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On Nash Theory of Arc Structure of Singularities (*). 

AUGUSTO NOBILE 

Sunto. - Si ha l'intenzione d'incominciare lo studio sistematico della teoria abbozzata da John 
Nash circa venticinque anni fa, dove si associa a una varieta algebrica singolare X spazi i 
cui ponti corrispondono genericamente a troncature di certi rami analitici parametrizati su 
X. In questo articolo si presentano accuratamente i fondamenti della teoria. Inoltre, con 
questi metodi (e nozioni della teoria della equisingolarit~ per le curve sghembe) s'introduco- 
no nuovi invarianti di una singolarit~, si spera di studiarli piit accuratamente in futuri 
lavori. 

Introduction. 

In the mid-sixties, JOHN NASH wrote a paper entitled <<Arc structure of singulari- 
ties>~ ([5]), where he introduce some interesting ideas about a possible way to study 
singularities of algebraic and complex analytic varieties. The basic idea is to consider 
~<parametrized analytic arcs y, whose origin is in S, the singular set of an algebraic 
variety X over a field k (and the general point of ~, is smooth); if we assume X r A ~, 
this arc is given by n power series r ..., Cn in k~t~. Truncating the series 
r mod (t ~ + 1 ), and taking the resulting coefficients in a certain order, we get a point in 
an affine space A M, M = M(N) .  Letting the arc ~ vary, we get a constructible set in 
A M , whose Zariski-closure is the Nash variety V(X, S, N). In [5], some basic proper- 
ties of these varieties are studied, and a number of examples discussed. 

The following are some of the things done in this paper: 

1) A presentation of the foundations of the theory. The relevant spaces are not 
introduced simply as algebraic varieties, but also they are endowed with a natural 
non-reduced structure, which might be useful. For instance, using this, it is possible 
(under some mild restrictions) to characterize the smoothness of X (and S) in terms of 
the associated Nash spaces (cf. w 2 and w 3). 

(*) Entrata in Redazione 1'8 aprile 1989. 
Indirizzo dell'A.: Louisiana State University, Department of Mathematics, Baton Rouge, LA 

70808. 
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2) A careful study of the basic defining properties. One may verify that some of 
Nash' requirements may be relaxed. For instance, in a suitable sense, the require- 
ment that our ~,truncated arc ~N" must be induced by an actual arc, whose general 
point is smooth, may be replaced by the simpler condition that rN can be lifted to 
r~T, : Spec k~t~/(t N' ) --~ X, N' large enough. 

3) The introduction of new invariants. In section 5, we verify that, over a 
dense open set of each irreducible component ~ of the Nash variety V(X, S, N), the 
points of 2 correspond to truncations of arcs which actually vary in a family, 
parametrized by an open set of Z; moreover this family is equisingular, which insures 
that the relevant invariants of the fibers (Milnor numbers, ~-invariants, etc.) are con- 
stant. (cf. specially (5.11)). This allows us to associate to the singularities of X some 
possibly interesting numerical invariants. We expect to return to a finer study of 
these in the future. 

I want to thank Mrs. Loc STEWART for her fine work typing the 
manuscript. 

O. - N o t a t i o n  a nd  t e r m i n o l o g y .  

In general, we shall follow the conventions of [3], although for us an algebraic va- 
riety is not necessary irreducible. We work over a base field k algebraically closed; 
part of the time we'll assume k = C (the complex numbers). 

If X is an algebraic scheme over C, X h denotes its associated analytic space; a met- 
ric open of X will be, by definition, an open set of X h, with its usual topology (which 
is, as is well known, given by a metric). 

All the rings which will appear here are commutative and with an identity, which 
is preserved by homomorphisms. In general, the ideal of a ring A generated by ele- 
ments f l ,  ..., f~ of A will be denoted simply by (fl,  ..., fn). If A is local, max (A) de- 
notes the maximal ideal of A. If f is a power series, ord ( f )  denotes its order. 

The germ at X of an analytic space at x ~ X is denoted by (X, x), although some- 
times, if the center x is clear, we simply talk about the germ X. 

The symbol c will indicate proper inclusion (i.e., contained but not equal). 
The symbols R, N denote the real numbers and non negative integers respectively. 

1. - T h e  ba s i c  c o n s t r u c t i o n s .  

(1.1) In this section, X denotes an algebraic scheme of finite type over an alge- 
braically closed field k, Sing(X) denotes the singular locus of X, S c X is a closed 
subscheme. 

we let: 5~=kH (formal power series in t), SN=k~t~/(tN+l), T = S p e c ( # ) ,  
TN = Spec (5~N). 

An analytic arc (or, for sho1% just an arc) on X is a morphism T--) X. An N-trun- 
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cated arc on X (or just  an N-arc) is a morphism TN---)X. An N-arc CN: T N - - ) X  is 
liftable if there is an arc r T---)X such that r = r where i: T y - o  T is the natural in- 
clusion. In this case we also say that CY is obtained from r by 4runcation (rood 
tY+ 1 )>~, or that CN is the N-truncation of r In a similar way we define: CY can be lifted 
to CN', N > N ' .  If r r are arcs inducing the same CN: T N - ~ X  by truncation (rood 
t'V+l), we write r -= r (mod tN+l). 

An S-arc (or an arc, relative to S) is an arc r T---)N such that r �9 S, where 0 is 
the closed point of T. In a similar fashion one defined the notion of ,(an N-arc, relative 
to S)> (also called ~,an N-truncated S-arc~>). A general S-arc (resp. an N-truncated  gen- 
eral S-arc) is one such that the image of T (resp. of T~) is not contained in S. 

Note that if CN : TN---) X is an N-truncated S-arc (i. e., CN (0) �9 S) and r T--) X is a 
lifting of CY, then automatically r is an S-arc. 

(1.2) We shall need the following: 

THEOREM. - Given equations j~ ( x l , . . . ,  xr) = 0, i = 1,. . . ,  m, with ~ �9 k[xl, ..., xr ] 
(polynomial ring) and an integer No t> 0, then there is an integer N (depending on 
No), having the following properties: if a i ( t ) � 9  k~t~, i =  1, . . . ,  r are such that 
2~ (al, ..., at) = 0 mod t N+ 1), i = 1, ..., m, then there are series bi (t) �9 k[t~, i = 1, ..., r, 
satisfying j~ (bl, . . . ,  b~ ) = O, i =  1, ..., m, and bi =-- ai (mod tN~ + l ), i =  1, .. . ,  r. 

