
A Comparison Theorem in p-Adic Cohomology  (*). 

BI~U:NO C t t I A R E L L O T T O  

Summary. - We consider a 1-dimensional diMerential modnle (r V) over an algebraic variety X .  
We assume the singularities o] (cO, V) at infinity to be separated and possibly irregular. 
We prove that the algebraic de Rham cohomology of X with coefficients in (crY, V) can be 
calculated by p-adic analytic methods. 

O. - I n t r o d u c t i o n .  

In  his two articles [1], [2] F. BALDASSAI~RI stated a conjecture about  comparison 
of cohomology and proved it  in some part icular  situations. Here,  I would like to  
continue these efforts by  considering the case of coefficients with irregular sin- 
gularities. 

Le t  Xo be a non singular irreducible algebraic var ie ty  over the field Ko = ~ l g  
of algebraic numbers.  Let  ~Uo be a locally-free sheaf of 0x-modules  endowed with 
an integrable conneetion~ tha t  is a Ko-linear map:  

(o.1) Vo: ~Uo-+ CUo| 01 Xo/Ko 

satisfying Leibniz's rule and the usual integrabili ty conditions ([10]). 

Le t  K be a complete algebraically closed p-adic field (endowed with a valuation 
extending tha t  of Q~), K 3_Ko. 

We shall denote the extension of the preceding structures to K by  V, r X ,  Ox; 
in part icular  we have:  

(0.2) V: cO --> ~ | ag~/K . 

We can associate to an algebraic var ie ty  over K a rigid analytic space over the 
same field. Under  our assumptions such an analytic space (X~ig , Oxrig ) will be smooth. 
Similarly, we can associate to every locally-free 0x-module qS, endowed with a con- 
nection, a locally free 0xr~ -module r and a connection: 

(0.3) Vrig: ~,ig -+ ~U,j~| ~1 Xrig/K �9 

(*) Entrata in redazione il 12 maggio 1986. 
Indirizzo dell'A.: Seminario Matematico, Via Belzoni, Padova, Italia. 
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Using the operators (0.2), (0.3) we can construct the de l~ham complexes: 

(o.~) 

(0.5) 

~ ( X / K ,  (fl ,  V)): 0 -+ f l  v__x__> f l Q  f2~m --~ f l Q  f2~m --~ ... 

IDg{(X, JK, (flm, V~,g): 0 --> l.)~g v,,~ ~1 > fl~i~ @ x, id~. -+ . . . .  

The conjecture, stated by BALDASSAI~RI in [1], asserts the existence of a natural 
isomorphism between the hypercohomology groups of the complexes (0.4) and (0.5) 
(under the essential hypothesis that  (0.4) and (0.5) are derived from (0.1) i.e. from 
objects defined over Ko -~ ~lg ) .  

Explicitly we put 

(0.6) 

(0.7) 

Hq(X, ff)2~(X/K, (fl ,  V))) ~ Hq~a(X/K, f l ,  V) 

Ha( xrig' ~)5~165 (c(~rig' Vrig))) ~eef ]fI~2~(X/rigK' COrig' Vrig) " 

The conjecture asserts that for q>~0, the naturat morphisms 

(0.8) ~ ( X / K ,  % V) -~ ~L~(Xr~JK, flri~, Vri~) 

are isomorphisms. 
In this section i of [1] this global problem of comparison of algebraic versus 

p-adic analytic cohomology was transformed into a local problem of comparison 
between cohomology with coefficients, respectively, meromorphic or esselltially sin- 
gular at i~finity. The case in which Xo is a curve was also proved in [1]. Later [2] 
(under the essential assumption that  the locally free module fl0 can be extended to 
a locally free one at infinity) established the isomorphism (0.8) in the ease where 
(flY, V) has regular singularities at infinity, for any dimension of Xo. This gave a 
p-adic version of Deligne's theorem ([9], Chapt. 2, section 6). In this article we prove 
the conjecture when Xo is a non-singular irreducible algebraic variety, the module 
is one dimensional and the connection has separated irregular singularities (Theo- 
rem 1.10). 

The author wishes to express his gratitude to his thesis advisor prof. F. BM- 
dassarri, for his aid in the course of the preparation of this paper. 

1. - Notation and statement of  the Main Theorem (Theorem 1.1O). 

Let us rec#A the local situation of section 1 of [1], with the hypothesis that  the 
module flo has a locally-free extension at infinity. We put S - ~  SpA,  where A is 

~QAm @ee un absohtely regular [4] affinoid K-algebra and an integral domain with 1 

D~/K = @ Adt~ 
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t~ ~ A (for notations and terminology see [5] and [11]). We also pu t  B = A<x~, ..., x~> 

and X = SpB.  
N.B.  Since A is an integral domain, it follows tha t  all complete ~orms o11 it  

(as a K-Mgebra) are equivaleItt (in part icular  to the supremum norm [5] 6.2.4 Theo- 

rem 1). We shall use the  supremum norm and indicate it by  [. I~. (By our assump- 
tions, there  is an epimorphism e: T~--~ A for some n such tha t  the residue norm 

l" I~ eoiacides with the supremum norm [5] 6.4.3). 

