s) dyulk, s) = f(t) + g(t) B(r(0); &, @) .
7(0) #(0)-
Noting that f(f) = g(t) = 0 when ¢ e [7(0), 0], we see (2) is also true for 0 <t < 77%(0)
and t<k.

THEOREM 2. — Suppose
i} z(f) is continuous and strietly increasing on [0, o0), and () >,
ii) u(t, s) is defined on [0, oo) X{7(0), o), and continuous and nondecreas-
ing in s,
iti) f(t), g{t)>0 € C[0, oo).
If

(¢}
a(t)> 1t) + 9(0) [a(s) d,u(l,
7(0)
for 0<<t<k < oo, then
z(t) z(t)
5(t) > 1t) + () [1(s) exp | [9(0) douik, 5)] dsulk, 5

(0) 8

for 0<i<k < oo.
The proof of Theorem 2 is similar to that of Theorem 1 so we shall omit it here.

THEOREM 3. — Suppose

i) ) (4 =1, 2,...,w) is continuous and strietly increasing, 7.(t)<?, 7(t) =

= mi {1
Jnin, {r:{1)},
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ii) wit, 8) (£=1,2,...,m) are defined on [0, co) X[7,(0), o0) and continuous
and nondecreasing in s,

iii) f(¢) and g,(8)>0 (¢ =1, 2, ..., n) € C[0, oo), and x(t) >0 € C[7,(0), oo],

iv) a{t) = ¢(?) for te-k[i*({)), 0], where ¢(t) is a given continuous function.

If
%(t)
(6) ot <it) + 3 00 j 2(5) d,,(F, 5)
7:(0)
for 0<i<k < oo, then
(7) o) < A ) +¢_§1 Ayl

for 0<t<k << oo, where 4,(v) (i=1,2,...,n + 1) are defined as follows:

wi(8) w(t)
Ain0) = A,(0) + A:lg) [4(0(5)) exp [ [Adg) dowih, 0)] duuilh, 3)
0 0
for 0 << oo, and
8) Afo(t)) =0 for te[z.(0),01,

and

7i(t)
H(t) = 4{g0) B0 b, ¢) exp | [Aig)(0)] donath, o,
0
B(v(0); by 9) = [ pls) durulk, 8)

74(0)

PrOOF. -~ We can easily see by induction that the functions 4,(v) (i=1,2, ...
vy # 4 1) defined by (8) satisfy that for »,(t)>0, »,()>0,

9) i) Ao+ v) = A (v,) + 4,(v,), and

ii) A (0,0)(f) <(Ai(v:)0,) () if v,(¢) is nondecreasing .
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Clearly, (7) holds for » = 1 by Theorem 1. Agsume that (7) holdsfor n = — 1
(1<r<n41). Then for n =r, from (6) we have

L50] 7i{t)

o<1+ afedantt 0) +3 0 adnit, 5.

7(6) ' 74(0)
According to the assumption and (9) we get

7 {8) 7+(2)

x<A(f+grfwd uik, s)+ 3 4, (7)< A +3 A (H) + Adg) fxdu(/ ).
r(Q) (0)

Using Theorem 1, we get

fy -+ Z A, (H)+ H,+
7o) (t)
4 g»f [ 0 + zA,_ () ]exp[ fAAgT)damk, a)]dmk, 5 =

0

s
== A.n(f) + ‘zl-A-r~i+l(Hi) .
So (7) holds for » = r. This completes the proof.

COROLLARY 1. — Suppose
i) u(t, s) is defined on [0, oo) X [0, oc), and continuous and nondecreasing in s,
ii) f(t), g(t)>0 and x(t)>0 e C[0, co).

i) If
t

aft)<ft) + g(t) als) d,ulk, #)

0

for 0<i<k << oo, then
i 12
O<f®) + 90)[1(s) exp [ [9(0) doulk, o)) d,uik, 3)
0 8

for 0<i<k << ooy
ii) It
[

=11 + gt) %(s) d, u(k, 8)
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for 0<t<k << o, then
[

i
2(t)> 1) + 90 [16) exp [ [g(0) doutk, )] duutk, 5)

