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Summary. Renormalization arguments are developed and applied to indepen- 
dent nearest-neighbor percolation on various subsets IL of Z a, d > 2, yielding: 

�9 Equality of the critical densities, pc(L), for IL a half-space, quarter-space, 
etc., and (for d > 2) equality with the limit of slab critical densities. 

�9 Continuity of the phase transition for the half-space, quarter-space, etc.; i.e., 
vanishing of the percolation probability, OL(p), at p = pc(L). 

Corollaries of these results include uniqueness of the infinite cluster for such 
lL's and sufficiency of the following for proving continuity of the full-space 
phase transition: showing that percolation in the full-space at density p implies 
percolation in the half-space at the same density. 

0 Introduction 

In recent years, renormalization techniques have begun to provide a microscope 
capable of focusing on the critical region of the percolation phase transition. 
Such techniques have been applied to percolation in two dimensions [e.g., Russo 
(1978); Seymour and Welsh (1978); Durrett (1984); Kesten (1987)], three and 
more dimensions [-e.g., Aizenman et al. (1983)], and in long-range models [-e.g., 
Newman and Schulman (1986); Aizenman and Newman (1986)]. This paper 
is concerned with short-range percolation in more than two dimensions, and 
has two main purposes: first, to develop new methods in renormalization tech- 
nology, and secondly, to apply these new methods to the question of the contin- 
uity of the phase transition - i.e., to show that there is no percolation at the 
critical point. 
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of Arizona Center for the Study of Complex Systems (G.R.G.), NSF Grant DMS-8514834 
and DMS-8902516 (C.M.N.), and AFOSR Contract No. F49620-86-C0130 to the Arizona 
Center for Mathematical Sciences under the U.R.I. Program 
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We are partly successful in our last aim. In particular, we prove the continuity 
of the percolation probability for independent nearest-neighbor (bond or site) 
percolation on various subsets IL of ~d, d_>_2, such as the half-space ( IL=~ ~-1 
x Z+ where •+ = {0, 1, 2 .... }), quarter-space, etc. This implies that to show con- 

tinuity for the full-space, it would suffice to prove that if there is percolation 
in the full-space at density p, then there is percolation in the half-space at 
the same p. A weaker result, in which "the same p" is replaced by "any  larger 
p," has been obtained by Grimmett and Marstrand (1990). Their result shows 
that the critical densities coincide for full-spaces and half-spaces, thus extending 
our result here that critical densities coincide for half-spaces, quarter-spaces, 
etc. The Grimmett-Marstrand (1990) result and another result of Bezuidenhout 
and Grimmett (1990), who resolve the continuity issue for the contact process, 
are based in part on extensions of the methods presented here, 

We remark that it is already known that the percolation probability for 
the full-space ~d vanishes at the critical density if either d--2 [Harris (1960); 
Kesten (1980); Russo (1981)] or d is sufficiently large [Hara and Slade (1989, 
1990)]; these results have been reached by arguments quite different from those 
presented here. See Grimmett (1989) for a general account of percolation theory 
and for other material in the background of this paper. 

In the next section of the paper, we state precisely our main results and 
discuss the related literature. Included there is an introduction to the renormal- 
ization techniques used later. We end this section with a brief discussion of 
the general approach underlying such "block" arguments. 