Fur thermore ,  we can write 

8 

5=1 

Let  Y be a divisor of X given by  the equation x ~ . . . x ~ = 0 .  Le t  3 be the sheaf 
of 0x-ideals defined by  Y. Pu t  j : X ' = X ~ Y ~ - > X .  For  any sheaf of Oz-mo- 

dules 5 we shall define: 

(1.1) ~- ( , )  : lira ~ -@ 3 - ~  
IV-->+ oo 

and y ( - )  = 

By our reductions, r is a free finite-rank sheaf of 0x-modules on X and it  is as- 
sociated to a free finite-rank B-module V, ~ = qJ. We shall use the following 
convention:  a formula containing the symbol (*)  stands for two formulas, one con- 
raining only symbols of the type  ( . ) ,  the  other containing only symbols (--). We 

then define: 

(!.2) V(*--) = r(x, ~)(• = v| B(• = @ B(*)e,. 

We notice tha t  B ( . ) =  B[(xl ... xs) -1] and tha t  B(-- )  is the ring consisting of all 

powers series ~ a~x ~, with a~ e A, such that ,  if ~ ---- (~-1, .... , ~.~), [~[ = f [~[, 2t(~) = 
a e Z  s i = 1 

4=1 

(1.3) lira la lJ( )= 0 0,  IKI. 

The sheaf ~ = ~U is endowed with an iategcable X/K-connect ion  with meromorphic  
singularities along Y. Namely,  there  exists a K-linear morphism 

(1.4) V: ~ -+ ~ ( , ) |  9~/~ 

satisfying Leibniz's rule. I t  is not  restrictive to assume tha t  V comes from a 
K-linear map between the modules defining (1.4), namely from 

(1.5) V: V -+ V ( , ) |  "Qw �9 
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Let  us consider the de l~ham complexes derived from (1.4): 

(1.6) 'D2~x(cU(*)) = ~)2~(X/K, (r V(*) ) ) :  

0 -> %Y(*--) v('-)> ~ ( . )  | 9~/K -~ ~ ( ~ )  | 9~/~ -~ ... 

(by the V(*)  formulas we indicate the  obvious extension of (1.4) to ~U(*)), and 
the corresponding complexes of global sections (with the con~ections derived 
~rom (1.5)): 

(1.7) DR.,(V(*)) -~ Dt~(B/K, (V(*),  (--*))) : 

o -~ V(*) ( ' - )  ~- V(*) | f2w ~ V(L) | Q~/x-+. 

In  this situation, we have ([1] proof of proposition 2.14): 

thus, it  is equivalent  to think about  sheaves or about  their  modules of global sections. 
In  this article we make the two assumptions tha t :  (1) ~ is one dimensional mo- 

dule, V ~  B, and (2) the connection has separated singularities along Y. By  (2) we 
mean that ,  in a suitable B-base for V _~ B, it  is possible to write:  

8 

( 1 . 9 )  V = dB/K Jr" ~ hj ~j+l dx~/xj -F ~, g~dt~ 
J ~ l  i = 1  

where h j ~ g ~ B ,  p s e N  and h j~x jB .  
We refer to [6] and [12] for the formal  aspect of this notion, We shall see in 

section 2 tha t  when developing every h~. as a power series in xj, the first p j -~  1 
coefficients of such a series which a priori are merely elements of A(x~, ..., &j, ..., x~), 
actual ly lie in K. 

The aim of this article is to prove  the following: 

T t ~ E 0 ~  1.10. - Under the previous hypotheses concerning the connection i] the 
]irst pj 4- 1 coe]]icients o] each hj as a power series in xj (respectively), which are in K,  
arc p-adically non-Liouville numbers, the natural morphism 

(1.11) 

is a quasi-isomorphism. 

DR~:(B(.)) ~-~- DRK(B(--)) 

RE~A~K 1.12. -- One should note  tha t  the hypotheses of the conjecture agree 
with those of the  theorem. In  fact  algebraic numbers are O-adicMly non Lion- 
ville ([3], [s]). 
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2.  - R e d u c t i o n  to  t h e  c a s e  a 1 - v a r i a b l e  r e l a t i v e  d i f f e r e n t i a l  operator .  

I n  this  p a r a g r a p h  we begin the  proof  of t heo rem 1.10 b y  reduc ing  it  to  the  s ta te-  

m e n t  of t h e o r e m  2.19 below. F i rs t  we po in t  ou t  ~ p r o p e r t y  of the  connect ion  (1.9). 

