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S u m m a r y .  - We present a uni]ied approach based on convergence theory to a2proximating cones 
and generalized derivatives. 

A lot of research has been carried in the realm of tangency and differentiation. 
I neither intend or am capable to give a complete bibliograhical account of that  work, 
but  I rely on some existent accounts ([16], [22], [24], [25], [29], [35], [36]) limiting 
myself either to most recent or to most remote contributions. 

Probably SEVE~I was the first to consider derivatives of functions defined on non 
open sets [33]. He <~ differentiated functions along ~> approximating cones (con- 
tingents, paratingents) of the sets of definition. In [33] one also finds the idea (at- 
tr ibuted to GUAI~ESCHI) of defining derivatives of functions via approximating cones 
to the graphs of those functions. The theory had been developed contemporarily 
by BOULIGAND [1]. One finds :related ideas e.g., in [25] and [35] and in their refe- 
rences. 

One-sided derivatives (Dini derivatives and their generalizations) turned out 
to be adequate tools for optimization problems. Much attention over last few years 
was attracted by the generalized directional derivative of CLARKE [5]. A conceptual 
turnover was to approach this derivative via appropriate approximating cones of 
the epigraphs of the considered functions (HI~L~T-  U ~ u ~ Y  [16] [17], ROCKA- 
rELLAR [28], [29], [30]). 

Graphs and epigraphs are examples of relations (subsets of product spaces). 
Whether we consider a function as its graph or as its epigraph depends on the nature 
of the confronted problem that  involves that  function (Sometimesthe zeal of one~sided- 
hess goes so far as to attempts of the use of one-sided concepts to intrinsically double- 
sided problems). 

Therefore one may look at differentiation and one-sided differentiation as at 
instances of tangency theory (theory of approximating cones to subsets of topolo- 
gical vector sp~ces). However this viewpoint does not exhaust all the aspects of diffe- 
rentiation. There are classical notions that  make essential use of the fact tha t  they 

(*) Entrata in Redazione il 24. ottobre 1981. 
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concern relations (say in X •  Y): they admit non symmetric interplay between X 
and Y. Our Hadamard approximating cone embraces these notions. 

We observe that  the Hadamard derivative in first countable spaces [24] (see 
also [6] and the Ursescu derivative [35]) may be interpreted as the Hadamard ap- 
proximating cone; also the Severi derivatives [33] carry a presentiment of this idea. 

Our aim in this paper is to present tangency theory based on the study of the 
relation we call homothety, which plays a role analogous to that  of difference quotient 
in differentiation. 

In particular, the homothety of the epigraph is the epigraph of the difference 
quotient, that  of the graph is the graph of the difference quotient. This is the clue 
to unifying tangency and differentiation. 

The concept of homothety has been used before to similar ends (without being 
named) by ROCKAFELLAI~ [28] [2911301, PENOT [25] [26], HIRIART-URRuTu [16], but 
we attempt to exploit in its respect (in a more systematic way) the consequences of 
convergence theory. Much work can be avoided by choosing appropriate topologies 
and filters to work with. For instance the radial variants of approximating cones 
result from the choice of the discrete topology. This atti tude allows us to argue at 
a higher level of abstraction of several reasonigs. There is no need of convincing about 
conceptual gain of treating the theories of convergence and tangency simultaneously. 
We point out that  CHOqVET developed convergence theory [4] with, in mind, appli- 
cations to tangency theory. But already BOVLIGA~) interpreted his contingents and 
paratingents us upper limits (ensembles d'accumulation) [11. 

One of the principal problems of convergence theory is tha t  of finding conditions 
under which a limit of intersection includes the intersection of limits. This question 
may be formulated in terms of convergence of functions [9] [30] [3]. We provide 
a sufficient condition for lower limits (akin to the one used for another purpose in [111) 
and apply it to homotheties thus obtaining, among otherr esults, a :ROCKAFELLAR'S 
condition for "~C~D ~ ~C(x) (~ ~;~(X) tO hold [30] (~c(x) being, in our terminology 
the hypertangent of C at x). 

We somewhat refine a theory of equi-semicontinuity, recently developed by 
DOLECK][, SALI~NETTI and WETS [1~ 1 and apply it to give a sufficient condition for 
the directional derivatives of Clarke and Rockafellar to be equal. Another such 
condition was proposed by I~OCKAFELLAR [29]. We indicate a class of functions 
that  satisfy our condition but not that  of [29]. We also extend the theory of [14] 
to relations and to general I~-limits of De Giorgi. 

There are known connections between F- and G-limits and the classical Kgra- 
towski limits ([71 [9] [8] [2]; see also [37] [20] [23] [14]). We introduce hyperlimits, 
show their equivalence to some G-limits and show that  they constitute the type of 
convergence of homotheties (difference quotients) that  gives rise to the Hadamard 

derivative. 
We do not explore much uniform convergences which for homotheties correspond 

to FrSehet differentiability and do not stress the uniform character (uniform on 
compact sets) of Hadamard differentiability. 
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C O n V E r G E n C E  

l .  - L imi t s  o f  fami l i e s  o f  sets .  

We recollect some basic facts about  convergenees and add some others t ha t  are 
ei ther  new or not  widely known. The exposition is in tended to  be in the  vein of the  
fundamenta l  paper  of CHOQ~mT [4]. 

We are pr imari ly  concerned with the concepts of upper  and lower limits (said 
of Kuratowski). 

I~et ~- be a filter in a set I and let  A = {A~}~ be a family of subsets of a set X. 
Equip  X with a topology ~. The upper limit of {A,},~ z (filtered by  ~-, with respect  
to  z) is defined by  

(1.1) Ls A = 5 s ) A ,  = N eL U 
i r e S -  ~ e F  

The, upper  limit is ~equal to the set of cluster point  of the filter A y  generated by  
{At = U A,, F e ~-}. I f  the  upper  limit is a subset of a set A, we say t h a t  
L, J 

subconverges to  A. 

l~ecall t ha t  the grill # of a family ~- of subsets of I consists of all these subsets 
of I which meet  every  member  of ~-. The lower limi t (of {A~}~sz) is, b y  definition, 

0.2)  Li a = = Q.Cl  U 
_Pe~- ie~v 

When all the sets As are singletons, then  the lower limit is equal to  the  limit of the  
filter Asr (see below). If  A is a subset of the  lower limit, we say t h a t  {Ai}~ I super- 
converges to A. 

We shall also write Li~_+~o (Ls~_~~ when 3 r will be a neighborhood filter of i0. 

Obviously, bo th  limits are z-closed and if we consider different topologies on X, 
then the weaker the topology, the larger is the limit. Since 5 is a subfamily of ~"~ 

the lower limit is a subset of the upper limit, l~inally the coarser the filter the larger 

is the  upper  limit, bu t  the  smaller the lower limit. 

I t  follows from the  definitions tha t  x E Ls A,,  iff for every Q ~ A'(x) every  2~ ~ ~- 
there  is i 6 / ~  such tha t  O n A~=~ 0; due to the dual i ty of filters and their  grills, 
if for every  Q ~ 3P(x) there  is H ~ # such tha t  O (~ A~ =/= 0 for each i E H. 

An x e L i A r ,  iff for every  O e 37(x) and every H e # there  is i e H such tha t  
Q N As :/: 0. Dually,  if for every Q e OY'(x) there  is /~ e ~- such tha t  for each i ~ F 
A nQ#0. 

PI~Ol'OSlmlO~I 1.1. - (KUICATOWSKI [20] for sequences, DE~KOWSKI [10] for nets) 

L i y A ,  = n LsH~-A~ �9 

1 5  - A n n a l i  eli Matemat ica  
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PIr - An x belongs to  the  r ight-hand side, whenever  for each H in ~ every  F 

from 37 and every Q in ~"(x), AHa ~ (~ Q ~/= O. Thus A~ (~ Q :/: 0 and x e Li~- A~. On 
the  other  hand~ H (~ F is an element  of ~ ,  hence the  opposite inclusion is valid. 

Of course, a family (A~}~• consti tutes a relat ion in 1 •  X and by  s tandard  con- 
vent ion we have t ha t  A-~Q = {i: A~ ~ Q =/= 0}. On using this language, we obtain 
tha t  x e Li A~, if and only if for every  Q e A'(x) there  is F e 37 such t h a t  A-~Q n F. 

~Ror0slTIOZ~ 1.2. 

Ls5  A~ ~ U Li9 Ai .  

PROOF. - Always Li 9 A~ c Lsg A~ c Ls5  A~. 
Le t  x e LsxA~: for every  Q e 0V(x) and every  17 e 37, Q n A~ r 0, t ha t  is A-1Q n 

n / ~  :~ 0. As a restflt there  is a filter g finer t h an  both  A-~V(x) and 37. Consequently 
for every  Q e J~?(x) there  is d e 9 such t h a t  Q ~ Ai :#: 0 for g @ ~. This means t h a t  
x e LipA~. I f  we consider sequences in metr ic  spaces we m ay  also p u t  ([20]) 

LsxAi---- U Liy~HA~'  
~eY 

Pl~oPoslTIO~ ].3. - The upper  l imit with respect  to the  infimum of topologies 0 
and T is equal  to the  union of the  upper  limits with respect  to 0 and to  T. 

Analogously 

Pl~OpOSlmlO~ 1.4. - The upper  l imit of a family filtered by  the  infimum of filters 
3 7 and J~ is equal to  the union of the  upper  limits filtered by  37 and J~. 

Bu t  

PI~0POSlTIOh- 1.5. - The lower limit filtered by  the  infimum of 37 and JC is equal 

to  the  intersection of the  lower limits corresponding to  Z and JC. 
Consider now the  par t icular  case when a family  of subsets of X is indexed by  

the  produc t  I • Z. Le t  5 be a filter in I and JG be a filter of subsets of Z containing ~0. 

