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Some Applications of Convergence Theory (*).
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Summary. —~ We present o unified approach based on convergence theory to approximating cones
and generalized derivatives.

A lot of research has been carried in the realm of tangency and differentiation.
I neither intend or am capable to give a complete bibliograhical account of that work,
but I rely on some existent accounts ([16],[22], [24], [25], [29], [35],[36]) limiting
myself either to most recent or to most remote contributions.

Probably SEVERL was the first to consider derivatives of functions defined on non
open sets [33]. He «differentiated functions along» approximating cones (con-
tingents, paratingents) of the sets of definition. In [33] one also finds the idea (at-
tributed to GUAREsCHI) of defining derivatives of functions via approximating cones
to the graphs of those functions. The theory had been developed contemporarily
by BouricanDp [1]. One finds related ideas e.g., in [25] and [35] and in their refe-
rences.

One-sided derivatives (Dini derivatives and their generalizations) turned out
to be adequate tools for optimization problems. Much attention over last few years
was attracted by the generalized directional derivative of CLARKE [5]. A conceptual
turnover was to approach this derivative via appropriate approximating cones of
the epigraphs of the considered functions (HIRIART - URRUTY [16][17], RocCKA-
FELLAR [28], [29], [30]).

Graphs and epigraphs are examples of relations (subsets of product spaces).
‘Whether we consider a funection as its graph or as its epigraph depends on the nature
of the confronted problem that involvesthat function (Sometimesthe zeal of one—sided-
ness goes so far as to attempts of the use of one-sided concepts to intrinsically double-
sided problems). .

Therefore one may look at differentiation and one-sided differentiation as at
instances of tangency theory (theory of approximating cones to subsets of topolo-
gical vector spaces). However this viewpoint does not exhaust all the aspects of diffe-
rentiation. There are classical notions that make essential use of the fact that they

(*) Entrata in Redazione il 24 ottobre 1981,
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concern relations (say in X X Y): they admit non symmetric interplay between X
and Y. Our Hedamard approximating cone embraces these notions.

We observe that the Hadamard derivative in first countable spaces [24] (see
also [6] and the Ursescu derivative [35]) may be interpreted as the Hadamard ap-
proximating cone; also the Severi derivatives [33] carry a presentiment of this idea.

Our aim in this paper is to present tangency theory based on the study of the
relation we call homothely, which plays a role analogous to that of difference quotient
in differentiation.

In particular, the homothety of the epigraph is the epigraph of the difference
quotient, that of the graph is the graph of the difference quotient. This is the clue
to unifying tangency and differentiation.

The concept of homothety has been used before to similar ends (without being
named) by ROCKAFELLAR [28] [29][30], PENOT [25] [26], HIRIART-URRUTY [16], but
we attempt to exploit in its respect (in a more systematic way) the consequences of
convergence theory. Much work can be avoided by choosing appropriate topologies
and filters to work with. For instance the radial variants of approximating cones
result from the choice of the discrete topology. This attitude allows us to argue at
a higher level of abstraction of several reasonigs. There is no need of convincing about
conceptual gain of treating the theories of convergence and tangency simultaneously.
We point out that CHOQUET developed convergence theory [4] with, in mind, appli-
cations to tangency theory. But already BoULIGAND interpreted his contingents and
paratingents as upper limits (ensembles d’accumulation) [1].

One of the principal problems of convergence theory is that of finding conditions
under which a limit of intersection includes the intersection of limits. This question
may be formulated in terms of convergence of functions [9][30][3]. We provide
a sufficient condition for lower limits (akin to the one used for another purpose in [11])
and apply it to homotheties thus obtaining, among otherr esults, a ROCKAFELLAR’S
condition for G,,., 2 By(#) N Bpy(x) to hold [30] (TG,(x) being, in our terminology
the hypertangent of C at z).

We somewhat refine a theory of equi-semicontinuity, recently developed by
DoLECKY, SALINETTI and WETs [14] and apply it to give a sufficient condition for
the directional derivatives of Clarke and Rockafellar to be equal. Another such
condition was proposed by ROCKAFELLAR [20]. We indicate a class of functions
that satisfy our condition but not that of [29]. We also extend the theory of [14]
to relations and to general I-limits of De Giorgi.

There are known connections between I'- and G-limits and the classical Kura-
towski limats ([7][9][8] [2]; see also [37] [20] [23] [14]). We introduce hyperlimits,
show their equivalence to some @-limits and show that they constitute the type of
convergence of homotheties (difference quotients) that gives rise to the Hadamard
derivative,

We do not explore much uniform convergences which for homotheties correspond
to Fréchet differentiability and do not stress the uniform character (uniform on
compact sets) of Hadamard differentiability.
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CONVERGENCE

1. — Limits of families of sets.

‘We recolleet some basic faets about convergences and add some others that are
either new or not widely known. The exposition is intended to be in the vein of the
fundamental paper of CHOQUET [4].

We are primarily concerned with the concepts of upper and lower limits (said
of Kuratowski).

Let & be a filter in a set I and let 4 = {4,},.; be a family of subsets of a set X.
Bquip X with a topology 7. The upper limit of {4}, (filtered by F, with respect
to ) is defined by

(1.1) Isd=Ts54,=(1CLU 4,.

FeF  ieF
The upper limit is equal to the set of cluster point of the filter A4 generated by
{AF =) 4, Fe \‘T-}. If the upper limit is a subset of a set 4, we say that {4},

el
subconverges to A.
Recall that the grill § of a family F of subsets of I consists of all these subsets

of I which meet every member of &. The lower limit (of {4,},.;) is, by definition,

(1.2) : Li A = Lig 4; = 0l 4,.
Fe§ ek

When all the sets A, are singletons, then the lower limit is equal to the limit of the
filter Ag (see below). If A is a subset of the lower limit, we say that {4},., super-
converges to A,

We ghall also write Li, ; (Ls,,; ), when & will be a neighborhood filter of 4,.

Obviously, both limits are 7-closed and if we consider different topologies on X,
then the weaker the topology, the larger is the limit. Since F is a subfamily of ¥,
the lower limit is a subset of the upper limit. Finally the coarser the filter the larger
is the upper limit, but the smaller the lower limit.

It follows from the definitions that » € Ls 4, iff for every @ € N°(#) every F e F
there is 4 € F such that @ N A, 0; due to the duality of filters and their grills,
it for every @ € N(z) there is H € 5 such that Q N 4, @ for each i ¢ H.

An xeLi 4,, iff for every @ € N°(z) and every H e ¥ there is 4 € H such that
@ N 4,5 0. Dually, if for every @ € N'(#) there is F € § such that for each ic F
4,005 0.

ProrosiTioN 1.1, — (KURATOWSKI [20] for sequences, DENKOWSKT [10] for nets)

Lig A; = Lsg.g54,.

Heg

15 ~ Adnnali di Mafematica
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PROOF. — An @ belongs to the right-hand side, whenever for each H in § every F
from F and every @ in N(2), 45, NQ@#* 9 Thus Az NQ+ 0 and ze Ligz 4,. On
the other hand, H M F is an element of &, hence the opposite inclusion is valid.

Of course, a family {4}, constitutes a relation in 7 x X and by standard con-
vention we have that 4-1Q = {i: 4, @~ §}. On using this language, we obtain
that » e Li 4,, if and only if for every @ € N’(z) there iy ' ¢ § such that 4-2Q > F.

ProposiTION 1.2.

LSg;A- == L LigA,‘ .

&
GoF

Proor. ~ Always Lig A4, cLsgd,c Lsg A,;.

Let o€ Lsg 4;: for every Q € N(») and every F e F, Q N A, 0, that is 4@ N
N F == ¢. As a result there is a filter § finer than both 4-1N(z) and . Consequently
for every @ € N°(z) there is G € G such that @ N A4, 0 for i€ ¢. This means that
€ Lig A,. If we consider sequences in metric spaces we may also put ([20])

Lsg 4, = U Ligop4,;.

HeF

ProrosrrioN 1.3. — The upper limit with respect to the infimum of topologies 0§
and 7 is equal to the union of the upper limits with respect to 6 and to 7.
Analogously

ProPOSITION 1.4. — The upper limit of a family filtered by the infimum of filters
F and J is equal to the union of the upper limits filtered by & and J€.

But

ProrosrrIox 1.5. — The lower limit filtered by the infimum of & and X is equal
to the intersection of the lower limits corresponding to F and JC.