Pno~osITIo~r 2.1. - The ]irst p~ ~- 1 coef]ivients o] eaeh h~ ~ B in (1.9) as a power 
series in x~ with coefficients in A(x~,  .... , ~ ,  ..., x~}, are in K.  

PnooF.  - Since (1.9) is an  in tegrable  connect ions ,  we h a v e :  

(2.2) x ~ . J + ~ + h j , ~ - ~ g ~  -~0  i ---- 1 , . . . , r  

thus  

~+: 8 8 
(2.3) x~ - - -  (g~) = (hi) i = 1, r 

~x~ ~ "'" ~ " 

Deve lop ing  hj as a power  series in xj (and wi th  coefficients in A(x~, ..., &j, ..., x~)), 

since (2.3) holds for  every  i ~--1, ..., r we can conclude t h a t  the  first p j - [ -1  coef- 

ficients of hj ~re in K(x~, . . . , ~ ,  . . . , x , ) .  

I~ ,~AnK 2.4. -- W e  are using the  obvious  fac t  tha t ,  under  our  ~ssumpt ions ,  
Ke r  (d d/z~: A --> ~la/x) : K 

Apply ing  the  in tegrab i l i ty  condi t ion  wi th  respect  to  xk k -~ 1, ... , j ,  ..., s we h a v e  

(~.5) , ~ ~ ( ~ )  = (h,) ;  

since for  eve ry  choice of k the  first p a r t  of (2.5) is divisible b y  x~ j+l, we deduce t h a t  

the  first p j  ~ 1 coefficients of h~, as power  series in xj,  are in K.  So:  

... ~, ,~v:+l 
( 2 . 5 . 1 )  hi= hi, O+ hi,ix i +  hi,2 x2 + + ' ~ i , ~ j + l ~ j  + "'" i : 1 ,  . . . ,  g 

where  hj , iEK,  i = 0, . . . , p j ,  j = 1, . . , s ;  h j , , e A < x l ,  ...,&~-, . . . ,x~} if i>~p j~- l ,  
j ---- 1, ..., s. Q.E.D.  

I ~ E ~ n K  2.6. -- B y  our  a s sumpt ion  ( theorem 1.10) the  e lements  h~,~ i = 0, ..., p~; 
j = 1, ..., s are  non  5iouvil le .  

We put: 

~J 
(2.7) p,(x~) = Z h,.,x; f o r  i = 1 ,  . . . ,  s .  

i~O 
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We can now begin the proof of theorem 1.1O. As in section 3 of [2] we can reduce 

to a relative connection over A and need only to demonstrate  tha t  the natural  in- 

clusion map 

(2.8) DRA(B( . )  ) --> DR~(B(--))  

where, explicitly, 

DR:(B(* ) ) :  O -->B(*) V,(-_)/~ B(*)(~) 1 , . .  - -  f 2 ~ / ~  ---> (2 .8 . t )  

and 

(2.8.2) V,<,_)/~ = d,(~) /~ § ~ h~ax~/x~ ~+~ 
j = l  

is a quasi-isomorphism. 

Furthermore,  we can assume, inductively, tha t  the above fact is true when the  

relative dimension of B over A is less than  s. 

We also write 

cxj 
j = 1 , . . . , s .  

We refer to Dj as the j~h-eomponent of the con~ection (2.8.2) deduced from (1.9) 

and use the same symbol to denote the (xl, ..., xA-adically continuous extension of Dj 

to  ~9 = A ~ ,  . . . ,  x ~ .  

PlCOPOSITIOST 2.9. - There exists a unit / o/ J~ = A~xl, ..., x~J, such that 

Dj(]) : -Pr162 j = 1, ..., s .  

(P~(xr as in (2.7)). 

P~oov.  - We put  p = ~ pj = total  irregularity of the connection. We carry out 

an induction ozl p. I f  p = 0 the singularities are logarithmic and the components of 

the comzection will be 

and 

Dj = x~ w -  § h~ j =- 1, . . . ,  s 
cxj 

P~(xA = hj,o~ K j = l , . . . , s .  

By the proposition 2.1 the hj have the form h~-~hj,o+XjZj; z j~A<xl , . . . , x s>  
j ~ 1, ..., s. We shall construct  a unit f ~ ~ such that  

D~(I) = h~,of j = 1, . . . ,  s 
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i .e .  

) (2.9.1) j-~x @xjz j  ( ] ) = 0  j = l , . . . , s .  

Hence ] has to satisfy 

(~-- -~+zj ) ( j )=O j = l ~ . . . , s .  