Then  

(1.3) Lsx• je A{; D L s x  A~:{o ~ Li~-• jG A{r c L i~  A{r 

as the  right-hand-side limits are, in fact,  filtered by  37X A',(~o)--the discrete neigh- 

borhood f l t e r  of ~0. 
When  X is equipped with the  discrete topology t h e  discussed limits become set- 

theoret ical  

(1.4) A, = N U A, ,  I,i -A, = N U A, .  
Ive:V i~F He~ 
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The duality of filters and grills yields a more familiar representation for the lower 
limit 

Li~-A, = U [~A, .  
re~- ~eF 

If a topology ~ is first countable and a filter ~- in I has a countable base, then 
an x is in Ls~ A~, if and only if there are sequences {x.} tending to x and {i,~} being 
5r-convergent for which x~ e .A~. In this case, the following statements are equi- 
valent: 

(~.~) 

(i) x e Li~ A~; 

(ii) for every ~-convergent (!.}~=~ there is a sequence {x,}~=~ convergent 
to x and such thai] x~ e A~,,. 

(iii) there exists a function m: I - - > X  such that  m ( i ) e a t  for i e I  and for 
each Q ~ A~(x) there is E e ~- with m(~V) c Q. 

Limits constitute isotone operations: if A ~ c / ~  for each i, then L iA~cLiB~  
and Ls Ai c Ls B~, us easily follows from the definitions. Consequently if {{A~}~• 
is a class of families of sets filtered by ~,  then 

(~.5) 

We have also 

LiN. , ,~CILiA. ,  L s N ~ . c N L s A . ,  
~ J  J~J ~eJ jcJ 

U LiA~c: L i U  A~t, U L s A ~ c  Ls m A~.  
~ J  ~eJ ~eJ ~eJ 

P~0P0SITI0~ 1.6. - Let (A~}~e~, (B~}~z be families of subsets of X. 

(i) Ls (A~k) B~) : LsA~U L s A d  

(ii) Li (A~ t) Bt) c LiAr k) LiB~ ~9 (Ls A~ n Ls B~); 

(iii) Li (At t) B,) c Li A~ (9 Ls B~. 

P~ooF. - (i) Standard transformations lead to Lsx(A ~ k) B~) ~ N (Cl A2 u Cl B~) 
r e ~ -  

and Ls5 A, u Ls$ B~ ~ [~ (C1 A r (J C1 B2) and since F n F ' e  ~,  the above expres- 
sions are equal. ,F~,~y 

(ii) Suppose that  x belongs to Li(At L3 B~) but not to Ls At (~ Ls Bt, say is 
not in Ls At. Accordingly for every Q e W(x) there is 2" e ~ such that  Q (~ (A, ~3 
L) B~) :~ 0 for i e F and, on the other hand, there is Q'e JV(x) and ~ ' e  ~- for which 
Q' (~ At = 0 if i e ~ ' .  We conclude that Q (~ Bt ~ 0 for i e/~ (~ F ' ,  that is x e Li Bt. 
(ii) implies (iii). 

K~mAmOWS~I [20] proved (ii) for sequences in metric spaces. 
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I t  follows from (1.5) t ha t  the  upper  (lower) l imit of the  boundaries {:Pr A~}~e x is 
included in the intersection of the upper  (lower) limits of {A~}~ and {A~}~ x. 

I f  the space is connected 

(1.6) L i F r A ~  = LiA~(3 L i A r .  

The question under  what  conditions the limits of the (finite) intersection become 
equal  to  the intersect ion of the  limits is one of the  central  problems of convergence 
theory.  We shall provide a sufficient condition for lower limits. 

PRoPosI~IO~ 1.7. - Le t  {A~}~ez, {B~}~• families filtered by  ~- be equi attracted, 
t h a t  is such t ha t  for every  x in X every  Q ~ 0~~ there  are W ~ iT(x) and ~v e ~- 

such that for i ~/~ 

(1.7) if W ~ A,  ve O and W ~ B~ ~ O, t hen  Q ~ A~ ~ B~ ~ O. 

Then 

Li (A~ (3 Bi) o Li Ai (3 Li Bi 

thus  the inclusion is actual ly  the  equali ty.  

PROOF. - Le t  w be in Li A{ (3 Li B{ and let  Q e JV(x). Take W e iV(x) and F e 
which satisfy (1.7). Since x belongs to Li A{ r3 Li B{, there  is F ' c  F such t h a t  bo th  
W (3 A{ =/= 0 and W (3 B{ :/= 0. By  (1.7), x is in Li (A{ (3 B{). 

The condition of Proposi t ion 1.7 is satisfied, if {A{}{~ {B{}{s• are families of sub- 
sets of a uniform space (X, ~L), which separate equi-deeisively: for  every  U e %L there  

are V e qL and F ~ ~- such tha t  V(A~) (~ V(B~) c U(A~ (3 B~) as i e F .  
We shall give now a special result  to be used in Section 5. We shall call the  

interior l imit of {A~}~ z (in (X, z) filtered by  ~)  the set  

(1.8) (L@ A~) ~ = U Int,  fl A,.  

We note  t h a t  the  interior  l imit is included in the interior of the  lower limit with 

respect  to the  discrete topology. 

PROPOSITION 1.8. 

Li (A~ (3 B~) 3 (Ls A~) ~ ~ IA B~. 

PROOF. - If  h is in (Ls A~)~ (3 L I B , ,  then  on one hand,  there  is Qoe A~(h) and 
F e ~ -  such t ha t  for every  i c E ,  QocA,  and ou the other  for every  @eA~(h), 
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Qo c Qo) there is F '  e 37, (F'  c ~'), such tha t  Q (~ Bt V: 0 as i e F .  Thus Q (~ At n B~ :/: 0 
as i e F '  and therefore h belongs to Li (A~ (~ B~). 

We digress to say tha t  a family {A.~}~I uni]ormly supereonverges to A, if for every 
U e ~L ~here exists F e 37 such tha t  U(At) ~ A for i e F .  This amounts to the con- 
dition tha t  for every U e ~ there is F e 37 such tha t  for each i e F and every x in A, 

At (~ U(x) ~: O. 
We conclude by a very special but  useful case of families {At}t> o such tha t  t'>t" 

implies A~, c A~,,. Then 

(1.9) Lit_~o A~ = Lst_~o A, = C1 U A , .  
t > 0  

2. - Families of  relations and functions. 

Of particular interest  are families of subsets of product spaces, say X • Y. Then, 
of course, the sets constitute relations (or, if one prefers, multifunetions) from X 
into :Y. Special cases are furnished by families of mappings, epigraphs and hypogr~phs. 

Le t  {/~}~ be a family of extended-real-valued functions on a topological space 
(X, T) and let 37 b.e a filter iLn I .  Consider limits of the epigraphs of this family:  
epi ]t = {(x, r): r>J~(x)} (which are epigraphs). 

Define the limit in]erior of (It} by 

(2.1) ( l i ~ ] t ) ( x ) =  sup sup inf inf]i(w) 
Q e ~ ( x )  l~e~ ie~ ~ weQ 

and the limit superior as 

(2.2) (ls~]t)(x) = sup inf sup inf] t (w).  
Qed~~ t z e ~  ie~' weO 

Then we have tha t  

(2.3) Ls ~ • ]i) =: epi (1V It) ,  Lff X~(epi ]t) ---- epi (ls ~ It) 

where v is the natural  topology of /~ (see e.g. [8] [14]). 
I f  li ] t>] ,  we say tha t  the family {f~}i~z subconverges to 1; when ls i t<f,  we say 

tha t  it  superconverges to 1. 
Treated joint ly (2.1) and (2.2) form the in]imal limit of WIJS)~A~ [37] and (2.3) 

has been essentially recognized there [37, Thin. 6.1], for X ---- R n. Separately they  
appear in [19] by JoLu where one finds (2.3); see also Mosco [23]. 

On the other hand the limits (2.1) (2.2) are examples of F-limits of DE GIOl~GI 
and FI~A~ZO~I [9] [7] and (2.3) is reflected in the relationship between F-limits 
and G-limits of DE GIo~aI [8]. 

Analogous facts for hypographs (also special cases of the theory of F and G limits) 
have been established by BUTmAZZ0 [2]. 



230 SzY~ro~ " DOLECKI: Tangency and di]]erentiation: some applieations~ etc. 

Let  (X, ~), (Y, ~) be topological spaces and {A~} be a family of relations from X 
into ]{ we note that 

(2.~) O(LiAJ  c Li ~ ( A J ,  ~ (Ls  A~) c Ls ID(AJ 

where ~(A)  is the  domain of A ( =  {x: Ax # 0}) or, in another  terminology,  the  
project ion of A into X. This follows most  easily from, e.g., LVX~ = LV O(AJ  X Y 
where o is the  chaotic topology, because z X o c ~X a. 

Observe t h a t  (2.4) applied to  relations of t ype  {(epi]~)-~} i~I implies t h a t  
([2, ~rop. 2.7.]) 

(2.5) inf  (ls r/~) ~> lira (inf/~), inf (lir/,) ~> li___m_m (inf/~) 

because C1 O(epi ] ) - ~ =  [inf ], oo). These inequalities must  not  be inver ted  in gene- 
ral;  the  equal i ty  in the  la t te r  requires a ve ry  (, stable )) behavior  of functions (Do- 
LECKI-I~OLEWiCZ [13], JOLY [19]). 

Suppose t ha t  {A~}~ subconverges (superconverges) to A. When  does the family 
(Aix}~ez sub- (super-) converge to Ax for a given x e X? We observe t h a t  a-sub- 
convergence (a-supereonvergence) of {A~x} to  Ax for every  x, amounts  to the cor- 
responding convergence of (A~}~ I to A in the  produc t  topology t X a, where t stands, 
as usual~ for the  discrete topology. In  other  words, we are interested in (~ pointwise 
convergence )) of relations. Since t X a is finer t han  ~ X a, we always have 

Li"A~xc(LV• L~'"Aixc(Ls~•176 

Therefore  the  subconvergence of (A~}~ I to A implies the subconvergence of 
{A~x}~• to  Ax for each x. Bu t  this is not  t rue  about  superconvergence. =' 

We shall give la ter  a general condition for the  equal i ty  of limits with respect 
to  various topologies and filters. Here  we shall consider the  special case of relations 
((epi ]i)-1}~i for extended-real-valued funct ion on X. Le t  r0 e R. Then the  above 
becomes the  problem of convergence of the  level sets 

(2.6) (epi ?,)-~(ro) = {x: ]~(x) <to} .  

On specializing the  definitions we obtain 

PROPOSITIOn; 2.1. -- The level sets (2.6) superconverge to (epi ])-1re, if for each x 
such t ha t  ](x)<~ro and for every  W ~  d~(x) there  is / '  e 5 such t h a t  j n f / i ( w ) <  re 
as ieJY.  

