L_{2}-lower bounds for a special class of random walks

Ursula Porod*
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, USA

Received: 26 April 1994 / In revised form: 17 August 1994

Summary. We investigate the L_{2}-speed of convergence to stationarity for a certain class of random walks on a compact connected Lie group. We give a lower bound on the number of steps k necessary such that the k-fold convolution power of the original step distribution has an L_{2}-density. Our method uses work by Heckman on the asymptotics of multiplicities along a ray of representations. Several examples are presented.

Mathematics Subject Classification: 60J15; 60B15; 43A80

1 Introduction

Given a random walk on a compact group G with step distribution v one is frequently interested in the speed of convergence of this random walk to its stationary distribution (under mild conditions, the normalized Haar measure on G). In this paper we investigate the distance $\left\|v_{k}-\lambda_{G}\right\|_{2}$ in $L_{2}(G)$ between the k-fold convolution power v_{k} of a certain natural probability measure v on a compact Lie group G and normalized Haar measure λ_{G}. Besides being of interest in its own right, such an L_{2}-estimate gives an upper bound on total variation distance and can frequently be derived with more precision than for other types of estimates. This, of course, presupposes that from some k_{0} onward, v_{k} does have an L_{2}-density with respect to Haar measure for $k>k_{0}$, even though the original measure v, in many cases, is singular.
Given a measure v on G, we are therefore faced with the following problems:

- How many steps k does it take for v_{k} to be in $L_{2}(G)$?
- If v_{k} is in $L_{2}(G)$, find an estimate for $\left\|v_{k}-\lambda_{G}\right\|_{2}$. In particular, how many steps k does it take for $\left\|v_{k}-\lambda_{G}\right\|_{2}$ to become small?

[^0]We cannot answer these questions in this generality. There are of course examples for which v_{k} never is in $L_{2}(G)$ (trivially, take v to be unit mass at the identity element e). For many random walk problems we can give a precise answer to the second question (see [3] and references therein for examples on finite groups, and $[7,8]$ for examples on continuous groups, among many other references). Here we will narrow our focus to the first question and a special class of measures on a compact connected Lie group.

We will always assume G to be a compact connected Lie group. We then consider the following class of probability measures on G : For a given closed connected subgroup K of G, we take $\nu^{G, K}$ to be the probability measure concentrated on the set

$$
S^{G, K}:=\left\{g k g^{-1}: g \in G, k \in K\right\}
$$

and induced from λ_{G}, Haar measure on G, and λ_{K}, Haar measure on K, via the map

$$
f^{G, K}: G \times K \rightarrow G, \quad f^{G, K}(g, k)=g k g^{-1}
$$

for all $g \in G$ and $k \in K$.
The goal of this paper is to give a general lower bound for the number of steps k necessary such that the k-fold convolution power $v_{k}^{G, K}$ of $v^{G, K}$ has an L_{2}-density with respect to λ_{G}. To determine whether $v_{k}^{G, K}$ is in $L_{2}(G)$ for k larger than some k_{0} and, if so, to estimate k_{0} remain open problems.

A precise statement (Theorem 3.1) and proof of our result can be found in Sect. 3.

In proving Theorem 3.1, we will use a special feature of the L_{2}-norm, namely, the Plancherel theorem. For a given irreducible representation ρ of G, we denote the restriction of ρ from G to K by $\operatorname{res}_{K}^{G}(\rho)$. As will be shown later, the Fourier coefficient $\hat{v}^{G, K}(\chi)$ is equal to the multiplicity of the trivial representation of K occurring in $\operatorname{res}_{K}^{G}(\rho)$. There is a general formula for the multiplicity of an irreducible representation of K in $\operatorname{res}_{K}^{G}(\rho)$ (see Lemma 3.1 in [5]), but it is too complicated to use for our purposes. We therefore resort to the so-called asymptotic multiplicity function as defined by Heckman (1982). This will be introduced in Sect. 2, where we also present its relevant properties. Finally, in Sect. 4 we work out several examples.

2 Heckman's asymptotic multiplicity function $M_{\mu}^{G, K}$

Our main tool for the proof of Theorem 3.1 is Heckman's asymptotic multiplicity function $M_{\mu}^{G, K}$ for the restriction of an irreducible representation of a compact connected Lie group G to a closed Lie subgroup K. The main reference throughout this section is [5]. Here we introduce $M_{\mu}^{G, K}$ and cite several results from [5]. For background on the representation theory of compact, connected Lie groups see, for example, [2] or [6].

From now on let G be a compact connected Lie group and K be a closed connected subgroup of G. We fix maximal tori T_{K} in K and T_{G} in G with $T_{K} \subset T_{G}$. We will use the following notation:

Let $\mathbf{g}, \mathbf{k}, \mathbf{t}_{G}, \mathbf{t}_{K}$ denote the various corresponding Lie algebras and let $\mathbf{g}^{*}, \mathbf{k}^{*}, \mathbf{t}_{G}^{*}, \mathbf{t}_{K}^{*}$ denote their duals. There exists an inner product $\langle\cdot, \cdot\rangle$ on \mathbf{g} which is invariant under the adjoint representation. This inner product induces an isomorphism between \mathbf{g} and $\mathbf{g}^{*}, \mathbf{k}$ and $\mathbf{k}^{*}, \mathbf{t}_{G}$ and \mathbf{t}_{G}^{*}, and \mathbf{t}_{K} and \mathbf{t}_{K}^{*}. From now on we will identify \mathbf{g} with \mathbf{g}^{*}, etc., via $\langle\cdot, \cdot\rangle$. We denote the orthogonal projection from \mathbf{g} to \mathbf{t}_{K} by q.

