
Probab. Theory Relat. Fields 101, 277-289 (1995) 

Probability 
Theory and Related Fields 

�9 Springer-Verlag 1995 

L2-1ower bounds for a special class of random walks 

Ursula Porod* 
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, USA 

Received: 26 April 1994 / In revised form: 17 August 1994 

Summary. We investigate the L2-speed of convergence to stationarity for 
a certain class of random walks on a compact  connected Lie group. We give 
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convolution power of the original step distribution has an Lz-density. Our  
method uses work by Heckman on the asymptotics of multiplicities along 
a ray of representations. Several examples are presented. 
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1 Introduction 

Given a random walk on a compact  group G with step distribution v one is 
frequently interested in the speed of convergence of this random walk to its 
stationary distribution (under mild conditions, the normalized Haar  measure 
on G). In this paper we investigate the distance [I Vk -- )oG [I 2 in L2(G) between 
the k-fold convolution power Vk of a certain natural probabili ty measure v on 
a compact Lie group G and normalized Haar  measure 2~. Besides being of 
interest in its own right, such an Lz-estimate gives an upper bound on total 
variation distance and can frequently be derived with more precision than for 
other types of estimates. This, of course, presupposes that from some ko 
onward, vk does have an Lz-density with respect to Haar  measure for k > ko, 
even though the original measure v, in many cases, is singular. 
Given a measure v on G, we are therefore faced with the following problems: 

�9 How many steps k does it take for Vk to be in Lz(G)? 
�9 If vk is in Lz(G), find an estimate for H Vk -- 2G H 2. In particular, how many 

steps k does it take for ][ v~ --)uG][2 to become small? 

*This paper is based on parts of the author's doctoral dissertation written at The Johns 
Hopkins University 
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We cannot answer these questions in this generality. There are of course 
examples for which vk never is in L2(G) (trivially, take v to be unit mass at the 
identity element e). For many random walk problems we can give a precise 
answer to the second question (see [3] and references therein for examples on 
finite groups, and [7, 8] for examples on continuous groups, among many 
other references). Here we will narrow our focus to the first question and 
a special class of measures on a compact connected Lie group. 

We will always assume G to be a compact connected Lie group. We then 
consider the following class of probability measures on G: For  a given closed 
connected subgroup K of G, we take v G'K to be the probability measure 
concentrated on the set 

S~ '~ :=  {gkg : : g s G ,  k ~ K }  

and induced from 2e, Haar measure on G, and 2K, Haar  measure on K, via the 
map 

f G ' K : G x K  ~ G, fG'K(g,k)=gkg-1 

for all g ~ G and k ~ K .  
The goal of this paper is to give a general lower bound for the number of 

steps k necessary such that the k-fold convolution power v~ 'K of v a'~ has an 
L2-density with respect to 2G. To determine whether v~ "K is in L2(G) for 
k larger than some k0 and, if so, to estimate ko remain open problems. 

A precise statement (Theorem 3.1) and proof of our result can be found in 
Sect. 3. 

In proving Theorem 3.1, we will use a special feature of the L2-norm, 
namely, the Plancherel theorem. For  a given irreducible representation p of G, 
we denote the restriction of p from G to K by rest(p). As will be shown later, 
the Fourier coefficient ~G'K(Z ) is equal to the multiplicity of the trivial 
representation of K occurring in rest(p). There is a general formula for the 
multiplicity of an irreducible representation of K in rest(p) (see Lemma 3.1 in 
[5]), but it is too complicated to use for our purposes. We therefore resort to 
the so-called asymptotic multiplicity function as defined by Heckman (1982). 
This will be introduced in Sect. 2, where we also present its relevant properties. 
Finally, in Sect. 4 we work out several examples. 

2 Heckman's asymptotic multiplicity function M~'K 

Our main tool for the proof of Theorem 3.1 is Heckman's asymptotic multipli- 
city function M~ 'K for the restriction of an irreducible representation of 
a compact connected Lie group G to a closed Lie subgroup K. The main 
reference throughout this section is [-5]. Here we introduce M~ 'K and cite 
several results from [5]. For  background on the representation theory of 
compact, connected Lie groups see, for example, [2] or [6]. 

