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Resolution of Recent Radiations Within Three
Evolutionary Lineages of Felidae Using Mitochondrial
Restriction Fragment Length Polymorphism Variation

Warren E. Johnson,"* Peter A. Dratch,>* Janice S. Martenson,! and
Stephen J. O’Brien’

Patterns of mitochondrial restriction fragment length polymorphism (RFLP) variation were used
to resolve more recent relationships among the species of the Felidae ocelot lineage, domestic
cat lineage, and pantherine linecage. Twenty-five of 28 restriction enzymes revealed site vari-
ation in at least 1 of 21 cat species. The ocelot lineage was resolved into three separate sister-
taxa groups: Geoffroy’s cat (Oncifelis geoffroyi) and kodkod (O. guigna), ocelot (Leopardus
pardalis) and margay (L. wiedii), and pampas cat (Lynchailurus colocolo) and most of the
tigrina samples (Leopardus tigrina). Within the domestic cat lineage, domestic cat (Felis catus),
European wild cat (F. silvestris), and African wild cat (F. libyca) formed a monophyletic tri-
chotomy, which was joined with sand cat (F. margarita) to a common ancestor. Jungle cat (F.
chaus) and black-footed cat (F. nigripes) mtDNAs diverged earlier than those of the other
domestic cat lineage species and are less closely related. Within the pantherine lineage, phy-
logenetic analysis identified two distinct groups, uniting lion (P. leo) with leopard (P. pardus)
and tiger (P. tigris) with snow leopard (P. uncia).

KEY WORDS: Felidae; mitochondrial DNA; phylogenetic reconstniction; restriction frag-
ment length polymorphism.

INTRODUCTION

The family Felidae provides a diverse group of species with which to examine processes
of evolution and resulting molecular genetic patterns. Dissimilar patterns of diversifi-
cation, evolutionary history, and distribution make these species useful for characteriz-
ing genetic processes. Felid species have received a great deal of scientific and popular
attention because of their charisma, important ecological roles, and conservation status
due to habitat destruction and overhunting. Extensive descriptive information has accu-
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mulated on their natural histories, morphology, behavior, reproduction, evolutionary
history, and population genetic structure, which provides a rich basis for interpreting
genetic data (Seidensticker and Lumpkin, 1991; Guggisberg, 1975; O’Brien, 1994a,b;
O’Brien et al., 1996).

The 36-38 extant felid species are divided into several clades or lineages (Collier
and O’Brien, 1985; O’Brien, 1986; Salles, 1992; Wozencraft, 1993). The best described
of these clades are the ocelot lineage, including the ocelot (Leopardus pardalis), margay
(L. wiedii), tigrina (L. tigrina), pampas cat (Lynchailurus colocolo), Geoffroy’s cat
(Oncifelis geoffroyi), kodkod (O. guigna), and probably Andean mountain cat (Oreail-
urus jacobita); the domestic cat lineage, including the domestic cat (Felis catus), African
wild cat (F. libyca), European wild cat (F. silvestris), sand cat (F. margarita), black-
footed cat (F. nigripes), jungle cat (F. chaus), and Pallas cat (Otocolobus manul); and
the Panthera genus of the pantherine lineage, composed of the lion (Panthera leo),
jaguar (P. onca), tiger (P. tigris), snow leopard (P. uncia), leopard (P. pardus), and
possibly the clouded leopard (Neofelis nebulosa) (Wayne et al., 1989; scientific nomen-
clature follows Ewer, 1973). These groups were defined on the basis of comparative
karyology (Wurster-Hill and Centerwall, 1982; Modi and O’Brien, 1988), the presence
of two felid endogenous retroviruses in domestic cats (Benveniste and Todaro, 1974;
Benveniste et al., 1975; Reeves and O’Brien, 1984), albumin immunological distance
(Collier and O’Brien, 1985), allozyme electrophoresis (O’Brien et al., 1987; Pecon Slat-
tery et al., 1994), and two-dimensional protein electrophoresis (Pecon Slattery ef al.,
1994).

Each of these lineages exhibits contrasting patterns of phylogeographic histories.
The ancestors of the ocelot lineage, made up of small spotted cats in Central and South
America (2-18 kg), probably diverged from a precursor to modern Felidae 10-12 million
years ago (MYA), but evolved recently and rapidly following the formation of the Pan-
ama landbridge between North and South America (<3 MYA) (Wayne et al., 1989;
Pecon Slattery ef al., 1994). The domestic cat lineage diverged from the other felids
more recently (8-10 MYA) and is composed of small, morphologically similar cats
which have differentiated from each other over a wide area of Africa, Europe, and Asia
(Guggisberg, 1975; Seidensticker and Lumpkin, 1991). The pantherine lineage includes
the large and midsize cat species which diverged over the last 5-7 MY. A more recent
radiation of the pantherine lineage led to the Panthera genus. These are the great cats
(15-300 kg) with almost worldwide distribution, but which have differentiated only
recently (Neff, 1982; O’Brien er al., 1987; Janczewski et al., 1995). Although these
three major groups have been well supported by a variety of methods, the evolutionary
associations within the lineages remain unresolved.