Let R_{G} be the root system of G (corresponding to \mathbf{t}_{G}) and R_{K} the root system of K (corresponding to \mathbf{t}_{K}). Furthermore, let Q_{G} be the sublattice of \mathbf{t}_{G} generated by R_{G} and W_{G} the Weyl group of G. We define Q_{K} and W_{K} analogously. We choose sets of positive roots R_{G}^{+}and R_{K}^{+}in the following way. Consider the so-called parabolic root system $R_{H}=\left\{\alpha \in R_{G}: q(\alpha)=0\right\}$; here our notation follows Heckman [5]. Choose a set of positive roots $R_{H}^{+} \subset R_{H}$. Choose $H_{0} \in \mathbf{t}_{K}$ such that $\alpha\left(H_{0}\right) \neq 0$ for all $\alpha \in R_{G} \backslash R_{H}$. It can then be shown that $R_{K}^{+}:=\left\{\alpha \in R_{K}: \alpha\left(H_{0}\right)>0\right\}$ is a set of positive roots for R_{K}, and $R_{G}^{+}:=R_{H}^{+} \cup\left\{\alpha \in R_{G}: \alpha\left(H_{0}\right)>0\right\}$ is a set of positive roots for R_{G}.

Corresponding to R_{G}^{+}and R_{K}^{+}we have C_{G}^{+}and C_{K}^{+}, the fundamental Weyl chambers. We denote the set of integer lattice points in C_{G}^{+}by P_{G}^{+}and the set of integer lattice points in C_{K}^{+}by P_{K}^{+}. Recall that P_{G}^{+}is in one-to-one correspondence with the irreducibles of G and P_{K}^{+}is in one-to-one correspondence with the irreducibles of K. Take $\mu \in P_{G}^{+}$and consider the corresponding irreducible representation ρ_{μ} of G. The restriction of ρ_{μ} from G to K decomposes into

$$
\begin{equation*}
\operatorname{res}_{K}^{G}\left(\rho_{\mu}\right)=\bigoplus_{\sigma \in P_{K}^{+}} m_{\mu}^{G, K}(\sigma) \pi_{\sigma} \tag{1}
\end{equation*}
$$

where $m_{\mu}^{G, K}: P_{K}^{+} \rightarrow \mathbf{N}_{0}$ is the multiplicity function and π_{σ} denotes the irreducible representation of K corresponding to σ. As pointed out in the introductory Sect. 1, there exists a formula for $m_{\mu}^{G, K}(\sigma)$, but it is too complicated to use for our purposes. We will use the so-called asymptotic multiplicity function $M_{\mu}^{G, K}$, as defined by Heckman [5], instead. Let $A=q\left(R_{G}^{+} \backslash R_{H}^{+}\right) \backslash R_{K}^{+}$. We treat A as a multiset; that is, we allow each element $\alpha \in A$ to occur with a multiplicity m_{α} in A. (The multiplicities arise from different elements in $R_{G}^{+} \backslash R_{H}^{+}$having the same orthogonal projection onto \mathbf{t}_{k}.) Assume that \mathbf{g} and \mathbf{k} have no simple ideals in common and that $\operatorname{rank}(A \backslash\{\alpha\})=\operatorname{rank}(A)$ for all $\alpha \in A$. (A consists of lattice points; by the rank of a lattice we mean the dimension of the subspace spanned by the lattice points.)
Assuming these conditions, Heckman defines the function

$$
M_{\mu}^{G, K}: \mathbf{t}_{K} \rightarrow \mathbf{R}
$$

(see $[5,(3.16)]$), which is called the asymptotic multiplicity function in light of the following theorem. Recall that by the support of a function we mean the closure of the set of points on which the function is unequal to zero.
Theorem 2.1 [5] There exists a constant $C_{G, K}>0$ such that for $\mu \in P_{G}^{+}$and $\sigma \in q\left(\mu+Q_{G}\right) \cap P_{K}^{+}$

$$
\begin{equation*}
\left|m_{\mu}^{G, K}(\sigma)-M_{\mu}^{G, K}(\sigma)\right| \leqq C_{G, K}(1+|\mu|)^{s-1} \tag{2}
\end{equation*}
$$

where $s=\operatorname{card}\left(R_{G}^{+}\right)-\operatorname{card}\left(R_{K}^{+}\right)-\operatorname{rank}(A)$ and $|\mu|$ denotes the Euclidean norm of μ.

The function $M_{\mu}^{G, K}$ has compact support and is piecewise polynomial on \mathbf{t}_{K} and satisfies the homogeneity relation

$$
\begin{equation*}
M_{r \mu}^{G, K}(r \sigma)=r^{s} M_{\mu}^{G, K}(\sigma) \tag{3}
\end{equation*}
$$

for all $r>0, \mu \in \mathbf{t}_{G}$ and $\sigma \in \mathbf{t}_{K}$.
The homogeneity property (3) of $M_{\mu}^{G, K}$ will be crucial here. We also need to understand the support of $M_{\mu}^{G, K}$, denoted by $\operatorname{supp}\left(M_{\mu}^{G, K}\right)$. It can be seen from the exact definition of $M_{\mu}^{G, K}$ (see $\left.[5,(3.16)]\right)$ that $M_{\mu}^{G, K}$ is always zero in case μ lies on a wall of the fundamental Weyl chamber C_{G}^{+}. We will need the following results from [5] (see Lemmas 7.2 and 7.3 and Corollary 7.4 therein).
Lemma 2.2 [5] For $\mu \in C_{G}^{+}$and $\sigma_{1}, \sigma_{2} \in C_{K}^{+}$we have

$$
\begin{equation*}
M_{\mu}^{G, K}\left(\frac{1}{2} \sigma_{1}+\frac{1}{2} \sigma_{2}\right) \geqslant 2^{-s} \min \left\{M_{\mu}^{G, K}\left(\sigma_{1}\right), M_{\mu}^{G, K}\left(\sigma_{2}\right)\right\}, \tag{4}
\end{equation*}
$$

where s is defined as in Theorem 2.1.
Lemma 2.3 [5] For μ in the intersection of P_{G}^{+}and the interior of C_{G}^{+}we have: (a)

$$
\begin{equation*}
\left\{\operatorname{supp}\left(m_{\mu}^{G, K}\right) \cap P_{K}^{+}\right\} \subset\left\{\operatorname{supp}\left(M_{\mu}^{G, K}\right) \cap P_{K}^{+}\right\} \tag{5}
\end{equation*}
$$

(b) The set $\operatorname{supp}\left(M_{\mu}^{G, K}\right) \cap C_{K}^{+}$is a convex polytope.