From now on let G be a compact connected Lie group and K be a closed 
connected subgroup of G. We fix maximal tori T,v in K and Ta in G with 
TK ~ TG. We will use the following notation: 
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Let g, k, tG, t~ denote the various corresponding Lie algebras and let 
g*, k , to, t* denote their duals. There exists an inner product ( . , . )  on 
g which is invariant under the adjoint representation. This inner product 
induces an isomorphism between g and g*, k and k*, tG and t~, and tK and t*. 
From now on we will identify g with g*, etc., via ( . , . ) .  We denote the 
orthogonal projection from g to tK by q. 

Let RG be the root system of G (corresponding to to) and R~ the root 
system of K (corresponding to tK). Furthermore, let QG be the sublattice of to 
generated by RG and W~ the Weyl group of G. We define Qr and WK 
analogously. We choose sets of positive roots R~ and R~ in the following 
way. Consider the so-called parabolic root system Rn = {c~ ~ Ra: q(c0 = 0}; 
here our notation follows Heckman [-5]. Choose a set of positive roots 
R~ ~ R~. Choose H o e  tK such that c~(Ho) ~ 0 for all ~ ~ RG\RH. It can then 
be shown that R/~:= {c~ ~ R~: c~(Ho) > 0} is a set of positive roots for RK, and 
RG.=R[~u+" {c~ ~ RG: ct(Ho) > 0} is a set of positive roots for Ro. 

Corresponding to R~ and R~ we have C~ and C~,  the fundamental Weyl 
chambers. We denote the set of integer lattice points in C~ by Pg and the set 
of integer lattice points in C~: by P~ .  Recall that P~ is in one-to-one 
correspondence with the irreducibles of G and P~ is in one-to-one corres- 
pondence with the irreducibles of K. Take # e P~ and consider the corres- 
ponding irreducible representation p, of G. The restriction of p, from G to 
K decomposes into 

= @ G,K m. (G)~ (1) 
a e P ~  

G,K : p~  ~ No is the multiplicity function and n. denotes the irredu- where rn u 
cible representation of K corresponding to o-. As pointed out in the introduc- 
tory Sect. 1, there exists a formula for m~'K(o-), but it is too complicated to use 
for our purposes. We will use the so-called asymptotic multiplicity function 

G , K  + + + Mu , as defined by Heckman [5], instead. Let A = q ( R o \ R n ) \ R r .  We 
treat A as a multiset; that is, we allow each element ~ e A to occur with 
a multiplicity m, in A. (The multiplicities arise from different elements in 

+ + 
RG \RH having the same orthogonal projection onto tk.) Assume that g and 
k have no simple ideals in common and that rank(A\{c~}) = rank(A) for all 

~ A. (A consists of lattice points; by the rank of a lattice we mean the 
dimension of the subspace spanned by the lattice points.) 
Assuming these conditions, Heckman defines the function 

M~'K : tr - ,  R 

(see [5, (3.16)]), which is called the asymptotic multiplicity function in light of 
the following theorem. Recall that by the support of a function we mean the 
closure of the set of points on which the function is unequal to zero. 

Theorem 2.1 [5] There exists a constant Ca, r > 0 such that for # ~ P~ and 
~eq(~ + QG)c~P~ 

Im~'K(o) - M~'K(~)I =< CG,~(1 + I/~[) *-1, (2) 
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where s = c a r d ( R ~ ) -  c a r d ( R { ) -  rank(A) and ]1~ r denotes the Euclidean 
norm of #. 

The function M~'K has compact support and is piecewise polynomial on tK 
and satisfies the homogeneity relation 

M~K(ra) ~ o K = r M . '  (~) (3) 

for all r > O, # ~ tG and a ~ tK. 

The homogeneity property (3) of MGu 'K will be crucial here. We also need to 
understand the support of MGu "K, denoted by supp(MuG'K). It can be seen from 
the exact definition of M~'/~ (see [5, (3.16)]) that ~ K �9 M , '  lS always zero in case 
# lies on a wall of the fundamental Weyl chamber C~. We will need the 
following results from [5] (see Lemmas 7.2 and 7.3 and Corollary 7.4 therein). 

Lemma 2.2 [5] For # ~ C~ and (7"1, (7 2 ~ CI( we have 

M ~ , K ( I  1 ) {M~ (a l ) ,M,  (a2) }, (4) ~0-1 -}- ~O" 2 ~ 2 ~min G,K G,/~ 

where s is defined as in Theorem 2.1. 