Imagine an algorithmic process for growing the cluster of the origin for 
a (possibly dependent) nearest-neighbor site percolation model on the quadrant 
Z2+ of the plane, such as one might perform on a personal computer. First 
assign a deterministic order to all the sites in Z2+. At time 0, check the occupation 
status of the origin. At time n, choose the site x, with the lowest order from 
the set of unchecked neighbors of sites already found to be occupied, and check 
the occupation status of x,. If the set of unchecked neighbors is empty, terminate 
the process. Note that both x~ and 2~, the conditionaI probability that x~ is 
occupied given the previous history of the process, are random since they depend 
on this history. If 2 ,>2~+e  (a.s.) for some 5>0 and all n > l ,  where 2c is the 
critical density for the independent site model on 292+, then the original model 
percolates. To see why this is so, extend the algorithmic process by declaring 
a random subset of the sites found to be occupied to be "red," as follows. 
Let WI, W2 . . . .  be i.i.d, random variables uniformly distributed on [0, 1] which 
are independent of the original site percolation model. Declare x, to be red 
if it is occupied and W~<(2c+e)/2,. It is evident, after a moment's reflection, 
that the connected component of the set of all red sites which contains the 
origin is distributed exactly as the set of occupied sites connected to the origin 
from an independent site percolation model at density 2~+e. When the red 
sites percolate (from the origin), then so do the occupied ones. 

Let us now begin with, say, independent bond percolation in three dimen- 
sions, for which we wish to show that (at a certain bond density p') percolation 
occurs in the quarter-slice IL'= { - E ,  ..., E} x2g~. We do this by partitioning 
IL' into rectangular regions which are translates of {--E,  ..., E} • { - K  . . . . .  K} 2 
(i.e., cubes if E = K ) ;  each such region may be identified with a site in ~2+ 
in a natural way. The "cube" containing the origin is said to be occupied 
if the set of sites in its east and north faces - i.e., those faces having normal 
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vectors (0, 1, 0) and (0, 0, 1), respectively - which are connected to the origin 
by open bonds in the cube are sufficiently "good."  We then run an algorithmic 
process paralleling the one described above except that here the elementary 
step is to choose a cube neighboring one already found to be occupied, and 
then check whether the new- cube is occupied - in the sense that the good 
set of sites in the neighboring face of the old cube is connected to good sets 
of sites in the other faces of the new cube by open bonds of the new cube. 
(When the new cube has more than one occupied neighbor, the one with the 
lowest deterministic order is chosen to be the "o ld"  cube.) If the conditional 
probability 2, of this event exceeds 2c+e, uniformly over all past histories, then 
bond percolation occurs in IL'. 

This type of renormalization argument may be applied to the question of 
continuity as follows. One begins by assuming that, for a given p, there is percola- 
tion in say the orthant  lL=2g~+. One then shows that E and K can be chosen 
in such a way that the above conditional probabilities 2, exceed 2c + e for some 

> 0. It follows that for the same E and K and some smaller density p', these 
conditional probabilities still exceed 2c+ e. This shows that percolation in the 
orthant IL at density p implies percolation in the quarter-slice IL' at a smaller 
density p'. Consequently - since there are translates of IL' which are proper  
subsets of L - one obtains (i) 0~(p~(IL))=0, and (ii) pr lim p~(lL'), where 

L ' ~ o o  

0~. and p~(lL) are the percolation probability and critical density, respectively, 
for the subset IL. This argument is made rigorous b y  Barsky et al. (1991), with 
limited geometrical complications. These complications are somewhat greater 
when the assumption of percolation in the orthant is replaced by a similar 
assumption for the half-space. 

1 Statement of results 

Throughout  this paper we will be concerned with nearest-neighbor percolation 
on certain subsets of 7/. d. For  concreteness, we restrict our attention to bond 
percolation, although the arguments and results can clearly be modified for 
site percolation. We thus consider the subgraph of 2g d with vertex set IL and 
edge set consisting of all nearest-neighbor edges in IL (i.e., pairs of elements 
{x, y} from IL separated by Euclidean distance one). Edges can be either open 
or closed. Each edge is open with probability p~[0, 1] independently of the 
states of all other edges; p is called the bond density. We write Pp (or often 
just P) to denote the ensuing probability measure. 