3 Statement and Proof of Results

Let G be a compact connected Lie group, K a closed connected subgroup and $v^{G, K}$ the measure defined in Sect. 1. We will use the notation introduced in Sect. 2 for the remainder of this chapter. Also, recall that $A=q\left(R_{G}^{+} \backslash R_{H}^{+}\right) \backslash$ R_{K}^{+}is a multiset.
Theorem 3.1 Suppose that \mathbf{g} and \mathbf{k} have no simple ideals in common and that $\operatorname{rank}(A \backslash\{\alpha\})=\operatorname{rank}(A)$ for all $\alpha \in A$. If there is at least one $\mu \in P_{G}^{+} \cap$ (interior of $\left.C_{G}^{+}\right)$for which $M_{\mu}^{G, K}(0) \neq 0$ and $0 \in q\left(\mu+Q_{G}\right)$, then it takes at least

$$
k=\frac{\operatorname{card}\left(R_{G}^{+}\right)+1}{\operatorname{card}\left(R_{K}^{+}\right)+\operatorname{rank}(A)}
$$

steps for the k-fold convolution power $v_{k}^{G, K}$ of $v^{G, K}$ to have an L_{2}-density with respect to Haar measure λ_{G}.
Proof. The measure $v^{G, K}$ is conjugacy invariant, i.e., $v^{G, K}(U)=v^{G, K}\left(g U g^{-1}\right)$ for all $g \in G$ and all measurable subsets $U \subseteq G$. Therefore, by Schur's lemma, the Fourier transform

$$
\hat{v}^{G, K}\left(\rho_{i}\right):=\int_{G} \rho_{i}(g) d v^{G, K}(g)
$$

is a scalar for each irreducible representation ρ_{i} of G and equal to $\left(1 / d_{i}\right) \hat{v}^{G, K}\left(\chi_{i}\right) I_{d_{i}}$ (where d_{i} denotes the dimension of ρ_{i}, and χ_{i} denotes the corresponding character). Thus, by the Plancherel theorem, the measure $v_{k}^{G, K}$ has an L_{2}-density with respect to Haar measure λ_{G} if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|\hat{v}_{k}^{G, K}\left(\chi_{i}\right)\right|^{2}=\sum_{i=0}^{\infty}\left|\frac{\hat{v}^{G, K}\left(\chi_{i}\right)}{d_{i}}\right|^{2 k} d_{i}^{2}<\infty . \tag{6}
\end{equation*}
$$

We first compute $\hat{v}^{G, K}(\chi)$ for a fixed irreducible character χ (corresponding to ρ) of G. From the definition of $\nu^{G, K}$ we see that

$$
\hat{\vartheta}^{G, K}(\chi)=\int_{K} \chi(k) d \lambda_{K}(k) .
$$

But $\operatorname{res}_{K}^{G}(\rho)=\oplus_{\sigma \in P_{k}^{\star}} m^{G, K}(\sigma) \pi_{\sigma}($ recall (1)), so that

$$
\hat{\nu}^{G, K}(\chi)=\sum_{\sigma \in P_{k}^{+}} m^{G, K}(\sigma) \int_{K} \chi_{\sigma} d \lambda_{K},
$$

where the χ_{σ} on the right-hand side are irreducible characters of K. By the orthonormality property of the irreducible characters of a compact Lie group, we clearly get

$$
\begin{equation*}
\hat{\hat{v}}^{G, K}(\chi)=m^{G, K}(0) . \tag{7}
\end{equation*}
$$

From now on we use the points in P_{G}^{+}(the highest weights) to index the irreducibles of G. We will analyze

$$
\sum_{\mu \in P_{G}^{ \pm}}\left(\frac{m_{\mu}^{G, K}(0)}{d_{\mu}}\right)^{2 k} d_{\mu}^{2}
$$

by considering a particular ray of representations, i.e., we will pick an appropriate $\mu \in P_{G}^{+}$and show that

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left(\frac{m_{r \mu}^{G} K}{d_{r \mu}}(0)\right)^{2 k} d_{r \mu}^{2}=\infty \quad \text { for } k<\frac{\operatorname{card}\left(R_{G}^{+}\right)+1}{\operatorname{card}\left(R_{K}^{+}\right)+\operatorname{rank}(A)} \quad \text { with } k \in \mathbf{N}_{0} . \tag{8}
\end{equation*}
$$