The present study addresses the recent phylogenetic relationships among species
within each of the three major lineages using mitochondrial DNA (mtDNA) restriction
fragment length polymorphisms (RFLP). MtDNA has several traits which make it useful
for phylogenetic analysis, including nearly complete maternal, clonal inheritance, a gen-
eral lack of recombination, and a relatively rapid rate of evolution (Avise et al., 1987,
Brown, 1985; Wilson et al., 1985; Avise, 1991, 1994). RFLP analysis has the advantage
of rapidly sampling the entire mitochondrial genome.

Previous research with felids using mtDNA RFLP analysis has addressed a variety
of taxonomic, phylogeographic, and population level questions in selected species.
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MtDNA RFLP analysis of the endangered Florida panther subspecies (Puma concolor
coryi) demonstrated genetic introgession of South American pumas into one of two extant
Florida populations (O’Brien et al., 1990). In an analysis of leopards sampled from
around the world, mtDNA RFLP was used (1) to determine genetic distance and diver-
gence dates among leopard populations, (2) to demonstrate an African origin for leop-
ards, and (3) to address subspecies classification issues (Miththapala et al., 1996). In
cheetahs {Acinonyx jubatus), mtDNA RFLP was used to estimate levels of genetic
variation and, combined with minisatellite data, revealed that cheetahs experienced a
severe genetic bottleneck approximately 10,000 years ago (Menotti-Raymond and
O’Brien, 1993). The present study provides the first comprehensive comparison of
mtDNA restriction site divergence in felid species.

MATERIALS AND METHODS

Total genomic DNA was extracted, following standard methods described by Modi
et al. (1987) and Sambrook et al. (1989), from frozen leukocytes, primary fibroblast
cultures from skin biopsies, or frozen organs (liver, kidney, ovary) from several indi-
viduals of each of 21 felid species and a hyaenid, spotted hyena (Crocuta crocuta),
which was used as the outgroup (Table I).

One microgram of DNA from each animal was digested with a panel of 28 restric-
tion enzymes from LTI/BRL (Table II). Enzymes with more than one recognition site
were chosen based on a preliminary screening. Digested samples were separated by
electrophoresis on 1% agarose gels in TAE buffer (40 mM Tris, 20 mM sodium acetate,
1 mM EDTA at pH 7.2) for 16 hr at 70 V and 65 mA, then denatured, neutralized, and
transferred by Southern blotting in 10X standard saline citrate (SSC) onto nylon mem-
branes (UV Duralon, Stratagene). DNA was fixed onto membranes by UV cross-linking
for 30 sec at 120,000 J (Stratalinker TM 1800 UV Crosslinker, Stratagene). Cloned
domestic cat mtDNA (O’Brien et al., 1990) was randomly primed (Random Prime Kit,
Boehringer-Mannheim) with [**P]JdCTP (New England Nuclear) and hybridized to the
membranes at 37°C for 16 hr in a solution of 50% formamide, 1 M NaCl, 10 mM
EDTA, 50 mM PIPES (pH 6.4), 1% sodium dodecyl sulfate (SDS), 5X Denhardt’s
solution, and 200 mg of denatured salmon sperm DNA. Nonspecific radioactivity was
removed from the membranes with three increasingly stringent SSC/SDS washes (to a
final stringency of 0.2 X SSC and 0.5% SDS). Membranes were blotted dry and hybrid-
ized; fragments were visualized by autoradiography (Fig. 1).

A molecular weight standard of BamHI/EcoR1 digest of adenovirus IT DNA (IBI)
labeled with [**PJdATP was used to size fragments. DNA samples from total genomic
DNA and from mtDNA isolated from organ tissue on a cesium chloride gradient (Sam-
brook ez al., 1989) were run separately for each individual of a tested species to distin-
guish fragments of mitochondrial sequences which may have become incorporated into
the nuclear genome (Numi) of some cat species (Lopez et ai., 1994).

Estimated sizes of fragments were summed for general concordance with domestic
cat mitochondrial DNA, which has a length of 17 kb, disregarding putative Numt frag-
ments (Lopez et al., 1996). Restriction patterns (band patterns) for each enzyme were
compared, and individuals were scored for presence or absence of restriction sites (frag-
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Table ¥. Identification Code, Sex, and Source for Each Sample (Scientific Names Follow Ewer, 1973)