This is true because k~t~ has the ,(strict approximation property-, cf. [6], Section 1. 
A consequence of this is the following result: 

(1.3) PROPOSITION. - Let X be a scheme, S r X a subscheme (as in (1.1)), No a posi- 
tive integer. Then, there exists an integer N~ with the following property: if 
r TNo--)X is an No-arc (resp. a No-truncated S-arc) which can be lifted to an Nra rc  
(resp. a N-truncated S-arc), then r can be lifted to an arc (resp., an S-arc) 
r T-->X. 

PROOF. - Cover X with affine opens Spec(Ai), i =  1, ..., l, with A~ of the form 
k[xl, ..., x~(/)]/(fl,-.., fro(/)); use Theorem (1.2) on each Ai, with our given No. If N(i) 
is the integer of the conclusion of (1.2), then clearly N = max(N(1), . . . ,N(1)) 
works. 

(1.4) Next we want to parametrize, in a suitable sense, the N-arcs on a scheme X. 
Recall the following basic, well-known facts. 

If f :  W-->Z is a morphism of schemes, then I ra ( f )  is the closed subscheme of Z 
defined by the sheaf of ideals I = Ker ( �9  (gw). From now on, Im ( f )  will always 
denote the image of f i n  the sense. If we have a sequence of morphisms X = X0 ~-X1 ... 
and f , :  Xn--~ X is the composite map, then we have inclusions Im f l  -~ Im f2 _~ .-., cor- 
responding to the chain of �9 I1 c /2  c ..., Ij = Ker (Ox--)fj .  r In the noethe- 
rian situation of (1.1), the chain {Ij } eventually stabilizes, i.e., there is an no such that 
Im (f~) = Im (f,~), for n I> no. 
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(1.5) Recall that  if 5C = Horn (T~v, X) is the functor from the category of algebraic 
schemes over k to sets defined by 5C(U) = {f: TN • U--> X • U / f  commutes with the 
projections on U}, then it is represented by an algebraic scheme Horn (T~\,, X). Con- 
cretely, i fX  c A~' is the affine scheme defined byf~, ..., f~ in k[X~, ..., X~], take trun- 
cated series a~ ~ k~t]/(tN+~), let M be the total number of the resulting coefficients 
{a~) }. Write 

N 

fq (al (t), ..., a~. (t)) ---- ~ F} q) ({a ji) }) t '~'(mod t s' +~ ), 
s=O 

then the subscheme ofA M defined by F(ol>,..., F ~  ) is Horn (T~, X) in this case. In gen- 
eral, cover X with affines Xi, apply the process just  described to each of these, and 
glue in the usual way. 

In a similar fashion, one represents the functor 5@ (defined by ,gCs(U)= 
= { r e  M(U)/f(O x U) c S x U}, 0 being the closed point of TN) by means of a closed 
subscheme Homs(TN,X) of Hom(T~v,X). In the affine situation (X=  
= Spec k[X1, . . . ,  X~]/( f~ , . . . ,  f.~ )) of above, and using the same notation, Horns (TN, X) 
is the subscheme of A M defined by the ideal (F~I), ..., F ~  ~), hi ,  ..., h~), of k[{aj (~) }], 
l<~ i< .m ,  O<-j<~N, where ( h l , . . . , h s ) c k [ X l , . . . , X r ]  define S, and h i=  
= h~ (ao(i), ..., a(o rl ), j = 1, . . . ,  s. 

From the fact that  TN _c TN, if N<~N',  one readily obtains <<projection maps,,: 

(1.5.1) fN'N: Homs(TN, ,X)--~ Horns (T~\~,X), 

essentially corresponding to forgetting the last N ' - N  terms of the truncations. 
Since clearly Horns (To, X) ~ S, it follows that  Horns (To, X) is an S-scheme, for each 
N>~0. 

(1.6) Fix an integer N~>O. According to (1.4), the sequence of images (cf. 
(1.5.1.)): 

Im fN+l,~-_~ Im fN.2,.~_~ ... 

eventually stabilizes, i.e., all inclusions become equalities. Let: 

(1.6.1) E~T = I m  fu,~\T, M >t M0 large enough. 

Intuitively, points of a dense open set of E~: correspond to truncations of liftable 
S-arcs. In fact, we may view E,~ as Im fM, N, where M I> ,'1//0 (of (1.6.1)) and M I> N1 
(the number of Proposition (1.3)), points of an open contained in that  image corre- 
spond to ,,truncations, of S-arcs r TM~ X, these maps lift by (1.3). 

(1.7) THE NASH FAMILIES. - The morphisms fM, N (1.5.1) induce morphisms 
gM, N : EM ---> EN. It is easy to verify that Im ( gM, ~\T ) -= E N . 

Let So = Sing (X), and consider ZM = EM (~ Horn (TM, S0) (this takes place in 
Hom (TM, X) ,  of which both are closed subschemes). Consider the image ZM, N C_ E N of 
ZM via gM, N. By (1.4), ZM,~" = ZM1,N i fM I> suitable M1 (which we may assume >1 M0, 
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the number of (1.6.1)). Let V~-be the closure of E N - Z M ,  N. This is called the Nash 
scheme of liftable truncated N-arcs (and their specializations). We see, from the used 
construction, that generically points of ~J~v correspond to N4runcations of arcs T--~ X, 
such that r S and r162 Sing(X) (the scheme VN might have a non-reduced 
structure). 

Let V~ = (Vy)r~d, this is called the Nash variety of N-truncated arcs. 
Sometimes we shall use the more precise notation E ~ - = E ( X , S , N ) ,  VN = 

= ~/(X, S;N),  etc. 

(1.8) In general, EN and F'N won't be reduced. For instance, take the plane affine 
curve X defined by y2 _ x ~ = 0, let S = {(0, 0)}. Then it is easy to compute the equa- 
tions defining EN (in a suitable AM). To get them, one considers expressions x = 
= ~ a~t i, y = ~ bit j which must satisfy y2 = x3; moreover the condition ,r E S- 
means a0 = b0 = O. So we get, among others, the equation b~ = 0. Clearly, in the affine 
ring of EN we get b~ = 0, but not bl = 0.. In section (3.2) we'll see that in this example 
E~v = ~-N, hence VN could be non-reduced too. 

It is easy to construct many similar examples (e.g., y 2  x3= 0 but in 3-space, 
with S the origin or the z-axis; z ~ -  x ~ -  y:~= O, with the origin as S, etc.). 

We have the following result, which easily follows from the definitions. 

(1.9) Let X be an algebraic variety, S, $1,. . . ,  S~ closed subvarieties such that 
m 

S -- S~. Then, V(X, S; N)  = U V(X, Si; N),  for all N (this happens in Horn (TN, X), 
i = 1  i = 1  

so the equality makes sense). 

