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Summary. In this paper we focus on sequences of random vectors which do 
not admit a strong approximation of their partial sums by sums of independent 
random vectors. In the first part we prove conditional versions of the Strassen- 
Dudley theorem. We apply these in the second part of the paper to obtain 
strong invariance principles for vector-valued martingales which, when properly 
normalized, converge in law to a mixture of Gaussian distributions. 

1. Introduction 

The first half of the title of this paper is borrowed from the heading "Nearby 
variables with nearby laws," used by Dudley [-4, p. 318] in his book to summarize 
the Strassen-Dudley theorem: If F and G are distributions on a Polish space 
which are close in the Prohorov metric, then these distributions can be realized 
on some probability space by random variables X and Y with laws A~ F 
and ~ ( Y ) =  G such that X and Y are close in probability. 

Combining this theorem with Lemma 2.2.2 below, we can restate it in the 
following form: Let X be a random variable, defined on a rich enough probabili- 
ty space (f2, 50, P), and with values in a Polish space B. Let G be a law on 
B which is close to the law A~ of X in the Prohorov metric. Then there 
exists a random variable Y defined on (f2, 5:, P) with law 5~ and such 
that Y is close to X in probability. 

It is this form of the Strassen-Dudley theorem which is most effective in 
proving strong approximation theorems. It will eliminate the need to use such 
well-known but somewhat suspicious looking phrases as: "Without  changing 
its distribution we can redefine the sequence of random variables on a new 
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probability space on which there exists a Brownian motion .... " or "Without  
loss of generality (in the sense of Strassen) there exists a Brownian motion," 
etc. In other words, in these strong approximation theorems we will be able 
to keep the given random variables and probability space and we will construct 
the approximating sequence on the same probability space. 

There is a natural generalization of the Strassen-Dudley theorem to regular 
conditional distributions. Let X, B and (f2, 5 ~ P) be as before and let ~ be 
a countably generated sub-o--field of 5O. Let G(-[~) be a regular conditional 
distribution on B, defined on (f2, 5O, P) and measurable with respect to ~. Sup- 
pose that with high probability the conditional law Lf(Xl~)  of X given 
is close in the Prohorov metric to G('IN). Then there is a random variable 
Y, defined on (f2, 5O, P), with conditional law 5 r  ) a.s., and such 
that Y is close to X in probability. 

However, as it happens, conditional versions of the Strassen-Dudley theorem, 
are much more useful if they include assertions about  independence: Let ~ ,  

and 5r be sub-o--fields of 5O with ~ and ~ being countably generated and 
v ~ f  ~ - .  Suppose that with high probability the conditional law ~(r 

is close to G('I~),  a regular conditional distribution on B. Then there is a 
random variable Y, defined on (f2, 5O, P) which is independent of ~ f  given N, 
has conditional law G(" I(r given N, and is close to X in probability. 

For  R<valued random variables all these results can be rephrased in terms 
of characteristic functions: If g is a characteristic function on R d which is close 
to the characteristic function of X, then [2, Lemma 2.2J, combined with the 
above version of the Strassen-Dudley theorem, yields a random variable Y, 
defined on (~2, 5O, P) which is close to X in probability, and has characteristic 
function g. A conditional version of this result has been known to the workers 
in this area for a long time. For  it was recognized that the proof  of [2, Theo- 
rem 1] still works if there gk is replaced by a conditional characteristic function 
gk('l~k_l) where {Nk, k-->l} is a sequence of countably generated o.-fields with 
NkC~k. However, since there were no interesting applications apparent, this 
seemed a rather useless generalization. As a matter of fact, in light of Remark 2.6 
below, more often than not it is. 

The purpose of this paper is fourfold. First, we shall recast the conditional 
versions of the above mentioned theorems in a form which makes them readily 
applicable and, moreover, which contains most of the known approximation 
theorems. Second, we shall discuss in some detail to what extent these results 
can be generalized. For  example, we will give a negative answer to the following 
question. If, in the above notation, with high probability, ~ ( X I ~ )  is close 
to G('rN) in the Prohorov metric for some sub-o.-fields ~- and N, is it always 
possible to construct a random variable Ywith conditional law 5r ~) -- G(. I~) 
which is close to X in probability? In our counterexample even ~ c ~f is satisfied 
(Remark 2.3). Third, the utility of our results will be demonstrated in a proof  
of a new strong approximation theorem for Hilbert space valued martingales. 
When properly normalized these converge in law to a mixture of Gaussian 
distributions. Finally, we present counterexamples to several reasonably sound- 
ing conjectures on the strong approximation of martingales. We believe that 
these together with our Theorem 7 bring the subject to a certain close. 

The first strong approximation theorem for martingales can be found 
in Strassen's fundamental paper [12]. Let { x , , ~ , n > l }  be a real-valued 
martingale difference sequence with finite second moments. Suppose 
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gn:= 2 E(x2[~ -1)--* O0 a.s. and that {x,} satisfies a kind of Lindeberg condi- 
k<n 

tion. Using the Skorohod embedding theorem Strassen [-12] proved that if the 
underlying probability space is rich enough then the martingale can be approxi- 
mated with probability one by a standard Brownian motion scaled according 
to the conditional variances of the given martingale sequence, i.e. 

(1.1) Z x, 1 {V,< =t} - -B( t )=o( t  ) a.s. 
n ~ l  

The utility of strong (or almost sure) invariance principles, as they are called, 
is clear. If the error term in this approximation is small enough then many 
of the properties of standard Brownian motion are shared by the given mart- 
ingale sequence. For  instance, (1.1) implies the functional versions of the CLT 
and the LIL, but for the upper and lower class integral test for the LIL an 
error term O((t/log log t) ~) is needed. 

Strassen's theorem was extended in [9] to Hilbert space valued martingales 
satisfying a conditional Lindeberg condition slightly stronger than Strassen's. 
For simplicity consider an Re-valued martingale difference sequence {Xk, ~ ,  
k--_ 1} with conditional covariance matrices a k = E r {XkXk 1~-1}.  Set 

A , =  2 ak, V,=trace(A,)= Z E { l x k [ 2 [ ~ - l }  �9 
k<n k<=n 

In [9] (for an improvement see [11]) it is shown that if, in addition to the 
Lindeberg condition, 

(1.2) An ~ A, 
v. 

where A is a non-random positive semidefinite matrix, then (1.1) continues to 
hold. (For the precise statement of condition (1.2), see (3.1.2) below.) But here, 
in contrast to (1.1), B(t) is an Re-valued Brownian motion with mean zero 
and covariance matrix A. Of course, if d = 1 then (1.2) is automatically satisfied 
with A = 1. In [9J an example was presented to show that for d > 1 hypothesis 
(1.2) cannot be dropped if (1.1) is to hold. 