0

for 0<i<k < oo,

COROLLARY 2. — Suppose

i) ui(t,s) (¢ =1,2,..,n) are defined on [0, o) X[0, o) and continuous and
nondecreasing in s, :

ii) f(), g:0)>0 (=1, 2,...,n) and x(t)>0 € C[0, co).
If

¢
o<1 + 3 90 at) 20k,

0
for 0<t<k << oo, then
o(t) < Anaf)

for 0<t<k < oo where 4;(») (i =1,2,...,mn + 1) are defined as follows:

Ay(v) = v,

’ 13 13
Aua(0) = Ad0) + 4,90 [Aulo) exp | [Aulg) dovih, o)] durnlly ),

0 s

REMARK. — Corollary 1, i) includes Th. 3.2 in [5] (for modified eondifions) as a
8

special case. In fact, letting g(¢) =1, u(k, s) :fK(a)da in Corollary 1, i), we obtain
0

Theorem 3.2 in [5]. Furthermore, we also obtain results on the inverse inequality
and the inequality with » linear terms.

3. — Special cases of the ahove Theorems.

1. On functional integral inequalities.
For the purpose of proofs we need the following lemma.

Lemma, — For functions ¢,(¢) > 0 (¢ = 1, 2, ..., n) € 0Ya, b], there exist functions
q:(t) (¢ = 1, 2) € CYa, b], nondecreasing functions o) (¢ = 1, 2, ..., n) € C[a, b] and
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noninereasing funetions 8,(f) (2 = 1, 2, ..., w) € ('[a, b], such that g,(t) = q,(t) a(t) =
= q2(t)ﬂi(t)’ (= L,..,mn).
11
Proor. — Denote w(f) = min {5:019:0}, () = exp[ [wi(s)ds], and o« (t) =
= ¢:(8){:(t) (¢ = 1, 2, ..., n) for ¢t € [a, b]. Obviously, ¢,(t) > 0 «;(¢) > 0 € C1[a, b], and

9:1)q:(1) — g:(1)q: (D) wn(t) _ gi(?) (®)(g:(0)/g(2))

=0,

So a,(t) (ic =1, 2,...,n) are nondecreasing.
Similarly, if we denote

I<isn

z -
wi(l) = max 000}, @) = exp | [w®], A = g.t)/a.0)
(t=1,2,...,m), ¢t€]la,b]

then g,(f) >0, B,(f)> 0€ CYa, b] and we can prove that ﬁ;(t)<0, therefore f,(t)
{¢=1,2,...,n) are nonincreasing.
In the sequel, we assume that 7,) (i =1,2,...,n)e C'a, o), and 7,(t) > 0.
Denote 7.(1) = min {r,(f)}, v*() = max {z.(f)}.
1gign 1gign

THEOREM 4. — Suppose

i) f(t)e 0[0, oo}, g:(t) >0 (i=1,2,...,n)e 00, co), x(t)>0 ¢ O[1,(0), o),
ki(t, 8)>0 (¢ =1, 2,...,n) are nondecreasing in ¢ on [0, co), and contintous in s
on [0, oo,

i) 7,(t)<t and 7,(0) = 7,(0) = ... = 7,(0).

If
¢
(10) () <f) + 2 o) f hilty $)a(zds)ds, 150
0
(1) = glt), te[ra(0), 0]

then

(=) =)
o) <1t) + 3 g0 f Balt, $)f(7(s)) exp [j_lx,m f 0:(t(0)) i, o) da} ds +

771(0) 77 ((®)

77H0) 7 )

(B[ o s)oe| 3 uofa@one g, =0
i=1 =
[}

71(0)
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where ¢:(t) and a,(t) (¢ =1,2,...,n) are defined as in the Lemma, and ¢,()=0

when 1 << 0.