Species Sample Sex Source
Ocelot lineage
Ocelot (Leopardus pardalis) Lpa3 M Henry Doorly Zoo, Nebraska
Lpa6 M Blijdorp Zoo, Netherlands
Lpa7 F Octagon Wildlife Park, Florida
Margay (Leopardus wiedii) Lwil M Carnivore Preserve Trust, North Carolina
Lwi8 F Blijdorp Zoo, Netherlands
Lwil2 F Brookfield Zoo, Illinois
Tigrina (Leopardus tigrina) L43 F Cincinnati Zoo, Ohio
Ltis F P. Zool. et Botan. de Mulhouse, France
Lti8 u SOS Care, California
1.ti65 M Cincinnati Zoo, Ohio
Pampas cat {Lynchailurus colocolo) Lcod F Zool6gico Nacional de Chile
Geoffroy’s cat (Oncifelis geoffroyi) Oge66 M Carnivore Preserve Trust, North Carolina
Oge3 M Blijdorp Zoo, Netherlands
Oge8 F National Zoological Park, Washington,
D.C.
Ogell M Washington State University
Kodkod (Oncifelis guigna) Ogu?2 F Zoolégico Nacional de Chile
Ogu3 E Zooldgico Nacional de Chile
Domestic cat lineage
Domestic cat (Felis catus) Fca84 F NIH Animal Center, Maryland
African wild cat (Felis libica) Flil M Kruger Park, South Aftica
European wild cat (Felis silvestris) Fsi7 M ISEC, Ohio
Fsil0 F San Antonio Zoological Gardens, Texas
Fsil2 F Zoologischer Garten Koln, Germany
Sand cat (Felis margarita) Fma3s M Brookfield Zoo, Illinois
Fmat0 M Liviag Desert, California
Fmall M Washington Park Zoo, Oregon
Black-footed cat (Felis nigripes) Fni3 U Meloy Laboratories, Virginia
Fni6 M San Diego Zoo, California
Fni7 F San Diego Zoo, California
Jungle cat (Felis chaus) Fch2 M Blijdorp Zoo, Netherlands
Fch4 u Meloy Laboratories, Virginia
Pallas cat (Orocolobus manul) Omad F Baltimore Zoo, Maryland
OmalD F Brookfield Zoo, Illinois
Pantherine lineage
Leopard (Panthera pardus) Ppa5 F Henry Doorly Zoo, Nebraska
Ppa6 F Henry Doorly Zoo, Nebraska
Ppa20 U Minnesota Zoological Gardens
Ppa2l U Minnesota Zoological Gardens
Ppa30 F Lincoln Park Zoo, Illinois
Lion (Panthera leo) Ple7 E National Zoological Park, Wash. D.C.
Plel3 M National Zoological Park, Wash. D.C.
Ple23 M Wildlife Safari Park, Oregon
Ple24 F National Zeological Park, Wash. D.C.
Ple105 U Woodland Park Zoo, Washington
Jaguar (Panthera onca) Ponl F Carnivore Preserve Trust, North Carolina
Pon9 u Johannesburg Zool. Garden, S. Africa
Snow leopard (Panthera uncia) Pund M Detroit Zoo, Michigan
Pun9 M Calgary Zoo-Botanical Garden, Canada
Puni0 F New York Zoological Park
Tiger (Panthera tigris) Pti2 M Carnivore Preserve Trust, North Carolina
Pti48 M Minnesota Zoological Garden
Pti6s M Philadelphia Zool. Garden, Pennsylvania
Pti66 F Stone Zoo, Massachusetts
Pti69 M New York Zoological Park
Pti76 M Rare Feline Breeding Colony, California
Pti77 M Knoxville Zoological Park, Tennessee
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Table I. Continued

Species Sample Sex Source

Pti81 F San Diego Zoo, California
Ptig2 M San Diego Zoo, California
Pti83 F San Diego Zoo, California

Clouded leopard (Neofelis nebulosa) Nne9 F National Zoological Park, Wash. D.C.
Nnel9 F Minnesota Zoological Garden
Nne22 F NZP/Conservation Research Center,

Virginia

Jaguarundi (Herpailurus yagouaroundi) Hya8 M San Diego Zoo, California

Cheetah (Acinonyx jubatus) Aju70 F St. Louis Zoological Park, Illinois
Aju96 F Wildlife Safari, Oregon
Aju227 U Nairobi Orphanage, Kenya
Aju254 M St. Louis Zoological Park

Outgroup
Spotted hyena (Crocuta crocuta) Cer2 F Henry Doorly Zoo, Nebraska

Table II. Polymorphic Restriction Enzymes Within Felid Species”

Sample Number of

Species Code size haplotypes Polymorphic restriction enzymes
Leopardus pardalis Lpa 3 3 Accl, Aval, Avall, Bcll, Clal, HindIll,
Ndel, Stul, Xbal
Leopardus wiedii Lwi 3 3 Aval, Avall, BamHi, Bcll, EcoRI,
Hincll, Hindlll, Hpal, Ncol, Ndel,
Sstl
Leopardus tigrina Lt 4 4 Accl, Aval, Avall, BamHI, Bgll,

BstUI, BstEll, Clal, DRal, EcoRI,
EcoRV, Hincll, Hindlll, Hpal,
Neol, Ndel, Stul, Xbal