(1.10) Finally, we present some comments on the complex-analytic case. 
If X is an algebraic scheme over C, X j~ its associated analytic space and r T--~ X is 

an arc (cf. (1.1)), then, given any N, there is a morphism D~---~X ~ (D~ = 
= (z E C~ Izl < 6}) inducing (in an obvious sense) the same N-are TN--~ X. This is an ira- 
mediate consequence of the Analytic Approximation Lemma (cf. [1]). Consequently, 
in this situation one may develop the theory using convergent analytic arcs rather 
than formal ones, if one prefers. 

More generally, the theory can be developed in the context of Analytic Geometry. 
We shall use, as an auxiliary tool, very basic facts only (the ~docal situation,, i.e. an 
analytic set X is an open U of C m, defined as the zeroes of functions holomorphic in U, 
specially when X is non-singular); since we are primarily interested in the algebraic 
case we shall omit the details of the general constructions in the analytic con- 
text. 

2. - F i n e r  p r o p e r t i e s .  

(2.1) In this section, the base field will be the complex numbers, C. We present 
some results about the singularities of EN = E ( X , S ; N )  and V = V(X,S;N). 
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First we assume X is a smooth algebraic variety. Note that in this case clearly 
EN = VN for all N. We have: 

(2.2) PROPOSITION. - Let X be a smooth algebraic variety, S r X a closed algebraic 
subset, then E ( X , S ; N ) =  V ( X , S ; N )  is smooth if and only if S is smooth. 

PROOF. - E N will be smooth as a scheme if and only if it is so as an analytic space. 
Regarded as an analytic space, E N is covered by opens ~ obtained as follows: take a 
coordinate neighborhood U of X, i.e., U can be identified to a ball in C d, d = dimX, 
where S is defined by equations gj(u~, ..., ud) = 0, j  = 1, ..., s; then "V~ Horns (T~, U). 
But a point of Horns (TN, U) is given by the coefficients of d N-truncations of power 

N 

series, uj = ~ a~J)t ~ such that a0(1), ..., a(o d)) e S, i.e., "~ is identified to the analytic 
i=O 

subset of U• C N defined by gj(a(o 1~ , ...,a(o ~)) = O, j =  1, ..., s, i.e. to (U c~S) • C y. It 
becomes clear that EN is smooth if and only if S is smooth. 

Next we turn to the singular case. 

(2.3) LEMMA. - Let X, S be as in (1.1), assume no irreducible component of X is 
contained in Sing(X). Let N be an integer I> 0, P e S and Cp: TN---~ X the constant 
morphism, equal to P. Then, ~p E ~7(X,S;N). 

PROOF. - We may assume that, locally near P, X is embedded in some A s, with P 
corresponding to the origin. We can get a curve C containing P, with a branch ~ at P 
not contained in So = Sing(X) (take a section of X with a general plane through P). 

Parametrize ~: Xj : ~ ~i~(J)'Jb, j = l ,  ..., n. By changing the parameter, (e.g., via 

t = u N + 1 ) if necessary' I - ( j )  we may assume ~i = O, i < . N  allj. This proves that Cp lifts to 
an arc T ~ X ,  generically not in So, hence Cp e ~d(X,S;N). 

(2.4) PROPOSITION. - Let X, S be as in (2.3). Assume there is a smooth point P of S 
which is in Sing(X). Then, for N larg e enough, Cp: T N ~  X (the constant morphism 
equal to P, which by (2.3) is in EN) iS a singular point of E N . 

PROOF. - We may assume (by considering a suitable affine neighborhood of P in X) 
that X is contained in C ~, defined by equations f l , . . . ,  f~ ,  while S is defined by 
hi, ..., h8 (as explained in (1.5), whose notation and terminology we shall follows). We 
also assume that P corresponds to the origin and that r is the embedding dimension of 
X at P. Then it is a well-known basic fact that ord (fi) >t 2, all i. We'll denote by yh 
the analytic space associated to the scheme Y. In local coordinate zl, ..., Zn (near 0, in 
C ~) we may assume that S is defined by hi = z~, i=  1, ..., s; hence the local ring of 
Homs(TM,X)  at Cp is C{A(M)}/~(M),  where A(N)  is the set of variables ay ~ 
i = 1, ..., r, 0 < j  ~< N if i = 1, ..., s and 0 ~<j ~< N otherwise, and generators F~ z) of ~(M) 
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are determined by the identities: 

(2.4.1) f~ (a (1) (t),..., a (~) (t)) = ~ Fy ) (A(M)) tJmod (t N+ 1 ), 1 = 1,. . . ,  m ,  
J 

where a (0 (t) = ~ a~ i) t j a r e  series with formal coefficients. On the other hand, the ana- 

lytic local ring gf Im(fM, N) at Cp is defined by JMN = (g  �9 C{A(N)}}/iMN(g) �9 5(M), 
where iMN is the inclusion C ( A ( N ) c  C{A(M)}. Now, from the assumption that  
ord~ I> 2, all l, it follows that  each generator F~ t) of ~(M) has order i> 2; this easily im- 
plies that  any element Of JMN has order I> 2. This implies that  C{A(N)}/JMN (the ana- 
lytic local ring of Im(fMN) at ,(the origim) Cp) is singular, provided JMN r O. But this 
will be certainly the case if N is large enough (a sufficiently large truncation of an 
arc on X through P will do). If  we take M large enough with respect to N, then 
Im (fMN) is precisely E N (Cf. ( ] . 6 ) ) ,  thus E N (as an analytic space, or as a scheme) is 
singular at Cp). 

(2.5) REMARKS. - ( a )  Obvious cases where the hypothesis of (2.4) are satisfied, 
are: X is an algebraic variety, and either S =  Sing(X) or S is smooth and 
S (~ Sing (X) r 0. 

(b) In (3.2) we'll show that, in certain cases, E~ = VN. 

3. - Relationship of VN and E N . 

(3.1) In this section we prove that, in the case where S = Sing (X) (we are using 
the notation of (1.1)), ,(generically>) E N and ~r y a r e  the same, i.e., generically the con- 
dition (,the general point of an arc must  not be in Sing (X)~) is superfluous. Precisely, 
we have: 

(3.2) THEOREM. - Let X be a complex algebraic variety, S r X a closed subvariety, 
assume X equidimensional. Consider, for N I> 0, the diagram 

V - ( X , S ; N )  ~ ~ E(X,S;N)  

\ /  
S 

Then there is an open dense set ~ c S such that  i induces the identity q-1 (%0 -- 
= p-1 (%0. Moreover, i fN  is large enough, the section s: %t--~ q-1 (%0 (geometrically de- 
fined by sending P e ~ to the truncation of the constant arc equal to P) is such that  
s(P) is a singular point of V(X, S, N) (or of E(X, S, N)), for each P e ~.  