Now the operator  has no singularities, and by  a trivial generalization of proposi- 
t ion 8.9 of [10] such a f is well determined by  its (arbitrary) value for xz . . . . .  
= x~ = 0. We have therefore proved the proposition when p = 0. By  the induc- 
t ion hypothesis  we may  suppose the  result to be proved if p '  < p ,  20>1. Now we 
prove it  for p. By  rearranging the variables we m ay  assume tha t  20, > 0. Wo define: 

(2.1o) D.: :~/(w~) ~ B/(x~) 

as the map induced by  D~;/)~ is an AWx~ , ... ,x~_~ linear map. According to propo- 
sition 2.1, D~ is the multiplication by  h~,o e K. We consider D* = D~--h~,o. The 
map induced by  D *~ on J~/(x,) is zero. 

i.e. 1)*(9) _c xfi~.  

So x-~lD * operates on J9 and we can endow/~  with an integrable connection given 
by  the following components  (DI, ...,D,_~, -1 �9 x~ D~). To this module with con- 
nection we can apply the induction hypothesis:  there exists J e ~ such tha t  

//~ = B ;  D~(I) = _P~(x~)] i = i ,  . . . ,  s -  1 .  

x-[iD*(l) = b J  w h e r e  b, = (B~(x , ) -  h~,o)lx~. 

B ut  D*(J) = x~b,J and x,b~ = B , ( x , ) -  h,.o. Ffi!ally 

D~(J) = (h~,o + x~b,) J = B~(x~) ] . Q.E.D. 

Hence,  we can see t ha t  the new basis J satisfies the following differential equations 

(2.11) f - i  ~j+i . x~ ~ q )  + h;=/'j(x~) 

i.e. 

(2.12) ~+i 8 

j = l , . . , s .  

j = l , . . . , s .  
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By our definitions (2.7), the series P j ( x j ) - - h j  for ] = l , . . . , s  belongs to 
x~+lA<x~ ..., x,> so t ha t :  

(Pj(xj)--  hj)/x~J+leA<xl,  ...,x~> ] = 1, . . . , s .  

Using the same method as in section 5 of [2] it  follows tha~ the formal power series ] 
is convergent for Ix~IA~<Q, ..., Ix, ld~<~ for some Q > 0 .  

We now look more closely at  the following complexes of sheaves whose global 
section are (2.8.1) : 

(2.13) 0 --> Ox(*)  " V~('--)I'4> " Ox(*--)@ ffdlXlS --> O x ( * ) @  ff22xls --> . . . .  ff)2~s(*) �9 

Our aim is, therefore, to prove tha t  the inclusion 

(2.13.1) ~)~(,) ~ ~)~(-)  

induces isomorphisms of the relative hypercohomology groups 

(2.13.2) Ro(x, ~ ( , ) )  + n~(x, ~ ( - ) ) ,  q > 0 .  

There exists an admissible affinoid covering qL of X:  

= {1)o = {P ~ SpB, i+(_v) l < o, J = 1, ..., ~}} u 

t.J{U,.o==- {.P~qpB, [w;(P)I>~} j = l , . . . , s}  

which depends on ~o and hence on the domain of convergence of J (proposition 2.9). 
From the covering ~ we get two convergent spectral sequences: 

(2.13.3) El'~ ~ ( ~ ,  ~(~)a~(* ))) ~ H ' ( x ,  ~a~(*-)). 

where J~q(~:Rs(*)) s tand for the presheaves V.--> H~(V, fl)~s(*--)[v) for every V 
affiaoid subdomain in X (in fact by  [1] proof of proposition 2.14 on every V affinoid 
subdomain of X we have 

H,(v,  v ~ ( ~ ) l v )  = m ( v ~ ( * - ) ( v ) ) ) .  

From the morphism (2.13.1) we get a homomorphism of the previous spectral se- 
quances (2.13.3). So, in order to show tha t  it  induces an isomorphism at  limit 
(2.13.2), we are reduced to prove we have isomorphisms for the terms E~, which will 
follow if we know tha t  the isomorphisms (2.13.2) hold when X is replaced by  any 
element of elL. 
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We observe that  our inductive hypothesis on the relative dimension of B over A 
(i.e. on the number of variables in the polynomial which defines Y) implies that the 
isomorphisms (2.13.2) hold when X is replaced by Uj,e j = :t, ..., s and 9:Rs(*) are 
replaced by their restriction to U~.e. Finally, we are left to prove the isomorphisms 
(2.13.2) when X is replaced by De and ~ f t s (* )  by their restrictions to De. 

Since the hypercohomology of the restrictions of the complexes (2.13) to De 
coincides with the cohomology of the complexes of global sections over De ([1] proof 
of proposition 2.14), we are reduced to prove that 

~ ( , ) ( 2 ) e )  -+ 9~t~(--)(.De) 

is a quasi-isomorphism of complexes of modules. 