In percolation theory, one considers the random subgraph obtained by delet- 
ing all closed edges; its connected components are called (open) clusters. For  
any IL, the event that there exists an infinite cluster is clearly a tail event, and 
thus has probability zero or one - percolation is said to occur when this probabil- 
ity is one. We will only consider lL's which are connected (before deletion of 
closed edges) and which contain the origin, denoted by 0. The percolation proba- 
bility, OL(p), is then defined to be the probability that the cluster of the origin 
is infinite, or equivalently, 

00_(P) = Pv (there is a nearest-neighbor path of open bonds starting from 
the origin and passing through infinitely many distinct sites). 
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It is easily seen that percolation in L at bond density p occurs if and only 
if OL (p) > O. 

In each of the subsets IL which we shall consider, there is a critical density 
pc(IL) strictly between 0 and 1 such that 0re(p)=0 for p<pc(IL) and 0re(p)>0 
for p >pc(lL). The theorem following guarantees for certain L's  that 0L vanishes 
exactly at the appropriate critical density; as discussed following the theorem, 
this leads to the continuity of 0L (at all densities p). The ]L's for which this 
continuity is proved include the half-space 

~"I = ~ d - 1  X T L + ,  

the quarter-space, etc. We also consider slabs 

S L=2U-1 x {0 . . . .  , L} 

and quarter-slices 

Q L = { - L ,  . . ,  L} 

as well as the limits of their critical densities: 

pc(N)= lira Pc(NL) and pc(Q)= lira Pc(QL). 
L--+ oo L ~ o o  

The first part of the theorem is already known in two dimensions following 
the work of Harris (1960); Russo (1978); Seymour and Welsh (1978); Kesten 
(1980). However, our arguments provide a new proof. 

Theorem 1.1 i) Suppose d >= 2. The percolation probability of the half-space van- 
ishes at the half-space critical density: 

(1.1) O~(pc(~I))=O. 

ii) Suppose d >-_ 3. There is equality between the critical density of the half-space 
and the limits of the critical densities of quarter-slices: 

(1.2) pc(1H) = Pc(Q)- 

Comments. 1) It has not yet been proved that the full-space percolation proba- 
bility vanishes at the appropriate critical density in all dimensions (as is common- 
ly believed), although there has been some progress. If d--2, this conclusion 
follows from the combination of the Harris (1960) result that 0e2(�89 and 
the Kesten (1980) proof that the critical probability of bond percolation on 
the square lattice equals �89 For site percolation in two dimensions, where the 
value of the critical density is not known exactly, the corresponding result was 
proved in Russo (1981). For the case of large dimensions, it was shown in 
Barsky and Aizenman (1991) [see also Barsky (1987)] that 0~d(pc(2gd))=0 if a 
certain "triangle condition" - believed to be valid for d > 6 - is satisfied [-(this 
result was later strengthened in Aizenman et al. (1987)]. Hara and Slade (1989, 



