Erratum

Interactions between a 3d Impurity and Conduction Electrons

by L. L. Hirst

Z. Physik 244, 230-244 (1971)

In Table 2, the entries involving $T_2T_1T_2$ or $T_1T_1T_1$ should have their signs reversed. As a consequence, the entries for (t_2eT_10) under $3d^2$ and $3d^7$ in Table 3 should have their signs reversed.

L. L. Hirst Institut Max von Laue-Paul Langevin Außenstelle Garching Reaktorgelände D-8046 Garching bei München Federal Republic of Germany

Erratum

Effects of Pauli Paramagnetism on Superconducting Fluctuations

by Koya Aoi

Z. Physik 246, 71-83 (1971)

Eq. (29) should read

$$\sigma^{\rm fl} = \frac{eT}{4\pi \, dD} \, \frac{f(\rho)}{\Delta H} \left[\cos \alpha + \frac{1}{3} \, H_c \, e(d \sin \alpha)^2 - \frac{\mu_B}{eD} \, \frac{\mathrm{Im} \, \psi^{(1)}(\gamma)}{\mathrm{Re} \, \psi^{(1)}(\gamma)} \right]^{-1}.$$

By examining the quantity in the square braket of the above expression we concluded in the paper that for a given ΔH , σ^{f1} becomes the maximum for $\alpha = 90^{\circ}$ in the absence of Pauli paramagnetism. However it was found later by numerical calculations that $f(\rho)$ is strongly angular dependent and σ^{f1} becomes the maximum for $\alpha = \alpha_0 (\simeq 80^{\circ} \sim 89^{\circ}$ depending on sample parameters) regardless of whether the Pauli paramagnetism is limiting $H_c(T, \alpha)$ or not.

> Dr. Koya Aoi Freie Universität Berlin Institut für Theoretische Physik D-1000 Berlin 33, Arnimallee 3 Germany