On D e =  SpA<xl/r, ...,x,/r> = SpBe, r e K ,  l e ]  = ~, the formal series / (pro- 
position 2.9) is converveng hence, putting Be( .  ) ---- A<xdr , ..., x~/r>[(x~, ..., x,) -~] and 

B(--) = {  ~ a  '~'~,x , a~,eA, lira la~,[Act(~')Ot+(~')=O}. 
- e z ,  k,l-~ + ~o 

where I~1 = ~ I~,I, ~t(~) = ~ (~,-- I~,1), t+(~) = I~1- t(~), on De the connection will 
i = l  i = l  

have the simplifyed form (proposition 2.9) 

(2.i4) 
j = l  

where Pj(x~)eK[x~], i ~ 1, ..., s is the polynomial (2.7) and it has coefficients 
p-adicMly non-Liouville, P;(0) r 0. 

Moreover, since De-~ SpBe is an affmoid domain, the complexes, which we have 
to study, are: 

(2.15) o ~ B~(*-) v~o(._)/+ Be(L ) @~, -Q~/.~ -+ ~ ( * ) |  9w -+ . . . . .  Dn.dB~(*-)) 

RE~ARK 2.16. - We have obtained the simplified form (2.14) for the relative 
connection over S = SpA on D e ~  { P c  SpB, [x;(P)]<O, j -- 1, ..., s}, for any ~>0  
such that the series ] of proposition 2.9 converges on / )e .  We will need later to im- 
pose a further restraint on the size of ~ of the type ~< Q0, for a certain Q0>0 
depending only upon the coefficients hs.~, j ~ 1, ..., s, i ~ O, . . . ,pj  of the connec- 
tion (1.9) (see (2.5.1) and (2.7)). 

In the situation of (2.8), (2.8.1), (2.8.2), from the canonical morphism (projection): 

r  '-Q.~/.~ --->,.('2~/~<,~ ...... ,~,,> l < h < s - -  1 
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we get 

t t 
~ (  ~)/A<z~ . . . . .  ~ >  

(where V~(• ...... ~,,>= d~(• ...... ~> ~= ~ hr 
~ = h + l  

Hence we can define DRy< ....... ~>(B(*))  as the complexes: 

B(- - )Gt?~ /~< ....... ~> - + B ( * ) |  2 '~B/A<xI . . . . .  rch> - + "  

Using the particular case h = s -  ]_ of the previous construction 

--> ~2.~IA<~ q . . . . .  z~-~> 

we get a filtration of DR~(B(*--)) by  the following subcomplexes: 

= D ~ (2.17) /7 ' (DR~(B(*))))  I m (  ~< ...... ~,_1>1~@ D/~(B(* ) ) : - ' J - ->  DB.4(B(*))). 

The sequence of B-modules:  

1 
0 - +  B | ~2~.<~ ...... ,,_,>jA -~  D~/~ --> D~/~<, . . . . . . . . . .  > --+ 0 

is exact. We get~ from (2.17), the graduations 

gr~(DZtA(B(*))) = "Q~<~ . . . . . .  ~o_,>/A @ D/?A<~ . . . . . .  ~ , _ , > ( B ( * ) )  E - i ]  �9 

From these, there exist spectral sequences, whose /~-terms are: 

E~,q(*) = H~+q(gr'(DR4(B(*)))) = E2:( ....... ~o_:>/A@Hq(DR~<: ...... ~,_,>(B(*))) . 

 butti-g to 
From the morphism (2.8) it is possible to construct a morphism between the  

above two spectral sequences. Hence, in order to show tha t  this morphism induces 
an isomorphism at  limit (i.e. tha t  morphism (2.8) is a quasi-isomorphism, because 
H'(DR~(B(*--))) are the limits 02 the spectral sequences), o~e can reduce oneself 
to verify tha t  the morphism at the  level ~ i  is an isomorphism. 

Thus it is enough to show tha t  the natural  morphism: 

DRA<~ ...... x~_l>(B($)) --> DRA< ~ ...... ~._I>(B(--)) 

is a quasi-isomorphism. 
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By  our assumptions D e =  SpBe---- SpA(x~/r, . . . , x j r )  and ~I~,/A__ BeQQ~/A: 
the  structures o n  D e are analogous to those on X = SpB. 