PROOF. - The last part of the conclusion follows from the first one and (2.4). 
For  the first part, clearly we may assume that  Sing(X)c S, and we start  

with: 
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Case (i). The codimension of S in X is 1. According to the theory of equisingulari- 
ty (cf. e.g., [8]) in this case there is an open set ~ r S such that on it locally there is a 
simultaneous parametrization. This means: for each P e ~ ,  locally near P, X is em- 
beddable in C ~, and (assuming X c C ~) there is a metric neighborhood ~ of P in C ~, 
with coordinates xl ,  ..., Xd- ~, Yd, . . . ,  Y~, such that: (a) ~ n S is defined by y~ = 0, i = 
= d, ..., n; (b) the closure (in ~) of the connected components of (~ c~ X) - S are all the 
analytic branches t~ , . . . ,  t~ of S at P; and there are ~ polydisks [?~; in C d, with 
coordinates 

( x l , , . . . , x a - l , u j ) ,  j =  1 , . . . ,~  

and morphisms: 

Cj: r ~j ,  Cj (Xl , , ' - ' ,  Xd- 1, Uj) ~- (Xl,... , X d-  1, ~d (X, Uj), . . . ,  ~n(X, ~j)),  

x = ( x l , . . . , x a - 1 ) ,  j =  1 , . . . ,z ,  

which are homeomorphisms, where ~; (x, 0) = 0 for all j. (The disjoint union of the [?j 
is the normalization of ~ c~ X). 

In the sequel, let ~JN = V(X,  S ; N )  and EN = E(X,  S;N) .  Consider a general point 
of E y given by an N-arc ~'N: T N ~ X ,  ~,~(0) = P, liftable to ),: T ~ X .  If Im(~)r S, 
then ~'~v e V~. So assume Im (~,) c S. According to (1.10), we may assume that (using 
the coordinates on G above) ,f is defined by convergent power series ~1 (t), ..., ~( t ) ) ,  
where r -= 0 for j I> d; moreover (after re-numbering if necessary), Im (~,) c_ ~1. Then 
consider the arc ~ : T ~  $~ given by xi = ~i (t), i = 1, ..., d - 1, Ul = t N+ 1. Then clearly 
the arc ~,'= r satisfies: I m ( y ' ) r  and its N-truncation is "~'N. This proves that 
"rN e VN; and from this the conclusion of Case (i) is clear. 

Case (ii). The codimension of S is arbitrary. In this case, take the blowing-up 
r~: X' ~ X of X with center S, let E be the exceptional divisor. Using the theorem of 
generic smoothness and the Case (i), we get open dense sets ~ c S, W c E such that 
the conclusion holds for points of W, and ~. induces a smooth morphism g: "V--+ ~.  Now 
given ~'N: T N ~ X ,  liftable to ~': T ~  S r  by smoothness we may lift ,f to ~: T ~ E ,  
by the Case (i) we get ~1: T ~ X ,  with Im $1 ~E and 81 --- ~(mod tN+l). Then clearly 
r.~ is an arc where image is not in S, and its N-truncation is ~-. This proves the 
theorem. 

4. - I r r e d u c i b l e  c o m p o n e n t s  o f  V ~ .  

(4.1) This is mainly an expository section where we present some results of Nash 
on the irreducible components of VN. This is taken from [5], although our presenta- 
tion is rather different, specially our proof of (4.5), which is more algebraic than 
Nash's. 

Let X, S be a pair algebraic variety-closed subvariety, as in (1.1), So = Sing (X). 
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We'll see that for any N, the number C(N) of irreducible components of V(X, S; N) is 
bounded by a number independent of N, and for N large enough C(N) becomes con- 
stant. This is done by comparing C(N) to the corresponding number for a desingular- 
ization of X, so we study the smooth case first. In this section we work again over 
k = C, we denote T = Spec C H  and TN = Spec C~t~/(t ~+ 1 ). 

(4.2) PROPOSITION. - Let Z be a smooth algebraic variety, S r Z a closed subvari- 
ety, with irreducible components $1, ..., S~. Then, V(Z, S~ ; N),  i = 1, ..., s are the ir- 
reducible components of v(Z, S; N). 

s 

PROOF. - First of all, by (1.9) V ( Z , S ; N ) =  [J V(Z, St;N) .  Next we shall see 
that: t = 1 

(a) V~ = V(Z, S i ;N)  is irreducible, for each i, and 

(b) Vi ~Vj i f j C j ,  this will conclude the proof. 

For this, we shall verify that the induced projection r.t: V~---> St is smooth, with all 
the closed fibers isomorphic to the same affine space; from this (a) and (b) are immedi- 
ate. For the smoothness, it suffices to show that each point P c Si has an open metric 
neighborhood ~ such that ~ :=  V(~, St n ~ ; N )  ~ (Sin ~) • A M (for some M), so that 
the first projection agrees with the map induced by r.t. But if we take a coordinate 
neighborhood %t of P in the manifold Z, with coordinates u~, ..., u,~, where St is de- 
fined by the vanishing of functions f l , . . . ,  f~, then an element of Homs~(T~-, ~)  

N 

is given n elements of CH/(t~+~), ,~i = ~ a~t)t~ subject to the condition 
i=O 

])(ao(1),...,ao(~))=0, j = l , . . . , r  only. Clearly, this means: H o m s ~ ( ~ - , % t ) ~  
(St n "~) • A M, M = Nn. By the smoothness of Z, all these truncations are liftable to 

arcs T ~  V, and so H o m s ~  (TN, ~) = V('~, S~ n "~, N). The requirement on =~ is clear- 
ly satisfied, and this concludes the proof. 

(4.3) THEOREM. - Let X, S be as in (4.1), c(N) = number of irreducible components 
of V(X, S; N). Let ~.: X ' ~ X  be any desingularization of X which induces an 
isomorphism 

(4.3.1) 

where So = Sing(X)1, 
c(N) < s. 