We now make use of the asymptotic multiplicity function $M^{G, K}(\cdot)$, whose existence is guaranteed by the conditions we impose in Theorem 3.1 (see [5]). For a fixed $\mu \in P_{G}^{+} \cap\left(\right.$ interior of $\left.C_{G}^{+}\right)$for which $M_{\mu}^{G, K}(0) \neq 0$ and $0 \in q\left(\mu+Q_{G}\right)$, it follows from Theorem 2.1 that

$$
m_{r \mu}^{G, K}(0)=r^{s} M_{\mu}^{G . K}(0)+O\left(r^{s-1}\right)
$$

for all $r>0$; here $s=\operatorname{card}\left(R_{G}^{+}\right)-\operatorname{card}\left(R_{K}^{+}\right)-\operatorname{rank}(A)$. On the other hand, the dimension d_{μ} for $\mu \in P_{G}^{+} \cap$ (interior of $\left.C_{G}^{+}\right)$is a polynomial of degree exactly $\operatorname{card}\left(R_{G}^{+}\right)$in the components of μ. This can easily be seen with the use of Weyl's dimension polynomial:

$$
d_{\mu}=\prod_{\alpha \in R_{G}^{+}} \frac{\langle\alpha, \mu+\psi\rangle}{\langle\alpha, \psi\rangle},
$$

where $\psi=\frac{1}{2} \sum_{\alpha \in R_{G}^{+}} \alpha$. We thus see that

$$
\left(\frac{m_{r \mu}^{G, K}(0)}{d_{r \mu}}\right)^{2 k} d_{r \mu}^{2} \asymp r^{2\left(\operatorname{card}\left(R_{G}^{+}\right)-k\left(\operatorname{card}\left(R_{k}^{+}\right)+\operatorname{rank}(A)\right)\right)}
$$

for large r and fixed $\mu \in P_{G}^{+} \cap$ (interior of C_{G}^{+}). From this (8), and hence also the statement of Theorem 3.1, follow directly.

4 Examples

Here we present several examples illustrating the use of Theorem 3.1. In each case, G is a subgroup of the unitary group $U(N)$ and the corresponding Lie algebra \mathbf{g} is therefore a subalgebra of $\mathbf{u}(N)$, the Lie algebra of skew-Hermitian $N \times N$ matrices. An inner product on \mathbf{g} which is invariant under the adjoint representation can be taken to be $\langle A, B\rangle:=-(2 \pi)^{-2} \operatorname{tr}(A B)$ for $A, B \in \mathbf{g}$. In order to show that there exists at least one $\mu \in P_{G}^{+} \cap$ (interior of C_{G}^{+}) for which $M_{\mu}^{G, K}(0) \neq 0$, we will make use of several so-called branching theorems. They describe simply, for specific G and K and for a given irreducible ρ of G, how $\operatorname{res}_{K}^{G} \rho$ decomposes into irreducibles of K. References are, for example, $[1,4,9]$. Inductive use of these branching laws is justified by the transitivity of restriction:

$$
\operatorname{res}_{H}^{G}(\rho)=\operatorname{res}_{H}^{K}\left(\operatorname{res}_{K}^{G}(\rho)\right) \text { for subgroups } H \subset K \subset G \text {. }
$$

We can easily check in all examples discussed here that \mathbf{g} and \mathbf{k} have no ideals other than $\{0\}$ in common, i.e., that for each nonzero $B \in \mathbf{k}$ there is always $A \in \mathbf{g}$ such that $[A, B]=A B-B A \notin \mathbf{k}$. From now on we will use the following notation: $P_{G}^{+} \cdot 0:=P_{G}^{+} \cap$ (interior of C_{G}^{+}).

Example 1 (Random rotations) $G=S O(N)$ for $N \geqq 4, K=S O(2) \cong S^{1} . K$ is embedded in G via

$$
\left(\begin{array}{ccccc}
\cos 2 \pi t & -\sin 2 \pi t & 0 & \cdots & 0 \\
\sin 2 \pi t & \cos 2 \pi t & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & \vdots & & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \text { with } t \in \mathbf{R} / \mathbf{Z}
$$

Consider

$$
S O(2) \cong S^{1} \cong\left\{\left(\begin{array}{cc}
\cos 2 \pi t & -\sin 2 \pi t \\
\sin 2 \pi t & \cos 2 \pi t
\end{array}\right): t \in \mathbf{R} / \mathbf{Z}\right\}
$$

We take the standard choice of maximal torus T_{G}, namely the subgroup $S O(2) \times \cdots \times S O(2) \times 1$ (with n factors of $S O(2)$) for $N=2 n+1$ and the
subgroup $S O(2) \times \cdots \times S O(2)$ (with n factors of $S O(2)$) for $N=2 n$. The set of positive roots of $S O(N)$ (for $N \geqq 4$) is

$$
R_{\mathrm{SO}(N)}^{+}= \begin{cases}\left\{e_{j} \pm e_{i}: 1 \leqq i<j \leqq n\right\} \cup\left\{e_{i}: 1 \leqq i \leqq n\right\} & \text { for } N=2 n+1 \\ \left\{e_{j} \pm e_{i}: 1 \leqq i<j \leqq n\right\} & \text { for } N=2 n\end{cases}
$$

Therefore,

$$
\operatorname{card} R_{S O(N)}^{+}= \begin{cases}n^{2} & \text { for } N=2 n+1 \\ n^{2}-n & \text { for } N=2 n\end{cases}
$$

Also, $S O(2)$ has no roots, so that card $R_{S O(2)}^{+}=0$.
We now describe the Lie algebras involved in this example. The Lie algebra g of $S O(N)$ consists of the skew-symmetric real $N \times N$ matrices. The Lie algebra \mathbf{t}_{G} of the maximal torus T_{G} can be seen to be the block diagonal matrices with i th block equal to $2 \pi\left(\begin{array}{cc}0 & -t_{i} \\ t_{i} & 0\end{array}\right)$:

$$
\mathbf{t}_{G}=\left\{2 \pi\left(\begin{array}{ccccc}
0 & -t_{1} & 0 & \cdots & 0 \\
t_{1} & 0 & & & \vdots \\
0 & & \ddots & & 0 \\
\vdots & & & 0 & -t_{n} \\
0 & \cdots & 0 & t_{n} & 0
\end{array}\right): t_{i} \in \mathbf{R} \text { for } 1 \leqq i \leqq n\right\} \cong \mathbf{R}^{n}
$$

for $N=2 n$ and similarly (with an additional bottom row and last column both consisting entirely of zeroes) for $N=2 n+1$. We also have

$$
\mathbf{k}=\mathbf{t}_{K}=\left\{2 \pi\left(\begin{array}{ccccc}
0 & -t & 0 & \cdots & 0 \\
t & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right): t \in \mathbf{R}\right\} \cong \mathbf{R} .
$$