:Note t h a t  if ] is a convex function, re > inf ] and ls ]~ = ], then the  above is: 

(2.7) for every  x such tha t  ](x)-<<ro for every  W ~  A'(m) there  is s >  0 and F ~  
such tha t  inf fi(w) <to - -  ~ as i e F ,  

weW 
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Indeed,  by  the  convexi ty  o f / ,  for every W ~ ~V(x) there  is e > 0 such tha t  inf/(w) < 
weW 

< ro - - e .  Take an m' f rom W for wh ich / (x ' )  < r o -  ~ ~nd by  superconvergenee find 
e ~ such t ha t  for i e F ,  i~f],(w)</(x') + e/2. 

COgOLLAgY (WIJS~AS [37, Thm. 7.1]). - If  {/~} (infimally) converges on / ~  to 
a convex funct ion / and inf / < ro, t hen  the  level sets (epi/~)-~ro converge ( that  is 
bo th  subconverge and superconverge) to (epi/)-~ro. 

I t  is interest ing tha t  Condition (2.7) is a specialization of a notion of convergence 
of relations. The hyperlimit of {A~}~ z is the set of all these pairs (x, y) which satisfy: 
for every VE 5'o(y) there  are Q ~ iVy(x) and E e 37 such t h a t  V n  A,x'V: 0 as x 'e Q 
and i e F .  The hyper l imit  

Lh~ ~ A~ 

is a subset of L i ~ A ,  = L]~"A~, since we m ay  regard hyperl imits  as lower limits 
of {A~x'}~• o 

(2 .8)  (Lh~A~)  x = L i ) •  ~%(~) A~x'. 

Hyper l imi ts  are not  closed in general. When the filter is discrete (or in other  words, 
a family of relations reduces to one relation A), LhW"A is equal to the  set of lower- 
semieontinui ty points of A. 

I t  is straightforward,  t ha t  (2.7) holds, if and only if (x, to) is in the hyper l imit  
(epi l )  -~ of {(epi/~)-q~. 

Hyperconvergcnce provides a sufficient condition for the  supereonvergence of 

{Aix i}  to ,Az, ~here both {Ai} and {~i} are filtered by 37 and x i t ends  to  ~. 

P~OPOSlTIO~ 2.2. - Le t  (A~}~e z hyperconverge to A and let  {x~}~ez converge to x. 
Then {A~ x~}~ I superconverges to Ax. 

I t  is instruct ive to  th ink  about  the special case of the above scheme in which 
(A}~z is a constant  family of relations. Then the subconvergence of {Ax~}~ to Ax 
for every  (x~}i~ I coresponds to the  graph-closedness of A at x, while the supercon- 
vergence amounts  to the  lower semieontinuity of A at  x. These properties m ay  
occur locally (on subsets of Ax). 

A classical example is furnished by  fibers of a mapping /~: X-->Y. The assump- 

t ion of the  Lusteruik  theorem guarantees locally bo th  the superconvergence and sub- 
convergence of the values of the relat ion F-~: Y - + X .  

We equip X with a topology z and Z with a uniformity  %L. I t  will be instru- 
mental  to  observe 

PROPOSITION 2.3. -- A pair  (x, z) is in Ls~ • A~, if and only of for every  U in %L 
every  Q in ~ ( x )  and each F from 37 

z ~ U(A~Q). 
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A pair (x, z) lies in Li~  • A~, if and only if for every U in ~L and each Q in Jf~(x) 
there is /~ in ~- such tha t  

z e U(AiQ)  , i e F .  

3. - Comparison o f  l imi ts .  

In  this section we provide conditions for the equali ty of upper (and lower) limits 
when considered with respect to various topologies. Our condition of quasi (~/~)- 
equi semicontinuity for families of relations is ~n extension ~nd refinement of (~/a)- 
equi semicontinuity of DOLECKI, SALI~ETmI and WETS [14] for families of functions 
and our results extend (to relations) and slightly refine the analogous ones therein. 

Le t  {A~}~• be u family of relations in X X Z filtered by 5 r in Y. We consider a 
uniformity OiL in Z and topologies ~, ~ in X. 

(Ai}  is said to be quasi (-c/(~)-equi semicont inuous at x, if for every U e q l  every 
W e 2V,(x) there ~re V e %L, Q e 2V~(x) and F e ~ such tha t  

(3.1) U(A~ W)  ~ V(A~Q) , i ~ ~ .  

This condition is akin to the definition of hyperconvergence, bu t  has the  advantage 
of being expressed in terms of the family (A~} not  of the limiting relation. 

In  the case in which A~ are epigraphs of func t ions / i  the above condition becomes: 
for every e and every W ~ ~ ( x )  there are ~ and Q e 3/' (x) and E ~ ~- such that for 

each i i n / ~  

(3.2) inf/~(v) - -  (~ >inf / , (w)  --  s ,  
veQ w e W  

which is equivalent to (for some other e) 

(3.3) inf/~(v) > inf/,(w) - -  e .  
v~O w~W 

When the ~opology a is discrete W is subst i tuted by {•} and the  infimum of the right- 

hand  side by  /i(x) (BUTmAZZO [2, Prop. 2.1]). 
In  [14] a family of functions {/i} is said to be (v/(y)-equi lower semieont inuou s, if 

there is a subset D of X (reference set) such tha t  {epi/i} is quasi (~/a)-equi semi- 
continuous at  every x in ~g and for each x ~ D,  for every M there are Q ~ ~V~(x) and 

F e ~ with 

inf/~(v) > M ,  i ~ F .  
veO 

P~oPosImIO~ 3.1. - A filtered family {/i} is (~/a)-equi semicontinuous, if and only 

if {epi/~} is quasi (T/a)-equi semieontinuous ~t each x of 

~(lff/~) = ~(Ls  ~ • epi/~:), 
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P~oo~. - Observe t ha t  the  la t ter  condition in the  definition of (~/a)-equi lower 
semicontinui ty amounts  to the  requirement  tha t  if x ~ D  then  x ~ ~ ( 1 F f , ) =  {x: 
(IF/~)(x) < oo}. 

We recall t ha t  the  coarser the  topology the larger are the  upper  and lower limits. 

THE01~:E~ 3.1. - I f  {A~} is quasi (~/a)-semieontinuous at  x and (x, z ) e l i  ~• Ai, 
t hen  (x, z) e LF• A~. 

Li ~•  A �9 P~oo~. - Le t  (x, z) be in ~ ~. for every  V ~ qs every Q ~ 2~(x) there  is 
e ~ so t ha t  for each i in F, z ~ V(A~Q). Take any U from ~IL and W e 2V' (x). Then, 

by  quasi (v/~)-equi semicontinuity,  there  are V e qs Q e ~ ( x )  and ~ '  e ~- such t h a t  
(3.1) holds. On taking V and Q from the former condition, we have tha t  z e U(A~W) 
as i e /~  (3 F ' ,  thus  (x, z) is in Li~ -• A~ by  v i r tue  of Proposi t ion 2.3. 

T~InOm~SI 3.2. - Le t  {A~} be quasi (w/a)-equi semieontinuous at  x and (x, z) 
e L s ~ •  then  (x,z) aLs"• 

P~ooF. - An (x, z) is in Zs~  • A~, whenever  for every  V e qJo every Q e AOJx) 
there  is H e ~ such t ha t  for each i ~ H, z e V(A~Q). By ore" assumption, for every  
U e r163 and every  W e AO~(x) there  is /~ e ~- such t h a t  z e U(A~W) as i e H (3 F.  
Since H n / v  is in the  grill of 3 r, the  proof is completed. 

TtIE01CE3i 3.3. - Suppose t ha t  there  are Vo e %, Qo ~ ~V~(x) and F e ~ such tha t  

CI(V0(As@o)\Li~ • A~) 

is compact.  I f  

L @  • A~ c Li~  • A~, 

~• then  (A~} is quasi (~/~)-equi semicontinuous on ff)(Ls~ A~). 

P~ooF. - Suppose t ha t  the conclusion does not  hold: there  are U e %b, x in the 
domain of L s ~ % A ~  , and W e Jg'~(x) such t h a t  for every  V ~ ell and Q e JV'~(x) and 
each /~ there  is i with 

Z \ U ( A ~ W )  (3 V(A~Q) :/: O. 

Choose z(V, Q, 1~) from (3;.4). The net  {z(V, Q, F) :  (V, Q, ~) E~IL• ( x ) •  -} 

is disjoint f rom U(Li~ • A~) and, by compactness, has a cluster point  z. Denot ing 
by  Z(V, Q, F) the  tail  of the  discussed net,  we have tha t  for every  V ~ qL every 
Q e AeT(x ) and every  F ~ ~- 

0 ~ v(z)  n z ( v ,  (2, F) c~ V(AFQ ) . 

Hence z is in L@- • A~, contrary  to the  assumptions, 
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In the case of epigraphs of functions our compactness condition takes form: 
ls ~ ]~ > --  oo. Therefore we have 

Co~o~La~u ([14]). - I f  --cxo < ls ~/~<li  ~ ]~, then  {]~} is (z/a)-equi lower semicon- 
n u o t l s .  

We shall specialize cqui semieontinuity for a filtered family of {(epi ]~)-~}i~z. 

PROP0SlTI0~ 3.4. - A family {(epi ]~)-l}i~x is quasi (v/t)-equi semieontinuous at  
r e R (v-natm'al topology of R), if and only if 

(3.5) for every U e qL there is V e %b and e > 0, 2~ e 5 r such t h a t  for each i ~/~ 
if inf ]~ < r + e, then  there is 

V(v) 

v~ ~ U(y) with ],(v,) <r. 

PRoo~ ~. - Let  y belong to the r ight-hand side of (3.1): V(y) n (epi ]j-~ B(r, e) # O, 
then,  equivalently,  epi j~ V(y) ~ B(r, e) ~ 0; in other words inf J~ < r ~ e. Simi- 
larly, we translate the  left hand  side. 

Observe tha t  indicator junctions (assuming only the values 0, ~ co) always satisfy 
the condition of Proposition 3.4. As well in normed spaces distance ]unctions 
fulfil t ha t  condition; for every ball (relation) U = B~ one may  take  V = B~/2 
and e -  r/2. The distance functions are also lipschitzian with the constant  1, 
therefore, by  Theorems 3.1 and 3.2, for distance functions metric and pointwise 
convergences coincide. 