X '  - ~.-1 (So)-~ X - So, 

S'  = ~-1(S), with irreducible components S~, ..., Ss'. Then, 

PROOF. - Let Wt= V(X ' ,S~;N)-Homss(TI \ . ,X ' ) ,  w i t h  S~ = 7~-1(S0), T~= 
=Speck[t]/( tN+l).  Then it is readily checked (e.g., using the description of 
V ( X ' , S ( , N )  = Vi' given in the proof of (4.2)) that Wi is dense in V~'. Now, if 

8 

~': [J Wi---~V(X,S;N)= V~ is the morphism induced by ~., then the image of =' is 
i = 1  

dense in VN. In fact, an open dense of VN is composed of points corresponding to trun- 
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cations of arcs T--~X, sending the origin to S and whose image is not contained in So. 
Using the isomorphism (4.3.1) and the fact that = is proper, we may lift such an arc 
(defining a general point P ~ VN) to an element of Homs(T,X'), inducing a point 

Q e ~[Jl= W~, such that =(Q) = P. So Im (f )  is dense in VN, hence for each component Vi 

of VN there is some j, 1 ~<j ~< s such that V,i = =(Wj), which proves the theorem. 

(4.4) PROPOSITION. - We keep the notation and assumptions of (4.3). Then, for N 
large enough, the number c(N) becomes constant. 

PROOF. - If N' ~>N, then there is a natural projection 

PN'N : V(X, S; N') -~ V(X, S; N) 

induced byfy'N of (1.5). It is easily seen (as in the proof of (4.3)) that these are domi- 
nating maps, i.e., with dense image. Thus the number of irreducible components of 
V(X, S; N') is no less than that of V(X, S; N). Since this number is bounded, it must 
become constant. 

Next we prove the following: 

(4.5) THEOREM. - We keep the assumptions and notation of (4.3). Then, there is an 
integer No such that for N >I No, for each irreducible component Vi of V(X, S; N), 
there is a unique irreducible component Vj(i) of V(X', S'; N) such that the induced 
morphism V ~ ) ~  Vi is dominant. 

As we know, such a Vj(i) is of the form V(X', Sj(~);N), where S](i) is an irreducible 
component of S'  = =-1 (S). These irreducible components of S' are called the essential 
components of S'  = =-1 (S). If S -  Sing (X), they are simply called essential compo- 
nents of the resolution =; it can be proved that they are the components of the excep- 
tional locus which appear (in a suitable sense) in any resolution of the singularities of 
x (cf. [5]). 

To prove Theorem (4.5), we begin by proving a lemma. 

(4.6) LEMMA. - The notation and assumptions are as in (4.3). Then, there is an in- 
teger M, with the following property. If N > M, there is an open dense set ~N in 
V(X, S; N) such that if ~, /~ are S-arcs inducing elements of ~?N and satisfying 

--/~(mod tN+l), N>M, then if ~', ~': T---~X' are liftings of ~, /~ respectively, we 
have ~'---/~'mod t N - M  + I 

PROOF. - Clearly, the situation is local in X, so we may assume X ~  SpecA, a 
reduced finitely generated k-algebra. Also we may assume that =: X'--~,X is the 
blowing-up of X with center an ideal I = (h0, ..., h~) c A. ([3], p. 166). From the usu- 
al local theory of the blowing-up (cf. [3]) we get: after re-indexing, if necessary, the 
local theory lifting ~' of a to X' has image in an affine open U0 of X' of the form 
SpecA[hl//ho,...,h,~/ho]cA~, and if SpecAcA d (i.e., A is a quotient of 
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k[Z1, . . . ,Zd])  and a = (~1, .- . ,ad), ~j e h~t~ for all j, then ~' is given by 

(4.6.1) (~1 (t), ..., ~d (t), hi (~)/h0 (t), .. . ,  hm (t)/h0 (t)), 

where  hj (t) = Hj (~1 (t), ..., ~d (t)), j = 1, ..., m, HN being any polynomial in k[Zl , ... , Zd ] 
inducing hi. Now consider Ho (Z1, ..., Zd), and let 

~o = min {ord H(v~ (t), ..., .z~(t))/), = (V~, ..., ~ )  is an S-arc} 

(clearly this number  is finite, e.g., take a section of S with a sufficiently general 
plane). If  N >  ~, let ~o) = (~,/~, is an N-arc relative to S and ord ( H ( ~ ,  ..., ~.~) = 3o } 
(ordH(~,l, ..., Vd) is defined in the obvious way).  This is an open dense of 
V(X, S; N). 

Now let N > ~  and ~,/~ be S-arcs inducing elements of ~V(N ~ with ~ = /~mod t  N+~, 
then, their lifting a', ~' are parametrized as in (4.6.1) (with the same Uo, because 

- ~ (rood t)). Now, from (4.6.1) and our assumption that  H0 (~(t)) and Ho (fl(t)) have 
~he same order, it easily follows that  ~' and fl' are congruent rood t N-~~ 1. With a simi- 
lar procedure,  we obtain numbers  ~j, j = 0, ..., m, valid for the other  affine opens U~ 
which cover X' ,  as well as open dense sets ~(~) c V(X, S; N), for each N > M. It  is clear 

__[J ~(~), for N > M, are the objects we ~hat M = max {~0, ..-, ~ }, together  with ~VN = j 0 
needed. 

(4.7) PROOF OF THEOREM (4.5). - Let  No = M + 1 (M is the number  of Lemma 
(4.6)), let N I> No and assume by  contradiction that  two irreducible components V~ 
and V~ of V ( X ' , S ' ; N ) = V  have dense image in the same component Vo of 
V ( X , S ; N ) = V ' ,  via the canonical morphism =N:V---)V'. We know that  Vi '=  
= V(X', Si' ;N) ,  i = 1, 2, for suitable irreducible components $1', S~ of S'.  Let  
p~'V" --> S ' ,  i = 1, 2, be the canonical projections; G~ = S~ - S~, G~ = S~ - S~. Clear- 
ly, we may find open dense sets Gi c V~, i = 1, 2, such that  Gi c_ p(1 (G')• ~1 (~?N) 
where  ~N is as in Lemma (4.6). By a Theorem of Chevalley, =N(G1)n =N(G2) con- 
stains an open dense G of V0. Let  s0 e G, so = =N(~i), i = 1, 2, where/~i e G~ comes from 
an S'-arc ~i, and hence s0 comes from 5 = = .~ :  T ~  X. Applying Lemma 4.6, with ~ = 
= ~ = ~, we see that/~1 -/~2 (rood t), hence they have the same origin, i.e. Pl (~1) = 
=P2(~2).  This contradicts the choice of the G~'s. 

5. - F a m i l i e s  o f  p a r a m e t r i z e d  a r c s .  

(5.1) Throughout this section, X denotes an algebraic variety,  S c X a Zariski 
closed set, So = Sing X. For  simplicity the base field will be C. 