Consider now the particular case when a family of subsets of X is indexed by
the product I X Z. Let J be a filter in I and J€ be a filter of subsets of Z containing {,.
Then

(1.3) Lsg,ge Ao Lsg Ay, , Lig,ged;CLigd; ,

as the right-hand-side limits are, in fact, filtered by F X N ({;)—the discrete neigh-
borhood filter of ;.

When X is equipped with the discrete topology the discussed limits become set-
theoretical

(1.4) sy 4, = U4, Liz4,=0 U4,.

Fef ieF He§
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The duality of filters and grills yields a more familiar representation for the lower
limit

FeF icF

If a topology 7 is first countable and a filter & in I has a countable base, then
an & is in Lsk 4,, if and only if there are sequences {x,} tending to # and {i,} being
J-eonvergent for which @, e 4, . In this case, the following statements are equi-
valent:

(i) weLigx d,;;

(ii) for every F-convergent {i,},, there is a sequence {z,}°, convergent
(1.4) to # and such that @, e 4, .

(iii) there exists a function m: I -+ X such that m(i)e A, for ieI and for
each @ € N(z) there is F ¢ § with m(¥F) c Q.

Limits constitute isotone operations: if A,c B, for each ¢, then Li 4,c Li B,
and Ls 4, c Ls B, as easily follows from the definitions. Consequently if {{4,},.};.,
is a class of families of sets filtered by &, then :

LiNAdscLid,;, LsN4,cLs4,,
jed ied jed ieJ
Ulid,cLil4,,, ULsd;cLsl 4,.

jed jeJ ieJ ieJ

(1.5)

We have also

PROPOSITION 1.6. — Let {4,},;, {B,};c; be families of subséts of X.
(i) Ls (4, U B)=1Ls 4, UlgA;;
(i) Li(4,UB,)CLid,UTiB,U (Ls 4, N Ls B);
(iii) Ti(4;U B,)cLid, U Ls B,.

PROOF. — (i) Standard transformations lead to Lsz(4, U B;) = (] (CL 4,V Cl B,)
Fe§
and Lsg 4,V Lsg B, = [} (Cl 4, U C1 B;) and since F N F'e F, the above expres-

sions are equal. FEF

(ii) Suppose that # belongs to Li(4,U B,) but not to Ls 4, N Ls By, say is
not in Ls A;. Accordingly for every @ € N°(x) there is F ¢ & such that QN4
U B;) 5~ 0 for i € F' and, on the other hand, there is Q’c N(¢) and F’e § for which
QNA;,=0if ie F'. We conclude that Q N\ B, @ foric F N F’, that is # € Li B,.
(ii) implies (iii).

KURATOWSKT [20] proved (ii) for sequences in metric spaces.
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It follows from (1.5) that the upper (lower) limit of the boundaries {Fr 4.}, is
included in the intersection of the upper (lower) limits of {4}, and {4%,,.
If the space is connected

(1.6) LiFrd,=Lid, N LA,

The guestion under what conditions the limits of the (finite) intersection become
equal to the intersection of the limits iy one of the central problems of convergence
theory. We shall provide a sufficient condition for lower limits.

ProposiTioN 1.7. — Let {4.}..;, {B;};; families filtered by F be equi attracted,
that is such that for every # in X every @ € N°(x) there are We N(x) and Fe &
such that for i e

(1.7) if WNA,50 and Wn B, 0, then Q " A,N B, 0.
Then

Ti(A,NnB)oLid,NLiB,
thus the ineclusion is actually the equality.

PrOOF. — Let # be in Li 4, N Li B, and let @ € N°(z). Take We N(x) and Fe F
which satisfy (1.7). Since x belongs to Li 4, N Li B,, there is F'c F such that both
WNA;5=0 and WnN B,5= 0. By (1.7),  is in Li (4, N B,).

The condition of Proposition 1.7 is satisfied, if {4,},.; {B,};c; are families of sub-
sets of a uniform space (X, U), which separate equi-decisively: for every U € U, there
are ¥V eUWU and FeF such that V(4,)NV(B;,)c UA;N B;) a8 1€ F.

We shall give now a special result to be used in Section 5. We shall call the
interior limit of {4,},.; (in (X, 7) filtered by F) the set

(1.8) (Lsg A9)° = |J Int, () 4, .

FeF ieF

We note that the interior limit is included in the interior of the lower limit with
respect to the discrete topology.

ProprosITION 1.8,
Li(d,nB)>(Ls A})’N LiB,.

ProoF. — If % is in (Ls A9)° N Ti B;, then on one hand, there is ¢, € N(h) and
FeJ such that for every ieF, Q,c A, and on the other for every Qe N(&),
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Q,CcQ,) there is F'eJ, (F'cF),such that Q " B, = Gas icF'. Thus QN A, NB;= 0
as i€ F' and therefore & belongs to Li(4,N B,).

We digress to say that a family {4}, , uniformly superconverges to A, if for every
U € U there exists F e & such that U(4,) > A for i € F. This amounts to the con-
dition that for every U e U there is ¥ € & such that for each ¢ € F and every = in A4,
A, Uw) = 6.

We conclude by a very special but useful case of families {4}, , such that t' >¢"
implies 4, c A,,. Then

(1.9) Li, o 4,=Ls,_ 4, =Cl| 4, .

>0

2. — Families of relations and funections.

Of particular interest are families of subsets of produet spaces, say X X Y. Then,
of course, the sets constitute relations (or, if one prefers, multifunctions) from X
into Y. Special cases are furnished by families of mappings, epigraphs and hypographs.

Let {f;};c; be a family of extended-real-valued functions on a topological space
(X, 7) and let & be a filter in I. Counsider limits of the epigraphs of this family:
epi 7, = {(#, r): r>f(x)} (which are epigraphs).

Define the limit inferior of {f;} by

(2.1) (li%f)@) = sup sup inf inff(w)
QeNz(a) FeF ieF weQ

and the limit superior as

(2.2) (8% f) (@) = sup inf sup inff(w).
QeNz(z) FeF ieF weqQ

Then we have that
(2.3) Ls™*(epif;) = epi (li"f,), Li"*"(epif,) = epi(Is*f,)

where » is the natural topology of R (see e.g. [8] [14]).

If lif;>f, we say that the family {f},., subconverges to f; when Is f,<f, we say
that it superconverges to f.

Treated jointly (2.1) and (2.2) form the infimal limii of WIFSMAN [37] and (2.3)
has been essentially recognized there [37, Thm. 6.1], for X = R". Separately they
appear in [19] by Jory where one finds (2.3); see also Mosco [23].

On the other hand the limits (2.1) (2.2) are examples of I-limits of DE GIORGI
and FrRANzoONI [9] [T] and (2.3) is reflected in the relationship between J™-limits
and G-limits of DE GroreI [8].

Analogous facts for hypographs (also special cases of the theory of I" and & limits)
have been established by Burrazzo [2].
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Let (X, 7), (¥, o) be topological spaces and {4,} be a family of relations from X
into ¥ we note that

(2.4) D(Lid) cLiDA,), D(Ls4,)cLsDA,)

where D(A) is the domain of 4 (= {#: Aw 5 §}) or, in another terminology, the
projection of A into X. This follows most easily from, e.g., Li"*° 4, = Li"*D(4,)x Y
where o is the chaotic topology, because 7Xo C 7Xao.

Observe that (2.4) applied to relations of type {(epif,)-'}’’ implies that
(2, Prop. 2.7.])

(2.5) inf (Is7f,) >lim (inff,),  inf (li*f,) > lim (inff,)

because Cl Diepif)~* = [inlf, co). These inequalities must not be inverted in gene-
ral; the equality in the latter requires a very «stable» behavior of functions (Do-
LECKI-RorewIoz [13], Jory [19]).

Suppose that {4,},., subconverges (superconverges) to 4. When does the family
{A,x},.; sub- (super-) converge to Az for a given ze X? We observe that g-sub-
convergence (g-superconvergence) of {4,s} to Ax for every z, amounts to the cor-
responding convergence of {4}, ; to A in the product topology (X ¢, where ; stands,
as usual, for the discrete topology. In other words, we are interested in « pointwise
convergence » of relations. Since ¢X¢ is8 finer than =X, we always have

LiAd,xc(Li**"A)x, Ls"A,wc{Ls™4A)w

Therefore the subconvergence of {4}, to A implies the subconvergence of
{4,x},.; to Aw for each x. But this is not true about superconvergence.