We can easily verify that $\langle A, B\rangle=-(2 \pi)^{-2} \operatorname{tr}(A B)=2 \sum_{i=1}^{n} t_{i} s_{i}$ for all $A, B \in \mathbf{t}_{G} \cong \mathbf{R}^{n}$, where $A=\left(t_{1}, \ldots, t_{n}\right)$ and $B=\left(s_{1}, \ldots, s_{n}\right)$. Therefore the orthogonal projection $q: \mathbf{t}_{G} \rightarrow \mathbf{t}_{K}$ is given by projection onto the first component: $q(\vec{x})=\left(x_{1}, 0, \ldots, 0\right)$ for all $\vec{x} \in \mathbf{R}^{n} \cong \mathbf{t}_{G}$. From this it follows that

$$
R_{S O(N)}^{+} \backslash R_{H}^{+}= \begin{cases}\left\{e_{i} \pm e_{1}: 1<i \leqq n\right\} \cup\left\{e_{1}\right\} & \text { for } N=2 n+1, \\ \left\{e_{i} \pm e_{1}: 1<i \leqq n\right\} & \text { for } N=2 n,\end{cases}
$$

and that $A=q\left(R_{G}^{+} \backslash R_{H}^{+}\right) \backslash R_{K}^{+}$consists of the element $(1,0, \ldots, 0)$, with multiplicity n in case $N=2 n+1$ and with multiplicity $n-1$ in case $N=2 n$, and the element $(-1,0, \ldots, 0)$ with multiplicity $n-1$ in either case. Thus $\operatorname{rank}(A \backslash\{\alpha\})=\operatorname{rank}(A)=1$ for all $\alpha \in A$ (since we assume $n \geqq 2$ in either case). Furthermore, it is easy to see that $(0, \ldots, 0) \in q\left(\mu+Q_{G}\right)$ for all $\mu \in P_{G}^{+}$ (recall that Q_{G} is the sublattice of \mathbf{t}_{G} generated by the roots R_{G}).

We next prove that \mathbf{g} and \mathbf{k} have no ideals in common. Indeed, for any

$$
B=2 \pi\left(\begin{array}{ccccc}
0 & -b & 0 & \cdots & 0 \\
b & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right) \in \mathbf{k}
$$

with $b \neq 0$ we can take

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & -a & 0 & \cdots & 0 \\
0 & a & 0 & \cdots & \cdots & 0 \\
0 & 0 & \vdots & \ddots & & \vdots \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & 0
\end{array}\right) \in \mathbf{g}
$$

for any $a \neq 0$ and verify that $[A, B] \notin \mathbf{k}$.
Now choose μ in $P_{G}^{+, 0}$ with $\mu_{1}=1$. The following branching theorem makes it clear that $\operatorname{res}_{S O(2)}^{S O(N)}\left(\rho_{\mu}\right)$ always contains the following irreducible representations of $S O(2)$: the representation of index 0 (i.e., the trivial representation), the representation of index 1 , and the representation of index -1 .

Theorem 4.1 Let $N \geqq 3$. Identify $S O(N-1)$ with the subgroup of $S O(N)$ of all elements of the form $\binom{B 0}{0}$. We then have
(a) $\operatorname{res}_{\operatorname{SO}(2 n)}^{S O(2 n+1)}\left(\rho_{\mu}\right)=\oplus \pi_{\bar{\mu}}$ where the sum is over all $\bar{\mu}$ with $\left|\bar{\mu}_{1}\right| \leqq \mu_{1} \leqq \bar{\mu}_{2} \leqq$ $\cdots \leqq \bar{\mu}_{n} \leqq \mu_{n}$, and
(b) $\operatorname{res}_{\operatorname{SO}(2 n-1)}^{S O(2 n)}\left(\rho_{\mu}\right)=\oplus \pi_{\bar{\mu}}$ where the sum is over all $\vec{\mu}$ with $\left|\mu_{1}\right| \leqq \bar{\mu}_{1} \leqq \mu_{2} \leqq$ $\cdots \leqq \bar{\mu}_{n-1} \leqq \mu_{n}$.

Indeed, let us assume that $\mu=\left(1, \mu_{2}, \ldots, \mu_{n}\right)$. In case $N=2 n+1$, we see from Theorem 4.1(a) that $\operatorname{res}_{S O(N-1)}^{S O(N)}\left(\rho_{\mu}\right)$ contains the representation of highest weight $\left(1, \mu_{2}, \ldots, \mu_{n}\right)$ (among others). In case $N=2 n$, we see from Theorem 4.1 (b) that $\operatorname{res}_{S O_{(N-1)}}^{S O_{(N)}}\left(\rho_{\mu}\right)$ contains the representation of highest weight $\left(1, \mu_{2}, \ldots, \mu_{n-1}\right)$ (among others). From this we see that $\operatorname{res}_{S O(3)}^{S O(N)}\left(\rho_{\mu}\right)$ always contains the irreducible representation of index 1 . This representation, further restricted to $S O(2)$, yields the irreducible representations of $S O(2)$ of indices $-1,0$, and 1 (again by Theorem 4.1(a)).