Oncifelis geoffroyi Oge 4 4 Accl, Apal, Avall, Bglll, BstUI,
BstEll, Clal, Dral, Ndel, Ssf, Stul

Oncifelis guigna Ogu 2 2 Apal, Ncol

Felis silvestris Fsi 3 3 Apal, Aval, Avall, BamHI, Bcll, Bgll,

BstUl, Clal, EcoRl1, Ncol, Ndel,
Smal, Sstl, Xbal

Felis margarita Fma 3 1

Felis nigripes Fni 3 2 Apal, Aval, Avell, BstEIl, Clal, Ncol,
Smal, Ssil, Xbal

Felis chaus Fch 2 1

Otocolobus manul Oma 2 1

Panthera pardus Ppa 5 Avall, Aval*, BstUl1, Clal*, EcoRV*,
HincIl*, HindllI*, Hpal*, Ncol,
Pstl, Xbal

Panthera leo Ple 5 3 Avall*, BamHI*, Bgll*, Pstl

Panthera onca Pon 2 2 Avall, BsfUI, Dral, Hindlll, Kpnl,
Ncol, Sst

Panthera uncia Pun 3 2 EcoRV

Panthera tigris Pti 10 1

Neofelis nebulosa Nne 3 1

Acinonyx jubatus Aju 4 1

“ Asterisks refer to restriction enzymes known to be polymorphic in this species from other studies. Cheetahs
(A. jubatus) and tigers (P. tigris) were monomorphic for all 28 restriction enzymes.
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ments of equal sizes). Individual haplotypes were compiled from patterns of restriction
sites across all the enzymes.

To facilitate comparison of shared fragments for each enzyme, all individuals of
the ocelot lineage were run on one gel and all individuals of the domestic cat lineage
were run on a separate gel. Due to the number of individuals tested, two gels were
needed for the individuals of the pantherine lineage, with the same five individuals used
on both gels to allow band comparisons between gels. For each lineage, the spotted
hyena was used as a nonfelid outgroup species, along with at least one felid from outside
the lineage represented on the gel. Band sharing and phylogenetic analyses were restricted
to species samples compared on a single gel.

Percentage interspecies variation (p) was estimated using Nei and Li’s (1979) index
of proportion of fragments shared, or of equal size (T = pi), computed by FRAG-NEW
(developed by J. Avise and M. Ball and modified for larger data sets). This is the equivalent
of dyy of the RESTML algorithm of PHYLIF. For maximum-parsimony analysis the pres-
ence or absence of fragments were used as characters.

Phylogenetic relationships among individuals within each set of RFLP data were
constructed from the distance data by the minimum-evolution method estimated by the
neighbor-joining algorithm of the PHYLIP computer package (Version 3.5) (Felsen-
stein, 1993) and from the character data using the Dollo parsimony model with the
heuristic option of PAUP (Version 3.1.1) (Swofford, 1993), followed by the bootstrap-
ping option with 100 resamplings. Dollo parsimony (Farris, 1977) was used because
parsimony analysis of restriction-site data may be reliable only when divergences are
less than 1% (Nei and Tajima, 1985) and because it is more likely that an existing
restriction site will be lost than gained at any particular location (Templeton, 1983;
DeBry and Slade, 1985). Dollo parsimony assumes that each character state evolves
only once (gains of the derived condition in parallel branches are not permitted) and that
all homoplasy is due to a reversal to a more ancestral condition (Swofford, 1993). For
comparison, trees were also constructed by maximum parsimony using the heuristic
option of PAUP (Version 3.1.1) (Swofford, 1993).

RESULTS

Mitochondrial DNA variation of the three major lineages of Felidae (ocelot, domes-
tic cat, and pantherine lineage) was characterized by RFLP analyses using 28 restriction
enzymes. Within the pantherine lineage, 429 restriction sites were scored for 38 indi-
viduals of 11 species, representing 2456 nucleotides, or 14.4% of the 17,000 bp in the
feline mitochondrial DNA (Lopez er al., 1996). For the domestic cat lineage, 423
restriction sites were scored based on 21 individuals of 12 species representing 2438
nucleotides (14.3% of the mtDNA). With the ocelot lineage, 402 restriction sites were
scored for 25 individuals of 13 species, representing 2279 nucleotides (13.4% of the
mtDNA).