Hence, on the  above construction, we can replace DR~(B(*) )  by  DR~(Be(*--)) 
(2.15) and V~(._)/A by  V~('-)/A (2.14): 

Thus, in order to  verify a quasi-isomorphism between the complexes (2.15), 

endowed with the connections (2.14) (and so in (2.8) where ~ does not  appear), we 
need to show tha t  the  natura l  morphism 

(2.1s) DRA<~./, ..... ,,_j,>(Bo(.)) ~ DRa<~j , ....... - /o(Bo(--))  

is a quasi-isomorphism for 0 sufficiently small. 
We now remind the  reader tha t  if the  singularities of (1.9) are logarithmic 

( that  is, if p = ~ p ~  = 0), theorem 1.10 is proved in [2]. We m ay  therefore assume 

tha t  the order of x~, ..., x~ is so chosen tha t  p ~ > l .  
The theorem 1.10 will then  follow from the following s ta tement  which derives 

f rom (2.18) : 

THEOI~E~[ 2.19. - Zet 

. L - ~ - ~ + P j x , ) / x ~  "+~, _ P J x , ) = h , , o + . . . + h , , , x ~ ' ,  p ~ > l ,  h~,~eK, h,,oV:O, 

h~,~ numbers p-adiealty non-Ziouville (2.7). The eohomology groups o/the ]oltowing com- 
plexes, endowed with L as difierential 

(2.20) 0 ~ Be(&) ~--+ Be(* )  ~ 0 

all vanish /or ~ > 0 sufficiently small. 

l~.~ril~K 2.21. - As in (2.14), Be (* )  consist of power series in xl, ..., x~ with coef- 
ficients in A. 

3. - End  o f  Proof.  

In  this section we shall prove theorem 2.19. 
We know tha t  Be(--) is the ring of analytic functions on D* = { P e S p B ,  

~> Ix~-(P) I > 0, j = 1, ..., s} endowed with the  topology of uniform convergence on 
all affmoid subdomains of D*. I t  coincides with the ring of the  Lauren t  series 

~" such that q~ = ~ b~x z, b~ e A,  x ~ = Sll ... x~ 
fl~Zs 

(3.0) l im Ib~/~§ ~(~)= 0 V~ > 0 ,  e < 

It ,l, 181-- I ,l, endowed with the topology 
i=1 i = l  
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given by the system ([1. [i~)~#o.~ex of norms []'H, defined by  

II , IbplA@t+(~)et(~) 

Let  cp ~ Be(--), ~v = ~, bzx~. 
fleZ~ dexes, as 

I t  can be uniquely written, by rearranging the in- 

(3.0.1) 9) : ~ ,  a ~ ( x s ) x  x ~ :  x~ ~ ~ ~'~-~ 
Cr 

where a~(x,) are Laurent  series, a priori formal, in x~ with coefficients in A. 
By  the above observations i t  follows tha t  a~(x~)~B~(--) where B ~ ( - - ) c B d - - )  

denotes the ring of analytic functions on { P c  gpA<x~}, @> [x~(P)[ > 0} i.e. the 
ring of alla Laurent  series in x, with coefficients in A, ~ b~z~ b~eA,  such tha t  

ieZ 

t im ]b~[~2'=O limlb~l~e~=O g e > O ,  s <  Q. 
i - +  + co i - ->--  co 

The formal equality (3.0.1) is in fact an equMity in Be(--). 
Suppose L~ = 0. Since L ~ K[x'~, x71, ~/Sx~] is a continuos operator on Be(--), 

this implies Z(a~(x,)) 0 V~; a~(xA = ~ ~ ~ a~x~, a ~ A .  Each a~(x~) can be evM- 
ieZ 

uated at  any ~(~ e :~[ax A (maximal spectrum of A). Since A is an affinoid algebra 
over the algebraically closed field K,  A/~(~ ~_ K ([5] 6.1.2 cor. 3). Let  ~ ( x , ) =  
= ~ ~ x i  be the reduction modulo d~ of a~(x~), so tha t  ~ is the projection of a~ 

i e Z  

on A/dt~ ~ K .  

The series ~(x~) is an element of the ring of analytic functions on the set 
{ x ~  K, 0 < ]xd~< ~} (i.e. it  is a Laurent  series in x, with coefficients in K,  ~ - ~  a i xs 
such that ~ez 

i-+ + oo i-+-- co 

We have L(~(x~)) = O: from the proof of lemma 3.14 in [1] it follows tha t  ~(x~) = O. 
We conclude tha t  the coefficients of a~(x~) belong to ~ for every ~ e Max A. Since A 
is an integral domain ([5] 6.2.1 prop. 4) we obtain a~(x~)=-0 for every ~ and 

finally ~ = O. 
We have shown: 

(3.1) Ker25zo(.)= Ker L~d_ ) = 0 .  

We now prove the following identities (for sufficiently small @ > 0): 

(3.2) 

(3.3) 

L B d - - )  n B d , )  = LBo( , )  

LBe(--  ) : Be ( - - ) .  
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F rom which theorem 2.19 (and therefore theorem 1.10) follows directly. 

(3.2) first. 
Le t  b e Bo(*) and a e Be(--)  be  such tha t  

We prove  

L(a)  = b .  