We now show that $M_{\mu}^{S O(N), S O(2)}(0) \neq 0$. By Lemma 2.3(a), $\{-1,0,1\} \subset \operatorname{supp}\left(M_{\mu}^{G, K}\right)$. Since, by Lemma $2.3(\mathrm{~b}), \operatorname{supp}\left(M_{\mu}^{G, K}\right) \cap C_{K}^{+}$is a convex polytope, i.e., for this example, a closed interval, and since $M_{\mu}^{S O(N), S O(2)}$ is a piecewise polynomial nonnegative function (recall Theorem 2.1; the nonnegativity of $M_{\mu}^{G, K}$ on C_{K}^{+}is a direct consequence of Theorem 6.4
in [5]), we can conclude with the use of Lemma 2.2 that $M_{4}^{S O(N), S O(2)}(0) \neq 0$. It now follows from Theorem 3.1 that it takes at least

$$
k= \begin{cases}n^{2}+1 & \text { for } N=2 n+1 \\ n^{2}-n+1 & \text { for } N=2 n\end{cases}
$$

steps for $v_{k}^{S O(N), S O(2)}$ to have an L_{2}-density with respect to Haar measure $\lambda_{\text {SO }(N)}$.

Remark 4.2 If we slightly change the definition of the measure $v^{S O(N), S O(2)}$ by changing Haar measure on $S O(2)$ to the probability measure on $S O(2)$ with density proportional to $(\sin \pi t)^{N-2}$, the result is quite different from that in Example 1: The L_{2}-norm of the k th convolution power of the new measure is close to 1 after $k=\frac{1}{2} n \log n+c n$ steps for $c \geqq c_{0}$, where c_{0} is some universal positive constant, and for both $N=2 n$ and $N=2 n+1$. See [7] for more details.

Example 2(a) (Random complex reflections) $G=U(N)$ with $N \geqq 3$, $K=U(1) \cong S^{1} . K$ is embedded in G via

$$
\left(\begin{array}{cccc}
e^{i 2 \pi t} & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right) \quad \text { with } t \in \mathbf{R} / \mathbf{Z}
$$

We take the standard choice of maximal torus T_{G}, namely the subgroup of diagonal matrices of $U(N)$. The set of positive roots is

$$
R_{U(N)}^{+}=\left\{e_{j}-e_{i}: 1 \leqq i<j \leqq N\right\} .
$$

Therefore, card $R_{U(N)}^{+}=\frac{1}{2}\left(N^{2}-N\right)$. Furthermore,

$$
\mathbf{t}_{G}=\left\{\operatorname{diag}\left(i 2 \pi t_{1}, \ldots, i 2 \pi t_{N}\right): t_{k} \in \mathbf{R} \text { for } 1 \leqq k \leqq N\right\} \cong \mathbf{R}^{N}
$$

and

$$
\mathbf{k}=\mathbf{t}_{K}=\{\operatorname{diag}(i 2 \pi t, 0, \ldots, 0): t \in \mathbf{R}\} \cong \mathbf{R}
$$

We can easily verify that our choice of inner product $\langle\cdot, \cdot\rangle$ on \mathbf{g}, restricted to $\mathbf{t}_{G} \cong \mathbf{R}^{N}$, is the standard Euclidian inner product. As in Example 1, the orthogonal projection $q: \mathbf{t}_{G} \rightarrow \mathbf{t}_{K}$ is projection onto the first component. From this it follows that $R_{U(N)}^{+} \backslash R_{H}^{+}=\left\{e_{k}-e_{1}: 1<k \leqq N\right\}$ and that A consists of the element ($-1,0, \ldots, 0$) with multiplicity $N-1$.

Now choose $\mu \in P_{G}^{+, 0}$ with $\mu_{1} \leqq-1$ and $\mu_{N} \geqq 1$. The following branching theorem makes it clear that $\operatorname{res}_{U(1)}^{U(N)}\left(\rho_{\mu}\right)$ always contains the following irreducible representations of $U(1)$: the representation of index 0 (i.e., the trivial representation), the representation of index 1 , and the representation of index -1 .

Theorem 4.3 Let $N \geqq 2$. Identify $U(N-1)$ with the subgroup of $U(N)$ of all elements of the form $\left(\begin{array}{c}B \\ 0\end{array} 1\right.$

$$
\operatorname{res}_{U(N-1)}^{U(N)}\left(\rho_{\mu}\right)=\oplus \pi_{\bar{\mu}},
$$

where the sum is over all $\bar{\mu}$ with $\mu_{1} \leqq \bar{\mu}_{1} \leqq \mu_{2} \leqq \cdots \leqq \bar{\mu}_{N-1} \leqq \mu_{N}$.
For example, let us choose $\mu=\left(-1,1, \mu_{3}, \ldots, \mu_{N}\right)$. From Theorem 4.3 we see that $\operatorname{res}_{U(N-1)}^{U(N)}\left(\rho_{\mu}\right)$ contains the representation of index $\left(-1,1, \mu_{3}, \ldots, \mu_{N-1}\right)$ (among others). Therefore, $\operatorname{res}_{U(2)}^{U(N)}\left(\rho_{\mu}\right)$ contains the representation of index ($-1,1$), which, further restricted to $U(1)$, yields exactly the representations of indices 0,1 , and -1 .

We can apply the same reasoning as used in Example 1 to show that $M_{\mu}^{U(N), U(1)}(0) \neq 0$. The rest of the conditions of Theorem 3.1 are easily checked. It follows that it takes at least $k=\frac{1}{2}\left(N^{2}-N\right)+1$ steps for $v_{k}^{U(N), U(1)}$ to have an L_{2}-density with respect to Haar measure $\lambda_{U(N)}$.