W e  want  to show that,  for N large enough, if 2 is an irreducible component of 
V(X, S; N) then points of an open dense of 2 correspond to truncations of 
parametrized arcs which vary in a family, moreover  we may demand that  they vary  in 
a nice, ~,equisingular~ fashion. This allows us to introduce certain numerical invari- 
ants. To make this more precise, we need: 



140 AUGUSTO NOBILE: On Nash theory of arc structure of singularities 

( 5 . 2 )  D E F I N I T I O N .  - Given analytic varieties U, V, a family of parametrized arcs of 
V, with parameter space U, is a pair ((~, ~) where 0~ r U • C is an open neigborhood of 
U x {0} and ~: (~-~ V is a holomorphic mapping, such that for each u e U there is 
some ~ > 0 such that ~ induces a homeomorphism of D~ (~) := {u} • {~ e D~ Itl < ~} with 
its image. 

Thus, if C~ = ~(D~ (s)), then (C~, ~(u, 0)) is a germ of an analytic branch and ~ in- 
duces an irreducible parametrization of this (~irreducible,, means that we cannot re- 
parametrize by means of a substitution t r = z,  r >  1, cf .  [9 ] ,  p .  94). 

(5.3) DEFINITION. - Given analytic varieties U, V, a family of curves on V, 
parametrized by U, is a flat morphism =: e - .  U, where C is a closed subspace of 
U x V; such that =-1 (u) is a purely one-dimensional subspace of {u} • V for each 
u E U .  

These concepts are related as follows: 

( 5 . 3 )  L E M M A .  - Given analytic varieties U, V and a family (0~, fi) of parametrized 
arcs of V, parametrized by U, then there are open sets Ui in U (resp. Vi in V); i e I (a 
suitable index set) such that the union of the U~ is dense in U, and for each i there is a 
family of reduced curves on Vi, =i : ~--* Ui, i e I, together with sections s~: U~--> ei, 
such that for each i, u e Ui, the gel~n ( - 1  (u), si (u)) is irreducible, and ~ induces a 
parametrization of this germ. 

PROOF. - Let u0 e U. We'll see that for some (possibly deleted) neighborhood of u0 
in U, say U' and on open V' in V there is a family C ' - .  U', of curves on V' and a sec- 
tion with the required properties. This clearly proves the lemma. To see this, clearly 
we may find an open U1 in U (resp. V1 in V), with u0 e U1, such that for each u e U1, 
C~ := fi(({u} • C) • 6)) is a closed one dimensional subspace of V1. Consider the mor- 
phism ],: (~ • (U1 • C)--, U1 x V given by ~,(u, t) = (u,~(u, t)); let 0)l = ],-1 (U • V1). 
Then, it is easily seen that y(0)l) is closed in U1 • V1, and the induced map 
~'1 : 5)1 -~ U1 x 17t is proper. Hence, C1 = ~1 (0)~) is a closed analytic subset of U1 • V1. 
Consider the projection =1 : Ci--~ U1, we have a section sl : U1--> C1 given by Sl (u) = 
= ~(u, 0). For a dense open set U' r U1, the pull back =': ~' -~ U' of =1 will be fiat, with 
reduced fibers (el is reduced), and this family (with the section s' induced by sl) 
clearly satisfies all the requirements. 

Returning to our basic situation of (5.1), we have: 

(5.4) PROPOSITION. - Let X, S and So be as in (5.1). Then, there is an integer 
No such that for N ~>No, for any irreducible component ~ of V(X, S; N), there 
is an open dense S(0)r E such that S(o) is covered by metric open sets U, with 
the property that for each U there is a family of parametrized arcs of X, with 
parameter space U, satisfying: for each u e U, the point of V(X, S; N) corresponding 
to/~u : Du--* X, by truncating rood N, is u. (More precisely: fi~ induces a morphism 
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TN--)X (cf. (1.1)), we claim that this point of Hom(TN,X)  is in V ( X , S ; N )  
and is precisely u). 

PROOF. - We fix a desingularizationf: X'--* X of X, which induces an isomorphism 
over the complement of So = Sing (X). If N is large enough (say, N I> N1 ), the number 
of irreducible components of V(X, S; N) is constant and i f2  is such a component, then 
there is a unique irreducible component 2 '  of V(X', S; N) where image by the mor- 
phism ~:2 ' - -~V(X,S;N)  induced by f is dense in 2; we necessarily have 2 ' =  
= V(X', E;N),  where E is a suitable irreducible component o f f  -1 (S) (cf. w 4). 

Now, I make the following: 

C L A I M .  - There are metric open sets ~ (i e I, an index set) of 2 '  such that there 
families of parametrized arcs on X, parametrized by ~ ,  with the property: 

(5.4.1) The N-truncation of the arc corresponding to any u e Hi is ~(u) e 2, moreover 
the union ~ of these ~t~ is dense in 2 ' .  

To see this, view X' as a complex analytic manifold, and take a coordinate neigh- 
borhood g~ of a point P of 8 (the set of smooth points of E), with an isomorphism 
~: ~--~ $, where $ is a poly-disk in C ~ (n = dim X') and $ '  = (g~ n 8) is defined by 
z ,~+l= . . .=z~=O (zl , . . . , zn  coordinates in cm; of course if So_So, then 
m = n - 1 ) .  

Then, as was explained in the proof of (4.2), there are isomorphisms: 

(5.4.2) V(g~, g~ n 8; N) ~ V(~, ~ ' ; N )  ~ 8" x A M , 

for a suitable M (the points of A M correspond of truncated series: 

N 

(5.4.3) zj = F~ a~J)t j, 
i = 0  

where Zl, " " ,  Zn are coordinates of ~ and a ( j )  = 0 if j = m + 1, ..., n). 
If6L' is an open set in $ '  • and p: a ' ~ R  is a continuous, positive valued func- 

tion, let (d' x C)p := {(a, t)/It[ < p(a)}. It is easy to see that we may choose a '  and p in 
such a way that the equations (5.4.3) define a family of parametrized arcs/3': (~L' x 
• C)~--) X'. I f a  is the open of 2 '  corresponding to ~ '  by means of the isomorphisms 
(5.4.2) (and the natural identification of V(g~, ~ n 8;N) with an open of 2 ') ,  the fi' in- 
duces a family of arcs of~X ' parametrized by a; O~l --* X '. Composing this with 
f:  X' --~ X, we get a family (~1 ~ X. It is clear from the construction that the property 
(5.4.1) holds for this family. Letting P vary in 8, the families (%t~, 69~) constructed in 
this way are the ones we need to prove the claim. 