PRrOOF. — From (10) we have

7i{t)

z(t) < f t, 174(0))(z7"(0)) w(0) do . ‘
7(0)
Let
u(t, s) = ”Z t)J~ o (z7(0)) do
0

According to the Lemma, noting that o) and &, s8) (¢ =1,2,...,

decreaging in ¢, we get
(1)
2(t) <I(O) + 6(0)[2(s) doull, 5

7*(0)
for 0<t<k < co. Using Theorem 1 and letting k = ¢, we obtain

(8 ™)

(11 #(0) <1(0) + 1) f i(s) exp [ f 02(8) ol a)] dult, s) +
0 s

(1)

+ () B(v*7(0); 1, ¢) exp [ fql(t) dult, 8)] =
0
(1) 20)

= () -+ ql(t)ff(S) exp [ _goc,-u) f a(s)h;(t, 777(0)) (rf(a))’da] '
o

8

0
n

) are non-

( i ot Rt T;I(S))(tzl(s))')ds + (ql(t)f(p(s)[ _zldi(t)hf(t: -;;1(8))(1;1(8))11 ds)'

=1 i=
T*(0)
z*(8)

exp [ ilixj(t)f%(b')hj(t, 7,71(8)) (T;I(s))’ds] =
0

() LR O)
t) —i—;gi(tf (t, s)f(z:(s GXP[E %; t)qu( 7;(8)) slt, o) do
7;1(0) 1(zi(s))
LA () 1(:*@))

-}—(igi(t)f (t, s)p(ris )exp[ifx:
i=1 -

0 77 H0)

]ds—l—

(8)) hs(t, $) ds].
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THEOREM 5. — Suppose

i) f(t) and x(#)>0¢€ 00, oo), ¢t) >0 (1 =1,2,...,n)e OO0, co), hyt,8)>0
(¢ =1,2,...,n) are nonincreasing in ¢ on [0, oo) and eontinuous in s on [0, co).

i) r,) >t (¢ =1,2,...,1n), and 7,0} = 7:(0) = ... = 7,(0).

If:
- i
(12) #(t) > (1) + ﬁlgxt) f ht, s)a(z(s))ds, >0,
0
then
) e (MO T (za(B)
#(t) > f(2) +i§19i(t)fhi(t7 $) f(vi(s)) exp L:zlﬁi(t)f%(s)hi(t, o) dv] ds, >0,
0 L O]

where g,(?) and §,(¢) (¢ =1, 2,...,n) are defined as in the Lemma.

CoroLLARY 3. — i) In addition to the conditions of Theorem 4, if g¢,(f)=1
(¢=1,2,...,n), f(t) is nondecreasing, then the solutions of (10) satisfy

r7H0) iz )
() \‘if(t) -}—:1 J‘hi(t, s)p(T4(8)) ds] exp [ngl f&(rj(a))lzj(t, o) da] , >0,
0 771(0)

where

1 i>0
6(”——{ 0 <0

ii) in addition to the conditions of Theorem 5, if ¢,(f)=1 (i =1,2,..,n)
f(#) is nonincreasing, then the solution of (12) satisfy

Zgl(‘fs(t))
(0

w(t) > f(r*(1)) exp [ 21 fhi(t, s)ds] ,  t>0.

f=
]

Proor. — i) The solutions of (10) satisfy (11). Since g;(t) =1, f{¢) is non-
decreasing, and 7*(f)<t, in view of ¢,(t) =0 when <0, we see

z*(8) (1)
2 (1) < f(1) [1 +fexp [fé(o) dsult, a)] du(t, s)] .
0

8
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7 (b) (1) T*(t)

-+ R(v*1(0), t, @) exp lj‘é(s)dsu(t, s)] = f(t) [[1 —]|d,exp [fé(s)dgu(t, 0')]] -
0 0 8

T*(t)
-+ R(t*~%(0); t, ) exp [fé(s)dsu(t, s)] =

0
(1t} *(1)

— (1) exp [ f 8(5) dou(t, o)] 4 R(540); 1, ) exp__[ f 5(5) d,ut, s)] -
(1] 0

r710) : L0
= [;f(t) + =Zl khi(t, 8)p(T.(s)) ds] exp [; flzi(t, s)ds] .
0 771(0)

The proof of ii) is similar.

Theorems 4 and 5 and Corollary 3 do not apply to the case when 7,(0) = 7,(0) =
= ... == 7,(0) is not satisfied. In that case we have an inductory estimate expres-
sion for the solutions of inequality (10).

THEOREM 6. — Suppose

i) f(t) is continuous and wnondecreasing in [0, o), #(f)>0 € C[74(0), o),
f{t,8)>0 (i = 1,2,...,n) are nondecreasing in ¢ on [0, o), and continuous in s
on [0, o),

ot <ft) - 3 f hlt, $)o(7i(s)) ds, 130,

0
x(t) = (), te [T*(O)y 0],

then the solutions of (10). satisfy.