We recall t ha t  quasi r/t-equi semicontinuity is a sufficient condition for the the 
equivalence of the ~ • ~L-sub- (super-) convergence of the epig~'aphs and the oiL-sub- 
(super-) convergence of the corresponding level sets. Thus we deduce 

PEOPOS]TIO~- 3.5. -- Le t  {/~}~l be a filtered family of functions t ha t  fulfils (3.5). 
Then {/~} supereonvcrges (subconverges) to ], if and only if the level sets {y: ]~(y)<r} 
super (sub-) converge to {y: ](y) < r} for every r e R .  

CO~OLL~t~Y (compare WIJs3.~A~- [37, Thm 3.1]). - Le t  (X, @) be a normed space. 
A family {A~}~e• superconverges to A, if and only if {dist (., A~)}~x superconverges 
to dist ( - ,A)  pointwise {dist (., A~)},~e~ subconverges to dist ( . ,A) ,  if and only if 
{B,(Ai)}~• subconverges to B~(A) for every r > 0. 

4.  - f '  and  G l i m i t s .  

Consider n sets X1, X2, ... ,X~ and an extended-- rea l - -va lued  function f 
X1 •  • X , .  Given filters 3~t, 2V~, ..., &~, in X1, X~, ..., X , ,  respectively, and 

o n  

a 
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sequence of signs + or - - :  ~1, as, ..., ~ ,  we define, following DE G~ox~I [8], 

(~.~) F ( w ; ' ,  2c~,, ..., 2v ; - ) l  = 

-= ext  -~" ... ex t  -~* ext  -~ ext  ~ exV'  ... ex t~"] (~ ,  ~=, ..., ~,) 

where ext  + = sup and ex t -  = inf. 
We have abbrevia ted here the  original nota t ion on dropping <( lim )>. 

The above limit is a (possibly infinite) number.  More generally, given topologies 
z~, ~ ,  ..., z~ on X~, X~, ..., X~, we write 

(~.2) [F(~;1, ~ % ,  "", *~") i] (x~, x~, ..., x,,) = F(5',~(x~), ..., W A x , )  ) l ,  

and, of course, the  limit F ( ~  ', ..., z:")] is a function on X z •  ... •  I t  is known [8] 
that 

(i) if tk is discrete, t hen  the  F-limit  fixes the  k . th  coordinate (whatever ~ is): 

F( . . . ,  5 '~-'~_~, ~,~ (xD,~ 5"~+~, . . . .  . . .)f  = F(. . . ,  5~_~,~-~ ~ + ~ ,  . . . .  . . . ) f ( . . . ,x~,  ...) 

if) r(... ,  W?, . . .)i<F(.. . ,  ~ + ,  ...)i 

(iii) if A~, c Jt(~,, t hen  

r ( . . . ,  J~'~:, . . . ) ] < r ( . . . ,  Jt~-, ...)1 and F( . . . ,  oV +, . . . ) ]>F( . . . ,  JL +, ...)~ 

We observe that 

(iv) F( . . . ,  JT +~ , ~-+~,  . . . ) ]<F( . . . ,  ~W~-+ ~, JT +, . . .)] 

where we change the  order of the  i and i ~- 1 variable. 

PROOF. - - N o t e  tha t  if we have <(irreducible ~ sings ~ ~a ~+1, the operations 

tha t  is, are of the same type.  Therefore (iv) follows, since always sup infg(~l, ~ ) <  
< inf sup g(~l, ~) .  ~' ~ 

I t  is a simple observation t h a t  <( sup • and <( inf ~> operations are examples of 
F-limits:  

ext~ 1(~) = F ( 2 C ( B ) )  

where o\~,(B) is the filter of all supersets os B;  if B is the whole space we m ay  also 
use the  chaotic topology o. Limits of infima (27 5) are also F-limits~ F(W+~ o-)~ 
Y(A~ o-) respectively. 
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As we mentioned~ it is known [7] [8] tha t  

(4.3) ~s~ li = F ( x  +, ~-) t ,  l i~  ii = F ( x - ,  ~-) I 

where [(i, x ) - - ] j x ) .  For  example,  we prove the first inequali ty of (2.5) using F- 
limits. Since Jim (inf ] ~ ) =  inf sup inf / ( i ,  x) is equal to F ( ~  +, o-)] and the lat ter ,  

~ve5 ~ i'zN x ~ X  

by  (iii), is less t han  F ( 5  +, v-)] = l s ) ]~ ,  (2.5) follows. 
For  completeness's sake, notice t h a t  F (T- ) ]  is the closure (lower semicontinuous 

hull) of ] and F(T +) j is the  least upper  semicontinuous function t h a t  majorizes f [8]. 
We present  now a criterion for equal i ty  of E-limits. Le t  2T~, ~ ' : , . . . ,  ~N~,~_~ be 

filters in X1, ..., X~_~ and let  A ~ and ~ be filters in X~. 
A fnnc~ion ]: X x x X ~ •  is said to  be equi-2~/~K~-semieontinuous 

(in the  last  variable), if for every  e > 0 and every  M ~  ~ ,  there  are 5 r e / V  and 

~ i  ~ A'i, i = 1, ...~ n - - 1 ,  such that 

~ e h  r ~ e M  

TttEOlCES~ 4.1. -- I f  ] is equi-(~V/d4~)-semicontinuous, t hen  

2(2c;,, 2cC ~, ..., ~ - ) i<F(2c ;~ ,  ~,?,  ..., 5 ' - ) / .  

P~oo~. - First  we shall show that given - ~  e ~N ~ we m ay  replace in (4.1) cx~ - ~  by  
~ e o V ~  

ext  -~'~ To this end consider a funct ion g:X~ • X.~ • ... • X~ ->/~ and for a given 

v >  0 ~nd ~,,e JVn find ~(e~ N,,  ~,~ ..., ~.-0 such t h a t  

ext~"g(~,, ~ ,  ..., ~.) 
~ n E.t'~r n 

differs by  s/n from g($~,..., ~,_~, ~(~, 5~,, ~,  ..., ~,-0) .  Continuining this process we 
shall get  an element  of N~• • ... • N~ such t h a t  the  value of g at  this element:  

F P ' ' ' ,  " ' ' '  (~.~) g[~(~, ~u ~(~, ~ ,  ~(~, ~1)), , ~.(~(~, ~1), ~._~(~,(~, ~) . . . ) ) ]  

differs by  ~ from ex t  ~1 ... exC~g(~l, ..., $~). 

Consider (4.4) with N1 replaced by  N1 (~-~1. I f  ~ -~ ~-, then  the va lue  of (4.4) 
for N~ n N~ will be not  greater  t h an  its value for N~ plus s/n. 

Therefore  we m a y  pick NI(~V2, ..., N,,) t h a t  (e/n)-attains the infimum of (4.4) 
over   rom subse t s  of S imi lar ly  w e  argue if = - - -  W e  proceed  the  

same way with N2, 2/~, ..., ~,~. Therefore,  the v~lue of (4.1) differs b y  2e from the 

corresponding values computed  with restr ict ion t h a t  N~ be a subset of ~k.  To con- 

clude recall t ha t  e was t aken  arbitrari ly.  
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Suppose now equi-(~i'/3{~)-semieontinuity. Then given e > 0 and M e ~L there  
will be 27~, ..,, N~_~, 27 such tha t  

i n f / ( . , . ,  ..., ~ , ) > i n f / ( . , . ,  ..., ~ . ) - -  s 
~ eh r ~ ~M 

o n  27~ X 27~ X . . .  X 27.-i �9 

oV ..... ~ limits of the above functions:  g(N) and g(M) satisfy Therefore / ' (3T~ ~, JV~', ..., ~_~ 

g(N) >~g(M) - -  e. 

Consequently sup g(M) < sup g(N) and the proof is accomplished. 
~eclL NeJ~ 

I~E:~[ARK 4.2. -- I t  follows from the above theorem th a t  if / is (JV/ct(@-equi semi- 
continuous in the k-th variable, t hen  

~(5"?, ..., ~ - ,  x ; + ,  . . . ) / < r ( ~ ; ~ ,  ..., ~ - ,  3r ...11 

because we m a y  apply the theorem to the funct ion ext~+~.., ex ~ " / ( . , . ,  ..., 

$~_~, ...~ ~ )  and then  proceed with extremizat ion over W~+~, ..., 5 '~. 

~ E ~ A l ~ K  4.3. - The above theorem has been proved in D O L E C K I - S A L I N E T T I -  

WETS [14, Thin 2.3] in two special cases: f o r / ~ ( - - , - - )  *~nd _F(~-,--) limits. See also 
our Theorems 3.2 and 3.3. 

We say t ha t  / is upper equi (3T/J~)-semicontinuous in the  k-th variable if for every  
e > 0, M E dlL there  arc N / e  J~('~ i ~ k ~nd N ~ J~7~ such that 

s u p / ( ~ ,  . . . ,~ , . . . ,~ . )<sup/ (~ .~ , . . . ,~: , . . . ,$~)  -Fe as ~ , eN , ,  ir162 
~eiV ~eM 

Analogously to Theorem 4.1, having in mind Remark  4.2, we have 

TttE01Ei~ 4.4. - I f  / is upper  equi (3~/dti@-semieontinuous, then  

F(2r ..., ~e+, . . . )1> F(:~;, ,  ..., ~ + ,  . . . )1.  

Let  A be a subset of X1X. . . •  (a relation of n-variables). Le t  $ 1 ,  ...,J%~_1 
be filters in XI, ..., X~_~ and let  ~ ,  ~+~, ..., T~ be topologies in X~,, ..., X~, respec- 
t ively.  

The / " - l imi t  of the  indicator flmction of A 

(4.5) �9 " ,  5~k-i  ~k , " - ,  ~" )  ;r 

is the indicator  funct ion of a subset of X~X...xX.. 



238 Szu DOL:~CKI: Tangeney and dl]]erentiatlon: some applications, etc. 

Therefore (4.5) is a l imiting set of a collection {A~ ....... ~_,} of relations (subsets of 
X~ • ... X X,,} indexed by  X~ •  ..., X~_~. The collection is filtered (in u nonclassical 

way) by  ~V~ ~ ... ~ ~%~_~. 
The level set of (4.5) represents what  is called [8] the  G(/~?~, ..., ~_~; ..., 

l imit (G-limit) of the family  (A~ ........... }. 
I t  is known [8] (and m a y  be easily checked directly) t h a t  

(4.6) Lia~Ai : ~f(~+; zP-)A~, Ls~, A~ = G(Y-; 4- )A~.  