Still assuming d >  1 and (1.2) we can rewrite the d-dimensional version of 
(1.1) in the form 

(1.3) [ ~ x n 1 {V~__< t}--A �89 ~ y,[ =o( t  �89 a.s. 
n>=l n<=t 

where {Yn, n >  1} is a sequence of i.i.d, standard Gaussian Re-valued random 
variables. In Theorem 7, Sect. 3 below, (1.3) is established under hypothesis (1.2), 
but weakened to allow A to be a random covariance matrix, measurable with 
respect to some ~ ,  k >  1. In other words, we shall construct a sequence {yn, 
n >  1} of i.i.d, standard Gaussian Re-valued random variables, independent of 
A, such that (1.3) holds. On the other hand, as we show by example in Sect. 3.3, 
without the assumption that A be ~-measurable  for some finite k (1.3) need 
not hold. 

The more general version of (1.3) with random A is still useful, because 
it shows, for instance, that the martingale normalized by t -~ converges in law 
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to a mixture of Gaussian distributions. But it also implies, via a Fubini argument, 
the laws of the iterated logarithm and their upper and lower class refinements. 

As to the methodology we indicated above that Theorem 3 below is the 
basis for our method. However, one might ask in this context whether or not 
other established methods, such as the Skorohod embedding theorem, or rather 
a vector-valued version of it, could possibly be used, instead of Theorem 3, 
to prove strong approximation theorems for vector-valued martingales. In [8] 
we argued, no doubt very persuasively, that the canonical process to embed 
a general Rd-valued martingale in, must be an R<valued Gaussian process X 
indexed by C e c g, the class of positive semidefinite d x d matrices, with the follow- 
ing properties: 

(i) X(C)  is Gaussian with mean zero and covariance matrix C for each CeCg, 
(ii) X has independent increments, i.e., the vectors X(C1), X ( C I + C 2 )  
- X ( C 1 ) ,  ..., X(C1 + ... + C,_ 1 + C , ) - X ( C 1  + ... + C,_ 1) are independent for 
all n_>_l for all C1, ..., C, eCg. 

After building a strong case in support of this process we showed that for 
d > 1 it does not exist [8]. 

2. Nearby variables with nearby conditional laws 

2.1. Statement of results 

For convenience we introduce some notation. U will denote a random variable 
(defined on the underlying probability space) that is uniformly distributed over 
[0, 1]. Also G(. l~)  will denote a regular conditional distribution, measurable 
with respect to the sigma-field N under consideration. If G(" If#) is such a distribu- 
tion on Nd we define its conditional characteristic function as 

(2.1.1) g(ulf#)= 5 exp(i(u,  x))  G(dx l~)  
R a 

Here (u, x )  denotes the inner product of the vectors u and x. 

Theorem 1 Let X be an Rd-valued random variable defined on some probability 
space (0, 5 e, P) and let ~ be a countably generated sub-a-field of 5 e. Assume 
that there exists a random variable U that is independent of the c-field ~ v a(X). 
(This makes the probability space rich enough.) Let G(" IN) be a regular conditional 
distribution on Nd with conditional characteristic .function g('l~q) as defined in 
(2.1.i). Suppose that for some non-negative numbers 2, 6 and T > 108 d, 

(2.1.2) ~ E]E {exp(i(u, X))[N}--g(u]N)ldu_-<2(2 T) d 
lu[<r 

and that 

(2.1.3) E{G((x: Ixl ~ 1T)I ~)} <~. 
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Then there exists an Re-valued random variable Y on (f2, 5 r P), with the follow- 
ing properties: 

(2.1.4) G(" I N) is a conditional distribution of Ygiven N 

and 

(2.1.5) P ( I X -  YI > c r  

where 

(2.1.6) ~ = 1 6 d T  -1 log T + 2 2 ~ T e + 2 5  ~. 

Theorem 1 is equivalent to the following theorem which is more convenient 
to apply. 

Theorem 2 Let (f2, 5 P, P) be a probability space and let ~ ,  N, ~ and ~ be sub-a- 
fields of 5 p such that N v ~ o ~ c 5 C  Assume that N and 9 f  are countably 
generated. Let X be an Re-valued random variable defined on (f2, 5 P, P) and measur- 
able with respect to 5~. Assume that there is a random variable U that is indepen- 
dent of 5e. Let G('] fg) be a regular conditional distribution on ~e with conditional 
characteristic function g(-Jr#) as defined in (2.1.1). Suppose that for some non- 
negative numbers 2, 6 and T >  108d 

(2.1.7) ~ E l E { e x p ( i ( u , X ) ) l ~ } - - g ( u l N ) ]  d u < 2 ( 2 T )  d 
lul_<7- 

and that (2.1.3) holds. 
Then there exists an Re-valued random variable Y, defined on (f2, 5 P, P), measur- 

able with respect to 2,~ v a(U) such that (2.1.5) and (2.1.6) hold and having the 
following property. 

(2.1.8) G(" IN) is a conditional distribution of Y given f# v ~fP. In particular, 

Y is conditionally independent of ~ given N. 

Remark 2.1 Theorem 2 is an easy consequence of Theorem 1. Since f f v  ~ c 
we can replace in (2.1.7) ~ by f# v ~ .  This follows from [-2, Lemma 2.6]. We 
reinterpret G('IN) as G(" if# v YY). Thus we can apply Theorem 1 with fr v Yt ~ 
in place of N. Notice that N v d/t" is countably generated since N and ~ are. 
We then obtain an Re-valued random variable Y satisfying (2.1.5) and (2.1.6) 
and such that G(.JN) is a conditional distribution of Ygiven N v ~ .  

Remark 2.2 The following non-symmetric form of Theorem 1 may prove useful. 
Assume the hypotheses of Theorem 1 with T > 0  (only) and let r > 0. Then the 
conclusion of Theorem 1 remains valid with (2.1.5) and (2.1.6) replaced respec- 
tively by 

P ( I X -  YJ >r)  < cffr, T ) + 2 2  ~ T a + 2 5  ~ 
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where 

f /4 T3\ �89 

(2.1.9) 
-[3(2T)aexp(--l~6T2), if r > T .  

Theorem 2 can be reformulated in the same way. Proofs will be sketched in 
Sect. 2.2.3. 

Remark 2.3 The condition f# c ~  cannot be omitted. In fact we shall give an 
example of a random variable X with characteristic function m, defined on 
([0, 1), ~ ,  2), and a family {g~('[ if), 0 < e < �89 of conditional characteristic func- 
tions with respect to a or-field f# with the following properties: For  all cog[0, t) 

1 
and all ]u[ < -  

g 

[m (u) -- g~ (u ] f#)] -<_ ~, 

yet any random variable Y~ with conditional characteristic function 
E (exp (i u Y~ [ f#) = g~(u ] f#) is bounded by 2 and satisfies 

n ( I x  KI > 1~_1 

Thus whereas conditions (2.1.3) and (2.1.7) hold, (2.1.6) does not. The example 
is as follows: We choose X(~o)=rl(co), the first Rademacher function (recall 

1 1 r~(<o)=l for 0<co<�89  r1(~o)=--1 for �89 f f =  {~b, [0,1), [0, z),[~,l)},  
J = {4~, [0, 1)}, and 

exp(ieZu) cos u 0<c~<�89 

g~(u [ f#)~ = exp(_ieZu) cosu � 8 9  

Now a random variable Y~ with conditional characteristic function g~(. If#) must 
be of the form Y~ = ~2rl + r where r - 1 on some sets A and B, say, with A c [0, �89 
B=[�89 1) and 2(A)=2(B)=�88 and r = - i  on [0, 1)\(AwB). In other words, r 
is independent of r 1 (and of f#). 