We shall give later a general condition for the equality of limits with respect
{0 various topologies and filters. Here we shall consider the special case of relations
{(epi f,)*};o; for extended-real-valued function on X. Let r,e E. Then the above
becomes the problem of convergence of the level sets

(2.6) {epif;)- = {&: f,(#) <ro} .
On specializing the definitions we obtain

ProposiTION 2.1. —~ The level sets (2.6) superconverge to (epi f)~%,, if for each x
such that f(x)<r, and for every W e N(z) there is F € F such that y}glp; fi(w) < 7y
as 1€ F.

Note that if f is a convex function, r, > inf f and 1s f, = f, then the above is:

(2.7) for every w such that f(z)<r, for every W e N(») there is ¢ >0 and Fe §F
such that wjélwi filw)<r,—e as i€ F,
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Indeed, by the convexity of f, for every W € N(x) there is ¢ > 0 such that Inf f(w) <

< 7y —e¢. Take an o' from W for which f(z') < r, — ¢ and by superconvergence find
F c & such that for ¢ F, E?%f‘i(w) <f(®') -+ &/2.

COROLLARY (WIJSMAN [37, Thm. 7.1]). ~ If {f.} (infimally) converges on E* to
a convex function f and inf f < r,, then the level sets (epif,)~, converge (that is
both subconverge and superconverge) to (epif)=ir. _ .

It is interesting that Condition (2.7) is a specialization of a notion of convergence
of relations. The hyperlimit of {4,},.; is the set of all these pairs (@, ) which satisfy:
for every Ve N (y) there are @ € N () and F e F such that VN 42’54 0 as 2’ Q
and i€ F. The hyperlimit

Lhy 4,

is a subset of Liy°4, = Lhi® A4,, since we may regard hyperlimits as lower limits
of {Aiw/}ieI,x’eX .

(2.8) (Lh?’A@)x - Lij%'X;N’z(ﬂc) A,ix, .

Hyperlimits are not closed in general. When the filter is discrete (or in other words,
a family of relations reduces to one relation A4), Lh™ A is equal to the set of lower-
semicontinuity points of 4.

It is straightforward, that (2.7) holds, if and only if (, #,) is in the hyperlimit
(epif)=* of {(epif;)*}ies-

Hyperconvergence provides a sufficient condition for the superconvergence of
{A;z;} to Aw, where both {4} and {x;} are filtered by F and z; tends to .

PrOPOSITION 2.2. — Let {4,},.; hyperconverge to 4 and let {#},., converge to .
Then {4, z,};.; superconverges to Aw.

It is instructive to think about the special case of the above scheme in which
{A};e; s a constant family of relations. Then the subconvergence of {Aw,},., to Ax
for every {},.; coresponds to the graph-closedness of A at #, while the supercon-
vergence amounts to the lower semicontinuity of 4 at ». These properties may
oceur locally (on subsets of Ax).

A classical example is furnished by fibers of a mapping F: X —7Y. The assump-
tion of the Lusternik theorem guarantees locally both the superconvergence and sub-
convergence of the values of the relation F-1: ¥ - X.

We equip X with a topology = and Z with a uniformity . It will be instru-
mental to observe

PROPOSITION 2.3. — A pair (z, 2) is in Ls3* " 4,, if and only of for every U in U
every @ in N (z) and each F from 5

ze UAQ).
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A pair (x, 2) lies in Li?% 4, if and only if for every U in W and each @ in N ()

there is F in § such that

2eU4,9), iel.

3. — Comparison of limits.

In this section we provide conditions for the equality of upper (and lower) limits
when considered with respect to various topologies. Our condition of quasi (z/o0)-
equi semicontinuity for families of relations is an extension and refinement of (z/o)-
equi semicontinuity of DOLECKI, SALINETTI and WETs [14] for families of functions
and our results extend (to relations) and slightly refine the analogous ones therein.

Let {A},; be a family of relations in X x Z filtered by & in ¥. We consider a
uniformity ‘W in Z and topologies 7, ¢ in X.

{4,} is said to be quasi (v/o)-equi semicontinuous at », if for every U e WU every
W e N (x) there are V eW, @ € N, (x) and F e F such that

(3.1) U4, W)>V(4,Q), 4ekF.

This condition is akin to the definition of hyperconvergence, but has the advantage
of being expressed in terms of the family {4,} not of the limiting relation.

In the case in which 4, are epigraphs of functions f, the above condition becomes:
for every ¢ and every W e N,(z) there are ¢ and @ € N (#) and ¥ € & such that for
each ¢ in ¥

(3.2) inf f;(v) — d >inf f,(w) — &,

veQ weW

which is equivalent to (for some other &)

(3.3) inf f,(v) >inf f,(w) — e .

vEQ weW
When the topology o is discrete W is substituted by {»} and the infimum of the right-
hand side by f(x) (Burrazzo [2, Prop. 2.1]).

In [14] a family of functions {f,} is said to be (t/o)-equi lower semicontinuous, if
there is a subset D of X (reference set) such that {epif.} is quasi (z/o)-equi semi-
continuous at every 2 in G and for each « ¢ D, for every M there are @ € N (#) and
Fe¥F with

inff,(0)>M, iel.
2EQ

PrOPOSITION 3.1. — A filtered family {7,} is (v/o)-equi semicontinuous, if and only
if {epif,} is quasi-(r/o)-equi semicontinuous at each & of

DA f,) = DLs™*" epify) .
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ProOF. — Observe that the latter condition in the definition of (7/a) equi lower
semleontmmty amounts to the requirement that if ¢ D then x¢ D" f,) = {a:
(7 f) () < oo}

We reca]l that the coarser the topology the larger are the upper and lower limits.

THEOREM 3.1. — If {4,} is quasi (v/o)-semicontinuous at « and (2, 2) eLiv*W 4,
then (z,z) e Li®*W 4,.

Proor. — Let (z,2) be in LITX%Ai: for every Ve W every Q e N,(x) there is
F € F so that for each ¢ in ¥, z € V(4,Q). Take any U from WU and W e N (x). Then,
by quasi (r/o)-equi semicontinuity, there are V e, @ € N, (x) and F’' € F such that
(3.1) holds. On taking V and @ from the former condition, we have that z e U(4,W)
as i€ F N F', thus (z,2) is in Lig*™ 4, by virtue of Proposition 2.3.

THEOREM 3.2. — Let {4,} be quasi (z/o)-equi semicontinuous at « and (w,2)3
e Ls7*W A, then (z,2) e Ls**W 4,.

PRrOOF. — An (2,2) is in LsfFX%A,-, whenever for every Ve every Qe N (#)
there is H € § such that for each ic H, ze V(4,Q). By our assumption, for every
UeU and every We N (¢) there is FeF such that ze U(A4,W) as ie HN F.
Since HN F is in the grill of &, the proof is completed.

THEOREM 3.3. — Suppose that there are V,eW, @, N (#) and F € F such that

CUV (4@ N\LiZ W 4))

is compact. If
Lsz W 4, c LigW 4, ,
then {4,} is quasi (z/o)-equi semicontinuous on D(LsGHW 4,).

ProoF. — Suppose that the conclusion does not hold: there are U e U, z in the
domain of Ls}xcu’ 4, and We N () such that for every VeW and @ € N,(») and
each F there is ¢ with

(3.4) DNUAW)NTV(A,Q)#0.

Choose 2(V,Q, F) from (3.4). The net {&(V,Q,F):(V,Q,F)eUXN ()X F}
is disjoint from U(L}""%A) and, by compactness, has a cluster point 2. Denetmg
by Z(V,Q, F) the tail of the discussed net, we have that for every Ve every
Qe N (z) and every Fe F

O0#AVENZV,Q, F)NV(4,9).

Hence z is in Lsff‘u’ 4,, contrary to the assumptions,



234 SzyMoN DoLECKI: Tangency and differentiation: some applications, ete.

In the case of epigraphs of functions our compactness condition takes form:
1s° f; > — o0. Therefore we have

CoROLLARY ([14]). — If — oo << 1s° f,<1i" f,, then {f,} is (r/0)-equi lower semicon-
nuous.
We shall specialize equi semicontinuity for a filtered family of {(epif,)~*}..;

PrOPOSITION 3.4. — A family {(epif)-'},.; is quasi (v/t)-equi semicontinuous at
r € B (v-natural topology of R), if and only if

(3.6) for every U eU there is Ve and ¢ > 0, F e F such that for each i F
if 1111%5) f: <7 -+ ¢, then there is

v, Uly) with f;(v,) <r.

Proor. — Let y belong to the right-hand side of (3.1): V{y) N (epi f,)~* B(r, &) = 6,
then, equivalently, epif,V(y) N B(r, &) 0; in other words inff <7 -+ & Simi-
larly, we translate the left hand side.