As above  we can write 

b = ~ b~(x~)x ~ e Be( s ) ,  b~(x~) e B~(*) = A<xs/r>[x~-l], 
or 

bc,(x~) = ~ bix  s r ~, b~ e A;  

-~- ~ ai ~ s , a =  y_. a (xAx eB (-) a (xA a eA 
o;~Zs_l ieZ 

Since b is meromorphic  along x.,  ..., x~_~, b~(xA = 0 if ~ << 0 for some i ~ 1~ ..., s - -  1. 

We then  deduce f rom L ( a ~ ( x A ) =  b~(xA-= 0 and (3.1) t ha t  a~@~)= 0. Thus a is 
meromorphic  along x~, ..., x~_~. Iqow we have  to show tha t  a is meromorphic  along ~ ,  
too. F r o m  b~(xA = I(a~(xA) (b~(x,) is meromorphic  in x,) it follows tha t  for 1 ~<--N~, 

iY~ = order of pole of b~(x~) at x~-= 0: 

i = 0  

Since h~,o r K*, we can replace a~. for k > -  N~ ~ p s ~ 1 b y  another  e lement  of A 
in such a way  tha t  (3.4) becomes valid for every  j. Hence we build a Laurcn t  series 

in x~ with coefficients in A, such tha t  

= o a n d  

I t  is also clear f rom (3.4) and  [8] t ha t  a+(xs) is analyt ic  on {P e SpA<xs> 0 < Ix~(P) l < e} 
for some e > 0. We  can reduce a+(x~) modulo d(~ e 1Vfax A:  we obtain a Lau ren t  series 

in x~ with coefficients ia  .K, -d+(xs) converging for 0 < lx~[< e and  satisfying 

= o .  

We deduce as before t ha t  ~+(x~)= 0 and therefore a+(xs)= O. But  since 
x~ ' ~tL%~, we conclude t ha t  a~(x~) is meromorphic  along 

x8 = 0, the  order of pole being a t  mos t  ~Y~- p ~ - - 1 .  Iqow, b y  hypothesis,  b is 
meromorphic  along x~ = 0, so t ha t  Sup N~ = 2~ < -k c~. I t  follows tha t  a is itself 

meromorphic  a t  x~ = 0 (the order of its pole a t  x~ ~- 0 will be  a t  mos t  I - -  p~--  1) 

and  we have  shown (3.2). 
I t  remains  only to show (3.3). To begin with, let us consider the case A = T=---- 

-~ K<yi, ..., y~>, B = T~(x~, ..., x~>. 
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~ o w  we consider the  following affmoid subdomain  of SpB:  

We denote T~ the  corresponding affmoid algebra 

Te = T o ( x J r ,  . . . ,  xo/r, e/x~, . . . ,  e/x,> 

e, r ~ K,  [e I = e < ~ = [r], which is the ring of analyt ic  functions on We: T~ is the  

ring of the  Lauren t  series 

(3.5) v Z ~ ' y ~ =  a~,:,y x y~' ... y~" ~ E N 

, ~ z .  x ~' = x~" . . .  x~" 7~ ~ Z 

with a ~ K satisfying 

B y  rearranging the  coefficients of such a Lauren t  series, ~, we can write 

(3.5.2) ~ = ~ a~,~(x~)y~x ~ y~'= y~' ... y~," a~ ~ N 
o~EN n 

~ ' - ~  J = x{ '  ... x,_~z"-' A e Z 

with a~(x~) Lauren t  series in x~ with  coefficients in K.  

B y  the  above  condit ion (3.5.1) each a~(x~) is a a  analyt ic  f lmction on 

(3.6) 

i.e. i t  is an  element  of the  ring of all Lauren t  series in x~ with coefficients in K,  

b~x~, such t h a t  
f e z  

i--> + oo i - ->- -  oo 

(hence, in part icular ,  an element  of Te). F r o m  the proof of l e m m a  3.14 of [1], i t  fol- 

lows tha~t Z is bi ject ive on the ring of analyt ic  functions on (3.6) for sufficiently 

small  ~ (the choice depends on the h~,~ ~= K of L in theorem 2.19). This gives the  

fur ther  condition on ~o which we have  ment ioned  on r e m a r k  2.16. We  fix such a ~, 
0 < ~o e ]K] .  Since a~(x,)  are analyt ic  functions oa  (3.6), we can find analyt ic  func- 

t ions on the  same region b~z(x~), such t ha t  

(3.7) z(b~(x~)) = a~(~ , ) .  
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PI~OPOSITIOI~ 3.8. - Under the previous hypotheses, with b~(x,) as in (3.7)~ the 
series o/ Junctions 

(3.9) ~ b~(x.)y~x r 
cr e/Am 

~ Z ~ - ~  

converges in T, to an element ~p, such that L(W) = ~ (qJ as in (3.5)). In  particular we 
have shown that L(T,)-~ T,. 