Remark 2.4 We conclude the discussion of Theorems 1 and 2 with the following 
observation. Let X and Y be random variables which are almost independent, 
say 

(2.1.10) IEei"x +i'Y--Ee'X Eei"'iI 

is small for all lu[<T, Ivl<T; suppose that X is bounded. Then according to 
I-2, Lemma 2.2] (=  Theorem 1 with ff = (~b, O)) there exist independent random 
variables X* and Y*, close to X and Yrespectively and such that 5~ *) = Lr 
~e (Y*) = ~ ( r ) .  

Unfortunately, in general, we cannot choose X* = X .  In other words the 
following assertion is false: There exists a random variable Y* independent 
of X, close to Y and with 5 r  Let 0 < E < I ,  let r assume the values 
+1 and - 1 ,  each with probability �89 and let X=er  and Y=r. Then for all 
[ul<~ -~ and all v, (2.1.10) is bounded by e ~-. But any Y* independent of X, 
with s ~ (Y) ,  is also independent of Y and so P(I Y -  Y*t > i)=�89 
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Repeated applications of Theorem 2 yield the following result. Note  that 
the existence of one random variable U independent of V ~k implies the 

k_>0 
existence of a whole sequence { Uk, k > 1} independent of V ~k. 

k>0 

Theorem 3 Let {Xk, k >= 1} be a sequence of random variables with values in R d~, 
k > 1, and defined on some probability space (s 6", p). Let {~k, k > 0} be a non- 
decreasing sequence of sub-a-fields of 5e such that X k is ~k-measurable for each 
k> 1. Let {~k, k> 1} be a sequence of countably generated a-fields with 2~kC ~k, 
k> 1, and let (~ ~o~ o be a countably generated a-field. Assume that there exists 
a random variable U that is independent of V ~k. For each k > l ,  let Gk(']~) 

k>O 

be a regular conditional distribution on ~d~, measurable with respect to ~, and 
with conditional characteristic function 

gk(ulN)= ~ exp( i (u ,x) )Gk(dXl~) ,  ueR  d". 
Rdk 

Suppose that for some non-negative numbers 2k, 6k and T k > l0 s d k 

E IE {exp (i (u, Xk))] ~k-1 } -- gk (U ] N)I d u _--< 2k (2 Tk) dk 
lul<=Tk 

and that 

E{Gk((X:IXl >�89 Tk)l ~)} <6k. 

Then there exists a sequence { Yk, k> 1} of Rdk-valued random variables, defined 
on (s 5 P, P) with the following properties: 

(2.1.11) Yk is O~k V a(U) measurable for each k >_ 1, 

(2.1.12) Gk (" ] ~) is a conditional distribution of Yk given (~ v ~ k -  1, 

in particular, Yk is conditionally independent of ~k - 1 given (r 

and 

where 

P ( I X k -  Ykl >=C~k) <=~k 

~k = 16dk Tk -1 log Tk+22 k Td~')~.k "'~Vk, k~---- 1. 

In particular, if we choose inductively O~k = o-(Y1, ..., Yk), k_-> 1 then { Yk, k >= 1} 
can be chosen to be a sequence of random variables conditionally independent 
given ~. 

Remark 2.5 If ~ can be chosen to be the trivial a-field then, except for the 
exponent �89 on 5k, Theorem 3 reduces to [2, Theorem 1]. In particular, {Yk, k>= 1} 
is a sequence of independent random variables with ~ (Yk)= Gk, k > 1. 

Remark 2.6 We want to spare the reader a complete report on the pitfalls that 
generalizations of Theorem 3 may have, except for this one: Let {Nk, k > l }  
be a sequence of countably generated a-fields ~k c ~k, k > 1. The proof of Theo- 
rem 3 still works if we assume that Gk and gk are ~k-i-measurable instead 



388 D. Monrad and W. Philipp 

of g-measurable. If, in addition, we set ~ : = o - ( Y  1, ..., Yk) then the conclusion 
of (2.1.12) reads: 

Gk(" [~k- 1) is a conditional distribution of Yk given 

o-(Y1, ..., Yk- 1) v Nk- 1, in particular, Yk is condition- 

ally independent of Y1, -.., Yk- 1 given ~k- 1, k > 1. 

Unfortunately, in general, this does not specify the joint distribution of the 
sequence {Yk, k >  1}, as the following example shows. In comparing this with 
Remark 2.5 this paradoxically seems to say that more information in fact yields 
less information. Let No, N1, and N 2 be independent standard normal random 
variables, let 0 < p < l  and set Yl :=pNo+(1-pZ)~N1,  Y2=No+N2 . Let 
=o'(N0). Then the conditional distribution G2('l~q) of I12 given ff is normal 
Jg'(No, 1). The conditional distribution of I12 given ff v a(Y1) is also Jg~(No, 1). 
Thus Y2 is conditionally independent of Y1 given ft. Yet this does not determine 
the joint distribution of Y1 and Y2 since p is arbitrary. 

Theorems 1, 2, and 3 apply to a wide variety of dependence structures includ- 
ing random variables which satisfy a strong mixing condition. In the following 
three theorems the dependence relation is more restrictive than the one implicit 
in (2.1.7), but the random variables are allowed to assume values in Polish 
space. For earlier versions see [-10, Theorem 3.43 and its history given there. 
Given a Polish space (B,m), a set A c B  and p > 0  we write A ~ 
= {x: inf{m(x, y): y e A }  <p}. As before, U is a random variable, defined on the 
underlying probability space, that is uniformly distributed over [0, 1]. Moreover, 
G(. I ff) will denote a regular conditional distribution on N, the Borel sigma-field 
on (B,m), such that G('[ff) is measurable with respect to the sigma-field 
under consideration. 

Theorem 4 Let  X be a random variable, defined on some probability space 
(f2, 5 ~, P) and with values on some Polish (B, m). Let ff be a countably generated 
sub-sigma field of 5 P and assume that there exists a random variable U that 
is independent of the o.-field ff v o.(X). Let G(" IN) be a regular conditional distribu- 
tion on ~ and suppose that for some non-negative numbers c~ and fi 

(2.1.13) Esup { P ( X ~ A I N ) - -  G(A~][ if)} =< ft. 
A e N  

Then there exists a random variable Y with values in B, defined on (f2, 5 p, P) 
and satisfying (2.1.4) and 

(2.1.14) P{m(X,  Y) > c(} </3. 

Remark 2.7 Notice that here as well as in the following two theorems the con- 
stants are sharp. Moreover, if in (2.1.13) ~ is the trivial o.-field then Theorem 4 
reduces to the Strassen-Dudley theorem. 

Theorem 4 is equivalent to the following theorem. 