B u t  it  is interest ing to  observe t h a t  (in uniform spaces), (4.6) is a consequence of 

Proposi t ion 3.6. 
A seemingly most  interest ing non-classical @-limit is G(& "+, r+, ~-) which turns 

out to be the hyperl imit .  Le t  {A~}~ I be a family of relations in X • Y filtered by  2~ 
and let  T, r be topologies in X and Y. 

PROPOSITION 4.5. 

G(d~+; ~+, r  i = L h ~ A ~ .  

PROOF. - Apply the  first formula of (4.6) for v ~ = a and ~ - =  A ~ • ~ , (x ) .  Thus 

by  (2.8) 

(Lh:<~ A~)(x) = O([a ~ X a~ (x)]+; &) A, = [~(~+;  T+, r A,] (x). 

h~ote t ha t  if the  topology ~ is discrete then  the  lower limit and the hyper l imi t  coin- 
cide. This explains why in Proposi t ion 2.2. in the  ease of the  constant  family  {x}~sz 
the  hypereonvergence  of {A~} m a y  be replaced by  its superconvergence (with respect  

to the  discrete topology in X). 
Consider now hyperconvergence  of families of epigraphs. 

PRoPosImIo~ 4.6. - The hyper l imi t  of the epigraphs of {]~}~si is equal to the  epi- 

graph of the  F(+,  q-) l imit of ]~: 

IL~- epi f~ = epi (F(~ -+, w +) i) , 

where ](i, m) = ],(x). 

PROOF. - Le t  (x, r) belong to  the  hyper l imit :  for every  s > 0 there  are W ~ ~V(x) 
and F e 5 such t ha t  for every  i in F and w in W, (epi ]~)w (h B,(r) V= O, t h a t  is 

sup sup/,(w)<r q- s .  
4~,F w~W 

Equivalent ly ,  r is greater  t han  

(4.6) F(~+, ~+)](x)= inf inf sup supfi(w) �9 
We~T(m) ireS" ieF w e W  
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The above result sheds a new light on the natm'e of some F limits. So far it was 
known [2] that  the hypograph of / '(~-, ~-) limit is equal to the upper limit of the 
hypographs. 

To conclude this section, observe that  the interior limit (1.8) of a f~mily of epi- 
graphs {epi ]~}~z filtered by A ~) may be represented with the aid of 

F(JV-, z+)/(x) = inf sup inf sup f~(w), 
WeJ~(~) YeJ~" Ce~v w e W  " 

namely 

(Ls(epi ]~)'~) ~ = {(~, r): r > F(A ~-, ~+)](~)}. 

TA~GENCY 

5. - Approximating cones. 

Several bibliographical accounts of approximating cones have been given ([29] 
[35] [25] [16] [36]) and we do not intend to compete with them. We shall only say 
that  a great variety of cones tlmt approximate (locally) sets have been studied since 
the beginning of the century ( S s v ~ I  [33] BOULIGA~D [1] and others) snd that  now 
we witness considerable interest in conical approximations. 

We shall discuss principal approximating cones. All of them will be defined as 
limits of a single relation said homothety. Homothety has been already used (without 
being named) by ]~[IRIAI~T-Ut~RUTY [16], ROCKAF]~LLA~ [29], PENOT [25]; we are 
going to deploy it in a more systematic way. The advantage of this approach lies 
in capitalizing on convergence theory; often, what so far used to be an involved proof 
becomes an easy consequence of the preceding sections. 

The homothety in a linear space X is ~he following relation (multivalued mapping 
from 2 x • 2 1 5  (0, co) to X ) :  

(5.1) (o ,  x ,  t) - .  i ~(0-~) .  

If the set C is fixed, (5.1) is called the homothety o] C and, if needed, will be denoted 
by/E c. If, moreover, �9 is fixed, the relation JCe.~ is called the homothety o] 0 about 00. 

We note that  

(i) 

(ii) 
(5.2) 

(iii) 

(iv) 

if CcD, then-~(C--x) c (D- -x)  

1 ( 0 -  (x, y)) = ~ (9(0)  - x) 9 7 

uD--x) : ~ ( G - - x )  u 1 -/(D - -  x )  

n/) - -x)  = ~(r nl-(D--x) 
t 

for every y e Cx. 
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Topologies we are going to consider on X are not  necessarily compatible with 
the  l inear s t ructure.  

The contingent of C at  x ( B o u ] ~ ] )  [1]) is the  upper  limit oi the  h o m o th e ty  
of C about  x as t tends to  0: 

(5.3) K~(x) = Ls:_~o ~ ~ ( c -  x) = ~ cs~U ~-(c-x) .  
s > 0  t<s t 

The semitangent of C at  x (of SEvE~i [33]) m ay  by  int roduced by  

(5.~) ~(x)  = N c1~ U 1 (o c~ v -  x) .  

PROPOSI~IO~ 5.1. - I f  X is a normed spaces, t h en  

So(x) = K c ( x ) .  

PgooF.  - An h belongs to  the  semitangent  (of C at x), if and only if for every  
V E t  every Q ~ ( h )  there  is t > 0  such t h a t  x ~ t Q n C ( ~ V ( x ) : ~ O .  I f  {s~} 
tends to  zero and we choose (s. V)(x) for the above formula then  the  resulting {t~} 
tends to  0, hence h is in the  contingent.  

I f  h belongs to  the  contingent  (for every  Q ~ ~ ( h )  and every  to there  is t<to with 
x ~- tQ (~ C=~ 0), then  as for every  V ~  A'~(x) we m a y  find to such tha t  x ~- tQ c V  
for t <to, i t  belongs also to  the  semitangent .  

Obviously Se(x) -~ Scar(x)  for every  V ~ ~(~(x), thus in our case also Kc(x  ) 
-~ Kc~ v(x), t h a t  is, the  above cones approximate  C locally. 

The tangent of C at x (Dv]~owmzi;zi-MiLvvmI~ [15]) is the  lower limit of the  homo- 

t h e t y  of C about  x as t tends to  0: 

(5.5) T~(x) = L i~o  ~ ( C - -  x ) .  

We say tha t  a set E is directionally open about x, if for every  h ~ X there  is V e ~"(h) 

and to such tha t  for each t < to ~ x ~- t V c E.  Ev e ry  open set is directionally open pro- 
vided tha t  neighborhood bases are composed of radial  (absorbing) sets (in part icular,  
if X with its topology const i tutes a topological vector  space); the intersection of 
two sets directionally open about  x is also such. I f  the  topology is discrete~ t h en  a set 
is direetionally open at  x, if and only if x is its internal  point.  

Bo th  the  t angen t  and the contingent  at  x of a set directiona, lly open at  x are the  

whole of X.  

P~OPOSITION 5.2. - I f  E is direetionally open at  x, then  

Tcn~(x)  -= Ta(x) , K oo d x )  : -  Ko(x)  �9 



SzY~oN DOLEOKI: Tangency and di]]erentiation: some applications, etc. 2~:1 

P~oor .  - Le t  h e T v ( x ) .  Take QoeAo(h) such t h a t  for t<to x - p t Q o c E .  We 
have t ha t  for every  Q e  3~(h), Q cQo there  is t~<to such tha t  x ~-tQ (5 Cva 0 for 
t <~ t~; hence x -[- tQ (~ C (~ Eve  0 and the first formula is demonstrated.  The la t ter  

one admits  a similar proof. 
I t  follows from general facts ~bout limits t ha t  the contingent and the  tangent  

are closed; the  coarser the  topology the larger t hey  are; the contingent  includes the  
tangent .  

I f  C is radial  about  x (for each w in C the  interval  [w, x] is a subset of C), then,  
by  (1.9), the  contingent  is equal to the tangent .  This happens, in particular,  when C 

is convex. 
I t  is easy to  notice t ha t  the  following s ta tements  are equivalent  (e.g. [35, Lem- 

ma 7]) : (i) 0 e To(x); (ii) O e Ko(x); (iii) x e C1 C. 
Like limits, tangents  and contingents are isotone. In  part icular  

(5.6) T o ~ ( x )  c To(x) ('~ T~(x) , K c o , ( x )  c K A x )  c~ KD(x) . 

We are now concerned with sufficient conditions which imply the equali ty in (5.6). 

One example has been already furnished by  Proposit ion 5.2; i t  is enough tha t  one 
of the sets C, / )  be directionally open. 

We may  use Proposit ion 1.7 to derive a more general condition for tangents.  
Specialized for the  homothet ies  of C and D about  x it  yields this obvious requirement :  

(5.7) for every  h in x and every Q e 2~(h) there  are W e J~(h), to such tha t  for t<to, 
if x ~- t W  ~ C V= 0 and x Jr tW(~  D=/: 0, then  x ~ tQ N C n D ~= O. 

Note t ha t  if one set is directionally open about  x then  the above condition is satisfied. 
A family 9 of is called a directional covering about x, if for every  h e X tha t  are 

Q e A~(h) and ta > 0 such t ha t  iv -[- (0, th)'Q is a subset of an element  of q and such 
tha t  every  G e q is the  union of such sets. 

PROPOSITION 5.3. - Le t  C and D be subsets of ~ normed sp~ee X. Le t  ~ be 
directional covering about  0 such tha t  for every  G e q there  is I~ ~ k(G) such tha t  

(5.8) dist (g, C (] D - -  x) < k[dist (g, C - -  x) ~ dist (g, D --  x)] g ~ G, 

Then 

(5.9) rGo~(x) = ~a(x) n T~(x). 

PROOF. -- We  shall show tha t  (5.7) holds. Le t  h e X~ r ~ O and let  Q be such tha t  
x ~- (0, Q) G is in 9. We take  for Q = B~(h), W = B,,.l~k(h ). I f  x ~ tW c~ C :/: 0 and 

x ~ t W  n D r  O, then,  by  (5.8), dist (th, C n D - - x )  is smaller t han  r G in other  
words~ x ~ tQ ~ C ~ l )  ve O as t<t~. 