PRoof.  - TS is a K-affinoid algebr~ (hence complete) under the norm defined by  
(? as in (3.5)): 

][? lIT.. = max ([a,,l~0t+(')e'(')l) . 
cr 

So, to verify tha t  the series (3.9) converges in T~, we have to show tha t :  

l im IIb~z(x,)y~x~]lT.= O. 

By hypothesis, ~ is ~n element of T,,  it  implies tha t  (3.5.2): 

(3.10) l im  ]]a~(x.)y'x~IIT.---- O. 

Let us consider (3.6): it  is an affinoid domain associated to the affinoid K-algebr~ 

A~ : K < x . / r ,  e /x ,> e, r ~ K ,  leI = ~ < ~ = Ir[ . 

Such a K-affinoid algebra consists of all Laurent  series ~aix j ,  a, e K  such tha t :  
i e z  

lira laiI~ i - -  O, lira la~lo ~ -  o .  
i--.---- oo i--> + oo 

A~ is contained in T~ and it is an affinoid (hence complete) K-algebra under the 
norm defined from the restriction at  A~ of tha t  one of T~ i.e. 

]l~ a~x, tl~,'i _-- max (max la~Ie~; m~x ]a, ls 0 ([5] 9 .7 .1 ) .  
\ i ~ 0  i < 0  

Thus we can notice tha t :  

I[b~(x~)y~xZll~= I[b~z(x.)][T0~t+(~)et(Z); Ila~(x.)y~x~llT= ]la~(x.)llr.Q~§ t(z) . 

The operator L:  A~ -+ A~ is a continuos (hence bounded [5] 2.1.8 prop. 2 and cor. 3) 
K-linear operator between two Banach spaces. By our choice of ~ L is bijective 
([1] lemma 3.14). So, there exists L -1 by Banach's Theorem ([5] 2.8), and it is 
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bounded operator.  Let  c denote the operator  norm of L-~: A~-+A~. Being 
L-~(a~(x.)) = b~(x~) for every ~, fl we have 

Thus : 

i~l  * l ~ l - ~  + oo I~l + i~J->  + oo 

by  (3.10). We have  shown tha t  the series (3.9) satisfies the convergence condition 
and it rapresents an element V of T~ such tha t  L(V ) ~ ~o. Q.E.D. 

Le t  us now re tu rn  to a general A. An analytic  funct ion belong to B~(--) if and 
only if it  is analyt ic  on every affinoid: 

S p A ( x ~ i r ,  ..., x~lr, e/x~, ..., e/x.~) Ye e K ' N { O }  , [r I = ~ > e = lel  

(in iac t  B~(--) is the ring of analytic functions on D*). 
In  part icular  over every  such an affinoid subdomain ~o has a rapresenta t ive  in 

T~(x~/r, ..., x, lr , e/x1, ..., e/xs)-~- T~, because there  exists a strict isomorphism: 

(3.11) A<xJr ,  ..., x~/r, e/x~, ..., e/x~> ~ T~<xjr ,  ..., x~/r, .., e/x~, . . . .  , e / xDl (~)  

([5] 6.1.!  prop. 11), if A ~_ T , / A  and (A) is the ideal generated by  A. 
Le t  ~ be such a rapresentat ive.  By  the proposition 3.8 we can find ~ ~ T~, 

such tha t  L($~)=  ~ .  Bu t  on every such an affinoid L(A)c_ (A), hence we write 
L(~)  = ~ (on the right hand side of (3.11)). The morphism L commuts  with the 

isomorphism (3.!1). 

P~oposzTIo~ 3.12. - I n  the previo~ts notations and by our hypothesis about the 
choice o] o~, the operator" L is inijeetive on every a]/inoid algebra A(xl /r ,  ..., x~/r, 

e lx~ , . . . , e l xD,  Irl = e > ~ =  [el ( e r  0). 

PI~OOF. - The proof is analogous to tha t  one for (3.1). In  fact, by  our choice 
of ~, L is injective on { x . ~ K  e<ix~l<e}  for every ~ K  e < Q ,  e : ~ 0 .  Q.E.D 

The functions (ff~)~elKl.~r (e < ~) m ay  be pasted together,  now, as elements of 
A(xl /r ,  ...~x~/r, e/xt, ..., e/x~>, by  the fact  t ha t  L is inijective on every such an 
affinoids. 

Thus we c~n find an element ~ e Be(--) such tha t  

L(~) = ~ .  

This concludes the proof of (3.3) and therefore tha t  one of the theorem 2.19 und~ 
hence, of the theorem 1.10. 
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