Theorem 5 Let (f2, 5 P, P) be a probability space and let ~ ,  ~, Y~f and ~LP be sub- 
sigma-fields of 5" such that ff v Y f  ~ ~ ~ 5F. Assume that ff and ~*/f are countably 
generated. Let X be a random variable, defined on (f2, 5 ~, P) and with values in 
some Polish space (B, m), and measurable with respect to 5r Assume that there 
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exists a random variable U independent of ~a~. Moreover, let G(" IN) be a regular 
conditional distribution on ~ and suppose that for some non-negative numbers 

and fi 
E sup {P (X e A I f f )  -- G (A~lJ N)} < ft. 

A a N  

Then there exists a random variable Y with values in B, defined on (~2, 5 P, P), 
measurable with respect to ~f v a(U) and such that (2.1.8) and (2.1.14) hold. 

Repeated applications of Theorem 5 yield the following result. 

Theorem 6 Let {Bk, ink, k> 1} be a sequence of Polish spaces, let Nk denote the 
Borel field of Bk, and let {Xk, k >= 1} be a sequence of random variables, defined 
on (f2, 50, P) and with Xk assuming values in Bk. Let { 4 ,  k > 0} be a non-decreasing 
sequence of sub-a-fields of 5 P such that X k is ~-measurable for each k > 1. Let 
{~,k_>_l} be a sequence of countably generated a-fields with ~ f k c ~ ,  k> l, 
and let N c ~  o be a countably generated a-field. Assume there exists a random 
variable U that is independent of V 4 .  For each k > 1, let Gk(" IN) be a regular 

k > O  

conditional distribution on ~k,  measurable with respect to N. Suppose there exist 
two sequences of real numbers {ak} and {fig} such that for all k> 1 

E sup { P ( X k e A I ~ _  , ) -  Gk(A~[ N)} < fig. 
A E ~ 3  k 

Then there exists a sequence { Yk, k >_ 1} of random variables, defined on ((2, 50, p) 
and with Yk assuming values in B k such that (2.1.11) and (2.1.12) hold. Moreover, 
for all k > 1, 

P{m~(x~, Y~)> ~}_<fl~. 

In particular, if we choose ~ = a ( Y  1 . . . .  , Yk) for k> l then {Yk, k_->l} can 
be chosen to be a sequence of random variables conditionally independent given 
N. 

Remark 2.8 In a recent paper [7] Eberlein embarks on a project similar to 
ours, namely to establish conditions for the approximation of a given sequence 
{Xk, k > 1} by another (possibly dependent) sequence { Yk, k > 1} of prescribed 
distribution. In our view Eberlein's attempt has failed. For he imposes conditions 
on the sequence {Xk, k> 1} so strong that these guarantee that {Xk, k>= 1} can 
be approximated by a sequence { Yk, k >  1} of independent random variables, 
a case which is entirely in the domain of attraction of previous work (Sect. 2.4). 

2.2. Proof of Theorem 1 

The following lemma gives a random variable Z for which G(-iN) is the condi- 
tional distribution of Z given N. Thus from the class of all such random variables 
Z we are to choose one, say Y, which in addition, satisfies (2.1.5) and (2.1.6). 

Lemma 2.2.1 Let ((2, 2f, P) be a probability space with a sub-a-field N c ~ .  Let 
G(', co) be a N-measurable, regular conditional distribution on a Polish space S. 
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Let U be a random variable uniformly distributed over [0, 1] and independent 
of  ~. Then there exists an S-valued random variable Z such that G(., co) is a 
regular conditional distribution of  Z given ~. 

Proof. Without loss of generality we can assume that S = [0, 1] with the usual 
metric and Borel structure. (See e.g. the proof of [5, Lemma 2.11].) For 0 < u < 1 
define 

G-l (u ,  co) =inf{t:  G(t, co) > u}. 

Then G- 1 is jointly measurable since the map u --+ G- 1 (U, (A)) is left-continuous 
and since for fixed u and t 

{co: G -1 (u, r ~ t} = {o): G(t, co) ~ u} e~f. 

The desired random variable is given by 

Z(eo),=G- I(U (co), co). 

We will also make extensive use of the following two lemmas. 

Lemma 2.2.2 ([5, Lemma 2.11]) Let S and T be Polish spaces and Q a law on 
S |  T, with marginal # on S. Let (Q, 5e, p) be a probability space and X be a 
random variable on f2 with values in S and law ~ ' (X)=# .  Assume that there 
is a random variable U on ~, independent of  X ,  with values in a separable metric 
space V and law s on V having no atoms. Then there exists a random variable 
Y o n  E2 with values in T and ~ ( ( X ,  Y ) ) = Q .  

Lemma 2.2.3 ([2, Lemma A 1 ] - [ 5 ,  Lemma 2.13]) Let X ,  Y and Z be Polish 
spaces. Suppose # is a law on X |  Y and v a law on Y |  Z such that # and 
v have the same marginal on Y Then there is a law on X | Y |  with marginals 
# on X | Y and v on Y |  Z. 

Combining these two lemmas we obtain 

Lemma 2.2.4 Let R, S and T be Polish spaces and let v be a law on S |  T. 
Let ((2, 5 e, P) be a probability space and let X and Y be random variables with 
values in R and S respectively, such that 5F(Y) is the marginal of  v on S. Assume 
that there is a random variable U on (f2, 5 P, P), uniformly distributed over [0, 
1] and independent of  Y Then there exists a random variable Z on (f2, 5"9, p) 
such that ~((Y,  Z ) )=v .  

Combining Lemma 2.2.2 with [2, Lemma 2.2] and the Strassen-Dudley theo- 
rem [4, Theorem 11.6.2] we obtain 

Lemma 2.2.5 Let X be a random variable with values in R e and characteristic 
function f .  Let G be a distribution on R d with Fourier transform g. Assume there 
exists a random variable U independent of  X,  Then there exists a random variable 
Y with distribution G such that 

P ( IX- -  YI >~)__<c~ 
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where 

~= 
lul=<r 

provided that T>  10Sd. 

If(u)- g(u)l du + G(x: [x[ > �89 T)+ 16dT-  a log T 

2.2.1. The discrete case 

In this section we make heavy use of the ideas developed in [2, Sect. 2.3.11. 
We first prove Theorem 1 under the additional hypothesis that f# is generated 
by a countable partition. 

Let e > 0 to be chosen suitably later. By (2.1.2), Fubini's theorem and Mar- 
kov's inequality 

(2.2.1) ~ I E {exp (i (u, X ) )  I qq} - g (ul N)l d u < e (2 T) a 
lul<T 

except on a set A1 Elf with P(A1)< ~ =  . Similarly, by (2.1.3) 

(2.2.2) G(x :Ix] =2  > ! T)__< 6 4 

/l 
except on a set A2efq with P(A2)<6 ~. Put t / = - + 6  ~ and let A = A  x wA2. Then 

the exceptional set A6fq and has probability P(A)< q. 
Let D be any of the countably many atoms of fq and keep it fixed. Let 

~(0) denote the trace of 6: on D and define PD by 

(2.2.3) PD (E) = P (E [ D), E ~ 6 :<m. 