(1) <Buiall) + 3 Buespa(H
=1

where B;(v) (i = 1,2, ..., -+ 1) are defined as follows:
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for 0<t << o0, and By{l)=0 (¢ =1, 2,...,n) for te[7,(0), 0],
THO) ;
1) ={ f hilt, 8)@(74(8) ds] exp [ f 8(v.(5)) hulty s)ds] :
0 7H0)

d(t) is defined as in Corollary 3.

Proor. - From (10) we have

ri(t)

o) <f0) + 3 f hilt, 77 (0)) (17(0)) (o) do .

- %(0)

Denote
wilt,8) = [Iulty 17(0) (7(0)) do

Noting that k%, s) (§ = 1,2, ..., n) are nondecreasing in ¥, we get

wi{t)
() <f(t) + X f$(8)ds%i(k, 8)

=1
7i(0)

for 0<i<k < oco. According to Theorem 3,

50) < Auislf) + S GuisalH)

i=1

for 0<t<k < oo, where

A;(0) = o) ,
ze(t) (1)

Aen(0) = 40) + A1) [40) exp | [AdL)dorally | dyuatly 3) (0 =1,2, 0, m)
1] 8

for 0t < oo, and A, (v) =0 for e [7,(0),0], and

H,(t) = [ ftp(s) d,u(k, s)] exp [r](.g(s)dc,u(k, g)] =
(0} 0

71(0)

(fh (t, s)p(rs)) ds) exp[ fé 74(8)) hilt, s)dsJ

77H0)
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When k =t, we can easily prove that A4,.(v)<B,(v) t=1,2,..,n 4 1) if o(f) is
nondecreasing. In fact, 4,(v) = By(v) = v(t). Assume that A,(v)<B;(v) for 1<i<n.
Then from (9) we have

A <o) AD)[1 —nf(zxp [nf(zim doui(k, )] Tzimdaui(k, ?)] =
(t)

— () A1) exp [ J’ A, (1) bt r;l(s))(ryl(s))'ds] <
0
(1)

<o(0)By1) exp [ [BUR{ty 772(6)) (17706)) d5] = Busato) -

0

Therefore A,.,(9)<B,.(v) if »(¢) is nondecreasing. Since f(f) and H(f) are non-
decreasing, the conclusion follows.

2. On Gronwall’s inequalities for Riemann integrals.

Letting u(t, s) f h(s)ds in Corollary 1, we obtfain the well-known Gronwall’s
inequality and its inverse inequality; letting u.(f, s) f hi(s (t=1,2,...,m) in

Corollary 2, we obrain Theorem 1 in [3]; letting 7.(¢) __t (t=1,2,..,%) in Theo-
rem 6, we obtain a better result than Theorem 1 in [1] and [6] under the same
condition. We next derive new estimate expressions for the solutions of Gronwall’s
inequality with » linear terms and its inverse inequality from Theorems 4 and 5
and Corollary 3.

THEOREM 7. — Suppose f(f) and #(#)>0¢€ ([0, o), g(t) >0 (1 =1,2,...,n)€
€ 010, oo), hy(t,8)>0 (i =1,2,...,%) are nondecreasing in ¢ on [0, o) and con-
tinuous in s on [0, oo). If

13

(13) o) <) + 3 .0 f Wi, yris)ds, @3>0,
=1 .
0
then
z T
x(t) <f(t) t)f (¢, s)f(s exp[Zoc, (&)} hi(¢, 0)g1(0 )da]ds, 23>0,

where ¢,(t), a(t) (i =1,2,...,n) are defined as in the Lemma,

THEOREM 8. — Suppose f(t) and 2(t)>0¢€ 0[0, o), ¢:(t)>0 (i=1,2,...,m)€
€ 0'[0, oo), hy(t,8)>0 (i=1,2,...,n) are nonincreasing in ¢ on [0, co) and con-
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tinuwous in s on [0, oo). If
: 3
(14) w0 >16) + 3 9.0 f hilt, s)w(s)ds, x>0,
i=1
0

then
¢

B,) f halt, 0)gs(0) da] ds, 30,

1

M=

7

i
2(t)> (1) + 2 gi(t)fhi(t; s)f(s) exp [
o :

8

where g,(t), f.(f) (¢ == 1,2, ..., n) are defined as in the Lemma.