Lemma 2.3 [5] For # in the intersection of P ~ and the interior of C~ we have: 
(a) 

{supp(m~'K)c~Pi } c {supp(M~'K)mP+ }. (5) 

(b) The set supp(Mu~'~)< C[~ is a convex polytope. 

3 Statement and Proof of Results 

Let G be a compact connected Lie group, K a closed connected subgroup and 
v G'K the measure defined in Sect. 1. We will use the notation introduced in 
Sect. 2 for the remainder of this chapter. Also, recall that A = q(R~\R[~) \  
R~ is a multiset. 

Theorem 3.1 Suppose that g and k have no simple ideals in common and that 
rank(A\{~}) = rank(A) for all ~ ~ A. I f  there is at least one # ~ P ~ re(interior of 

+ 
CG )for which M~'K(o) ~ 0 and 0 ~ q(# + Qo), then it takes at least 

card(Rg) + 1 
k =  

card(R~) + rank(A) 

steps for the k-fold convolution power v~ 'K of v a'K to have an L2-density with 
respect to Haar measure 2G. 

Proof. The measure v G'K is conjugacy invariant, i.e., va'K(u) = VO'K(gU9 -1) 
for all 9 ~ G and all measurable subsets U ~_ G. Therefore, by Schur's lemma, 
the Fourier transform 

,:G,~(pi) := f pi(g)dvS'~:(g) 
O 
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is a scalar for each irreducible representation Pi of G and equal to 
(1/di)OG'K(Zi)Id, (where di denotes the dimension of Pi, and Zi denotes the 
corresponding character). Thus, by the Plancherel theorem, the measure 
vk a'*v has an L2-density with respect to Haar measure 2a if and only if 

,=0 ,=o ~ d ~ <  00. (6) 

We first compute ,)G'K00 for a fixed irreducible character Z (corresponding to 
p) of G. From the definition of v a'*: we see that 

~o,K(z ) = f z(k)dZK(k) . 
K 

But rest(p) = | (recall (1)), so that 

~G'K(Z ) = y, ma'~(a) f zodXK, 
a~P~ K 

where the Z~ on the right-hand side are irreducible characters of K. By the 
orthonormality property of the irreducible characters of a compact Lie group, 
we clearly get 

~)a'K(Z ) = ma'K(0). (7) 

From now on we use the points in P~ (the highest weights) to index the 
irreducibles of G. We will analyze 

E m~'K(o) 2k 2 

by considering a particular ray of representations, i.e., we will pick an appro- 
priate # e P~ and show that 

m~K(0) 2k card(R~) + 1 
~=1( ~ ) d ~ =  oo fork<card(R~)+rank(A)  w i t h k e N o .  (8) 

We now make use of the asymptotic multiplicity function Ma'K(-), whose 
existence is guaranteed by the conditions we impose in Theorem 3.1 (see [5]). 
For a fixed #eP~c~(inter ior  of C~) for which M~'~:(0)r  and 
0 E q(/~ + Qa), it follows from Theorem 2.1 that 

m~K(0) = r,M~,r(O) + O(r ~- 1) 

for all r > 0; here s = card(R~) - card(R~) - rank(A). On the other hand, 
the dimension d, for /~e P a  c~(interior of C~) is a polynomial of degree 
exactly card(R ~) in the components of/~. This can easily be seen with the use 
of Weyl's dimension polynomial: 

d , =  I1 <~,~> , 
aeR~ 
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where ~ = �89 c~. We thus see that 

for large r and fixed # ~ P~ c~ (interior of C~). From this (8), and hence also 
the statement of Theorem 3.1, follow directly. []  

4 Examples 

Here we present several examples illustrating the use of Theorem 3.1. In each 
case, G is a subgroup of the unitary group U(N) and the corresponding Lie 
algebra g is therefore a subalgebra of u(N), the Lie algebra of skew-Hermitian 
N x N matrices�9 An inner product on g which is invariant under the adjoint 
representation can be taken to be (A, B)  := - (2~)-2tr(AB) for A, B ~ g. 
In order to show that there exists at least one/~ s P~ c~(interior of C~) for 
which G.~ M u (0) r 0, we will make use of several so-called branching theorems. 