Now, shrinking ~ if necessary, by using the theorem on generic smoothness and 
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some elementary considerations, we find that the canonical diagram 

V(X',f-~(S);N) > V(X,S;N) 

f - i (S) > S 

induces a commutative square 

~J~ P > ~  

~i > 

where ~t, ~, 8, 5~are suitable dense open sets of 2 ' ,  2, ~1 andf(E) respectively, and all 
the morphisms are smooth. 

Now let Qo be any point of ~, let P0 e P -~ (Qo), assume poe  ~i.  By the smoothness 
of p, there are open neighborhoods U of P0, U' of Qo and a section s: U-~ U' of the 
map U' --) U induced by p. The pull back (by s) of the restriction to U' of the family of 
parametrized arcs Cdi, (~)  yields a family of arcs on X, parametrized by U, with the 
property required in the statement of the Proposition. This proves (5.4). 

To refine Proposition (5.4) we need some results on truncations. There are similar 
results in the literature (cf. [4], p. 155), but I couldn't find it in the form I need. 

(5.5) Given an analytic arc in C m, T : D ~ C  m, defined by power series 
(r ..., r its associated branch is, by definition, the germ corresponding to 
the analytic algebra C{r ..., Cm } r C{t}; it will be denoted by Im (T). 

Recall: the ~-invariant of a germ of a curve (C, x) is ~(C) = length (A/A), where 
A = (%, ~, A the integral closure of A in its total ring of fractions. The conductor of A 
in A will be denoted by C(A); if A is a domain c(A) will denote its degree (i.e., 
min{r/t~e C(A) for n>~r}, where A--~ C{t}). 

(5.6) LEMMA. - Let C be a branch in C m, with local ring A, A = C{t}, ~ = ~(C), 
= multiplicity of A, g~ = max (A). Then 

t (N + 1)~ + c - i e ~t~[ N , for all N >/0. 

PROOF. - Let C be parametrized by r162 i.e., A = C { r 1 6 2  We 
may assume ord (r ~< ord (r ~< ..- ~< ord (era), thus v = o r d  (r Consider the fol- 
lowing two filtrations on A: {:~r} (g~=maxA)  and (It}, r=O, 1, ..., where Ir = 
=(vr)nA.  It is easily seen that g ~ c I r ,  for all r. I claim: If r0 is any integer 
Pc~v, with c=c(A), then :)~Ir=Ir+ 1 for each r>~ro. In fact, if ~ e I ~ + l ,  then 
we can write (in C{t}): ~=t"[alt"~+a2t~+l+ ...]. Writing r  (where nec- 
essarily /9 is a unit), then ~=r  with ~ ,=~- l [a l t " r§  of order ~>vr. So, 
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if r>~ro, ordr~>c  and so ~ e A ,  so ~=r with r  and re( t '~)c~A,  i.e., 
e g~I~. The other inclusion being immediate, the claimed equality follows. 

From this it easily follows: ~NXro---Iro+N , whence I~o+N C_ g~N, for all N~> 0, i.e., 
(t N~+~o'~) c~A = (t g~+ro~) c g~N (the equality because Nv + ro~ t> c). If  ro is the smallest 
integer  I> c/~, then c + v -  1 ~> roy, thus t(N+l)'~+~-le :)r~ N, as we wanted to show. 

(5.7) LEMMA. - Notation as in (5.6). Let  Co be a general  plane projection of C, 8o = 
= 8(Co). Then, if 8o > 0, 880 1> 3~ + c. Always, t s~~ e :~z. 

PROOF. - The inequality follows from the following well known facts: (i) 8 o = 8, 
(ii) 2~ i> c ([7], p. 80), (iii) 280 + 2 > fg (the last characteristic exponent of Co) and fig i> 
I> ~ + 1 ([10], ch. II, w 3). The second assertion follows from (5.6) and the inequality 
just  gotten. 

( 5 . 8 )  P R O P O S I T I O N .  - Let  C be a parametr ized branch in C "~, with irreducible 
parametrization (r (t), ..., r (t)), let Co be a general  plane projection of C, 8o = 8(Co ), 
and No = 880 + 2. Then, No has the proper ty  that  if D is another  branch in C m, with a 
parametrization (~1, ..., ~m) satisfying: 

(5.8.1) ~j (t) - Cj (t)(mod t N), N >i No, j = 1,. . . ,  m 

then C and D are isomorphic. 

PROOF. - In the sequel, (gE denotes the local ring of a branch E. 

(i) We shall see that  if Do is a general  plane projection of D, then 8o = 8(Do ). We 
shall use certain facts from the theory of equisingularity for plane curves, as ex- 
plained in [11] or [12]. To begin with, since equisingularity is an open condition, if Eo 
and E1 are general  plane projections of a branch E,  then Eo and El  will be equisingu- 
lar, hence 8(E0) = 8(E1 ). So, we may assume that  we take a common (linear) projec- 
tion for both C and D, i.e., a general  linear change of coordinates in C m, followed by 
the projection (zl, ..., zm) --* (Zl, z2 ), to get  Co and Do respectively. It  is clear that  the 
assumption (5.8.1) implies: we may parametrize Co (resp. Do) by x = z~, y = ~(~), 
ord ~ t> v (resp. x --- z~', y = f(v)) in such a way that  ~ -- f (mod zS~o + 2). This, using the 
inequality ,,280 + 2 > fig = last characteristic exponent of Co- ([10], ch. II, w 3) implies 
. / =  v and all the characteristic exponents of Do agree with those of Co. Hence Co and 
Do are equisingular, and 8o = 8(Co)= 8(Do). 

(ii) By the assumption (5.8.1), we may write: 

Cj (t) = aj (t) + vj (t), j = 1, ..., m ,  

~j (t) = ~j (t) + 8j (t), j = 1, ..., m ,  

where  aj (t) is a polynomial of degree < No and ~,j, ~- are series of order  I> No each. 
Since No = 880 + 2, where  (by (i)) 8o is the 8-invariant of a general  plane projection 
both of C and D, by Lemma (5.7), ~9 (resp. ~)) is in (max (9c) 2 (resp. (max (9D)2), hence 
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these are power series in m variables fj (resp. gj ), j = 1, ..., m of order I> 2, such that 
yj =f j ( r  r (resp. ~j = gj (~ l , . . . ,  ~,~).). 

Consider the change of variables in C m zj = x j - f j ( x l , . . . ,  x,~) (resp. z~ = x  j -  
- gj (xl, ..., x~ )). Then, in the new variables, the branch C (resp. D) has a parametriza- 
tion zj = ~j(t), j = 1, .. . ,  m (resp. zj = ~j(t), j = 1, ..., m). Now it is clear that C and D 
(having in suitable coordinates the same parametrization) are isomorphic. 