CoroLLARY 4. — i) In addition to the conditions of Theorem 7, if g,(f) =1
{t=1,2,...,m), f(t) is nondecreasing, then the solutions of (13) satisfy

¢
n

2(8) < f(t) exp [ > fhi(t, s)a;(.«;)ds] , >0

i=1

ii) in addition to the eonditions of Theorem 8, if ¢,(f)=1 (i =1,...,0), f{{)
is nonincreasing, then the solutions of (14) satisfy

o> 10 exp [ 3 bty ats) ], 0.

i=1

The importance of Theorems 7 and 8 and Corollary 4 lies in the fact that they
offer explicit expressions, rather than inductory expressions as given by [1, 3, 6],
to estimate the solutions of Gronwall’s inequality with » linear terms and its inverse
inequality. Therefore it is more convenient to use them. And in many cases the
estimates are quite sharp.

ExAMPLE. — Consider the inequality

1 [

s(t) <l + (1 + t)fm(s)ds 4 2}”(1 -+ s)a(s)ds .

0

With simple computation we see, from Corollary 4 i),

o(f) <exp [3t + 2¢%};

and from Theorem 1 in [5],

|1
2

(1) <2(1 %) exp [t - i; -1- 2f(1 + 8)%exp [s -+ 8;] ds] R

0
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and the latter is greater than
5 2
2L 4-1) exp[St —{—5 12+ gtz] .

The difference between the two results is quite large.

4. — Bihari’s type of integral inequalities.

DEFINITION, — A function g(u) is said to belong to the class F if g(u) > 0 is
nondecreasing and continuous on (— oo, ++ oo) and g{u) <vg(u/v) for #>0 and v>1.

Clearly, if ge & then f(l/g(s)) ds = 4 oo.

THEOREM 9. — Suppose

i) 7(¢) is continuous and strietly increasing on [0, oo) and 7(t)<{,

ii) u(t, s) is defined on [0, co) X[7(0), <), and nondecreasing in s,

‘._

i)

i)

iii) f(t)> 0 is nondecreasing on [0, o), 2(t) € O[7(0), co),
iv) w(u) €

If

z{t)
(15) 2(t) <(t) + [w0(a(s)) d,uk, 5)

7(0)
for 0<t<k < oo, and «(t) = g(¢) for e [z(0), 0], where (i) is a given continuous
function. Then

z(t)

(16) z(t) < ;“)G—[ ‘f —l—w(qa ) dsu(k, s)—}—f& 8)d,u(k, s)]
#(0)

for 0<i<k < oo, where

1 >0
‘5“):{ 0 t<o0,

. ds
G(u) :faj(—s) for wy>, v >0.

PROOF. — i) We prove that (16) holds for +2(0)<i<k < oo first. The proof is
similar to Theorem 1. Denote f(f) = f(0) where te[7(0),0]. Then f(¢) i3 non-
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decreasing on [7(0), co). From (15), when 0<i<k < oo

z(t)

(t)<f(0 +ff0 )) doulk, s) .

3
z{0)

f(t

Sinee f{0)/f($)<1 and w(u)e F, we have

0
%%)w(t) <f(0) —ib[w (ff((—(;; w(s)) du(k, s) = R(z(t); R, x) .
Hence
w(f(o m(s))<'w(R('r(t)' ky oy <w(R({t; k x)))
im ") P =G )
ie.,
w((f(0) 1) ()

w(R(t; k, x)) 1

N

for 0<t<k << co. Integrating from 0 to z(f) with respeet to wu(k, *), we get for
H0)<t<hk << o
(t) (i)

%(t)
(f(0)/f(s) _
J. ( w(R(s; k m) (L, 8) f w(R <fd u(k, s) .
9 0

Hence
z(t)

&(B(z(t); ky 2)) — G(R(0; b, w) < f d,ulk, s)
(t) ’
R(z(1); &, @) <G—1[G(R(0; k, @) -+ f @, ulk, s)] -
0

=G—[ (f(0)+f (¢(s)) Ak, 3)) —]—](guk s].