They describe simply, for specific G and K and for a given irreducible p of G, 
how res~p decomposes into irreducibles of K. References are, for example, 
[1, 4, 9]. Inductive use of these branching laws is justified by the transitivity of 
restriction: 

resg(p) = res t ( res t (p) )  for subgroups H ~ K c G. 

We can easily check in all examples discussed here that g and k have no ideals 
other than {0} in common, i.e., that for each nonzero B ~ k there is always 
A ~ g such that [A,B]  = AB -- B A ~ k .  From now on we will use the following 
notation: p~.O. + �9 = PG C~ (interior of C~).+ 

Example 1 (Random rotations) G = SO(N) for N > 4, K = SO(2) ~ S 1. K is 
embedded in G via 

cos27~t - - s in2~t  0 -.- 0 \  

t 

sin2~rt cos2~zt 0 ... 0 

0 0 1 ' 

�9 " " �9 �9 0 
0 0 .-. 0 1 

with t ~ R/Z. 

Consider 

( \ s in  2~zt ~ ( c~  2nt cos 2 ~ t -  sin 2nt'] } S O ( 2 ) ~ S  1 ~  j : t ~ R / Z  . 

We take the standard choice of maximal torus TG, namely the subgroup 
SO(2) x .-- xSO(2) x l  (with n factors of SO(2)) for N = 2 n + l  and the 
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subgroup S0(2) x .-. x SO(2) (with n factors of SO(2)) for N =- 2n. The set of 
positive roots of SO(N) (for N > 4) is 

:{ej+_ei: l<<_i<j<n}~3{ei: l<_i<n} for N = 2 n + l ,  
Rdo(N) = ({ej -I- ei: l <= i < j < n} for N = 2n. 

Therefore, 

card Rdo(N} = { n2 for N = 2n + 1, 
n 2 - n  for N = 2 n .  

Also, S0(2) has no roots, so that cardRdo(2~ = 0. 
We now describe the Lie algebras involved in this example�9 The Lie algebra 
g of SO(N) consists of the skew-symmetric real N x N matrices. The Lie 
algebra tG of the maximal torus TG can be seen to be the block diagonal 

matrices with ith bl~ equal t~ 2n (0  o t i ) :  ti 

f '0 - t l  0 --- 0 / tl 0 

t ~ =  27c 0 ".. 0 : ~ R f o r l < i < n  -~R" 

�9 0 - -  t~ 

0 .-. 0 t~ 0 

for N = 2n and similarly (with an additional bottom row and last column 
both consisting entirely of zeroes) for N = 2n + 1. We also have 

f '0 - t  0 .-- 0 ~ t 0 0 .-- 0 

k = t ~ =  2 n  0 0 0 " ' t e R  ~ R .  

�9 . . " .  

0 0 . . . . . .  0 

We can easily verify that ( A , B ) = - ( 2 n ) - 2 t r ( A B ) = 2 E 7 = l t ~ &  for all 
A,B ~ tG -- R ", where A = (tl, . . . ,  t,) and B = (sl . . . . .  s,). Therefore the or- 
thogonal projection q : tG ~ tr  is given by projection onto the first compon- 
ent: q(~) = (Xl, 0, . . . ,  0) for all 2 ~ R" ~ t G. From this it follows that 

R+ ,R+=f{ei++_el: l < i < n } u { e l }  for N = 2 n + l ,  
SO(N)\ 1t ( { e l  ++_ el: 1 < i < n} for N = 2n, 

and that A + + + = q(RG \Ru ) \R~  consists of the element (1, 0, ... , 0), with multi- 
plicity n in case N = 2n + 1 and with multiplicity n - 1 in case N = 2n, and 
the element ( -  1,0, . . . ,  0) with multiplicity n -  1 in either case. Thus 
rank(A\{e}) = rank(A)= 1 for all c~ ~ A (since we assume n > 2 in either 
case). Furthermore, it is easy to see that (0, ... , 0) e q(/~ + QG) for all kt ~ P~ 
(recall that QG is the sublattice of tG generated by the roots RG). 
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We next prove that g and k have no ideals in common�9 Indeed, for any 

t i  - b  0 .-. 0 
b 0 0 ... 