Twenty-five of 28 restriction enzymes demonstrated intraspecies polymorphism in
at least 1 of 17 felid species tested with more than one individual (Tables IT and III).
Tigrina had multiple banding patterns for the largest number of enzymes (18 of 23),
followed by European wild cat (14 of 25) and by margay and Geoffroy’s cat (11 of 23).
In contrast, no polymorphic sites were detected in the 10 tigers or 4 cheetahs tested.
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Table III. The Occurrence of Nuclear Mitochondrial (Numr) Fragments in Tested Species”

Accl Apal Aval Avall ~ BamHI Bcll Bgll Bglll BstUl  BstEll

4 3 3 7 2 3 0 0 3 2
Lpa — — — — — —_ — — — —
Lwi — — — — — — — — _ _
Lti — — — — — — — — — —
Oge —_ — —_ —_ — — — — — —
Ogu — — — — — — — — — —
Fca 2(72) 2(3.4) — — 174 267 18.0 ND — 2 (8.0)
Fli 5(11.5) 232 — 3(6.2y 1(7.4) — — ND — 2(7.5)
Fsi 2(71.2) 232 — 22 134 267D — ND — 2(7.5)
Fma 1(7.5 2.4 — 2(42) 1(74 207D — ND — —
Fch — —_ — — — — — ND — —
Fni — — — — — — — ND — —
Oma — — — — — — — ND — —
Ppa ND — — 1(7.6) 2(6.4) — 3(6.00 ND — —
Ple ND 2(5.7D 1(7.8) 186) 268 322 136 ND — 1 4.7
Pon ND — 1(14.8) — 13.6) —_ 2(3.5) ND — 14.7)
Pun ND 209.7y 34400 1Q2.2) — — — ND — —
Pti ND 2(16.2) 2(32.6) 2(6.5 3(17.4) — 2(34) ND — 12.7)
Npe ND — — — — — — ND — —
Hya — — — — — ND — — — —
Aju ND — — — — — — ND — —
Clal Dral EcoRl  EcoRV  Hincll Hindlll  Hapl Kpnl Neol Ndel
3 5 1 1 10 4 6 0 2 1
Lpa — — — — — — — ND — —
Lwi — — — — — - — ND — —
Lii — — - — — — — ND — —
Oge — — — — — — — ND — —
Ogu — — — — — — — ND — —
Fca — 2 (3.0) 1(7.6) 1@8.1) 12.6) — — ND 209.1) —
Fli — 2 (3.0) 176 1(38.1) 2.0 — — ND 3(11.6) —
Fsi — 2 (3.0) 1(76) 1(8.1) 12.6 — — ND 2(9.1) —
Fma — 1(1.8) — — 12.6) — — ND 1(1.6) —
Fch - 1(1.8) 1(7.6) — — — — ND 2(9.1) —
Fni — — — — — — - ND — —
Oma — - - — — — — ND — —
Ppa — 121 1(8.6) — — 181 136 1(1.9 — ND
Ple — 12.0) 1(8.6) — — 2(712) 1(3.6) 1(1.9 — ND
Pon — — — — — — — 179 — ND
Pun 1500 129 - — 189 1073 186 — 2(10.8) ND
Pii 1(5.00 6(12.6) - — 1(2.8) — 1(8.6) — 3(6.2) ND
Nne — — — — — — — — — ND
Hya — — - — — — - ND — -
Aju — — — — — — — — — ND
Psil Pvull Sall Ssi1 Sstll Stul Xbal Xhol
0 0 0 1 2 5 4 0
Lpa ND ND ND — — — — ND
Lwi ND ND ND — — — — ND
Lt ND ND ND — — — — ND
Oge ND ND ND - — — — ND
Ogu ND ND ND — — — - "+ ND
Fca — - ND 1 (5.6) — 12.2) — ND
Fli — — ND 1(5.6) — 1(2.2) - ND

Fsi — — ND 1(5.6) — 12.2) - ND
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Table III. Continued

Psil Pvull Sall Sstl Sstll Stul Xbal Xhol
0 0 0 1 2 5 4 0

Fma — — ND 1 (5.6) — — — ND
Fch — — ND 1(5.6) — — — ND
Fni — — ND — — — — ND
Oma — — ND — — — — ND
Ppa 14.5) 1(8.3) — 12.3) — ND 147 —
Ple 2 (8.4) 1(8.3) 1(8.4) 2 (6.6) — ND 4(8.4) —
Pon 1 4.5 — — 2 (6.6) — ND — —
Pun 2 (12.8) — — 4 (16.9) — ND 1@.7) —
Pti 19.3) 1(12.0) — 4 (11.2) — ND 3 (16.0) —
Nne — — — — — ND — —
Hya — ND ND — — — — ND
Aju - - — — — — — —

“Below the restriction enzyme is the number of restriction sites in the domestic cat Numt sequence (Lopez et
al., 1994). The number of fragments in each species (codes from Table II) is followed, in parentheses, by
the total kb size of the Numr fragment(s). (—) No Numt sequences were observed in this species’ restriction
enzyme combination. ND refers to enzymes which were not tested with this species.