7{0)
Therefore the conclusion is true for v3(0)<i<k << oo.
ii) When 0<?¢ < v*(0} and t<k, from (15) we have

%{t)

2(t) <f0) + [0(p(s) du(k, 5) <
(0)

<l 4otz o] - o0+ )]

Noting that §(t) =0 for ¢e [1(0), 0], we see (2) is true for 0<t < v~*(0) and i<k.
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THEOREM 10. — Suppose

i) 7{f) (¢=1,2,...,n) are continuous and increasing, 7,()<?, 7.(f) =
= min {7.(1)},

1<i<n
ii) wi(t,s) (¢ =1,2,...,n) are defined on [0, o0) X[7(0), oo) and nondecreas-
ing in s,
iii) f(¢) > 0 is continuous and nondecreasing on [0, co), @(f) € C[74(0), o),
iy w{w)eF (i=1,2,...,n).

If
7:i(t)

(17) w(t) <f(?) Z fwz-(w(s)) douy(k, 8)

n(o)

for 0<i<k < oo, and (1) = ¢(t) for ¢ e [7,(0), 0], where ¢(t) is a given continuous
function. Then

(18) w(t) < BV
for 0<t<k < oo, where E"(f) is defined by induction as follows:

(19)  E(w) =u(t k),

1]

. Bi(w) ;
B(u) — E(.)“]f))a [Gi(Ea:w)JrE;:} f ((5)) Aok, 8>)+
0k T;(O)
7(t)
+ B 300,00
. 1]

where 4(¢) is given by Theorem 9, and

i

d
¢ (u) = 1ng) for uy>0, 4> 0.
%y

ProOF. — Ef)u) (i =1,2, ..., -+ 1) obviously satisfy that for «,ve R
B + o) = Biw) + Bw),
Ef)(wo) = [B)w)]v,
and E,‘f,i(l) are nondecreasing in ¢. By Theorem 9 we know the conclusion is true
for w = 1. Assume the conclugion is true for n = r — 1 (L < #<n). Then for #n = 7

zi(t) wi(t)
()< [ —}—fw,(m )duks]—}—z ) doui(k, s) .

i=1
7r(0) 74(0)
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According to the assumption we have

B 7r(1) 7r(t)
a(t) < B 1) + [10.((6)) Ao (b, )] = BN + B [0, (0(6) 4,10y 5) <

7e(0) 7(0)
Tf(t)

<BO) + [10,(2(6)) LB ., 5)]

7+(0)
By Theorem 9 we get for 0<t<k < oo
o (f) - 0 20
)< i) 67 |6 (B -+ [wp0) LB w1, 0] + [0 LBty 5]) =
0,k
Tr(O) 0

0 7p(t)

(1) .
< @ |0 (000 + B ) i ) 4+ B30 (o000 0] =
. ok . - 7p(0) 0

= EE(f) -

This eompletes the proof.

5. — Examples of applications.

Using the above inequalities, we can not only solve problems about the existence,
uniqueness, continuous dependence on the initial values (funetions), but also solve
problems concerning boundedness and stability of the solutions of differential equa-
tions. Here we indicate only the latter case.

Exavpie 1. — Consgider equation

{m. ‘
(20) (%) ' i(t, a(v(1)))

where f(t, #) € C[[0, oo} X (— oo, oo)],
(2, @(x(®)) | <d@I(z (1)1
and a(t) > 0 & 00, o), b(t)>0 e O[0, oo} and 7(f) € 010, oo), 7'(t) > 0, T(f)<t.

Resurt 1. — If there is a M > 0 such that

t (
— . 1 {— O-)m——l
(21) i lg(ly< M for >0 and E}g fm
z-1(0)

a(t(s))b(s)ds < M ,

then all solutions of eq. (20) are bounded, and the zero solution is stable.
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ProoF. — Assume that #(t) is a solution of eq. (15) which satisfies that @(tf) = o(t)
for te{7(0), 0] and
2(t)\9
a(t)

Then from (15) we have

=0, (=12 ..,m—1).
=0

[

Cis (t— S)m_lf(

x(t) = a,(t)g:1 T -1 a(t)f DT s, m(z‘(s)))ds.