Note that X1D and 'U lo are still PD-independent and that the PD-distribution 
of U 1D is still uniform. On D the conditional characteristic function 

1 
E { e x p ( i ( u , X ) ) [ f q } = ~  ~o expO(u ,X) )dn=f (u ) ,  say, 

is a non-random function in u and can be interpreted as the Fourier transform 
of the PD-distribution of X. Similarly, on D, the conditional characteristic func- 
tion g(ulfr as well as G('lfr are non-random. We denote them by g(u) and 
G (') respectively. 

Thus, on the set D, either both (2.2.1) and (2.2.2) hold, in which case D c A  c, 
or else one of these two conditions fails, in which case D c A .  Assume first 
that D c A c. Then by (2.2.1)-(2.2.3) 

I f (u)-  g(u)l du < e(2 T) d 
lul<T 

and 

G(x:lxl>=�89 T)<=6~. 
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Hence by Lemma 2.2.5 there exists a random variable Y on (D, 5 ~(D), Po) such 
that 

(2.2.4) PD(Y~B) = G(B), B ~  a 

and that 

(2.2.5) Po(JX- YI>fi)< fl if D c A  c 

where 

(2.2.6) fl= 16dT -1 log T+eTZa +6 ~. 

If on the other hand D c A  we choose Y with PD-distribution G but arbitrary 
otherwise. Thus 

(2.2.7) PD(] X -  Yt > 0 ) <  1 if DcA.  

As D runs through all the atoms of N we obtain a random variable Y 
defined on the whole space ((2, 5~ such that the conditional law 2~~ 
G('[ff). Moreover, summing the relations (2.2.5) and (2.2.7) over all D~N we 
obtain by (2.2.3) 

P(IX-- Y] > fi)_-< f i+ t/. 

We choose e = 2 ~ T  -a and obtain in view of (2.2.6) a result slightly stronger 
than claimed in (2.1.5) and (2.1.6). 

2.2.2. The general case 

Since ~ is countably generated there exists a real-valued random variable W 
such that N =  o-(W). For  n =  1, 2 . . . .  let W, denote the discrete random variable 
defined by 

W,:= ~ k2-" l {k2-"<W<(k+l)2-"}  
- -  ~ < k < : o o  

and let N,=(r(W,). Let G(-[(#,) denote the ff,-measurable regular conditional 
distribution defined by 

G(BI~,)=E{G(BI~)I~,} a.s. 

for B ~  a. (Note that the verification of this as well as of several of the following 
claims is particularly easy if Lemma 2.2.1 is used.) Let g(ul (q,) denote the corre- 
sponding conditional characteristic function 

g(ul(#,)= ~ exp(i(u,  x))  G(dxl~,)=E{g(ulfY)lfY,}. 
R d 

Since ft, c N, [2, Lemma 2.6] shows that conditions (2.2.1) and (2.2.2) are satisfied 
with ~ ,  taking the place of N. By the result of Sect. 2.2.1 there exists an R<valued 
random variable II, such that 

G(" [ N,) is a conditional distribution of I1. given N. 
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(2.2.8) P(IX - I1.1 > cO <= o~ 

where e is given in (2.1.6). 
We now show that the sequence {5r Y,) ,n>l} of joint laws of W and 

I1, converges weakly as n --+ co. To see this first note that for j = 0, __ 1, ___ 2 . . . . .  
and k = 1, 2 . . . .  the events 

{ W~ [j2 -k, ( j+  1)2-k)} ~ k  . 

Thus for each dyadic interval I k of rank k, for all n > k and for all B e ~  ~ 

(2.2.9) P(WEIk,  Y ,~B)= ~ G(B]~ . )dP  
{Welk} 

= ~ G(BI~)dP.  
{Welk} 

This proves the claim. It follows that the sequence {5r W, Y,) ,n>l} is a 
tight family of probability measures on N2d+ 1. Hence there exists a subsequence 
{n'} such that 

~e(x, w,, Y.,)~ Q 

for some probability measure Q o n  ~ 2 d + l .  Since 5r W) is a marginal of 
Q it follows from Lemma 2.2.2 that there exists an R<valued random variable 
Y such that 5~(X, W, I1)= Q. (2.2.9) implies that G('IN) is a conditional distribu- 
tion of Y given W, and (2.2.8) implies 

P (I X - YI > ~) ~ lim infP (I X - Ynl > ~) ~ ~. 
n ~ o 9  

2.2.3. Proof of Remark 2.2 The following lemma and its proof  are minor modifi- 
cations of [2, Lemma 2.2] and the proof  given there. 

Lemma 2.2.6 Let X be an Ra-valued random variable with distribution F and 
characteristic function f Let g be a characteristic function on R d. Moreover, 
suppose that there is a random variable U, uniformly distributed over [-0, 1] and 
independent of X.  Let r and T be positive numbers. Then there exists a (R<valued) 
random variable Y with characteristic function g such that 

P ( ] X - - Y I > r ) <  ~ [ f (u ) - -g (u )Jdu+F(]x l> �89  
lul<=T 

where e(r, T) is defined in (2.1.9). 
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Proof We follow the proof of [2, Lemma 2.2] until [2, (2.2.4)]. If G denotes 
the distribution associated with g then by the argument proving [2, (2.2.1)] 
we obtain 

F(B)<G(Br)+ ~ If(u)--g(u)ldu+F([xl>=�89 
lul_-<r 

+H(Ixl>�89 ~ Ih(u)ldu 
I u l > T  

for all Borel sets B ~  e. We choose H as on E2, p. 36] with a z r = f f  if r <  T 

and o 2 = �89 if r > T. We then apply the Strassen-Dudley theorem and Lemma 2.2.2 
and obtain the result. 

To finish the proof of Remark 2.2 we follow Sect. 2.2.1 until (2.2.4). We 
now apply Lemma 2.2.6 and obtain, instead of (2.2.5) 

P ( I X -  Y[ >r,D)<P(D)(TZ~e+2~+cffr, T)) if D c A  c. 

As in Sect. 2.2.1 we sum over all DsN,  choose e = 2 ~ T  -d and obtain the result. 
The changes in Sect. 2.2.2 are minor. 

2.3. Proof of Theorem 4 Again we first prove Theorem 4 under the additional 
hypothesis that N is generated by a countable partition. The proof  makes use 
of sketches of proofs of unconditional results given in several earlier papers 
(see [10, Theorem 3.4J and its history given there). 

Let D be any of the countably many atoms of N and note that on each 
D both 

P(X~A[N)=P(X~AID)  and G(A~1IN)=G(A~1ID), 

are non-random. Hence we can rewrite (2.1.13) in the form 

(2.3.1) ~, P(D)e(D)<fl 
DEft 

where we set 

(2.3.2) e(D) = sup(P(X E A t D) -  G(A~1I D)). 
A ~  

In the context of [10, Theorem 3.4] the usefulness of this observation for obtain- 
ing sharp constants was pointed out to us by Erich Berger [1]. We thank 
him for this remark. 