16 - A n n a l i  di Matematiea 
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The condition (5.7) is satisfied~ in the special case in which C and D separate 
decisively at  a linear rate (see [11]) : there are k and m such t h a t  

dist (g, C ~D)<k[dis t (g ,  C) + dist (g, D)] ,  g ~ X ,  dist (g, C),  dist (g, D ) < m .  

PRoPosImIO~ 5.4. - When C and D are convex (5.7) becomes also necessary for 
the  equality T c ~ ( x )  ~- Tc(x) (~ T~)(x). 

P~ooF. - Suppose t ha t  (5.7) does not hold: there is h and Q e W(h) such tha t  for 
every W e  ,V(h) and every to there is t<to for which x ~ tW (~ CV: 0 and x ~- tW n 
r i d e 0 ,  bu t  x ~ t Q  misses C ( ~ D .  Therefore h ~ K c ( x  )nKD(x) ,  thus, by  con- 
vexity,  is in Tc(x ) ~ T~(x) but  not  in T c ~ ( x  ). 

When the  topology considered in X is discrete, then  K'c(x ) is called the radial 
contingent of C at  x and T'c(x ) the radial tangent (or, simply the radial cone) of C 
at  x. Accordingly, h is in the radial contingent (of C at  x) if and only of there is a se- 

t quence { .}~= ~ convergent to 0 with x -~ t~h ~ C; h belongs to the radial cone of C 
at  x, whenever there is to such that x ~ th e C at  t<$o. 

Le t  ~, 0 be topologies on X. 
The hypertange~t of C at  x is the  lower limit of the homethe ty  J~c(x'~ t) of C as x' 

tends to x within C in 0 and t tends to 0: 

(5.10) ~,:O(x ) �9 ~ c , ~ Ll~(x,c)• 

The neighborhood filter 2~0(x , C) is for the topology, induced on C by 0. 
This cone has been studied (in the  case in which 0 is the topology induced on C 

by 7) by ROCI;AFELLA~ [29] [30] under the name of tangent ,  by  HIRIA~m-U]~UTY [16] 
[17] and PE~oT [25] [26] under the  name of peritangent,  and by  others. The te rm 
(( hyper tangent  ~> has been used in [29] [30] for the radial hypertangent, t h a t  is the 
approximating cone (5.10) when T is discrete. I t  follows from (1.3) t ha t  

~ l ~  c T~(x) , ~ : ( x )  = T~(x) . 

We shall define again the hyper tangent  s tart ing from considering homothe ty  as 
the family of relations from C into X indexed by (0, c~). 

Then the hyper tangent  ~c  (relation from C into X) is the hyperl imit  of the  homo. 
t he ty  (0 is understood to be restricted to C) 

"Gg~ = ( x ' , y ' )  E C• y ' e  ( C - - ~ ' )  (x) 

We conclude tha t  the hyper tangent  ~/~ is always T-closed. The hyper tangent  
relation is not in general closed (0 • 7). 

I t  is known t h a t  if (X, 7) is a topological vector space, then  ~ ( x )  is convex 
for every C and x [28] [34], while available proofs were given in normed spaces. 
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I t  is also known tha t  the radial hyper tangent  ~'/~(x) is then  convex. We present 
a generalization of those results. After I had established the result to follow I be- 
came acquainted with an essentially equivalent result, al though proved differently, 
by  PE~o~ [38]. 

We say tha t  (X~ ~) is an almost topological vector space (almost t.v.s.), whenever 
the multiplication (x, t ) ~  tx is continuous in X for every t ~ R and the addition 
(x, y) ~-> x -~ y is continuous on X • X. 

The discrete topology in a vector space gives rise to an almost topological vector 
space which is not  a topological vector space. More generally, topologies given by 
invariant  uniformities are almost topological vector spaces. Neighborhoods of zero 
in such spaces need not  be radial. 

Tm~o~E~ 5.5. - Le t  (X, -~) be almost t.v.s, and (X, 0) be a t.v.s, such tha t  0 c ~. 
Then for every C and x, the  hyper tangent  ~ ~  is convex. 

P~oo~. - Le t  hl~ h~ be in ~ ~  and let 0 ~ 4 ~ 1. For every Wu ~ A~0(x) there 
are W~ ~ 5V0(x), Q1 ~ J~'~(h~) and t 1 ~ 0 such tha t  

(5.11) w~ § (0, tl)Q1 c w~, 

because 0 is compatible with the linear structure of X and ~ is finer than  O. 
Since h~ is in the hypertangent ,  for every Q~ ~ 2~e~(h2) there are W~ E A~o(x) and 

t~>O such tha t  for t < t ~ ,  x ' E W 2 n C  

(5.12) x'-~ tQ~ ~ C :/: O. 

Let  Q e 2/'~(~hl + (1 --  4) ~,~). Since (X, ~) is almost t.v.s., there are Q~ e ~ v ( h l )  

and Q~ e J~(h~) such tha t  

(5.13) 4@1 + (1 - 4) Q~ c Q.  

To tha t  Q2 choose W2 e AO~(x) and t~ ~ 0 such tha t  (5.12) holds. To the above W~ 
choose W1, tl and Q1 such tha t  (5.11) holds and (5.13) continues to hold. For  tha t  Q,  

f ! ! 
there are W~ ~ 2~'o(x) and t~ > 0 such tha t  W 1 c W 1 and t~ ~< t I for which 

F x"~  tQ1 (~ C =/= ~ as x"~ W~ n C and t ~ tl. 

Consequently there is x '~x"~  4tQ1 n c c W~ (~ C and by (5.12) 

x"~- 4tQl§ (1-4)tQ~n o ~  0 

l t 

provided x"~ W 1 n C and t ~ min(t~, tl)~ which in view of (5.13) yields 

x"§ n or O. 
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COROLLdaY. - The radial  hyper tangen t  is convex. 
Expanding  on the  definition of ROC~h~ELLA~ [30] we say tha t  a set C is epi- 

Lipschitzian at x towards h, if there  are Q ~ J~(h),  W e J~o(x, C) and to > 0 such 
t ha t  Q c (1/t)(C - -  x ~) for x ' e  W and t < to. Iqote t h a t  two topologies are involved. 

By  analogy to  our previous definition we say t h a t  C is direetionally equi-open 
about x, if C is epi Lipschitzian at  x towards every  h. One realizes t h a t  C is epi- 

Lipschitzian at  x towards h, if ~nd only if h ~ (Ls~v~(~,o• 

P]~0POSITIO~ 5.6. - -  I f  C is epi-Lipsehitzian at  x towards h and h e ~D(x) then  

h E ~ o ~ ( x ) .  

PnooF.  - Since C is epi-Lipschitizan at  x towards h, h belongs to  

on1)) x ~(o) ( C - -  x'  , 

Jfo(x, C ~ 2)) being finer than J~'~(x, C). As well, 

I 

By Proposi t ion 1.8, h belongs to  ~cnl)(x). 
An immediate  consequence of Proposi t ion 5.6 is the  local character  of the  hyper-  

t angent  in a topological space (X, 0) when z is finer t h an  0. 
F rom the  above proposit ion it  follows t h a t  if C is epi-Lipschitzian at  x towards 

some h and In t  ~c(x) (h ~ ( x )  ~ 0 then  ~c~ D(x) 3 ~c(x) (h ~ ( x ) .  
I t  was proved [29, Thin. 3] t h a t  in t h a t  case In t  ~v(x) is equal to  the interior l imit 

of the  homothe ty  (the set of epi-Lipsehitizan directions) thus  by  Prop.  1.8 ~c~D(x) 
I n t  ~ c ( x ) n  ~ ( x ) ,  and by  convexi ty  one drops (( I n t  )~ in this formula.  (see Ap- 

pendix). 
This result,  formula ted  in the  language of functions consti tutes the main par t  

of [30, Thm.  2]. 
We shall pass to a condit ion which is analoguous to  (5.7) and will be derived from 

Proposi t ion 1.7. Observe t ha t  this condit ion involves only x'  from C (~ D. 

PI%OPOSITIOI~ 5.7. - Suppose that 

(5.15) for every  h e X every Q e A~ there  are V e ~V~(h), W e ~o(x,  C (~ D), 
t o >  0 such t ha t  if each x ' e  W, t<to~ x~-4: - tVr CV: 0 and x'-}- t V ~ D : / :  O. 
t hen  x'-~ tQ ~ C rh D :/: O. 

Then,  

rl0 ~0(~) 
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P~ooF. - We have tha t  

thus 

1 1 
Lis'o(~,c) x A'(0)-~ ( C --  x') c Li~v4~ ' c ~ 9) • 2~(0) ~ (C --  x ) ,  

"6~(x) n ~ ( x )  c Li~,(~,c~D) x~,, (o) ~ 

:Now apply Proposition 1.7. 
A condition analogous to t ha t  of Proposition 5.3 may  be inferred from (5.14). 

There should be a directional covering about 0 on which (5.8) holds uniformly for 
x ~ x' from a neighborhood W of x. 

The paratingent (BouLIGA.~ND [1]) of C at  x is the upper limit of the homothe ty  
of C as x' tends to x in 0 and t tends to 0. 

(5.15) 

the improper chord of Sv, v~l~[ [33] is an element of 

c o ( ) =  N c5~ U (c 
Ve~C'~(x) t>O,x 'eC~ V 

n V- -x ' )  

which is a subset of the parat ingent  JS~/~ and if ~ ---- 0 is metrizable the two coincide. 
Le t  ,Y be a normed space. We observe tha t  

dis t (h , l  (C--x))-= ~dist(x + th~ C). 

Therefore, by  Corollary of Proposition 3.5, 

To(x) = h: ls~-.o~ (dist (x -}- th, C) ) = 0 

/ l ( d i s t  (x q-th, C)) = O} - .  h: ls~_~0 

and similarly for contingents, hypertangents  and paratingents. Such formulae were 
recognized by PE~o~ [26] and U~sEsev [35] where a reference to a ~FEDE~EI~'S paper 
may  be found. 

One may  also define approximating cones of C by differentiating its indicator 
function. 

To conclude this section we gather some statements in 

(5.16) ~/~ c T~c(x) c K~(x) c Y~~ . 
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6. - Approximat ing  cones  o f  relations.  Generalized derivatives.  

Now we consider subsets of X • Y, hence relations from X into Y. 
topology in X and v~ in Y. 