B = 2~c 0 0 

�9 , �9 , 

. . . . . .  

e k  

with b -r 0 we can take 

A = 

/0 0 0 

0 0 - a  

0 a 0 

0 0 : 

lo o o 

0 

0 

� 9 1 4 9  

, . ~  

0 

0 

0 
~ g  

0 

for any a # 0 and verify that [A, B] r 
Now choose/~ in p~,O with #a = 1. The following branching theorem 

~o~so(N)t~ ~ always contains the following irreducible makes it clear that ~oso(2)tH,J 
representations of SO(2): the representation of index 0 (i.e., the trivial 
representation), the representation of index 1, and the representation of 
index - 1. 

Theorem 4.1 Let  N > 3. Identify SO(N  - l) with the subgroup of  SO(N) o f  all 
elements of  the form (go). W e  then have 

(a) l~so~2,)~~176 l)(,~u, ~ = | where the sum is over all fi with [ill[ _-< #1 = < fi2 = < 
�9 .. < fi,, < #, ,  and 

(b) ressS~ = | where the sum is over all fi with IPl I < fi~ < it2 < 

"'" ~-~ fLn-1 "~ ~n" 

Indeed, let us assume that # = (1, #2, ... ,/~,). In case N = 2n + 1, we see from 
Theorem 4.1(a) that so(N) reSso(N_l)(pu) contains the representation of highest 
weight (1, #2, .- . ,  #,) (among others). In case N = 2n, we see from Theorem 
4.1(b) that resS~ contains the representation of highest weight 
(1,/~2 . . . .  , /~n 1) (among others). From this we see that reSso(~)so(N)(p,) always 
contains the irreducible representation of index 1. This representation, further 
restricted to SO(2), yields the irreducible representations of SO(2) of indices 

- 1,0, and 1 (again by Theorem 4.1(a)). 
We now show that  MS~O(N)'SO(2)(O) V a O. By Lemma 2.3(a), 

{ - 1,0,1} c supp(M~'K). Since, by Lemma 2.3(b), supp(M~a'tc)c~Czr is 
a convex polytope, i.e., for this example, a closed interval, and since 
MSO(m,so(z) is a piecewise polynomial nonnegative function (recall Theorem 

r  

2.1; the nonnegativity of M~' K on C~ is a direct consequence of Theorem 6.4 
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in [5]), we can conclude with the use of  L e m m a  2.2 that  so~m, so(2) M~ (0) r 0. 
I t  now follows f rom T h e o r e m  3.1 that  it takes at least 

k = < (n2 -b 1 for N = 2n + 1, 

n a - n + l  for N = 2 n  

steps for v s~176 to have an L2-density with respect to H a a r  measure  

~.so(N). 

Remark  4.2 If  we slightly change the definition of the measure  v s~176 by 
changing H a a r  measure  on S0(2) to the probabi l i ty  measure  on SO(2) with 
density p ropor t iona l  to (sin rot) N 2, the result is quite different f rom that  in 
Example  1: The  L2-norm of the kth convolu t ion  power  of the new measure  is 
close to 1 after k = �89  + cn steps for c > Co, where Co is some universal  
positive constant ,  and for bo th  N = 2n and N = 2n + 1. See [7] for more  
details. 

Example  2(a) (Random complex  reflections) 
K = U(1) =~ S 1. K is embedded  in G via 

G = U ( N )  with N > 3 ,  

with t ~ R/Z.  

We take the s tandard  choice of max imal  torus Ta,  namely  the subgroup  of 
d iagonal  matr ices  of U(N) .  The set of positive roots  is 

+ 
Rv(N) = { e j - -  ei: 1 < i < j < N} .  

Therefore,  card R ~lm = �89 Nz - N). Fur thermore ,  

tG = {diag(i2~tl,  ... , i2~tN): tk ~ R for 1 _< k _< N} ~ R N 

and 

k = tK = {diag(i2~zt,0, . . . ,  0): t ~ R} ~ R. 

We can easily verify that  our  choice of inner p roduc t  ( . , . )  on g, restricted to 
t G -  R N, is the s tandard  Euclidian inner product .  As in Example  1, the 
o r thogona l  project ion q : ta  --+ tK is project ion onto  the first component .  F r o m  
this it follows that  + + Rv(N) \RH = {ek - e t  1 < k < N }  and tha t  A consists of 
the element ( - 1, 0, . . . ,  0) with multiplicity N - 1. 