Example $2(b) G=U(N)$ with $N \geqq 3, K=U(1) \cong S^{1} . K$ is embedded in G via

$$
\left(\begin{array}{ccccc}
e^{i 2 \pi t} & & & 0 & \\
& e^{i 2 \pi t} & & & \\
& & 1 & & \\
& & & \ddots & \\
0 & & & & 1
\end{array}\right)
$$

with $t \subset \mathbf{R} / \mathbf{Z}$. The projection $q: \mathbf{t}_{G} \rightarrow \mathbf{t}_{\mathrm{K}}$ is the orthogonal projection from \mathbf{R}^{N} onto the one dimensional subspace of \mathbf{R}^{N} spanned by $(1,1,0, \ldots, 0)$. From this it follows that

$$
R_{U(N)}^{+} \backslash R_{H}^{+}=\left\{e_{i}-e_{1}: 3 \leqq i \leqq N\right\} \cup\left\{e_{i}-e_{2}: 3 \leqq i \leqq N\right\}
$$

and that A consists of the element $\left(-\frac{1}{2},-\frac{1}{2}, 0, \ldots, 0\right)$ with multiplicity $2 N-4$.

Now choose $\mu \in P_{U(M)}^{+, 0}$ for which $\mu_{1}=-1, \mu_{2}=0$, and $\mu_{3}=1$. We claim that for such a μ we have: $m_{\mu}^{U(N), U(1)}(x) \neq 0$ for $x=-1,0,1$. Indeed, μ and any vector resulting from permuting the elements in μ are weights of ρ_{μ}. Thus we see that $\chi_{\rho_{\mu}}\left(\operatorname{diag}\left(e^{i 2 \pi t}, e^{i 2 \pi t}, 1, \ldots, 1\right)\right.$) (which is a sum of powers of $\left.e^{i 2 \pi t}\right)$ must contain the terms $e^{i 2 \pi t}, e^{-i 2 \pi t}$, and 1 with positive coefficients. Now the same arguments as before apply to prove that $M_{\mu}^{U(N), U(1)}(0) \neq 0$. The rest of the conditions of Theorem 3.1 are easily checked. Therefore, as for Example $2(\mathrm{a})$, it takes at least $k=\frac{1}{2}\left(N^{2}-N\right)+1$ steps for $v_{k}^{U(N), U(1)}$ to have an $L_{2^{-}}$ density with respect to Haar measure $\lambda_{U(N)}$.

Example $3 G=U(N)$ with $N \geqq 5, K=T^{2} \cong S^{1} \times S^{1} . K$ is embedded in G via

$$
\left(\begin{array}{ccccc}
e^{i 2 \pi t_{1}} & & & 0 & \\
& e^{i 2 \pi t_{2}} & & & \\
& & 1 & & \\
& & & \ddots & \\
0 & & & & 1
\end{array}\right)
$$

with $t_{1}, t_{2} \in \mathbf{R} / \mathbf{Z}$. The projection $q: \mathbf{t}_{G} \rightarrow \mathbf{t}_{K}$ is the orthogonal projection from \mathbf{R}^{N} onto the two dimensional subspace of \mathbf{R}^{N} spanned by $(1,0, \ldots, 0)$ and $(0,1,0, \ldots, 0)$. Here we have

$$
R_{U(N)}^{+} \backslash R_{H}^{+}=\left\{e_{i}-e_{1}: 2 \leqq i \leqq N\right\} \cup\left\{e_{i}-e_{2}: 3 \leqq i \leqq N\right\}
$$

and A consists of the element $(-1,1,0, \ldots, 0)$ appearing with multiplicity 1 and the elements $(-1,0, \ldots, 0)$ and $(0,-1,0, \ldots, 0)$, each appearing with multiplicity $N-2$. Note that rank $A=2$ in this case.

Now choose $\mu \in P_{U(N)}^{+, 0}$ for which $\mu_{1}<-1, \mu_{2}=-1, \mu_{3}=0, \mu_{4}=1$, and $\mu_{5}>1$. From the branching theorem for $U(N)$ (Theorem 4.3) we can see that $\operatorname{res}_{U(2)}^{U(N)}\left(\rho_{\mu}\right)$ contains the following irreducibles of $U(2)$ (among others): the irreducible of highest weight (0,0) (i.e., the trivial representation), the irreducible of highest weight $(-1,-1)$, and the irreducible of highest weight $(1,1)$. Since T^{2} is a maximal torus of $U(2)$, it follows that $m_{\mu}^{U(N), T^{2}}(x) \neq 0$ for $x=(0,0),(-1,-1),(1,1)$. We can thus prove in the same manner as before that $M_{\mu}^{U(N), T^{2}}(0) \neq 0$.

The rest of the conditions of Theorem 3.1 are easily checked. We can now conclude that it takes at least $k=\frac{1}{4}\left(N^{2}-N\right)+\frac{1}{2}$ steps for $v_{k}^{U(N), T^{2}}$ to have an L_{2}-density with respect to Haar measure $\lambda_{U(N)}$.
Example $4 G=S p(n)$ with $n \geqq 2, K=U(1) \cong S^{1}$. K is embedded in G via

$$
\left(\begin{array}{llll}
z & & 0 & \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right) \in \operatorname{Gl}(n, \mathbf{H}), \quad z \in U(1)
$$

We now view $S p(n)$ as a group of $2 n$-dimensional complex matrices via its natural representation. The standard choice of maximal torus T_{G} is the subgroup of diagonal matrices. The set of positive roots is

$$
R_{S p(n)}^{+}=\left\{e_{j} \pm e_{i}: 1 \leqq i<j \leqq n\right\} \cup\left\{2 e_{i}: 1 \leqq i \leqq n\right\} .
$$