Hence

t— g)m—1
(m—1)!

b(s)lx(t(s))|ds .

Using Theorem 4, we get

=1(0)

| <fa 3 J95 e+ aof =D p(riey s
0

i1 (1 —1)! (m

i

t__ m—1
-exp [ f ((—m{-)m b(o)a(z(0)) do‘] :

z71(0)

Therefore, when (21) holds, #(f) is obviously bounded. Furthermore for any &> 0,
if we let |p(t)] < ¢ for ¢ € [7(0), 0], and |C;|<e (i = 1, 2, ..., n), then there is a N> 0
such that .

lz(t)| < Ne,

therefore the zero solution is table.

ExampLe 2. — Consider equation
(22) 2+ o(t)a = j(t, o(7(1)), vy 2(Ta))
where f(z, ﬂl, vy Uy) 18 cbntinuoué on K, X B* and |

©3) (s o2, s 2(s0)) | <BO + X pula(zt)

7,(t) (1 =1,2,...,n)€ 00, co), 7,(t)<t and 7,(t)> 0. Denote 7(t) = mig {r:(1)},
1<ig<n

THt) = 1123.51 {r(t)}. Assume that «(?), B(t) and y.(f) (i = 1,2, ..., n) are continuous
ESES

on [0, co).
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Resurr 2. - If

=] L1

OJ exp [—Ofoc(r)dr_lds = M,< oo,
(24) 0fds‘[{]ﬂ(a)gexp[ !(x dr]dq = M,< oo,

i

lim P([y,~(s)|fexp [~foc(r)dr]da)ds<M3< oo,

i—>00
0

G

s

then all solutions of eq. {22) are bounded, and if §(t) =0, then the zero solution
is stable.

Proor. —~ HEquation (22) is equivalent to

¢ 2

(25) (w’ exp [foc(s) ds])’ = exp [foc(s) ds] f(t, w(Ti(t)), ..., m('r,,(t))) .
0

0

Assume that «(tf) is a solution of eq. (17) which satisfies that () = ¢(f) for
t € [1,(0), 0], and 2'(0) = ¢. Then integrating both sides of (25) from 0 to ¢, we have

13

@ =¢ exp[ foc(s ds] —i—fexp[ f o{o) da] f(s, #(7(8)); +..s w(rn(s))) ds .

Integrating both sides from 0 to ¢ once more, we get

¢ 8 8

@(t) = @0+ cfexp [ foc(r) dr] ds —[—fdsjexp [ foc ] #(7.(0)), .. w(r,,(a)))do'.

0 0 I3

Let

8 i 8 L

) = lpol + lef texp [—foc('r) dr] ds —|—fdsflﬂ(o)| exp [—foc(r)dr] do
0 0 0 0

o

i ¢

hilt, 8) = |yi(s)|exp [- f a(r) dr] do

According to (23),

|3

()| <f(2) + Z h(t, 8)|@(T(s))|ds .
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If (24) holds, we can prove B,(1) (¢ =1, 2, ..., n) defined as in Theorem 6 are
bounded. In fact, B;(1)<1 is bounded. Suppose IBi(1)|<N ; for 1<i<n. Then

74(1)
[Bua(1)] < [Bi(D)] exp [ [IBALbult, 77(6)) (77 6)) ds] <

¢
13

<N, exp [Ni Ju, s)ds] <Nexp(N,M,) = N,,, <oo.

771(0)

Because f(f) and H.(#) (i = 1,2, ...,n) are nondecreasing and bounded, according
to Theorem 6, we get

W) <Busalh) + S BosnlE) <Bas(D)f + S Bosna(1) Hs,
; i=1

i=1

therefore x(¢) is bounded.
7710)

If B(t) =0, since fhi(t, 8)ds<M,. Then for any &> 0, if we let |p(f)| <e for
[
t€ [74(0), 0] and |e| < &, then

[2(t)| < Bana(1) f+ z B i (1) H; <N,y -+ My)e + z Nysrs M, €xp (M) e .
i=1

i=1

Therefore, the zero solution is stable.
It appears difficult to obtain the results 1 and 2 without the integral inequalities
in this paper.
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