For  the moment keep D fixed. We shall construct Y on each D separately. 
Define for all A ~  

PI(A)=P(XeAtD ) and 

Then by (2.3.2) with e = e(D) 

P1 (A) < P2 (A~I) § ~, 

P2 (A) = G (AID) 

for all A ~ .  
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Hence by the Strassen-Dudley theorem [4, Theorem 11.6.2] there exists a 
probability measure Q = QD on B | B with marginals P~ and P2 such that 

QD {(x, y): m(x, y) > c~} <= e. 

Hence by Lemma 2.2.2 there exists a random variable Y on (D, 5e<o), Po) such 
that 5r Y)= Qo, where 5 e<~ and PD are defined in (2.2.3) above. It follows 
that 

(2.3.3) P(m(X, Y) > ~, D) < e(D) P(D). 

As D runs through all atoms of fr we obtain a random variable Y defined 
on the whole space ((2, 5 e, P). We sum (2.3.3) over all sets D and obtain, in 
view of (2.3.1) 

P(m(X, Y)>~)=< ~ P(D)~(D)<fl. 
D~f9 

We also note that (2.1.4) holds since P2, the second marginal of Qo, is the 
Po-distribution of Y This proves Theorem 4 in case that fr is generated by 
a countable partition. 

The proof  of the general case can be easily modeled after Sect. 2.2.2. 

2.4. Proof of Remark 2.8 We concentrate only on one of Eberlein's results, name- 
ly on [7, Theorem 2]. We first prove the following lemma. 

Lemma 2.4.1 Let X and W be random variables defined on some probability space 
(f2, 5 r P) and with values in a Polish space B. Let ~ and f# be sub-a-fields in 
50 and assume that ~ is non-atomic. Suppose there exist two positive numbers 
e and 2 such that for each pair of sets D ~  and E~f# with P(D)=P(E) the 
following relation holds: 

(2.4.1) P(X6AID)<P(W~A~1]E)+2, f o ra l lAe~ .  

Here ~ denotes the Borel-field of B. Then with probability one 

(2.4.2) sup {P(WeAIf~)--P(W~A2~1)} <= 3 2. 
A ~  

Proof. Let E efr be any set with c~ ,= P (E) > 0. Choose integers n > ~ 2  and 0_< k < n 

such that 0 < ~ -  k _< 1__< c~ 2. Partition f2 into n sets D1 . . . .  , D, ~ ~ with P (D j)=--l, 
n n n 

1 =<j_-< n. For  any subset M of k integers j, 1 < j  < n choose a set D* ~ disjoint 
k 

from U Dj with P ( D * ) =  e-- - - .  By a well-known argument (2.4.1) implies 
n j e M  

P(W~A[E)<=P(X~A~]ID)+2 , for a l l A ~  
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and so with D = ~ Dj w D* 
j cM 

(2.4.3) P(WsA, E)<= ~ P(X~A ~1, Dj)+2a2, 
j~M 

A6~.  

w e  sum ( 43)over all  o s,b,e  ubsets a .d  

Dividing by ~{~) and applying (2.4.1)with D=E=f2, and A ~1 instead of A, 
we get 

(2.4.4) P(W~AIE)<P(W~A2~])+32 for all AEN. 

Now fix A 6 ~  and let E---{P(WeA [(#)-P(W~A2~])> 32}. Then (2.4.4) implies 
P(E)--0. Since the supremum on the LHS of (2.4.2) needs to be extended only 
over countably many sets A e ~  we obtain the result. 

We now recall Eberlein's [7, Theorem 2]: Let {Bg, ink, k >  1} be a sequence 
of Polish spaces, let {Xt,,k>= 1}, {l/Vk, k > l }  be two sequences of random vari- 
ables, defined on (f2, 0 ~ P) and with X k and VCk assuming values in Bk, k> 1. 
Let { 4 ,  k >  I} and {~ ,  k >  1} be two non-decreasing sequences of sub-e-fields 
of 5 ~ and assume that ~ is non-atomic, X~ is ~-measurable  and ~ is 
(#k-measurable for each k > 1. Suppose there exist sequences {ek, k > 1}, {2k, k > 1} 
of positive numbers such that for each pair of sets D e ~ _  1, E~fgk-1 with P(D) 
=P(E), 

(2.4.5) P(Xk~A[D)<P(I, VkeA~k]IE)+2k for all Ae~k .  

Here ~k is the Bore1 a-field over Bk. Let us finally assume that there exists 
a random variable U, uniformly distributed over E0, 1] and independent of 
Y~ v f#~. Under these assumptions Eberlein 1"7] proves that there exists a 
sequence {Z k, k> 1} with the same law as {Wk, k>  1} such that 

(2.4.6) P{mk(Xk,Zk)>3ek}<2g, k>l .  

What we claim is that under these hypotheses one can do better. Namely, 
one can approximate {Xk, k > l }  by a sequence {Yg, k > l }  of independent ran- 
dom variables with 2'(Yk) = ~a(Wk), for each k >  1. 

To see this note that by Lemma 2.4.1 we have with probability 1 

P(VVkEAlC~k_I)<=P(Wk6A2e~'I)+ 3Zk, A ~  k 
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and hence by Theorem 6 with Jfk_l=a(Y1 . . . . .  Yk-1) ,  k > l  and (q, the trivial 
a-field, there exists a sequence {Yff ,k>l}  of independent random variables 
with ~(Yk*) = ~(Wk), k >  1 such that 

(2.4.7) e {mk(Yk*, Wk)> 2ek} < 3 2k, AeY)k. 

As a matter of fact [-10, Theorem 3.4] would in essence yield the same conclusion. 
Let B=|  Consider the law &~ on B|  Since ~({Wk}) 

= ~q~ ) we obtain from Lemma 2.2.4 a random variable {Yk, k >  1} such that 
5r { Yk})= 5e({ Wk), { Yk*})- Hence by (2.4.6) and (2.4.7) we obtain 

(2.4.8) P{mk(X k, Yk)> 5ek}__--<42k, k > l .  

Since ~({Yk})=~({Yk*})the sequence { ~ , k ~ l }  is a sequence of indepen- 
dent random variables with 5r ~q~(Wk), k >  1. 

We would like to add in passing that we can derive the existence of a sequence 
{Yk,k>l} of independent random variables approximating the sequence 
{Xk, k> 1} and satisfying (2.4.8), directly and more easily from (2.4.5) by using 
Theorem 6 or [10, Theorem 3.4], if we consider separately the following two 
cases: (1) each a-field Nk is finite, (2) one a-field Nk contains sets of arbitrarily 
small measure. 