Percolation in half-spaces 115 

1990) have recently shown that the triangle condition is indeed satisfied in suffi- 
ciently high dimensions - d > 7 for models with "spread-out" finite-range bonds, 
and much larger d for the nearest-neighbor model. We further mention that 
there exist some special percolation models for which it has been shown that 
0 is strictly positive at the appropriate critical density. Aizenman and Newman 
(1986) demonstrated this property for a particular one-dimensional model with 
long-range bonds and Chayes and Chayes (1986) showed that nearest-neighbor 
models on logarithmic wedges of Z 2 can also exhibit this behavior. 
2) It is immediate from (1.2) and monotonicity that the critical densities of 
quadrants, octants, ..., and orthants must coincide with both p~(lH) and Pc(Q). 
Additionally, these critical densities must also coincide with pc(N). We note 
that the equality of pc(S) and Pc(Q) has already been proved in Kesten (1989). 
It was conjectured in Aizenman et al. (1983) that pc(2U)=p~(S) for d > 3  dimen- 
sions. This equality is of considerable interest as there are a number of results 
[see the discussion in Grimmett and Marstrand (1990)] which show that behav- 
ior which is expected for all p>pc(~  e) does in fact occur for p>pc(N). We note 
that this problem has recently been solved by Grimmett and Marstrand (1990). 
3) Combining the first sentence of Comment 2 with equality (1.1), it is readily 
observed that there cannot be percolation in the quadrant, octant, ..., or orthant 
at their common critical density. 
4) In the full-space IL=7/d, the question of whether the percolation probability, 
0zd, is a continuous function on (0, 1) reduces to deciding if it is continuous 
at the critical density, Pc (7Z/). First, 0gd--0 for p < pc(2U) [by definition]. Secondly, 
it is easy to see that 0gd is a nondecreasing upper semicontinuous function 
of p, and hence it must be right-continuous. [Note for future reference that 
these first two observations are geometry-independent, and thus they both hold 
for OL [with pc(~ d) replaced by p~(lL), of course] for any subset L of ~d.] Thirdly, 
it was shown by van den Berg and Keane (1984) that 0e~ is left-continuous 
strictly above p~(Z d) provided that the infinite cluster is a.s. unique, i.e., provided 
that w.p.1 there can be no more than one infinite cluster. [Their result extends 
immediately to a large class of subsets of 7Z/including half-spaces, quadrants, ..., 
orthants, slabs and quarter-slices.] Finally, it is known (see Comment 5 below) 
that there is (a.s.) uniqueness of the infinite cluster in 2g d. The combination 
of these four facts yields the conclusion that 0zd is continuous at pc(2gd), and 
indeed on all of (0, 1), if and only if 0g~(p~(2gd))=0. Although we are unable 
to resolve the continuity issue for the full-space, the argument outlined in this 
comment can be used to settle the question for various partial-spaces - once 
we have proved that there is uniqueness of the infinite cluster in those spaces. 
5) For the full-space (and also the half-space and the quadrant) in two dimen- 
sions, Harris (1960) [see also Fisher (1961)] showed that there could be at 
most one infinite cluster on the square lattice. More generally, Aizenman et al. 
(1987) showed that the infinite cluster is unique in the full-space for all dimen- 
sions; a simplified version of their argument was produced by Gandolfi et al. 
(1988); Gandolfi (1989) has extended the argument to some dependent percola- 
tion models. The recent uniqueness result of Burton and Keane (1989) subsumes 
all of the above-mentioned (full-space) results for finite-range models. Various 
extensions of Burton and Keane (1989) can be found in Gandolfi et al. (1991). 
6) It follows from Comments 2 and 3 that percolation in a half-space, quad- 
rant . . . . .  or orthant implies percolation in some quarter-slice. It was proven 
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in Aizenman et al. (1983) [see Theorem 4.4 and the discussion on page 60 there] 
that, in d =  3 dimensions, percolation in a quarter-slice implies that the corre- 
sponding full-slice (and all of ~3) contains a unique infinite cluster. Essentially 
the same argument shows that under the same hypothesis, there is uniqueness 
of the infinite cluster in full-spaces, half-spaces, quadrants . . . .  , and orthants (as 
well as half-slabs, half-slices, ...) for any d>3.  We note that Kesten (1989) has 
already shown that the infinite cluster in the half-space is unique. 

We summarize the observations made in Comments 2, 3, 4 and 6 in the 
following result. 

Corollary to Theorem 1.1 Suppose d > 3. i) There is equality between the critical 
densities of the subspaces 7Z/- ~ x ~ _  (1 < e < d) and the limits of the critical densi- 
ties of slabs and quarter-slices: 

(1.3) pc(lH) = pc(~ d-2 x Z2+) . . . . .  pc(~+)=pc(N)=pc(Q). 

ii) The percolation probabilities of the subspaces Z d-~x ~g~ (1 < e < d) all vanish 
at their common critical density: 

(1.4) (pc (N))  . . . . .  (pc = 0. 

iii) When they exist, the infinite clusters in 77 d-~ x ;go+ (1 < e < d) are a.s. unique. 

iv) The percolation probabilities of the subspaces ~d- ~ x ~+ (1 < e < d) are contin- 
uous functions at all densities p. 