N o w  choose/~ c p S . 0  with/~1 < - 1 and #N > 1. The  following branch-  
ing theorem makes  it clear that  v(N) resv(1)(p,  ) always contains the following 
irreducible representat ions  of U(1): the representat ion of index 0 (i.e., the 
trivial representation),  the representat ion of index 1, and the representa t ion of 
index - 1. 
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Theorem 4.3 Let  N > 2. Identify U ( N  - 1) with the subgroup of  U(N)  o f  all 
elements o f  the form 8o (Ol). W e  then have 

U (N) 
resv(N- 1)(P,) = |  

where the sum is over all fi with #5 = < fil = < #2 = < "'" = < fiN-5 = < #u. 

For  example, let us choose # = ( - 1, 1,/~3, ... , #N). F r o m  Theorem 4.3 we see 
that v (m resv(N-1)(Pu) contains the representation of  index ( - 1, 1, #3 . . . .  , #N-5) 
(among others). Therefore, v(m resv(~)(p, ) contains the representation of  index 
( - 1, 1), which, further restricted to U(1), yields exactly the representations of  
indices 0, 1, and - 1. 

We can apply the same reasoning 
that MU(N)'U(1)(O)r The rest of the 

easily checked. It follows that  it takes 
for v v(m'v(l) to have an L2-density 

)~U(N)" 

as used in Example 1 to show 
conditions of Theorem 3.1 are 

at least k = � 8 9  2 - N ) + l  steps 
with respect to Haa r  measure 

Example 2(b) G = U(N)  with N > 3, K = U ( 1 ) =  S 1. K is embedded in 
G via 

t ei2=t 

0 

ei2~t 

1 

with t c R/Z. The projection q : tG -~ tK is the or thogonal  projection from R N 
onto  the one dimensional subspace o f R  N spanned by (1, 1, 0 . . . .  ,0). F r o m  this 
it follows that  

-- + 
Rc,(N)\RH = ( e l - e s :  3 <_i < _ N } u ( e i - e 2  3 < _ i N N }  

and that A consists of  the element ( -  �89 - � 8 9  . . . ,  0) with multiplicity 
2N - 4. 

+ , 0  N o w  choose # ~ Pu(N) for which #1 = - 1, #2 = 0, and #3 = 1. We claim 
that  for such a # we have: mV(U)'v(5)(x) # 0 for x = - 1,0, 1. Indeed, # and 
any vector resulting from permuting the elements in # are weights of Pu- Thus 
we see that Zo~ (diag( ei2'~t, ei2'~t, l . . . .  ,1)) (which is a sum of powers of e i2'~t) 
must  contain the terms e i2~t, e -~2~t, and 1 with positive coefficients. N o w  the 
same arguments  as before apply to prove that Mu v(m'v(1)(0) # 0. The rest of 
the conditions of  Theorem 3.1 are easily checked. Therefore, as for Example 
2(a), it takes at least k = 1 ( N 2  - -  N )  -I- 1 steps for v v(~)'v(1) to have an L2- 
density with respect to H a a r  measure 2U(N). 
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Example 3 G = U(N) with N > 5, K = r 2 ~ S 1 X S 1. K is embedded in G via 

e i2rctx 0 

ei2~t2 

1 

1 

with tl,  t2 e R/Z.  The projection q : tG --* tK is the or thogonal  projection from 
R N onto  the two dimensional  subspace of R N spanned by (1,0, . . . ,  0) and 
(0, 1, 0, ... , 0). Here we have 

+ + 
RV(N)\RH = { e i -  el:  2 <_ i < N } w { e i -  e2 :3  < i  --< N} 

and A consists of the element ( - 1, 1,0, . . . ,  0) appearing with multiplicity 
1 and the elements ( - 1, 0, . . . ,  0) and (0, - 1, 0, ... , 0), each appearing with 
multiplicity N - 2. Note  that  rank A = 2 in this case. 

+ , 0  N o w  choose p ~ PU(N) for which p~ < - 1,/~2 = - 1,/~3 = 0, #4 = 1, and 
Ps > 1. F r o m  the branching theorem for U(N) (Theorem 4.3) we can see that  

U (N) resv(z)(pu) contains the following irreducibles of U(2) (among others): the 
irreducible of highest weight (0, 0) (i.e., the trivial representation), the irredu- 
cible of highest weight ( - 1, - 1), and the irreducible of highest weight (1, 1). 
Since T 2 is a maximal  torus of U(2), it follows that m~(N)'r2(x)~eO for 
x = (0,0), ( ~-2 1, -- 1), (1, 1). We can thus prove in the same manner  as before 
that  M v(m'r  (0) r 0. 