Mitochondrial DNA evolution in the Felidae is somewhat complicated by the occur-
rence of Numt, an ancient tandem amplification of 7.9 kb of mtDNA located on nuclear
chromosome D2 in domestic cats and also in closely related species (Lopez et al., 1994).
Because of the high copy number (38-56x) of Numz present in nuclear DNA, Southern
blot fragments in species with Numr consist of both cytoplasmic mtDNA and nuclear
Numt fragments. To discriminate between Numt and cytoplasmic mtDNA in the present
study, purified cytoplasmic (nonnuclear) DNA preparations were compared to whole-
cell DNA preparations to identify species with Numz fragments (Fig. 1). Ten species
displayed Numt specific nuclear RFLP signals (Fig. 1 and Table III), five from the
domestic cat lineage (F. catus, F. silvestris, F. libyca, F. margarita, and F. chaus) and
five from species of the genus Panthera (P. tigris, P. leo, P. pardus, P. onca, and P.
uncia). Because these species represent monophyletic lineages within the felid radiation,
it is likely that Numt amplification across two disparate lineages represents two unique
evolutionary events. Numt fragments were not considered for construction of phyloge-
netic relationships.

Pairwise percentage interspecies variation (p) (Net and Li, 1979) varied from 1 to
19% among all cats, including outgroup species (Tables IV-VI). Interspecies variation
reached 16% within the pantherine lineage (between leopard and snow leopard), 12%
within the ocelot lineage (between some individuals of Geoffroy’s cat and margay), and
7% within the domestic cat lineage (between Pallas cat and black-footed cat).

Ocelot Lineage

Phylogenetic analysis of mtDNA from species of the ocelot lineage revealed three
groups which were well supported by distance based and Dollo parsimony methods (Figs.
2A and B). These groups, composed of Geoffroy’s cat (Oge) and kodkod (Ogu), ocelot
(Lpa) and margay (Lwi), and pampas cat (Lco) and three of the tigrinas (Lti), had boot-
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Fig. 2. MtDNA RFLP phylogenetic trees for species of the ocelot lineage. (A) Tree derived from
Dollo parsimony algorithm (VN = 402 character states, tree length = 575 steps, CI = 0.515).
Numbers above the branches correspond to the number of steps/number of homoplasies, and
numbers below to bootstrap percentages from 100 iterations. (B) Tree derived from minimum-
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Time scale represents estimated times of divergence based on fossil calibrations (see text).
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strap values ranging from 96 to 100%. The depth of the nodes uniting the two species
of each clade differed, suggesting that the ocelot and margay diverged prior to the other
two clades. The four tigrina samples separated into two distinct groups: those of Bra-
zilian origin (Lti3, -5, -65) aligned with pampas cat, and an individual of Colombian
origin (Lti8) formed an outgroup of the tigrina/pampas cat clade. Genetic divergence (p
= 4.9-5.2%) between these two groups of tigrinas was five times greater than among
Brazilian tigrina samples (p = 0.2-1.0%) and comparable to the genetic distance
observed between species (Table IV). Depending upon the method used, the relation-
ships among the three groups of ocelot lineage species varied, placing either the ocelot/
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Fig. 2. Continued.

margay clade (Fig. 2B) or the Geoffroy’s cat/kodkod clade (Fig. 2A) as more plesio-
morphic. The occurrence of 22 fragment steps (16 synapomorphic, 6 homoplastic) align-
ing the ocelot/margay with the tigrina/pampas cat provides modest parsimony support
(bootstrap = 62 %) favoring an earlier divergence of a Geoffroy’s cat/kodkod ancestor.

Mean nucleotide diversity between species of the ocelot lineage and the cheetah
(Aju) of the pantherine lineage was 14.12% (Table IV). Based on the fossil record, the
ocelot lineage last shared a common ancestor with cheetah 10-12 MYA (Werdelin, 1985,
Wayne ef al., 1989). If we assume a constant rate of mitochondrial RFLP change, the
rate would be 1.18-1.41%/MY. Ocelot and margay therefore would have diverged 3.3~
4.0 MYA and the most recent common ancestor among these South American small cats
would have occurred 5-6 MYA (Fig. 2B).

Domestic Cat Lineage

Dollo parsimony and distance-based analysis of domestic cat species produced sim-
ilar topologies (Fig. 3). Parsimony analysis resulted in three minimum-length trees
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(length = 606 steps; CI = 0.584) which differed only in the relationships among the
domestic cat and the European and African wild cats. Domestic cat (Fca), European
wild cat (Fsi), and African wild cat (Fli) form an unresolved trichotomy, which joined
with the sand cat (Fma) by a common ancestor (92% of bootstraps), and represent the
most recent radiations within the domestic cat lineage. Jungle cat (Fch) and black-footed
cat (Fni) diverged earlier and are less closely related (p = 5%, compared with approx-
imately 1% among domestic cat, African wild cat, and European wild cat) (Table V).
Jungle cat appeared to diverge prior to black-footed cat in the distance-based analysis
but became an unresolved trichotomy in the parsimony analysis with black-footed cat
and the sand cat/domestic cat clade. Placement of Pallas cat (Oma) within the domestic
cat lineage is weakly supported by maximum-parsimony analysis, which placed Pallas
cat within the clade of domestic cats in 70% of the bootstraps when cheetah and spotted
hyena were outgroup species.