Observe that indicator functions (assuming only the values 0, + oo) always satisfy
the condition of Proposition 3.4. As well in normed spaces distance functions
fulfil that condition; for every ball (relation) U = B, one may take V = B,,
and ¢ =r/2. The distance functions are also lipschitzian with the constant 1,
therefore, by Theorems 3.1 and 3.2, for distance functions metric and pointwise
convergences coincide.

We recall that quasi »/i-equi semicontinuity is a sufficient eondition for the the
equivalence of the y» X W-sub- (super-) convergence of the epigraphs and the U-sub-
(super-) convergence of the corresponding level sets. Thus we deduce

ProPosITION 3.5. — Let {f;};; be a fiitered family of functions that fulfils (3.5).
Then {f,} superconverges (subconverges) to f, if and only if the level sets {y: f,(y) <r}
super (sub-) converge to {y: f(y) < r} for every reR.

COROLLARY (compare WIJSMAN [37, Thm 3.1]). — Let (X, ¢) be a normed space.
A family {4,},., superconverges to A, if and only if {dist (-, 4,)},,; superconverges
to dist (-, 4) pointwise {dist (-, 4,)},.; subconverges to dist {:, 4), if and only if
{B,(4,)},; subconverges to B{4) for every r>0.

4., — I" and G limits.

Consider » sets X,, X,, ..., X, and an extended—real—valued function f on
X, x..xX,. Given filters N., N>, ..., N, in X,, X,,..., X,, respectively, and a
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sequence of signs 4 or —: «;, &, ..., &,, We define, following Dt GIoRGT [8],

(4.1)  T(Ngy N3y, N f o=

= ext™™ ... ext™ ext™ ext™ ext™.. ext™f(£, &, ..., &)
Nn€Na NaeN2 Ney §ENy £,eN, En€lNag

where extt = sup and ext— == inf.

We have abbreviated here the original notation on dropping «lim ».

The above limit is a (possibly infinite) number. More generally, given topologies
Tis Tay seey Tn O0 Xp, X,y ooy X,y We write

(4.2) [F(Tfla T3y ey Tf.n) 1] (@), @y ooy @,) = F(*N)rl(mﬂ, ) .N’,n(m“)) fs

and, of course, the limit I'(z{*, ..., 7;")f is a function on X, X...x X,. It is known [8]
that

(i) if ¢ is discrete, then the I™limit fixes the k-th coordinate (whatever o, is):
Dy N2y, NoHwy), Nk, ) f = Iy Ny, Ngea s L0 (e, @ 000)
i) (e, N7, ) i<, NF, )
(iii) if N, C M, then
I, N7 0 f<l, M7, 00 F and D, Ny L0 =D M, L0 f
We observe that |

(1v) Lo, N, Ny ) <y Ny, N 00

where we change the order of the ¢ and ¢ -} 1 variable.
Proor. — Note that if we have «irreducible » sings o, % «;,.4, the operations
ext™ M+ extT ™ = ext™ ext ¥,

that is, are of the same type. Therefore (iv) follows, since always sup infg(é,, &)<
<inf swp g(£;, &)- B

It is a simple obsérvation that «sup» and «inf» operations are examples of
I-limits:

exty f(§) = I'(N(B))
where N (B) is the filter of all supersets of B; if B is the whole space we may also

use the chaotic topology o. Limits of infima (2,5) are also I™limits, I'(N*, 07),
(N7, 07) respectively.



236  SzyMON DoLECKI: Tangency and differentiation: some applications, efc.

As we mentioned, it is known [7] [8] that
(4.3) Wfi=L(Fa)f, ligfi=IGF,)f

where f(i, #) = f,(#). For example, we prove the first inequality of (2.5) using I™-
limits. Since Iim (inff,) = in;_ sup inf (¢, ) is equal to I'(F*, 0-)f and the latter,
Fed ieF xeX

by (iii), is less than I'(F*, 7)f = Isk f;, (2.5) follows.

For completeness’s sake, notice that I'(r—)f is the closure (lower semicontinuous
hull) of f and I'(z+)f is the least upper semicontinuous function that majorizes f [8].

We present now a criterion for equality of I“limits. Let N\, Ny, ..., N, be
filters in X, ..., X,_; and let N and A be filters in X,,.

A fupetion f: X, XX,x..X,—> R is said to be equi- N’/M-semicontinuous
(in the last variable), if for every &> 0 and every M € Al, there are N e N and
N,eN,, i=1,..,n—1, such that

INEF(Ey, vy Eu) >inEf(Eyy oy Eu) —e,  as €N,

SN EnelM

THEOREM 4.1. ~ If f is equi-(JN’/AC)-semicontinuous, then
(NG, Ngey oy M) f< (N N2y o, )

Proor. - First we shall show that given N, e N, we may replace in (4.1) ext™* by
_ NipeNg
ext™* . To this end consider a function g: X; X X, X...X X, — R and for a given
NeeNk, NecNe
>0 and N,e N, find &.(e, Nu, &1, .ovy £,q) such that

ext™g(&;, &, vy &)

En€Nn

differs by e/n from g(&;, ..., Enyy Enley Ny &1y ooy &,_1)). Continuining this process we
shall get an element of N, X N,X...X N, such that the value of g at this element:

(4.4) 9[51(37 Ny), &ile, Ny, &uley -Nl))a ceey 571(51(‘97 Ny)y ooy fn_l(&(é'a N,) ))]

differs by ¢ from ext™ ... ext" " g(&, ..., &a).
£eN, En€lNn N
Consider (4.4) with N, replaced by N, N N,. If ¢; = +, then the value of (4.4)

for N, N N, will be not greater than its value for N, plus ¢/n.
Therefore we may pick N,(N.,..., N,) that (¢/n)-attains the infimum of (4.4)

over N;(ext™*) from subsets of N,. Similarly we argue if o, = — We proceed the
NNy
same way with N,, N,, ..., ¥,. Therefore, the value of (4.1) differs by 2¢ from the

corresponding values computed with restriction that N, be a subset of §.. To con-
clude recall that ¢ was taken arbitrarily.
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Suppose now equi-(N/M)-semicontinuity. Then given ¢ > 0 and M € M there
will be Ny, ..., Ny, N such that

inff(-y -y ..., &) >inff(e, -, .., &) —~e on Ny XNyX...XN, ;.

ExeN EreM

Therefore I'(N°3:, Ng2, ..., N°2»1) limits of the above functions: g(¥) and g(M) satisfy

g N)=g(M) —e.

Consequently sup g(M)<sup g(¥) and the proof is accomplished.
Me NeN :

REMARK 4.2. — It follows from the above theorem that if f is (N°/A0)-equi semi-
continnous in the k-th variable, then

T(NT, vy Moy N5 Y F< T (NS, ey Ko=) N )

because we may apply the theorem to the function ext™... ex™ f(-, -, ...,
Skt €Nk 41 £nelNn
Er_1y +oy &) and then proceed with extremization over Ny i, ..., Nu.

ReEMARK 4.3. — The above theorem has been proved in DOLECKI-SALINETTI-
Wxrs [14, Thm 2.3] in two special cases: for ['(—, —) and (<4, —) limits. See also
our Theorems 3.2 and 3.3.

We say that f is upper equi (N[ M)-semicontinuous in the k-th variable if for every
e> 0, M e M there are N, e N; i k and N ¢ N, such that

supf(El, "-’Eky ---7§n)<squ(5s5 ---75707 7§n) + e as EiENi’ 17 k.

ExeN EreM

Analogously to Theorem 4.1, having in mind Remark 4.2, we have

THEOREM 4.4. — If f is upper equi (N’/A)-semicontinuous, then

LNy oy N L0 TNy ey MF, LD

Let 4 be a subset of X;X...xX, (a relation of n-variables). Let Ny, ..., N1
be filters in X, ..., X3 ; and let 7, 74,4, ..., 7. be topologies in X, ..., X,, respec-
tively.

The I™-limit of the indicator function of 4
(4.5) D(NTy o, N s o, 7% 2y,

is the indicator function of a subset of X, X...XX,.
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Therefore (4.5) is a limiting set of a collection {4, . } of relations (subsets of
X, x...xX,} indexed by X;X, ..., X;_;. The collection is filtered (in a nonclassical
way) by Ny, ..., N

The level set of (4.5) represents what is called [8] the G(N], ..., NF¥1; 3% ooy T0F)
limit (G-limdt) of the family {4, . 1.

It is known [8] (and may be easily checked directly) that

(4.6) Li% 4, = G(F+;9-)4,, LshA,=FF-;9)4,.