I t  follows from (2.4) t ha t  

Let  ~ be a 

(6.1) , ~ o  , , y))  c K~(c ) (x )  ~ (  G (~, Y)) c ~ ( e ) ( x )  . 

Analogous s tatements  for hyper tangents  are not  valid in general as in the  example 
of C in R 2 

c = {(~, y): ,~>o, y>0} u {(~, y): x<o,  y<o} 

and its point (0, 0). 
We may  rephrase the definitions of approximating cones using the fact  t ha t  C 

is a relation, for instance, (h, k) is in ~• T c (x, y), if and only if for every Q e oVa(k ) 
and Ve OVa(h) there is to such t h a t  

(6.2) y ~- tQ (3 C(x ~- tV) r O, t<to. 

In  this case we shall occasionally use the notat ion Cr(x, y) rather  then Tc(x , y). Of 
particular interest  is the situation where the topology in X is discrete. An (h, k) 
is in CT'~• y), if and only if for every Q e oV~(/~) there is to such tha t  for t < to 

(6.3) y § tQ n C(x § th)~ O, 

t ha t  is, when Q (~ (1/@ [C(x @ th) --  y] :/: O. 
Approximating cones of relations are also relations in X •  Y; for example, (h, k) 

is in the contingent of C at  (x, y), if and only if k e CS(x, y)h. The fact tha t  C is now 
a relation enables us to consider new types  of approximations. 

Call the Hadamard cone of C at (x, y) the hyperl imit  of the homothe ty  of C at  
(x, y) as t converges to 0 (the terminology will be explained later) 

C~(x, y) = H~/~(x, y) = ~,~_~o ? [C --  (x, y)] .  

Consequently ]c e C~(x, y) h, if and only if for every Q e A~a(k) there is V e &~(h) 
and to > 0 such tha t  

y @ tQ (h C(x + th') as t < 4 ,  h'e V. 

Consider now the impor tant  case where relations are single-valued (thus are 
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identified with mappings). The homothe ty  of ] at (x, ](x)) is for t fixed the mapping 
(1/t)(]--(x,](x)))  and we have 

1 (6.3) JC~,t(h) -~ ~[] - -  (x,](x))J(h) ](x + th) --](x) 
t 

which is the difference quotient of ] at  x. 
By  specializing general definitions we  say tha t  k is in the contingent ]~(x)h of ] 

at  x towards h if for every Q e iT~(k) and every V ~ iT~(h) for each to there is t < to 
such tha t  

f(x + t V ) -  /(x) 
(6.4) Q ~ -/= 0 

t 

and if the topology in X is discrete, then of course, (6.4) becomes 

](x ~- th) - -  ](x) 
(6.5) Q.  E 

t 

I f  (6.4) (respectively (6.5)) holds for all t < t(Q), then  we obtain the tangent  if(x) 
(discrete tangent which is the Gdteaux differential if i t  is linear and continuous (as 
the function of h)). 

A vector k in ]~(x)h, if and only if for every Q e iT~(k) there are V~ iTo(h) 
and to such tha t  for t~<to 

](x + tV) - -  ](x) 
c Q .  

t 

The classical Hadamard  ,derivative of ] at  x may  be defined as the linear con- 
tinuous mapping A such tha t  for every h in X and every function p:  (O, c~) --> X 
such tha t  lim p(t) = h, 

liml(X + t p ( t ) ) -  ](x) = Ah (see ~AS~E]) [24]). 
~o t 

PROPOSITION 6.1. -- I f  X is a metric space, then the Hadamard  approximation 
of ] a t  (x, ](x)) is the (graph of the) Hadamard  derivative (provided it  is linear and 
continuous as the function of h). 

PI~OOY. - Firs t  note tha t  ]B(x)h is at most a singleton as the lower limit of a 
single-valued family in a IIemsdorff space (hence the limit). 

Le t  k e]~(x)h: for every Q e iT(k) there are W E iT(h) and to such that-for t < to, 

](x + tW)  - ](x) cQ. 

On the other hand, there is t'<to so tha t  p(t) ~ W for t < t'. Thus k -~ Ah. 
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Suppose thu t  k = Ah. We shall use the  dual definition of the lower limit describ- 
ing in(x)h. G is in the  grill of 3~(h)• 2~~ if and only if there  exists a sequence 
(h~, t~) in G, t,~>t.+~ converging to (h, 0). Define p:p( t )  =- h~ if t.+~< t< t . .  Since 
]c = Ah, thus, in p~rtieular,  for every  (2 e Ao(k) and every  47 there  is (t,p(t)) in G 
so tha t  

](x + tp(t) ) -  ](x) 
is ill (2. 

t 

Thus k ~ ]~(x) h. 
Consider now topologies ~ in X,  a in Y and another  topology .t0. on X • Y. 
A vector  k belongs to the  hyper t angen t  ]t(x)h if for every  Q e Aeo(k), V e ~ ( h )  

there  are t > 0 and W ~ A~(x, ](x)) such t h a t  

l(x'+ tV) ~,( ~.,X', c~ (2 # O , 
t 

(x', ](x')) e W, t<to. 

We m a y  simplify the  above formulat ion by  introducing the  ((graph topology ~) in X. 
I f  v~ ~ v~ • v~2, then  we denote by  v~f the  supremum of ~ and of the coarsest topo- 
logy in X for which ] (into (Y, v%)) is continuous. 

In  particular,  if ~ is discrete, then  k ~ ]n(x)h, whenever  for every  Q e A~,(k) 

there  are W ~ 2 ~ ( x )  and to > 0 such t h a t  

](x' + th) - -  ](x') ~ Q , for t < to ~nd x~ e W. 
t 

This is a p roper ty  akin to  strict di]]erentiability which is not  uniform in h. 
The above concepts concerning functions and the  analogous infinitesimal concepts 

for general relations show strong resemblance.  Thus one m ay  call t hem derivatives:  
outer derivative in the  ease of contingent,  inner derivative for tangent ,  and similarly 
hyperderivative, paraderivative and Hadamard derivative. Since terminology in the 
area has not  been ye t  consolidated, I am careful not  to  introduce the  above names 
formally.  I am uncer ta in  whether  t hey  fit more for the  ease of the  discrete topology 
in X or maybe  they  should have some other  requirements  like convexi ty  or semi- 

cont inui ty .  
Relations we have been invest igat ing m a y  ~dmit  em p ty  values; in part icular ,  

the  resulting mappings may  be implicitly defined on a proper  subset ff)(]) of X, 
One m a y  also propose definitions tha t  deploy the  domain explicitly. For  instance 

given a mapping ] defined in a neighborhood of a set D we m a y  define an ~pproxim~t- 

ing cone at  (x, ](x)) as the  restr ict ion of if(x) to  s (~). 
Here  we discover a var ie ty  of possibilities as the  approximat ing cone of the  domain 

and t ha t  of the mapping m a y  be of different type.  
This approach is ve ry  well adap ted  to applications in opt imal i ty  theory.  
Already the  totM differentiM of S~.vE~t [33] is defined along these lines. Another  
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example is furnished by  the derivative of UI~SESCTJ [35] which is the I t a d a m a r d  deri- 
vative (in our sense if) of a mapping defined on D = N(]) such tha t  ~(ff(x)) = K~)(z)(x). 

In  general, we have 

(6.6) 

This is by  virtue of (1.5) (having in mind (5.2)), since the relation JIb is equal t o  
i n {(x, y): x e / )} .  

Surely, hypertangents  will not  in general enjoy a similar property. 
One may  use the results of Section 5 to provide sufficient conditions for the op- 

posite inclusion to hold, but  we are not going to discuss this here. 
Another very important  class of relations are cpigraphs. We observe tha t  the 

homothe ty  of the epigraph of ] a t  (x, l(x)) is the epigraph of the homothe ty  (6.3). 
More generally, we shall consider the homothe ty  of the epigraph of at  (x, r) in epi 1. 
There will result the epigraph Of 

' h l ( x  + th) - r 
(6.7) ~f'(~")'( ) - -  t 

Before we face the infinitesimal concepts for this cas% it  is aseful to propose a change 
of notat ion:  ~>J -- epi 1. 

Apart  from its brevity,  the new symbol reflects the fact t ha t  the epigraph >/] is 
the composition of the relatio~a J and of the order relation > in R. The inverse of 
the epigraph is the level relation and it is natural  to put  (>])-1 = ]-1<. 

The contingent, Hadamard, tangent, hypertangent el)i-derivatives then result from 
the general definitions: 

= sup s u p  inf i n f l ( ] ( x  ~- th')--l(x)) 
Oe,N~(h) to t<~to h'eO ~ 

(6.9) >-']a(x)h=[I'(~'(O)+,.r+)(~(](x-~th')--](x)))](h) = 

= i n f  i n f  s u p  
Oed~v(h) te ~to h'eQ ~ 

= sup inf sup i n f l ( J ( x  ,-F th')--J(x)) 
Qsu\~ to t~o h'eQ t 

(6.11)  >~]t(x)/b 

: sup inf in f sup  sup i n f l ( l ( x ' + t h ' ) - - r  ') 
Qedg'~(h) Weo~((x f f (x ) ) ,~$)  to t<to (m',r')eW h'eQ t 
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Of course, the epigraph of the contingent (tangent hypertangent, 
desivative is the contingent (tangent hypertangent, ...) of the epigraph. 
FELLA/~'S notation 

etc.) epi- 
In Rocz~- 

(6.:]_') >~f(z) = f(x) 

and we shall call (6.11) the Rocka/ellar (directional) derivative When the topology 
is discrete, we have the (generalized) Clarke (directional) derivative; it is customarily 
denoted by ]~ 

By introducing the epigraph topology in ~(]) (graph topology of the epigraph) 
we may replace J~((x, /(x)) ,  >/) in (6.11) by  more convenient A~(>~)~(x) and by using 
the notation of Section 2 we have the simpler 

(6.11") :~/t(x) h = ls h ' - ~  h ~(/(x '-4-th ')-- /(x ')) .  
t - ->O~ m ' ( > - ~  t 

provided / is ~-lower semicontinuous at x. We notice that  the epigraph topology 
determined by / and 41, #2 is the coarsest topology finer than vqx for which / is 
upper semicontinuous. 