The mean variation between species of the domestic cat lineage and the cheetah
was 9.00% (Table V). Assuming that they shared a common ancestor around 8-10 MYA
(Wayne et al., 1989), a constant rate of mitochondrial RFLP change is 0.9-1.12%/MY.
Domestic cats/African and European wild cats are estimated to have diverged from sand
cats approximately 1.7-2.1 MYA (Fig. 3B).

Pantherine Lineage

Clouded leopard (Nne) was the most primitive offshoot of the six species in this
group. Dollo parsimony analysis produced two equally parsimonious minimum-length
trees of length 623 steps (CI = 0.587) (Fig. 4A). These trees supported the association
of tiger (Pti) and snow leopard (Pun) (bootstrap proportion = 70%), but the relationship
of leopard (Ppa) and lion (Ple) was more weakly supported (bootstrap proportion =
55%). Minimum-evolution analysis using the neighbor-joining algorithm also implicated
the lion/leopard and tiger/snow leopard as monophyletic groups (Fig. 4B).

Mean variation among species of the Panthera genus (including clouded leopard)
and the cheetah was 15.32% (Table VI). Assuming that they shared a common ancestor
with cheetah 3.5-4.5 MYA (Ficcarelli, 1984; Turner, 1987), their rate of mitochondrial
RFLP change was 3.40-4.37%/MY. Lions and leopards therefore would have shared a
common ancestor 2.0 MYA, while the date of the Panthera common ancestor is approx-
imately 3.0 MYA (Fig. 4).

DISCUSSION

Phylogenetic analysis of mtDNA variation within the three major clades of Felidae
corroborated their different patterns of evolutionary history. Members of the ocelot
lineage are distantly related to the other felid species but diverged in a relatively short
time into several lineages. In contrast, species of the domestic cat lineage separated from
the other felids more recently and, with the exception of the domestic cat/European and
African wild cat group, are separated from each other by longer branch lengths. Mem-
bers of the Panthera genus are closely interrelated, suggestive of recent and rapid spe-
ciation.

Within the ocelot lineage, our results concur with the results of two-dimensional
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protein electrophoresis and allozyme analyses, which combine ocelot and margay into a
separate clade and affiliate Geoffroy’s cat with kodkod (Pecon Slattery et al., 1994).
However, the relationships among tigrina, pampas cat, and the other four species differ
between the protein electrophoretic methods and the RFLP analysis. This difference in
topology may be the result of sampling because the present data suggest that there may
be two divergent phylogenetic clades of tigrina, one made up of individuals from Brazil
and the other, more divergent clade, composed of individuals from Colombija. Colom-
bian tigrina samples were not available for the protein analyses (Pecon Slattery et al.,
1994).

Morphological evidence provides limited support for these results. The close rela-
tionship between ocelot and margay has invariably been supported by morphological
studies (Glass and Martin, 1978; Salles, 1992). Further, ocelot and margay also share a
unique deletion of chromosome D2 (Modi and O’Brien, 1988). There has been little
agreement, however, as to the relationships among the other species of the lineage (Hem-
mer, 1978; Herrington, 1986; Salles, 1992).

Divergence dates within the ocelot lineage estimated from RFLP data are consistent
with those calculated from the two-dimensional electrophoretic data. Both estimates sug-
gest that ocelot species diverged initially around 6 MYA, and differentiated further 2-5
MYA. The timing of this radiation coincides with the formation of the land bridge
between North and South America, before which there were no eutherian mammal car-
nivores (including cats) in South America (Martin, 1989; Wayne er al., 1991). This
chronology is also fairly consistent with the fossil record. The earliest predecessors of
the ocelots (F. lacustris or F. rexrodenosis) appeared 4-5 MYA. Fossils of modern
Leopardus species date to approximately 1.5-2.5 MYA in North America and 0.3-0.4
MYA in South America (Berta, 1983).

The evolutionary history of the domestic cat lineage produces a topology which is
described fairly consistently by the genetic methods employed to date (Collier and
O’Brien, 1985; Modi and O’Brien, 1988; Lopez et al., 1994). Both 12S rRNA sequences
(Lopez et al., 1994) and mtDNA RFLP determine that the most distantly related species
of the lineage is the Pallas cat (about 6 MYA), which also differs from the other species
by a chromosomal inversion (Wurster-Hill and Centerwall, 1982) and the absence of
endogenous RD114 retroviral sequences (Benveniste, 1985). The second group to emerge
is the jungle cat and the black-footed cat, which diverged prior to other Felis species,
although the available data conflict as to whether the jungle cat or black-footed cat
diverged first. The mtDNA RFLP data give conflicting results depending on the method
of analysis (Fig. 3). Concurrent studies examining mtDNA sequence data have also been
unable to resolve these interrelationships. Sequences of mtDNA 12S rRNA favor the
jungle cat as diverging first, while cytochrome & sequences favor the black-footed cat
as being earlier (Masuda et al., 1996). Perhaps a stronger character to consider would
be the presence of Numt in the jungle cat but not in the black-footed cat. If this remark-
able nuclear transposition and amplification of the mtDNA genome were considered as
a principal and unique evolutionary event, it would suggest that the black-footed cat
lineage was likely a more primitive divergence than the other Felis species.