But it is interesting to observe that (in uniform spaces), (4.6) is a consequence of
Proposition 3.6.

A seemingly most interesting non-classical G-limit is G(N*, v%, 0-) which turns
out to be the hyperlimit. Let {4,},.; be a family of relations in X X Y filtered by N
and let 7, o be topologies in X and Y.

ProprosiTioN 4.5.
G(N+; 7r,07) A, = LhF 4, .

ProOF. — Apply the first formula of (4.6) for & = o and F= N XN (x). Thus
by (2.8)

(LhTE A (@) = GN XN (@)]F; 67) 4, = [E(NF; 7+, 0) 4] (@) .

Note that if the topology 7 is discrete then the lower limit and the hyperlimit coin-
cide. This explains why in Proposition 2.2. in the case of the constant family {«},.;
the hyperconvergence of {4,} may be replaced by its superconvergence (with respect
to the discrete topology in X).

Consider now hyperconvergence of families of epigraphs.

PROPOSITION 4.6. — The hyperlimit of the epigraphs of {f.},.; is equal to the epi-
graph of the I'(+, ) limit of f,:

Lhy’ epi f; = epi ([(F+, 7)) ,

where f(¢, %) = [}

Proor. — Let (z, ) belong to the hyperlimit: for every s > 0 there are W e N'(»)
and F ¢ ¥ such that for every 4 in F and w in W, (epi f,)w N B,(r) % 0, that is

sup sup/f,(w)<r +s.
el wew

Equivalently, » is greater than

(4.6) g+, tH)f(w) = inf  inf sup sup fiw) .

weN:(x) FeF ieF weW
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The above result sheds a new light on the nature of some I" limits. So far it was
known [2] that the hypograph of I'(4, +) limit is equal to the upper limit of the
hypographs.

To conclude this section, observe that the interior limit (1.8) of a family of epi-
graphs {epi f;},.; (filtered by N’) may be represented with the aid of

(N~ D) f(w) = inf sup inf sup f{w),
weNe(x) FeN ieF weWw °
namely

(Ls(epi £,)9)° = {(=, #): r > T(N=, +) f(2)} .

TANGENCY

5. — Approximating cones.

Several bibliographical accounts of approximating cones have been given ([29]
[35][25] [16] [36]) and we do not intend to compete with them. We shall only say
that a great variety of cones that approximate (locally) sets have been studied since
the beginning of the century (SEVERI [33] BOULIGAND [1] and others) and that now
we witness considerable interest in conical approximations.

We shall diseuss principal approximating cones. All of them will be defined as
limits of a single relation said homothety. Homothety has been already used (without
being named) by HIRIART-URRUTY [16], ROCKAFELLAR [29], PENOT [25]; we are
going to deploy it in a more systematic way. The advantage of this approach lies
in capitalizing on convergence theory; often, what so far used to be an involved proof
becomes an easy consequence of the preceding sections.

The homothety in a linear space X is the following relation (multivalued mapping
from 2%¥x X X (0, co) to X):

(5.1) (€, z, 1) _Jt(o_w).

If the set C is fixed, (5.1) is called the homothety of C and, if needed, will be denoted
by ¥,. If, moreover, » is fixed, the relation ¥, . is called the homothety of C about w.
We note that

(@) if CcD, 1;hen1t(o_m)c1t(1)—w)
(i) %(OUD—m)z%(O——m)U—li(D—w)
(5.2)
(iii) %(OHD——w):%(O’—m)n}i(D—-w)
(iv) ‘.])—175(0~~ (z,9)) :%(S)(C)—m) for every y € Cux.
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Topologies we are going fo consider on X are not necessarily compatible with
the linear structure.

The contingent of C at ® (BOULIGAND [1]) is the upper limit of the homothety
of C about 2 as ¢ tends to 0:

(5.3) K@) = L8l (€ — ).

o]

(0—m):mcLTU}i

>0 t<s

The semitangent of O at x (of SEVERI [33]) may by introduced by

(5.4) Six) = Cl,U%(On V—a).

VeN(z) i>0
ProPOSITION b.1. — If X is a normed spaces, then

Sy(@) = Ky(x) .

PrOOF. -~ An b belongs to the semitangent {of C at #), if and only if for every
Ve every Qe N, (h) there is t >0 such that 2 +1Q N CNV(x)= 0. If {s.}
tends to zero and we choose (s,V)(x) for the above formula then the resulting {t.}
tends to 0, hence h is in the contingent.

If b belongs to the contingent (for every @ € N (h) and every #, there is ¢<t, with
2 -+t N Cs=0), then as for every V e N (¢) we may find ¢ such that = 1@ cV
for t<t,, it belongs also to the semitangent.

Obviously Sy#) = Sg,y{®) for every Ve N(z), thus in our ease also K (z) =
= K., ,(x), that is, the above cones approximate C locally.

The tangent of C at z (DUBOVITZKII-MILYUTIN [15]) is the lower limit of the homo-
thety of ¢ about # as ¢ tends to 0:

ol

(5.5) Tiz) = Lit,e = (0 — ).

o |

We say that a set Eis directionally open about x, if for every he X there is Ve N(h)
and #, such that for each t<i,, # -tV c E. Every open set is directionally open pro-
vided that neighborhood bases are composed of radial (absorbing) sets (in particular,
if X with its topology constitutes a topological vector space); the intersection of
two sets directionally open about # is also such. If the topology is diserete, then a set
is directionally open at », if and only if # iy its internal point.

Both the tangent and the contingent at « of a set directionally open at z are the
whole of X.

PROPOSITION 5.2. — If F is directionally open at @, then

Tong@ = To@), Kgag@)= K (@) .
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Proor. — Let he Ty(x). Take @, N'(h) such that for i<t # + 1@, cE. We
have that for every @ e N'(h), @ cQ, there is t;<?, such that = J-1Q N C = @ for
t<t; hence # + 10 N C N Es= 0 and the first formula is demonstrated. The latter
one admits a similar proof.

It follows from general facts about limits that the contingent and the tangent
are closed; the coarser the topology the larger they are; the contingent includes the
tangent. ) :

If O is radial about # (for each w in C the interval [w, ] is a subset of (), then,
by (1.9), the contingent is equal to the tangent. This happens, in particular, when ¢
is convex.

It is easy to notice that the following statements are equivalent (e.g. [35, Lem-
ma 7]): (i) 0e Ty(z); (i) 0 e Ky(»); (iii) # e C1C.

Like limits, tangents and contingents are isotone. In particular

(5.6) Tonplw)c Tolw) N Tp(w), Kg,p@)CKyw) N Kpyz).

We are now eoncerned with sufficient conditions which imply the equality in (5.6).
One example has been already furnished by Proposition 5.2; it is enough that one
of the sets C, .D be directionally open.

We may use Proposition 1.7 to derive a more general condition for tangents.
Specialized for the homotheties of ¢ and D about # it yields this obvious requirement:

(5.7) for every h in « and every ¢ € N(h) there are W € N°(k), #, such that for ¢ <t,,
ifta-+tWNC20and o +itWND£0, then ¢ +-1Q N C N D@,

Note that if one setis directionally open about x then the above condition is satisfied.

A family G of is called a directional covering about x, if for every h € X that are
¢ € N(h) and ¢, > 0 such that @ -+ (0, ¢,)-¢ is a subset of an element of § and such
that every G € G is the union of such sets.

ProrosiTioN 5.3. ~ Let € and D be subsets of a normed space X. Let S be a
directional covering about 0 such that for every ¢ € G there is k = k(() such that

(5.8) dist (g, 0 N D — &) <k[dist (g, C — ) + dist (g, D —=)] ge6,
Then
(5.9) Toop@) = Ty(@) N Tp(z) .
PRrOOF. — We shall show that (5.7) holds. Let ke X, » > 0 and let ¢, be such that
% -+ (0,7,)G is in 6. We take for § = B,(h), W = B, ,,(h). If x - tW N (s~ ¢ and

@+ tW N D == 0, then, by (5.8), dist (th, C N D — =) is smaller than #t, in other
words, # 19 N CND=~0 ag t<t,.

16 ~ Annali di Matemalica
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The condition (5.7) is satisfied, in the special case in which € and D separate
decisively at a linear rate (see [11]): there are & and m such that

dist (g, C N Dy< k[dist (g, C) - dist {g, D)}, g¢geX, dist{g,C), dist{g,D)<m.

ProrosITION 5.4, —~ When € and D are convex (5.7) becomes also necessary for
the equality T, p®) = T (@) N Tp(x).