Therefore, $\operatorname{card}\left(R_{S p(n)}^{+}\right)=n^{2}$. Furthermore,
$\mathbf{t}_{G}=\left\{\operatorname{diag}\left(i 2 \pi t_{1}, \ldots, i 2 \pi t_{n},-i 2 \pi t_{1}, \ldots,-i 2 \pi t_{n}\right): t_{k} \in \mathbf{R}\right.$ for $\left.1 \leqq k \leqq n\right\} \cong \mathbf{R}^{n}$ and

$$
\mathbf{k}=\mathbf{t}_{K}=\{\operatorname{diag}(i 2 \pi t, 0, \ldots, 0,-i 2 \pi t, 0, \ldots, 0): t \in \mathbf{R}\} \cong \mathbf{R}
$$

Thus the projection $q: \mathbf{t}_{G} \rightarrow \mathbf{t}_{K}$ is given by projection onto the first quaternionic component. It follows that

$$
R_{S p(n)}^{+} \backslash R_{H}^{+}=\left\{e_{k} \pm e_{1}: 2 \leqq k \leqq n\right\} \cup\left\{2 e_{1}\right\}
$$

and that A consists of the elements $(\pm 1,0, \ldots, 0)$, each with multiplicity $n-1$, and the element $(2,0, \ldots, 0)$ with multiplicity 1 . Therefore $\operatorname{rank}(A)=1$.

We now show that there exists $\mu \in P_{G}^{+}, 0$ for which $\operatorname{res}_{U(1)}^{S p(n)}\left(\rho_{\mu}\right)$ contains the following irreducible representations of $U(1)$: the representation of index 0 , the representation of index 1 , and the representation of index -1 .

Choose $\mu \in P_{G}^{+, 0}$ for which $\mu_{1}=1$. The following branching theorem, used inductively, makes it clear that $\operatorname{res}_{S_{p(1)}}^{S_{p(n)}^{(n)}}\left(\rho_{\mu}\right)$ always contains the following representations of $S p(1)$: the representation of index 0 and the representation of index 1 (i.e., the natural representation).

Theorem 4.4 Identify $\operatorname{Sp}(n-1)$ with the subgroup of $S p(n)$ of all elements of the form $\binom{B 0}{0}$. We then have

$$
\operatorname{res}_{S_{p(n-1)}}^{S_{p(n)}}\left(\rho_{\mu}\right)=\bigoplus N_{\mu \bar{\mu}} \pi_{\bar{\mu}}
$$

where the sum is over all $\bar{\mu}=\left(\bar{\mu}_{1}, \ldots, \bar{\mu}_{n-1}\right)$ with $0 \leqq \bar{\mu}_{1} \leqq \cdots \leqq \bar{\mu}_{n-1}$, and the multiplicity $N_{\mu \bar{\mu}}$ is the number of sequences p_{1}, \ldots, p_{n} of integers satisfying

$$
0 \leqq p_{1} \leqq \mu_{1} \leqq p_{2} \leqq \cdots \leqq p_{n} \leqq \mu_{n}
$$

and

$$
p_{1} \leqq \bar{\mu}_{1} \leqq p_{2} \leqq \cdots \leqq \bar{\mu}_{n-1} \leqq p_{n}
$$

Indeed, let us assume that $\mu=\left(1, \mu_{2}, \ldots, \mu_{n}\right)$. From Theorem 4.4 we see that res $_{S_{p}(n-1)}^{S p(n)}\left(\rho_{\mu}\right)$ contains the representations of indices $\left(1, \mu_{2}, \ldots, \mu_{n-1}\right)$ and $\left(0, \mu_{2}, \ldots, \mu_{n-1}\right)$ (among others). It follows that $\operatorname{res}_{S_{p(1)}}^{S p(n)}\left(\rho_{\mu}\right)$ contains the representations of indices 0 and 1 (among others).

We now restrict the representation of index 0 and the representation of index 1 of $S p(1)$ further to the maximal torus of $S p(1)$ (i.e., to the subgroup of diagonal matrices of the form diag $\left(e^{i 2 \pi t}, e^{-i 2 \pi t}\right)$ with $\left.t \in \mathbf{R} / \mathbf{Z}\right)$. This maximal torus is our subgroup $K=U(1)$ and we now can see that the representations of index $-1,0$, and 1 occur in $\operatorname{res}_{U(1)}^{S p(n)}\left(\rho_{\mu}\right)$. As before, we conclude that $M_{\mu}^{S p(n), U(1)}(0) \neq 0$. The rest of the conditions of Theorem 3.1 are easily checked. It thus follows that it takes at least $k=n^{2}+1$ steps for $v_{k}^{S p(n), U(1)}$ to have an L_{2}-density with respect to Haar measure $\lambda_{S p(n)}$.

References

[1] Boerner, H.: Representations of Groups. Amsterdam: North-Holland Publishing Company 1969
[2] Bröcker, Th., tom Dieck, T.: Representations of Compact Lie Groups. Berlin Heidelberg New York: Springer 1985
[3] Diaconis, P.: Group Representations in Probability and Statistics. (IMS Lect. Notes) California: Hayward 1988
[4] Fulton, W., Harris, J.: Representation Theory: A First Course. Berlin Heidelberg New York: Springer 1991
[5] Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Inventiones math. 67, 333-356 1982
[6] Kirillov, A.A.: Elements of the Theory of Representations. Berlin Heidelberg New York: Springer 1976
[7] Porod, U.: The cut-off phenomenon for random reflections. (Preprint)
[8] Rosenthal, J.S.: Random rotations: Characters and random walks on SO(N). Ann. Probab. 22(1) 398-423 (1994)
[9] Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Berlin Heidelberg New York: Springer 1984

[^0]: *This paper is based on parts of the author's doctoral dissertation written at The Johns Hopkins University