MtDNA RFLP data appear to resolve the most recent domestic cat radiation, plac-
ing the sand cat as a plesiomorphous outgroup of domestic and European and African
wild cats (1.6 MYA). The earliest fossil record from this lineage, of Felis lunensis
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(3 MYA), does not contradict our findings, but fossil evidence for this lineage is gen-
erally sparse (Kurtén, 1965). There has been little consistency among the results of
different morphological studies on the domestic cat lineage, except often to align closely
European wild cat and African wild cat (Randi and Ragni, 1991) and to distinguish Pallas
cat from the rest of the lineage (Hemmer, 1978; Herrington, 1986; Salles, 1992). The
composite results of morphology, cytology, 12S rRNA sequences, cytochrome b
sequences, and mtDNA RFLP analyses affirm the suggestion that European wild cat and
African wild cat be subsumed under the same species name, Felis silvestris, in agreement
with Wozencraft (1993).

Relationships among species of the Panthera genus, which evolved recently and
rapidly, are difficult to resolve with the genetic methods applied thus far (O’Brien et al.,
1987). This may be due in part to transmission of substantive ancestral genetic poly-
morphisms (Wu, 1991) common to recent monophyletic radiations that retain ancestral
genetic variation. Within the Panthera genus the mtDNA RFLP data indicate a recent
relationship between tiger and snow leopard. This finding differs from the results of
Janczewski e al. (1995), who found no support for aligning tiger with snow leopard
from analysis of cytochrome b and 12S rRNA sequences but, instead, suggested that
tiger and clouded leopard may be sister taxa. However, their results, especially with 12S
rRNA, suggested that there was a common ancestry between lion and leopard (2.0 MYA),
a result weakly implied by the restriction-site analysis (Fig. 4). A close relationship
between lion and leopard also has been suggested by several morphological studies
(Hemmer, 1978; Herrington, 1986; Salles, 1992), as has the affinity between tiger and
snow leopard (Hemmer, 1978; Herrington, 1986).

The timing of divergence of the nodes within the Panthera genus is consistent with
fossil evidence. The earliest lion fossils date between 1 and 2 MY (Neff, 1982) and
leopard fossils date 3.0 MY from the mid-Pliocene (Savage and Russell, 1983; Turmer,
1987), within the range of the suggested divergence between the two species of 2.0 MY.
The existence of 1.8-MY-old tiger-like fossils (Neff, 1982) suggests, however, that the
divergence of tigers may have been somewhat earlier than our 1.5-MY estimate between
snow leopard and tiger.

Rates of mtDNA Divergence

The rates of base-pair change within the lineages, calculated from when each lineage
was estimated last to share a common ancestor with the cheetah, ranged from 1.0%/MY
for the domestic cat lineage to 3.8%/MY for the Panthera genus. These are within the
range of values commonly cited for mitochondrial evolution (Brown, 1985; Martin ef
al., 1992; Martin and Palumbi, 1993). Although these values represent a relatively large
amount of variation within the same family, they should be interpreted with caution.
Although significant mtDNA rate heterogeneities have been shown across lineages of
Hawaiian Drosophila (DeSalle and Templeton, 1988) and turtles (Avise et al., 1992),
the cause of these differences is unclear. One possibility is that the mtDNA haplotype
date could be later than the actual ancestral population if mtDNA diversity has been lost
during evolution (Wolpoff, 1989). The probability that diversity is lost is higher in small,
nonexpanding populations (Avise er al., 1984).

These rate estimates for Felidae should also be used cautiously since calibrations
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from the felid fossil record are poor and because mtDNA variation tends to decelerate
after 8% divergence (Moritz et al., 1987). This deceleration in divergence rate is appar-
ent when comparing the index of proportion of shared mitochondrial restriction frag-
ments of spotted hyena (Ccr) and cheetah with other felid species (Tables IV-VI).
Although spotted hyena last shared a common ancestor with felids about 38.5 MYA
(Hunt, 1989), the mean divergence between hyena and Felidae species was similar to
those among more distantly related cat species (with divergences less than 12 MYA).
For example, the mean divergence between hyena and ocelot lineage species was 10.7%
(compared with 14.2% between cheetah and ocelot lineage species), 12.1% between
hyena and domestic cat lineage species (compared with 9.0%), and 16.8% between
hyena and pantherine lineage species (compared with 14.2%).

The phylogenetic relationships and genetic patterns discerned from mtDNA RFLP
should be confirmed with other mitochondrial and nuclear genes, because relationships
determined from mtDNA data may not always conform with true species phylogenies,
particularly within recent mammal radiations such as occurred among Felidae species
(Cronin, 1991). The apparent large differences in interspecific variation among felid
species also merit further study to determine their cause.
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