PRrOOF. — Suppose that (5.7) does not hold: there is h and ¢ € N'(h) such that for
every W e N'(h) and every t, there is t< ¢, for which » - tW N (= 0 and « 4 tW N
N D=8, but « -+ 1Q misses C N D. Therefore ke K (x) N Kpy(x), thus, by con-
vexity, is in T4(x) N Ty(z) but not in Ty H(@).

When the topology considered in X is discrete, then Ki(x) is called the radial
contingent of C at x and T.(x) the radial tangent (or, simply the radial cone) of C
at #. Accordingly, & is in the radial contingent (of C at o) if and only of there is a se-
quence {t,}>° , convergent to 0 with @ 4- ¢t,h € C; h belongs to the radial cone of ¢
at @, whenever there is , such that x +- the C at {1 <t,.

Let 7, 6 be topologies on X.

The hypertangent of € at x is the lower limit of the homethety ¥,(2', t) of C as o’
tends to # within O in § and ¢ tends to O:

(5.10) BE#) = Ly, 00 N0y K -

The neighborhood filter No(z, C) is for the topology, induced on C by 6.

This cone has been studied (in the case in which 8 is the topology induced on ¢
by 7) by ROCKAFELLAR [29] [30] under the name of tangent, by HIRIART-URRUTY [16]
[17] and PEnorT [25][26] under the name of peritangent, and by others. The term
« hypertangent » has been used in [29] [30] for the radial hypertangent, that is the
approximating cone (5.10) when 7 is discrete. It follows from (1.3) that

BL(w) c Tole), B(x) = Th(a) .

We shall define again the hypertangent starting from considering homothety as
the family of relations from € into X indexed by (0, co).

Then the hypertangent G, (relation from C into X) is the hyperlimit of the homo-
thety (6 is understood to be restricted to C)

TH ) = (Lh?—/:o{(wly yYe OxX: y’e% (C— m,)}) (@) .

We conclude that the hypertangent GH’(«) is always 7-closed. The hypertangent
relation is not in general closed (8 X 7).

It is known that if (X, 7) is a topological vector space, then BY"{(x) is convex
for every ¢ and x [28] [34], while available proofs were given in normed spaces.
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It is also known that the radial hypertangent B/°(x) is then convex. We present
a generalization of those results. After I had established the result to follow I be-
came acquainted with an essentially equivalent result, although proved differently,
by PrnNot [38].

We say that (X, 7) is an almost topological vector space (almost t.v.s.), whenever
the multiplication (x,t) > fx is continuous in X for every ¢{e R and the addition
(2, ¥) >z + y is continuous on X x X.

The discrete topology in & vector space gives rise to an almost topological vector
space which is not a topological vector space. More generally, topologies given by
invariant uniformities are almost topological vector spaces. Neighborhoods of zero
in such spaces need not be radial.

THEOREM 5.5. — Let (X, 7) be almost t.v.s. and (X, 0) be a t.v.s. such that 6 c 7.
Then for every C and z, the hypertangent GY°w) is convex.

PROOF. — Let &y, k, be in GF%x) and let 0 < 1 < 1. For every W, e N,(z) there
are W, e Ny(®), @, € N (k) and #, > 0 such that

(5.11) Wi+ (0,4)Q.c Wy,
because 0 is compatible with the linear structure of X and 7 is finer than 6.

Since &, is in the hypertangent, for every @, N, (h,) there are W,e Ny(x) and
t, > 0 such that for ¢t <4, 2’ e W,N C

(5.12) o+ tQ,NC# 0.

Let @ € N, (Ahy -+ (L — A) hy). Since (X, ) is almost t.v.s., there are @, € N (h,)
and @, e N_(h;) such that

(5.13) A+ (1—2):cq.

To that Q, chpose W, e Ny(x) and £, > 0 such that (5.12) holds. To the above W,
choose Wi, ¢, and ¢, such that (5.11) holds and (5.13) continues to hold. For that Q,,
there are W; e Ny(«) and #; > 0 such that W;c W, and t,<t, for which

419, N0#06 as aeW,NC andt<t,.
Consequently there is z'e 2’4 AtQ, N Cc W,N € and by (5.12)
8 Q4+ (1 — A)tQy N O = 0

provided z’e W; N € and ¢ < min(t,, ¢;), which in view of (5.13) yields

&N 00,
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CororrARrY. — The radial hypertangent is convex.

Expanding on the definition of ROCKAFELLAR [30] we say that a set O is epi-
Lipschitzian at o towards h, if there are @ € N, (h), W e Ny(z, C) and ¢, > 0 such
that @ c A/t{C — ') for #'e W and ¢ <?#,. Note that two topologies are involved.

By analogy to our previous definition we say that C is directionally equi-open
about x, if O is epi Lipschitzian at » towards every h. One realizes that C is epi-
Lipschitzian at « towards b, if and only if h € {Lsjp,u 0 x N [(1/0)(C —a')]F

Prorostrion 5.6. — If C is epi-Lipschitzian at @ towards h and ke Gp(x) then
he By, ).

Proor. — Since € is epi-Lipschitizan at x towards %, & belongs to
- 1 , cle
LSy, 00 D) x N(0) 3(0“90 ) ’

Ns(z, C N D) being finer than Ny(z, C). As well,
/6 3T 1
TL () C Ly, 00Dy x N(0) 7 (D—ua).

By Proposition 1.8, & belongs to G, p{%).

An immediate consequence of Proposition 5.6 is the local character of the hyper-
tangent in a topological space (X, §) when 7 is finer than 0.

From the above proposition it follows that if ¢ is epi-Lipschitzian at « towards
some h and Int B,(x) N Byw) = @ then T, p(2) 3 Gylw) N Tp().

Tt was proved [29, Thm. 3] that in that case Int Gy(x) is equal to.the interior limit
of the homothety (the set of epi-Lipschitizan directions) thus by Prop. 1.8 G, p(®) >
> Int Byx) N By(w), and by convexity one drops «Int» in this formula. (see Ap-
pendix).

This result, formulated in the language of functions constitutes the main part
of [30, Thm. 2].

We shall pass to a condition which is analoguous to (5.7) and will be derived from
Proposition 1.7. Observe that this condition involves only #’ from ¢ N D.

ProprosiTIoN 5.7. — Suppose that
(5.14) for every he X every Qe N (h) there are Ve N, (h), We Ny, ¢ N D),

{, > 0 such that if each a'e W, t<ty, #'--tVN 0= @ and o'+ tVN D= 0.
then &'--tQ N C N D=~ §.

Then,

BUe (@) 2 BYw) N BY(w) .
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Proor. — We have that

. 1 } 1
Liy,(e,00x X5 (0 — ") CLiy,(x,cnp)x N(0) 5 (C—uw),

thus

: 1 7 1 !
Golz) N Tp(w) C LlJ\r’a(m,onD)xN(o)[i (C—2) N 3 (D—u )] .

Now apply Proposition 1.7.

A condition analogous to that of Proposition 5.3 may be inferred from (5.14).
There should be a directional covering about 0 on which (5.8) holds uniformly for
@ = &' from a neighborhood W of x. '

The paratingent (BOULIGAND [1]) of C at « is the upper limit of the homothety
of C as &' tends to » in 0 and ¢ tends to 0.

(5.15) K (x) = LS, .00 x o0y oo
the improper chord of SEVERI [33] is an element of

Cir) = [} CL. =

(CNV—a"
VeNez) t>0,z'e¢nV b

which is a subset of the paratingent X7°(z) and if v = 0 is metrizable the two coincide.
Let X be a normed space. We observe that

dist (h, lt (C— m)) = ltdist (x + th, C).

Therefore, by Corollary of Proposition 3.5,

To(w) = {h: 187,05 (dist (& + th, 0)) = 0}

N e

— {h; 18, - (dist (@ + th, 0)) = 0}

and similarly for contingents, hypertangents and paratingents. Such formulae were
recognized by PENOT[26] and URSESCU [35] where a reference to a FEDERER’s paper
may be found. '

One may also define approximating cones of ¢ by differentiating its indicator
function.

To conclude this section we gather some statements in

(5.16) BY ) ¢ Tr(w) ¢ K5(w) ¢ Keo(x) .
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6. — Approximating cones of relations. Generalized derivatives.

Now we consider subsets of X X Y, hence relations from X into Y. Let 7 be a
topology in X and ¢ in Y.
It follows from (2.4) that

(6.1) DK (@, y) c Ko@), DTG, y)) ¢ Tohp)(@) -

Analogous statements for hypertangents are not valid in general as in the example
of C in R?

0= {(wa y): >0, y>0} v {(% y): w<01y<0}

and its point (0, 0).