3. A strong approximation theorem for Hilbert space valued martingales 

3.1. Statement of theorem 

Let {x,, ~o, n > 1} be a square integrable martingale difference sequence defined 
on some probability space (g2, 5 p, P) and with values in a real separable Hilbert 
space (H, ( - , . ) ,  I" 1). Suppose that (f2, 5 p, P) supports a random variable U, uni- 
formly distributed over [0, 1] and independent of {x,, n>  1}. We denote the 
conditional expectation operator E(.15~,_ 1) by E,(.). Let a,  be the conditional 
covarince operator of x, given &o_ 1, defined by 

a,(u) :=E,((u,  x,)  x,), ueH 

and let 

tr(a.)--= ~, (a.(el), ei)=E.lx.] 2 
i>1 

be its trace. Here {el, i>  1} is a complete orthonormal basis for H. We write 

A n := ~ (7i 
i<=n 

and put 

Vo:----tr(&)= Y~ e~l~l ~. 
i<=n 
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Fo r  each coet2 let #~ be a mean  zero measure  on H such tha t  ~ fx[ 2 #~o(dx)< oo. 
Moreover ,  suppose  that  the m a p  T: H x t? ~ H defined by n 

T(u, co)= ~ (u, x )  x#o)(dx) uaH, co~Q 
H 

is measurable .  We call T a r a n d o m  covar iance  opera tor .  We define further  
a s emino rm I[-lI on linear ope ra to r s  B: H ~ H  by 

[[ B [[ = sup [(B(u), u)[ 
u~H, II u [I = x 

and observe that  if T is a r a n d o m  covar iance  ope ra to r  then 1[ Tll is a r a n d o m  
variable.  

With  this no ta t ion  we have the following extension of [9, T h e o r e m  l]  and 
of [11, T h e o r e m  2]. 

T h e o r e m 7  Let { x , , f n ,  n__>l} be a square-integrable martingale difference 
sequence with values in a real separable Hilbert space H of dimension d< 0% 
and defined on (t2, 5 ~, P). Let f be a non-decreasing function with f (x) ~ oo as 

x ~ o% and such that f(x) (log x) ~ is non-increasing for some c~> 50d. (If d= oo 
X 

we interpret this last condition to mean that it holds for all large c~.) Suppose 
that Vn ~ O0 a.s. and that 

(3.1.1) D ,= ~ E {Ix, I 2 1 {[x,f 2 >f(V,)}/f(V,)} < oo. 
n > l  

Moreover, suppose that there exists some covariance operator A, measurable with 
respect to ~ for some k > O, and some 0 < p < 1 such that 

(3.1.2) E s u p  { II An --AV, II/U(E)} p < c~. 
n > l  

Finally, let I be an arbitrary non-singular, non-random covariance operator. 
Then there exists a sequence {y,, n> 1} of i.i.d. Gaussian H-valued random 

variables, defined on (t?, 5 ~ P), with mean zero and covariance operator I, and 
independent of A such that with probability 1 

[ ~ x,  l { V , < t }  -1 ~ (O(t�89 p/5~ 
- ( A I  )" Z Y~ =]o( ( t log log t )  ~) 

n >  l m < t  

if d < o o  

if d = o o .  

Remark 3.1 For  d =  1 our  result is somewha t  weaker  than  Strassen's  [12] be- 
cause our  class of  functions is somewha t  smaller. Moreover ,  instead of (3.1.1), 
Strassen only assumed  the a lmos t  sure convergence of the series in (3.1.1) with 
E(- )  replaced by E( .  ILl,_ 1). 
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Remark 3.2 Collecting the probability bounds before the Borel Cantelli lemma 
is applied we can obtain for d < oo 

p p 
P{max[ ~ x, 1 {V,<=s} --A !~ ~ Y,,I >=t~(f(t)/t) 1~62} ~ ( f  (t)/t)lOOd. 

s = t  n>=l m<=s 

Here {ym, m > l }  is a sequence of i.i.d. J#(0, I) random vectors independent 
of A, and I denotes the identity matrix. 

Remark 3.3 Influenced by L6vy's proof  of the CLT for martingale differences 
(see e.g. [3, 498 501]) one of our initial goals was to establish strong approxima- 
tions of the type 

(3.1.3) [ ~  x k -  ~ a~Yk]=O((V, log log V,) +) a.s. 
k<=n k<_n 

or  

(3.3.4) I~Xk l{Vk<t}- -~a~yk  1 {Vk < t}l = o((t log log t) ~) a.s. 

where {Yk, k> 1} is a sequence of i.i.d, standard normal random variables, inde- 
pendent of the sequence {ak, k > l } .  But even if d = l  neither (3.1.3) nor (3.1.4) 
can hold in general. To see this let {r k, k >  1} be the sequence of Rademacher 
function, i.e., P(rk=+_l)= 1, ~ = a ( r l  . . . .  ,rk) and Xk=(l+rk_l)rk . Then ak 
=E(x~[~Lfk_O=(l+rk_l) z. Write as above Vn= ~ ak" If {Yk} is independent 

k<_n 

of {ok}, then {Yk} is also independent of {rk} and so 

(3.3.5) 
a 

Xk-- a~ Yk-- ak (rk Yk), k > 1 

is a martingale difference sequence with respect to the natural filtration. Hence 
(3.1.5) satisfies the LIL with quadratic variation 2 V,. This contradicts both (3.1.3) 
and (3.1.4). 

Of course if d = 1 we obtain for some i.i.d. JV (0, 1) sequence {y j, j > l } 

~Xg 1 { Vk__< t } -  ~ yj=o(t ~-~) a.s. 
j< t  

by Strassen's theorem [12]. 
[11, Theorem 1] and, a fortiori, [6, Theorem i]  easily extend to the case 

of random covariance operators T. 

Theorem 8 Let { @ j > 1} be a sequence of random variables, defined on (f2, 5 p, P), 
with values in a real separable Hilbert space H of dimension d <__ oo and with 

supEl~il2+~< oQ 
j>_-i 

for some 3>0 .  Let U be a random variable independent of {~ j , j> l}  and let 
{/dj , j  > 1 } be a non-decreasing sequence of a-fields such that ~ is Jg@measurabte 
for each j>= 1. Denote 

m-t- n 

S.(m):= Z ~J 
j = m + l  
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and for m >-0 and n > 1 define the conditional covariance operators C(n, m) by 

C(n, m; u),=E {(u, S.(m)) S.(m)l d/Zm}, u~H. 

Suppose that there exist 0 > 0 and p > 0 such that uniformly in m > 0 

E [E(S.(m)[ ~m)] p ~ n ~-~ 

and suppose that there exists a (possibly random) covariance operator T, measurable 
with respect to some d//j, j > 1 such that uniformly in m > 0 

EII C(n, m ) - n T H  ~ n  1-~ 

Finally, let I be an arbitrary non-singular, non-random covariance operator. 
Then there exists a sequence {y,, n> 1} of i.i.d. Gaussian H-valued random 

variables, defined on (f2, 5 p, P) with mean zero, covariance operator I, and indepen- 
dent of T such that with probability 1 

j<. j<=. I.o((n log log n) ~) 
if d < c c  
if d=oQ. 

Here 2 > 0 is a constant depending only on d, c~, p and O. 

3.2. Proof of Theorem 7 The proof of Theorem 7 follows in essence the proof 
of [-9, Theorem 1] except that for the construction of the random variables 
{y j , j> 1} Theorem 3 instead of [-2, Theorem 1] will be applied. Throughout 
the proof we shall use the same notation as in [9], wherever possible. 

We first observe that there is no loss of generality in assuming that A is 
So-measurable. 