(5.9) Finally, for the refinement of Proposition (5.4) that will be presented, we 
need to recall some facts about equisingularity for space curves (cf. [2]). In this case, 
the situation is more complex than in the planar case, since we loose the equivalence 
of almost any conceivable reasonable definition that we have in the plane; instead one 
gets a rather complex chart of implications (cf. [2], p. 4). We shall say that a family of 
curves, with a section (cf. (5.3)), parametrized by a manifold U, is 8-equisingular 
along the section if it is equisaturated. This is the strongest of the standard defini- 
tions of equisingularities for space curves ([2], p. 4), it is an open condition and it im- 
plies: the numbers ~(C~) and l (C,):= 3(Cu) - ~ ( C , ) ,  where C~ is a general plane pro- 
jection of C,,  are constant (and actually, l(C,)  and the Milnor number ~(C,) are con- 
stant (along the section) if and only if 8-equisingularity holds). 

(5.10) We shall say 
there are families (with 
equisingular along the 
p~l (zi) ~ pi-+ll (yi + l ), j =  
isomorphisms of germs, 

that two germs (C, Xo) and (D, xl) have the same 8-type if 
sections) of curves (Pi: C~--~ Ui,s~), i =  1, ..., r, which are 
sections, points Yi, zi in U~, i = l , . . . , r ,  such that 

1, ..., r, and C ~ p{-1 (Yl), D ~ p j  1 (zr) (we mean, of course, 
we drop the base points to simplify the notation). 

If C and D have the same 8-type, then they have the same Milnor number, ~-in- 
variant, number of irreducible components, etc. (cf. [2]). 

Now we may state the main result of this section. 

(5.11) THEOREM. - Let X,  S, So = Sing(X) be as in (5.1) (or in Proposition (5.4)). 
Then, there is an integer K >I No (the number of (5.4)), such that for N>~K, it 
holds: 

(a) for each irreducible component S of V(X' ,  S; N)  there is an open dense set 
2: (1) c ~ which is covered by metric open sets Uj, j in an index set I, such that for each 
j we have a commutative diagram: 

5 

~ j s j  

where: (i) pj defines a family of branches on a suitable open Vj of X (in particular, 
Cj c Uj • Vj ) and 8j is a section of pj for each u ~ Uj ; (ii) the family Cj--~ Uj is equisingu- 
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lar along sj; (iii) 0~j r UN x C is a neighborhood of Uj x {0} and for each u ~ Uj, induces 
a parametrization of the germ (pj-~ (u), sj (u)), moreover the resulting induced mor- 
phism TN = Spec C[t]/(t N+ 1 ) .__.> X is precisely u (note 2: r Horns (TN, X ) ,  naturally). 

(b) If u ~ 2 (1), y and ] / a r e  arcs (i.e., map germs (D, 0)-~ X) both inducing (via 
N-truncation) the point u, then the germs Im(y) and Im(~/) (cf. (5.5)) are 
isomorphic. 

(c) If u, v are points of 2~), ~, and y' are arcs whose N-truncations are u, v re- 
spectively, then the 3-type of the germ Im (~,) is the same as that of Im (~/). 

PROOF. - To get (a) use the method of the proof of Proposition (5.4) (with the same 
No ) to get opens U' with the property of the U's of (5.4). Then, using Lemma (5.3) we 
may cover a dense open set of each U' with metric opens U" parametrizing families of 
branches (with sections), with the properties listed in (5.3). Using the openness of 8- 
equisingularity, we find inside each U" a dense open U such that induced family is 8- 
equisingular. These form a collection {Uj}  of opens with the desired properties, we 
let Z (1):= LJ UN. 

j e I  
Concerning (b), let us note that if we fLX an index j, letting C~ = p71 (u), u e Uj 

(where pj-: Cj ~ U i is the family of part (a)) and C" being a general plane projection of 
C~, then ~(C') is independent of u ~ Uj (this is because the family is 8-equisingular, 
cf. (5.9)). Let ~j be this common number. Now let Kj := max (8~. + 3, No ). If u e Uj and 
~, is any arc whose N-truncation is u, with N >>- Ky, then by Proposition (5.8) it follows 
that Im T and (Ci, s; (u)) are isomorphic germs. 

Now assume Uj is another of our opens (with family pj: e 2 ---> Ui,  with section sj) 

and Ui n Uj r 0. Let u e Ui n Uj. As before, we get a value ~i = ~(C~'), C~' a general 
plane projection of p (  ~ (v), v e Ui. As we have shown, since p(~ (C~) is the image of an 
arc whose truncation is u, Cy ~-p(~ (Cu). It follows that ~j = ~i. Since the union of the 
Ui's is connected (an open dense in the irreducible 2:) we see: ~i is the same for all i, 
say = ~0, so the numbers Kj defined above are all equal, say to K. Now (b) (with this 
value of K) becomes clear. 

Statement (c) is an immediate consequence of (b) and the definitions. 

(5.12) For instance, as is explained in[5], for X defined in C ~ by z n + l =  xy,  

S = {0} (the AN-rational double point), if N is large enough, V(X ,  S; N)  has n ir- 
reducible components. The points of the j-th one will correspond, generically, to N- 
truncations of arcs x = at  J+ . . . ,  y = fit n+ 1-j  + . . . ,  z -- ct + . . . ,  with c n§ 1 : ab :~ 0; i.e. 
a non-singular branch. Note that for n = 1, i.e. the cone z 2= xy ,  V (X ,  S; N )  is ir- 
reducible, its general point corresponding to a smooth arc; i.e., the same situation as 
in the case ~X is smooth, (cf. (2.4), (2.5)). 

In the case X: z 2 + x ~ + y6 = 0 in C3), S = {0}, again for N large V(X ,  S; N )  is ir- 
reducible, and generically its points correspond to truncation of smooth arcs x = at  2 + 
+ . . . ,  y = bt + . . . ,  z = ct 8 + . . . ,  a, b, c :/: O. But here all these have a common tangent 
line, namely the line x = z = 0. 
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Note. After this article was completed, I received a copy of (,Courbes trac~es sur 
un germe d 'hypersurface, ,  by M. LEJEUNE-JALABERT (I thank her  for sending this 
preprint). This paper also discussed the foundations of Nash's theory, in the case of 
an algebroid variety, following an approach similar to the one used in Section 1. I t  al- 
so contains interesting results of the equations defining NasA varieties, in the case of 
a hypersurface. 
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