We may rephrage the definitions of approximating cones using the fact that ¢
is a relation, for instance, (, k) is in T5*%(z, y), if and only if for every @ e Ny(k)
and Ve N (h) there is , such that

(6.2) Y+ N Ce-+tV)=0, t<t.

In this case we shall occasionally use the notation C%(w, y) rather then T (w, y). Of
particular interest is the situation where the topology in X is discrete. An (A, k)
is in €T "*%(x, y), if and only if for every @ e N,(k) there is #, such that for { < ¢,

(6.3) ¥yt 0 Clw -+ th)= 0,
that is, when @ N (1/8) [C(x -+ th) — y] = 0.

Approximating cones of relations are also relations in X X Y; for example, (h, k)
is in the contingent of C at (z, ¥), if and only if k€ C%(x, y)h. The fact that € is now
a relation enables us to consider new types of approximations.

Call the Hadamard cone of C at (z,y) the hyperlimit of the homothety of ¢ at
(%, y) a8 t converges to 0 (the terminology will be explained later)

1
0", y) = H’(w, y) = LhiZ, 5[0 — (@, )]

Consequently ke 0%(z, y)h, if and only if for every @ € N,(k) there is V e N,(h)
and ¢, > 0 such that

¥y 19 N O 4 th')  as i<y, eV,

Consider now the important case where relations are single-valued (thus are
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identified with mappings). The homothety of f at (x, f(x)) is for ¢ fixed the mapping
W — (@ f(@))) and we have
fl@ - th) — f(=)

(6.3) K lh) =511 — (o )]y =2

which is the difference quotient of f at x.

By specializing general definitions we say that % is in the contingent f*(x)h of f§
at « towards h if for every ¢ € Ny(k) and every V e N, (h) for each 7, there is t < {,
such that

(6.4) 0N M — @)

; #= 0

and if the topology in X is discrete, then of course, (6.4) becomes

65) flo ) — o)

eEQ.

If (6.4) (respectively (6.5)) holds for all ¢ < #(@), then we obtain the tangent f7(«)
(discrete tangent which is the Gdieaus differential if it is linear and continuous (as
the function of h)).

A vector k in f#(@)h, if and only if for every Qe N,(k) there are Ve N,(h)
and ¢, such that for t<f,

fw + V) —f(a)
t

ch.

The classical Hadamard derivative of f at « may be defined as the linear con-
tinuous mapping A such that tor every » in X and every function p: (0, o0) - X
such that }Hﬁl p(t) = hy

i (@ + 200) — f@) _

{0 l

Ah  (see NASHED [24]).

ProrosITION 6.1. — If X is a metric space, then the Hadamard approximation
of f at (z, f(»)) is the (graph of the) Hadamard derivative (provided it is linear and
continuous as the function of h).

Proor. — First note that j#(z)h is at most a singleton as the lower limit of a
single-valued family in a Hausdorff space (hence the limit).
Let kef¥(@)h: for every Q € N°(k) there are W € N°(k) and ¢, such that“for 1 <<t,

f(@ - tW) — (@)
t

cQ.

On the other hand, there is ¢t <t, so that p(t)e W for t <t'. Thus k = Abh.
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Suppose that ¥ = Ah. We shall use the dual definition of the lower limit describ-
ing f#(x)h. & is in the grill of N(A)X N(0) if and only if there exists a sequence
(hay t,) In G, t,>1t,., converging to (h, 0). Define p: p(f) = &, if ¢, < t<i,. Since
k = Ah, thus, in particular, for every @ € N(k) and every & there is (f, p(t)) in ¢
50 that

He 4 tp(t)) — f(@)
¢

ig in Q.

Thus k€ f(x) h.
Consider now topologies T in X, ¢ in Y and another topology # on X x Y.

A vector k belongs to the hypertangent fi(x)h if for every Qe N (&), Ve N.(h)
there are ¢ > 0 and W e Ny(z, f(2)) such that

Mo+ tVt) g, (@, i)W, 1<h.

We may simplify the above formulation by introduecing the «graph topology » in X,
If & = &, x ¥, then we denote by &, the supremum of ¥, and of the coarsest topo-
logy in X for which f (into (¥, 9,)) is continuous.

In particular, if = is discrete, then k€ f*(x)h, whenever for every e N (k)
there are W e N () and £, > 0 such that

wﬁ}:@eg , fort<t, and a'e W.

This is & property akin to sirict differentiability which is not uniform in h.

The above concepts concerning functions and the analogous infinitesimal concepts
for general relations show strong resemblance. Thus one may call them derivatives:
outer derivative in the case of contingent, inner derivative for tangent, and similarly
hyperderivative, paraderivative and Hadamard derivative. Since terminology in the
area has not been yet consolidated, I am careful not to introduce the above names
formally. I am uncertain whether they fit more for the case of the discrete topology
in X or maybe they should have some other requirements like convexity or semi-
continuity.

Relations we have been investigating may admit empty values; in particular,
the resulting mappings may be implicitly defined on a proper subset D(f) of X,

One may also propose definitions that deploy the domain explicitly. For instance
given a mapping f defined in a neighborhood of a set D we may define an approximat-
ing cone at (#, f(#)) as the restriction of f*(z) to T'p(»).

Here we discover a variety of possibilities as the approximating cone of the domain
and that of the mapping may be of different type.

This approach is very well adapted to applications in optimality theory.

Already the total differential of SEVERI [33] is defined along these lines. Another
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example is furnished by the derivative of UrsEscu [35] which is the Hadamard deri-
vative (in our sense /) of a mapping defined on D = D(f) such that D(f*(z)) = Kqy ().
In general, we have

(6.6) ()@ @) gy s (Flp) @) € 7@ g 5

This is by virtue of (1.5) (having in mind (5.2)), since the relation f|, is equal to
fn{(®y):ze D} '

Surely, hypertangents will not in general enjoy a similar property.

One may use the results of Section 5 to provide sufficient conditions for the op-
posite inelusion to hold, but we are not going to discuss this here.

Another very important class of relations are epigraphs. We observe that the
homothety of the epigraph of f at (z, f(z)) is the epigraph of the homothety (6.3).
More generally, we shall consider the homothety of the epigraph of at (x, ) in epi f.
There will result the epigraph of

(6.7) Ar o () = W—J“?ﬂi)—f :
Before we face the infinitesimal concepts for this case, it is useful to propose a change
of notation: f = epi .

Apart from its brevity, the new symbol reflects the fact that the epigraph >f is
the composition of the relation f and of the order relation > in R. The inverse of
the epigraph is the level relation and it is natural to put (Zf)~! = f~I<.

The contingent, Hadamard, tangent, hypertangent epi-derivatives then result from
the general definitions:

(6.8) ° >f"’(m)h=[l’(J\f’(0)-, ’E.‘)(lt.(f(a%—]— ih') — f(m)))](h):

1
= sup sup inf inf= (f(@ + th')— f(z))
QeNz(h) t, i<t, h'eQ

©69) = = 30 ) (F (e + ) — fo))] () =

1
= inf inf sup sup=(f(z + th') —f(=))
QEJ\PT(h) te (<, h'eQ t ’

010 =) = [Ty, ) (3 it + 1) 1) | i) =

= sup inf sup infl(}‘(w + th') — f(w))

QeNz(h) t, I<t, h'eQ
(011) =Pla)h = | (T, Nl 1), 1), ) 3 o'+ ) =) | 0 =

. . .1
= sup inf inf sup sup inf (f(cv’ + th') — 1") .
QeNe(h) WeNg((@.f@),21) ty 1<ty (@' )EW W'eQ
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Of course, the epigraph of the contingent (tangent hypertangent, ete.) epi-
desivative is the contingent (tangent hypertangent, ...) of the epigraph. In Rooxa-
FELLAR’S notation

(6.117) *fw) = fi(z)

and we shall call (6.11) the Rockafellar (directional) derivative When the topology
is discrete, we have the (generalized) Clarke (dirvectional) derivative; it is customarily
denoted by f(x).

By introducing the epigraph topology in D(f) (graph topology of the epigraph)
we may replace J\ﬂ,((w, f(x)), >]‘) in (6.11) by more convenient N>, ,() and by using
the notation of Section 2 we have the simpler

I b 1
t

(6.11") Zfl@)h =18 (fo'+ th') — f(=")) .

t—0, o' SHs?
provided f is J-lower semicontinuous at . We notice that the epigraph topology
determined by f and ¢, 9, is the coarsest topology finer than ¢, for which f is
upper semicontinuous.