3.2.1. The case d < o~ 

Except for one minor change we follow [9, Sect. 2.1-2.3]. Starting with [-9, (2.1)] 
we replace d by 

d,..=_ d. 
P 

This will compensate for the fact that our hypothesis (3.1.8) is weaker than 
the corresponding [9, (1.5)]. The changes in [9, Sect. 2.33 precipitated by this 
weakening of the hypothesis [9, (1.5)] have been dealt with in [11, p. 230 to 
p. 231, line 4]. In this context it is perhaps helpful to observe that the argument 
in [-9, (2.11)] requires no change, because A is assumed to be So-measurable. 
Hence [-9, Proposition 1] remains valid with the appropriate interpretation of 
A : A s k ~  

(3.2.1) sup ElE{exp( i (u ,  Z k ) ) l ~ _ l } - e x p ( - � 8 9  A u ) ) l ~ k  -Sd. 
]ul~k2 
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Remark 3.4 For the proof of (3.2.1) the hypothesis that A be 5~ 
is not needed. As a matter of fact the same argument shows that if N, denotes 
the a-field generated by {o-j,j < z(k)} then 

sup E[E(exp(i(u, Zk ) ) [~ -1} - -E  {exp(--}(u, Au))]~_ ~}[ < k - %  
[ul<_k2 

This together with some routine calculations imply the CLT with a mixture 
of Gaussian distributions as limit. 

We now apply Theorem 3 to the sequence {Xk, k> 1} ={Zk, k> 1}, Tk=k ~, 
~ = a ( A )  and gk(ulfY)=exp(--�89 Au)). We obtain sequence {Yk, k > l }  of 
Re-valued random variables, defined on (t2, 5 P, P) with the following properties: 

Conditional on A the sequence { Yk, k_--> 1 } is a sequence of independent ran- 
dom variables with (conditional) characteristic function exp(--X(u, A u)) such 
that 

with 

C~k ~ k  -~. 

Next we apply Lemma 2.2.4 with the random variables 

X={Zk ,  k>l} ,  Y=(A,{E,k>=I}) 

and the law 

u=~e  ,j____l}; A, A~h;~ ~ N,k>=l 
j = t k - l + l  

defined on the appropriate Polish spaces R d~176 Re2| d~176 and R a~. Here tk 
and hk are defined in [9, (2.1)] and {Nk, k> 1} is a sequence of i.i.d, standard 
Gaussian Re-valued random variables, independent of A. Since the marginal 
on R e2 | R d ~ of v, 

5~(A, {A~h;~ZNj,  k > 1}) 

equals ~ (Y)  there exists a random variable Z =  {yj, j> 1}, defined on (t?, 5 P, P) 
with Re-valued, i.i.d, standard Gaussian components y j, independent of A such 
that for all k > 1 

t~+~ Yj > k) (3.2.2) P Zk--A~hk ~ ~ ~ <~k. 
j = t k  1 + 1 

Summing these relations over k = 1, ..., M we obtain the analogue of [9, (2.20)]. 
The remaining changes in [9, Sect. 2.4] are routine. 

We note that if A is invertible the proof of (3.2.2) can be simplified, because 
it is easily checked that {A -~ Yk, k >  1} is a sequence of i.i.d, standard Gaussian 
Re-valued random variables. 
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3.2.2. The case d = oo 

The proof of Theorem 7 in the infinite-dimensional case is almost identical to 
the proof given in [9, Sect. 3], as ammended in [11, pp. 231~32]  to take care 
of the weakened hypothesis (3.1.8). The idea behind the proof is this: One approx- 
imates the H-valued martingale difference sequence x, be a finite dimensional 
martingale difference sequence rc k x,  of ever increasing dimension dk, which, 
by the way, will be random. One then applies the results of Sect. 3.2.1 to ~z k x, 
to construct finite dimensional approximations of rc k x, by mixtures of Gaussian 
random variables. Finally, a bounded law of the iterated logarithm for x n -  rck X, 
is proven to show that the approximation errors are negligible. 

As noted above, this program has been carried out in [9, Sect. 3J and [11, 
pp. 231-232]. There are three items which need attention. First, from the middle 
of [9, p. 247] on a factor h~-~ is missing. Second, in three lines in the lower 
half of [9, p. 247] the symbol Q~ erroneously got omitted. (Recall that I1" ]F 
denotes the seminorm defined in I-9, p. 232, line 8] and not the operator norm.) 
Third, for random A the estimate of III in [9, p. 248, line 4J needs proof. In 
other words, we need to show that for all co~f2 

(3.2.3) I] Qk AQk II ---' 0 

as k ~  oe. There are at least two ways to see this. By [13, p. 326, Remark] 
we can approximate A (for each fixed co) in the operator norm by a finite 
dimensional operator on H with finite-dimensional domain. Hence (3.2.3) fol- 
lows. We thank Loren Pitt for this remark. But (3.2.3) also can be proved by 
observing that for each fixed co, A is the covariance operator of some square 
integrable vector 4, say, and that 

II Qk AQkll ~EIQk 412 ~ 0 .  

3.3. A counterexample 

We shall show now that in Theorem 7 the hypothesis that A is L~k-measurable 
for some k__> 1 cannot be omitted. 

Let ([0, 1), N, 2) be the unit interval with Lebesgue measure and let {r,, n >  I} 
be the sequence of Rademacher functions, defined on [0, 1). Let &a 0 be the trivial 
a-field and let ~ be the a-field generated by the dyadic intervals of rank 2n. 
For  n > 0 define 2 x 2 random matrices 

(r,+ 1 (co)=[k2 -" 0 ] 0 l - k 2  -~ if k 2 - n < c o < ( k + l )  2 -", 0=<k<2". 

Set 

Xn=  (r2n 1/ n= l 
\ r 2 . /  
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Then  {x,, 5r n > 1} is a 2-dimensional  mar t inga le  difference sequence. N o w  

A, .'= ~ a k 
k<~n 

has trace V~ = tr An = n. Thus  for all 0 < co < 1 the limit 

[ o  0 ] 
A,:2im A./V.= o 

exists. As a ma t t e r  of  fact bo th  condi t ions  (3.1.7) and  (3.1.8) are satisfied with 
f (x) = x ~. 

Suppose  there exists a sequence {Yk, k >  1} of i,i.d. 2-dimensional  s t andard  
Gauss i an  r a n d o m  variables,  independent  of  A such tha t  with p robabi l i ty  1 

] Z x~ - A ~  ~. Ykl=~176176 n~o3  
k < n  k < n  

or  what  a m o u n t s  to the same 

JA -~ ~ Xk-- ~ ykj=o((nloglogn)+), n ~ .  
k < n  k < n  

Since A generates  ~ ,  the sequence {Yk, k>= 1} is independent  of  {xk, k >  1} and  
thus of  {A--~Xk, k>l} .  Hence  we have  by a Fubini  type a rgumen t  tha t  for 
some sequence {e,, n > 1} of cons tan t  2-dimensional  vectors  

J ~ yk--en[=o((nloglogn)~) a.s. 
k < n  

But this mus t  also hold for any  independent  copy  {y*, k >  1} of {Yk, k> 1} and 
SO 

r ~ (yk - y*)[ = o ((n log log n) ~) a.s. 
k < n  

This contradic ts  the classical LIL .  
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