The rest of the condit ions of Theorem 3.1 are easily checked. We can now 
conclude that  it takes at least k = �88 2 - N) + i steps for v~ (re'r2 to have an 
L2-density with respect to H a a r  measure '~v(m- 

Example 4 G = Sp(n) with n __> 2, K = U(1) -~ S 1. K is embedded in G via 

z 0 ) 

1 

0 1 

eGl(n ,H) ,  z e  U(1). 

We now view Sp(n) as a group of 2n-dimensional complex matrices via its 
natural  representation. The s tandard choice of maximal  torus TG is the 
subgroup of diagonal  matrices. The set of positive roots  is 

+ 
Rsp(,) = {ej +_ el: 1 < i < j < n} u{2ei:  1 -<i < n}. 

Therefore, card(R~v(,)) = n 2. Fur thermore,  

tG = {diag(i2zctl, ... , i2~rt,, - i2~tl . . . . .  - i2~rt,,): tk 6 R for 1 _< k _< n} ~_ R" 

and 

k = tK = {diag(i2~zt,0, ... , 0, -- i2rct, O . . . .  ,0): t ~ R} ~ R. 
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Thus the project ion q : t a  --* tK is given by project ion onto the first quater-  
nionic component .  It  follows that  

§ + 
R s v ( , ) \ R .  = {ek +_ el: 2 <_ k <-n}w (2el} 

and that  A consists of the elements ( + 1,0, . . . ,  0), each with multiplicity 
n - 1, and the element (2, 0, ... , 0) with multiplicity 1. Therefore  rank(A) = 1. 

+ 0 �9 Sp(n) We now show that  there exists # e Po" for whmh resv(1) (Pu) contains the 
following irreducible representat ions of U(1): the representat ion of index 0, 
the representat ion of index 1, and the representat ion of index -- 1. 

Choose  # e p~,O for which #1 ~ 1. The  following branching  theorem, used 
inductively, makes  it clear that  ~e~ sp(") t,~ ~ always contains the following OSp(1),,t.l~ ] 

representat ions of Sp(1): the representat ion of index 0 and the representat ion 
of index 1 (i.e., the natura l  representation).  

T h e o r e m  4.4 Identify Sp(n - 1) with the subgroup of  Sp(n) of  alI elements of  the 
f o v m  B 0 (o 1). W e  then have 

resSP(n) (,~ ~ @Nu~Tr h S p ( n -  1 ) \F#!  

where the sum is over all fi = (//1, ... , fi, 1) with 0 <//1 < "'" < / / , -  1, and the 
multiplicity N ~  is the number o f  sequences Pl, ... , P, o f  integers satisfying 

0 ~ P l  = < / / l  = < P 2  = < "'" =<P, = </ /n  

and 

Pl <=ill <=P2 < "'" <=fin-1 <=Pn. 

Indeed, let us assume that /~ = (1 , /~2 ,  . . .  , #n) .  F r o m  Theorem 4.4 we see that  
re ~sp(") ~ ~ contains the representat ions of indices ( 1 , } t 2 ,  ] . t n _ l )  and ~  1)  t / J t z J  . . .  

(0,/~z, # , -1 )  (among others). It follows that  sp(,) . . . ,  ressp(1)(p~ ) contains the 
representat ions of indices 0 and 1 (among others). 

We now restrict the representat ion of index 0 and the representat ion of 
index 1 of Sp(1) further to the maximal  torus of  Sp(1) (i.e., to the subgroup  of 
diagonal  matr ices of  the form diag(e i2~t, e -i2~t) with t e R/Z). This maximal  
torus is our  subgroup  K = U(1) and we now can see that  the representat ions 
of index 1,0, and 1 occur  in sv(,) - resv(1)(p,) .  As before, we conclude that  
MSp('~ r 0. The  rest of the condit ions of Theo rem 3.1 are easily 
checked. It  thus follows that  it takes at least k = n 2 + 1 steps for v sv(')'v(1) to 
have an L2-density with respect to H a a r  measure  2sp(,). 
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