The contingent and tangent epi-derivatives are called (generalized) Dini upper
{(lower) derivatives. For instance, we have that k> f"(x)h, if and if for each ¢, for
every ¢ € N'(h) there is ¢, such that for ¢ <{,

inf (f(w + th') — f(o) — th) <et
h'eQ

and for the discrete topology in X
flx + th) — f(o) —th<et.

It follows from convergence theory that
(6.12) i) <> (@) <> fi0) < (@) .

After ROCKAFELLAR [28] call f subdifferentially regular at x towards h whenever
>{E(g) b = Zf(®)h. In this case the two are also equal to Zf7(x)h.

The radial subdifferential reguality (v is discrete) was studied by CLARKE [5]. Equi-
valent concept of quasidifferentiability is due to PSHENICHNII [27] (see also MIip-
FLIN [21]).

In the radial case if Zf%(x) = Zf%(v), then both are actually equal to the directional
Giteaux derivative (without continuity and linearity)

) = lim 3 (j(o + th) — (@)
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Though it is possible to use Theorem 4.4 to furnish conditions for subdifferential
regularity we shall give one directly.

PROPOSITION 6.2. — An 1. sc. function f is radially subdifferentially regular at «
towards h, if and only if f'(w)h exists and for every ¢ > 0 there are W e N ;s(®)
and ?, such that for i<, and 2’'e W

@'+ th) — f(#") — f' (@) h<et .

The above condition is a unilateral strict differentiability (not uniform in 7).

The Levitin- Milyutin-Osmolovskii approximation (see IoFFE[ 18]) amounts to
the radial subdifferential regularity of f at » uniformiy for « in bounded sets. In
fact, the original definition of the L.M.O.-approximation involves a family f'(z)(-)
of approximations. However if {f'(#')(-)} is equi upper semicontinuous as x' tends
to @, then it may be replaced by the single function f'(x){-).

7. — Approximations which are radial in the domain.

What most recalls classical directional derivatives are approximating cones of
relations in X X Y considered with respect to the discrete topology of X. If (h, k) e
€ XX Y belongs to such an approximating cone of ¢ at (z, y) then ¢-h is forced to
stay within, or to return frequently into, D(C) —x as ¢t tends to 0. For instance,
given C: X — ¥, keB ™ x, y)h whenever for every Qe N(k) there are f, and
We N,((@, ), C) such that for every ¢<t, and (z/,y')e W

Y +1Q N C(x'--th)= 0.

Due to general properties of limits, an approximating cone radial in the domain
is a subset of the corresponding approximating cone with respect to any topology
(in the domain). The objective of this section is to establish additional conditions
under which the two cones are equal. Such conditions enable one to cope with general
concepts with the aid of simplified formulae. » .

By virtue of Theorems 4.2 and 4.3 the above cones are equal provided that the
homothety (of O at @ for classical cones and of C for hypercones) in quasi z-equi
semicontinuous. By direct checking we conclude that

Lemma 7.1. - Let (Y, W) be a uniform space. The homothety of a relation ¢

at (#, y) is quasi 7-equi semicontinuous at &, if and only if for U € AU there are V e U,
@ € N°(h) and s > 0 such that for every ¢ < s

(7.1) (t0) [C(w + thy — y] 5 (V) [C(& + 1Q) —y] .
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In particular the difference quotient at » is z-equi lower semicontinuous at h if
and only if for every ¢ > 0 there are ¢} € N°, (k) and s> 0 such that for each ¢ < s

(7.2) sup (f(z + th) — f(x + th'))<et .

heq

Lemma 7.2. — The homothety of € is quasi 7-equi semicontinuous at h (as the
family filtered by N((%, %), €) X N°(0) if and only if (7.1) holds for every i < s) and
(@, y) € W (a neighborhood in N((, %), ¢) dependent on U).

In particular, the difference quotient of f is 7-equi lower semicontinuous at A,
as a family filtered by Na( (x, f(z)), >f) X N°(0), it and only if for every &> 0 there,
are @ e N, (h), s >0 and W e Ny((«,y), ©f) such that

(1.3) sup sup (f(@'+ th) — f(a' + th'))<et, T<s.
2 €D(F) W'eQ

Formalzing what we have already said

THEOREM 7.3. — Suppose that (7.1) holds on the domain of the 7 X U-contingent
(tangent) of € at (x, ¥). Then the 7xXU-contingent (tangent) and X U-contingent
(tangent) are equal.

Of course, the above theorem applied to the epigraph of a funetion f provides
the condition (7.2) under which Dini upper (lower) derivative in the generalizad
sense and the strict gense are equal at h. :

We say that f is directionally Lipschitzian af @ towards h, if for every &> 0 there
are neighborhood ¢ of % and s > 0 such that for every ¢t <<s

(7.4) sup [f(w 4 th) — f(z + th')|<et.
h'eQ

Observe that if 7 is locally Lipschitzian at x then it is directionally Lipschitzian at
and that the latter entails Property (7.2).
" In view of Theorem 4.3 and Lemma 7.2 we have

TueoreM 7.4. — If (7.3) holds, then the Rockafellar derivative and the (genera-
lized) Clarke derivative are equal at h

(7.5) )b = )b .

Formula (7.5) has been proved by Rockafellar [30, Thm. 3] provided f is direc-
tionally Lipschitzian at x with respect to k. This condition amounts to the existence
of Qe N (h), We Nﬂ((m, f(2)), >f) t, > 0 and a constant M such that

(7.6) sup sup (f(@' + ) —f@))<Mt, t<ty.
s eD(W) We@
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The following proposition provides a criterion for (7.3) to hold. Note that the
functions considered in this proposition are not, in general, directionally Lipschitzian.

Let f be a real-valued function on X, C a subset of X. We denote fo = f - %o,
yo the indicator function.

PROPOSITION 7.5. — Let X be a normed space. Let f be locally Lipschitz on a set C.
If h belongs to the radial hypertangent of C at », then f, satisfies (7.3).

ProoF. — For ¢ take @ to be a ball of radius ¢ with center #» and choose s and
W e N(x) so that #'4-the C for #'e WN ¢ and t<s. If needed 8, W and s are
reduced so that f is Lipschitzian on (W N € + (0, 5)Q) with the constant ¢ and so
that ¢d < e. Then if o'~ ¢th' is in O (with a’'e C N W, t < s, b €Q), then

fol@' - th) — foa' -+ 1h') <edt < et .

and otherwise the difference is — oco.

Appendix.

I shall give here a geometrical and quantitative proof of the fact (which is known)
that

THEOREM. — Let 4, B be convex sets in a Hausdorfl topological vector space X
for which 4 N Int B~ 6. Then

ClANIntB)=Cl(4ANB)y=ClANCIB.
Let @, v be different elements of X and let W be a neighborhood of 0 in X; %, g,

A, v positive reals.
By straightforward checking one establishes

LEMMA 1. — If #'e @ + uW and t>p/(p - 4), then
A—tyw + o+ L —)Wic@l—t)a'+to + W).
LEMMA 2. — If ¢>9/(x - v), then
(L — )@ -+ v W)+ toCc (L —1t)@ + i(v + »W).

Lemma 3 (corollary of Lemmae 1, 2). — If ¢>max (v/(1 — 24+ »), p/(u + )
and z'ex - »W then

(L —)@ + »W) + toc (1 — ) @'+ tv + W).

In particular by putting A = % and » = x we get the condition #>2u/(1 - 2u).
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Proor or TEEOREM. — We need prove only one ineclusion. Let xeClANClB
and let v and W be such that v A and v + W c B. For every zero neighborhood
VecWandy>0 we have that

e +2»V)NnA=0 and w(r)ex-t+vVWnNB,

of course,

(1—1#)z(») + 4o + W) cInt B, as 0 <t<1 and by Lemma 3 for ¢> zﬁ 1
’ (1—t)x +»V)+tvcIntB.

On the other hand (1 —¢)(» 4+ »V) + v meets A for every 0 < <1, thus it meets,
ANInt B if t>2¢/(2v + 1).
Let § > 0 be such that v —x e V. Since

(%) -t +vV)+to=20+tv—2) 41—V,

the set (%) is included in « - sV provided that s>if -+ (1 —1). By setting
t = 2v/(2» 4+ 1), we get the condition that s> ((1 -+ 28)4»)/(1 + 2v). ~

Therefore for every V we may find U ¢ V' N W and s(») such that (1 — ¢)(z + »U) -
+tv CcsV, where t = 2y/(2y + 1).

Therefore sV meets A N Int B.

Since s tends to 0 with », every neighborhood of 2 meets A N Int B.
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