The contingent and tangent el)i-derivatives are called (generalized) Dini upper 
(lower) derivatives. For instance, we have that k>/r(x)h, if and if for each e, for 
every Q e vV(h) there is to such that for t < to 

inf (/(x -~ th') - -  ](x) - -  tk ) < et 
h'EQ 

and for the discrete topology in X 

](x~- t h ) - - ] ( x ) - - t h<e t .  

I t  follows from convergence theory that  

(6.12) >fl(x) < >~fl'(x) < >~f(x)</~ 

After ~OCKAFELLA~ [28] call / subdi//erentially regular at x towards h whenever 
>lK(x) h -= ~>/(z)h. In  this ease the two are also equal to >ff(x)h. 

The radial subdillerentiaI reguality ('v is discrete) was studied by CLA~xs [5]. Equi- 
valent concept of quasidifferentiability is due to Psrm~iCH~n [27] (see also ~[IF- 
~m~ [213). 

In  the radial case if >/K(x) = >if(X), then both are actually equal to the directional 
G~teaux derivative (without continuity and linearity) 

t'(z) h = l im !- ( t(z  + tt~) - - / ( x ) ) .  
t~0 t 
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Though it is possible to use Theorem 4.4 to furnish conditions for subdifferential 
regulari ty we shall give one directly. 

1)~OrOSITIO= 6.2. -- An 1. sc. function / is radially subdifferentially regular at x 
towards h, if and only if /'(x) h exists and for every e > 0 there are W e d~(>~)~(X) 
~ud to such tha t  for t<o and x'~ W 

/(x' § th) - - / (x ' )  --/ ' (x) h < et . 

The above condition is a unilateral strict differentiability (not uniform in h). 
The Iievitin-Milyutin-Osmolovskii approximation (see IOFFE[ 18]) amounts to 

the radial subdifferential reg~Llarity of / at  x uniformly for x in bounded sets. In  
fact,  the original definition of the L.M.O.-approximation involves a family ]'(x)(.) 
of approximations. However if {/'(x')( .)} is equi upper semicontinuous as x' tends 
to x, then  it may  be replaced by the  single function ]'(x)(.). 

7. - Approximations  which  are radial in the  domain.  

W h a t  most recalls classical directional derivatives are approximating cones of 
relations in X X 15 considered with respect to the discrete topology of X. If  (h, k) 
e XX 15 belongs to such an approximating cone of C at  (x, y) then  t .h  is forced to 
s tay within, or to re turn frequently into, ~ ( C ) -  x as t tends to 0. For  instance, 

~(' • ~)/~ y)h whenever for every Q e dV~(k) there are to and given C: X -> 15, k e - c  
W e 2~o((x, y), C) such tha t  for every t<to and (x', y') e W 

y ' §  tQ c~ C(x'§ th) ~: O. 

Due to general properties of limits, an approximating cone radial in the domain 
is a subset of the corresponding approximating cone with respect to any topology 
(in the domain). The objective of this section is to establish additional conditions 
under which the two cones arc equal. Such conditions enable one to cope with general 
concepts with the aid of simplified formulae. 

By virtue of Theorems 4.2 and 4.3 the above cones are equal provided tha t  the  
homothe ty  (of C at  x for classical cones and of C for hypercones) in quasi ~-cqui 
semicontinuous. By direct clhecking we conclude tha t  

LE~)IA 7.1. - Le t  ( l  Z, ClL) be a uniform space. The homothe ty  of a relation C 
at (x, y) is quasi ~-equi semicontinuous a t  h, if and only if lor U ~ ell there are V e %g, 
Q e d~e(h) and s > 0 such tha t  for every t < s 

(7.1) (t~) [C(x § th) - y] ~ ( t v )  [C(x § tQ) - y] .  
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In  particular the difference quotient at  x is z-equi lower semicontinuous at  h if 
and only if for every ~ > 0 there are Q e ~N' (h) and s > 0 such tha t  for each t < s 

(7.2) sup (](x § t h ) -  ](x + th'))<~et. 
h' eQ 

L E ~ i A  7.2. -- The homothe ty  of C is quasi v-equi semicontinuous at  h (as the 
family filtered by A~((xo, Yo), C) X Ao(0) if and only if (7.1) holds for every t <  s) and 
(x, y) ~ W (a neighborhood in ~((xo,  Yo), C) dependent on U). 

In  particular,  the difference quotient of f is ~-equi lower semieontinuous at  h, 
as a family filtered by 3V~((x,/(x)), >/i) • 3T(0), if and only if for every s > 0 there,  
are Q z ~ (h), s > 0 and W e Aeo((x, y), >~]) such tha t  

(7.3) sup s u p ( ] ( x ' § 2 4 7  t < s .  
x'e~(W) h'eO 

]~ormalzing what we have already said 

TI~EO]~E~ 7.3. - Suppose t h a t  (7.1) holds on the domain of the v X qL-eontingent 
(tangent) of C at (x, y). Then the zX%U-contingent (tangent) and iX%L-contingent 
(tangent) are equal. 

Of course, the above theorem applied to the epigraph of a function ] provides 
the condition (7.2) under  which Dini upper (lower) derivative in the generalizad 
sense and the strict sense are equal at  h. 

We sa.y t h a t  ] is directionally Lipschitzian at x towards h, if for every e > 0 there 
are neighborhood Q of h and s > 0 such tha t  for every  t < s 

(7.4) sup EI(x § t h ) - / ( x  § th')Z<~t. 
h'eQ 

Observe tha t  if ] is locally Lipsehitzi~n at  x then  i t  is directionatly Lipsehitzian ~t m 
and tha t  the lat ter  entails Proper ty  (7.2). 

In  view of Theorem 4.3 and Lemma 7.2 we have 

T~o~E)~  7.4. - I f  (7.3) holds, then  the Rockafellar derivative and the (genera- 
lized) Clarke derivative are equal at  h 

(7.5) #(z)  h = y(z) h .  

~'ormula (7.5) has been proved by Rockafcllar [30, Thm. 3] provided ] is direc- 
tionally Lipschitzian at x with respect to h. This condition amounts  to the existence 
of Q e J r  (h), W e ~~ 1(~)), ~>]) to > 0 and a constant  M such tha t  

(7.6) sup sup (](m'-~ t h ' ) -  ](x'))<~Mt, t<~to. 
:ge~(W) h'eQ 
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The following proposit ion provides a criterion for (7.3) to  hold. Note t h a t  the  

functions considered in this proposit ion are not, in general, directionally Lipschitzian. 
Le t  ] be a real-valued function on X, C a subset of X. We denote fo = ] + Z~, 

Zc the  indicator function. 

PI~OP0SlTIO~" 7.5. -- Le t  X be a normed space. Le t  ] be locally Lipsehitz on a set C. 
I f  h belongs to  the  radial  hyper t angen t  of C at  $, then  fc satisfies (7.3). 

P~oo~. - For  s take  Q to !be a ball of radius ~ with center h and choose s and 
WeAe(x )  so tha t  x ' + t h ~ C  for x ' e W ( ~ C  and t < s .  If  needed ~, W and s are 
reduced so t ha t  ] is Lipschitzian on (W (~ C + (0, s)Q) with the constant  c and so 
t ha t  c($ < e. Ther/ if m'+ th' is in C (with x'c C (~ W, t < s, h ~ Q), then  

]c(x'+ th) - -  ]c(x'+ th') <e(~t < st .  

and otherwise the  difference is - - c ~ .  

Appendix. 

I shall give here a geometrical  and quant i ta t ive  proof of the fact  (which is known) 
that 

THE01CEM. -- Le t  A, B be convex sets in a Hausdorff topological vector  space X 
for which A • I n t  B V= 0. Then 

C1 (A (~ In* B) ~ C1 (A ~ B) = C1 A (~ C1 B .  

Le t  x, v be different elements of X and let  W be a neighborhood of 0 in X;  ~ /~ ,  
~ ~ positive reals. 

By straightforward checking one establishes 

LE:M~,~t 1. -- I f  m'e x + / ~ W  and t>#/(lz + ~), then  

( t  - -  t) x + t[v + (1 - -  2) W] c (1 - -  t) x ' +  t(v + W ) .  

Lw~r~A 2. - I f  t>v/ (x  + ~), t hen  

(1 --t)(x + vW) + tv c (1 --t)x + t(v + ~W) 

LE~v~. 3 (corollary of Lemmae 1, 2). - I f  t > m a x  (v/(1 - -  ~ + v),/t/(tt + ~)) 
and x'e x + vW t hen  

(1--t)(x + vW) + tv c(1--t) x'+ t(v + W)" 

In  par t icular  by  pu t t ing  .~ = ~ and r = / ,  we get the condition t > 2p/(1 + 2#). 
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P~OOF OF THEOaE~I. - We need p rove  only one inclusion. L e t  x e C1 A (h C1 B 

and let  v and  W be such t h a t  v e A and v -~ W c B. For  every  zero neighborhood 
V c W a n d v > 0  we have  t h a t  

(x ~- vV) (h A e e  ~ and  x(v) ~ x ~- vV ~ B .  

of course~ 
2v 

(1 - - t )x (~)  § t(v ~- W) c I n t B ,  ~s 0 < t < l  and b y  L e m m a  3 for t~> 2~ -~------i 

( 1 - - t ) ( x  ~- ~V) -~ tv c I n t B .  

On the  other  hand  (1 - - t ) ($  ~- vV) ~- tv meets  A for every  0 < t<~l, thus  i t  mee t  s~ 
A (h I n t B  if t~2~/(2v ~- 1). 

Le t  f l > 0  be such t h a t  v - - x ~ f l V .  Since 

(*) ( 1 - - t ) ( x  ~- vV) + tv = x + t ( v - - x )  -[- ( 1 - - t ) r V  , 

the  set ( , )  is included in x ~  sV provided  t h a t  s>t f l -~  ( l - - t ) .  By  seSting 

t = 2~/(2~, + 1), we ge t  the  condit ion t h a t  s >  ((1 + 2fl)~v)/(1 -{- 2v). 
Therefore  for every  V we m a y  find U c V c~ W and s(u) such t h a t  (1 - -  t)(x + ~ U) 

+ tv c sV, where t = 2~/(2~ -[- 1). 

Therefore  sV  meets  A c~ I n t  B. 

Since s tends  to 0 wi th  v, every  neighborhood of x meets  A n I n t  B. 
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