Comment. 7) The results listed in the corollary are already known to be true 
if d=2 ,  as explained previously, provided that (1.3) is modified by removing 
pc(S) and pc(I/)). Our methods may be used to provide new derivations in two 
dimensions of (1.3) [again with pc(S) and Pc(Q) removed] and (1,4). 

The next theorem is the heart of the paper. In addition to providing an 
immediate proof of Theorem 1.1, it also makes some progress towards proving 
that percolation in the full-space implies percolation in some sufficiently " thick" 
two-dimensional slice of the space. Further progress is made in Grimmett and 
Marstrand (1990). 

Theorem 1.2 i) I f  0~(p)>0, then there exist 6 > 0  and E e Z +  such that Or 
- 3 )  > O. In words, if there is percolation in the half-space at a particular density 
of open bonds, then a quarter-slice can be found for which there is percolation 
at some lower density of open bonds. 

More generally, if OL(p)>O for some I L = ( ) (  {O, . . . ,h i )]x;g  d-e YxZe+ with ii) 
\ = 1  / i 

e> l and d- f>=2,  then there exist 3 > 0  and E E l +  such that 0L, (p -6 )>0  for 

�9 ' =  {0 . . . .  ,hl 
i 

We remark that part ii) of Theorem 1.2 can be used to prove slab-like versions 
of Theorem 1.1. For example, it can be shown that i) the percolation probability 
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of the half-"slab" {0, ..., h} x Z  a-2 x Z +  is zero at its critical density, and ii) 
the limit as L--,oe of the critical density of the quarter-" slice " {0 . . . . .  h} x 
{ - - L  . . . .  , L} a-3 x Zz+ equals the critical density of this half-slab. 

We shall prove Theorem 1.2 i), using renormalization methods, which can 
be extended with slight modifications (not presented here) to also prove part 
ii). 

Here is a sketch of our main argument. Impose a grid o f 2 K  x 2K x ... x 2K 
cubes on the subset QK of ~I. (In this sketch K = E ;  in the actual argument 
of Sect. 4, we impose on Qc, a grid of (2E) a-2 x (2K)  2 "cubes"  with K > E . )  
There is a natural identification of these 2K-cubes in QK with sites in 7Z 2 . 
Based on the percolation model on lI-I, we shall construct a type of dependent 
percolation process on Z 2 in such a way that the clusters of the latter process 
correspond in a certain way to clusters of the former. Thus, if the latter process 
is supercritical, then so is the former. We shall then show that, subject to a 
suitable initial hypothesis on the original model [such as that 0~(p)>0],  the 
integer K may be chosen large enough that the corresponding (dependent) site 
percolation process is supercritical. It will follow that there is percolation in 
thick quarter-slices (even after slightly reducing the bond density) whenever 
there is percolation in half-spaces. Our main goal is then to describe a suitable 
way of constructing such a renormalized site percolation process. 

The idea is as follows. First we examine the cube Co containing the origin. 
If the origin is joined within Co by open paths to " m a n y "  sites on (or at least 
"nea r"  to) the north and east faces of Co, we declare Co to be "g o o d "  and 
the site in Z 2 corresponding to Co (say 0) to be occupied. (Throughout this 
sketch we shall use such terms as " m a n y "  and "near"  without formal explana- 
tions.) If Co is found to be "bad"  (i.e., not good), then the process is stopped. 
If Co is good, then we use the algorithm for growing clusters outlined in the 
preceding section to choose the first neighbor, say x, of 0. The cube C x corre- 
sponding to the site x is now examined, and declared to be good (and x is 
declared to be occupied) if one of the sites reached previously on (or near) 
the face common with Co is joined (mostly) within C~ to many sites on (or 
near) the other three of the north, south, east and west faces of C~. (As we 
shall see later in Sect. 3, we will actually not declare Cx to be good unless 
these many sites are reached by a specific geometric construction.) This proce- 
dure is now iterated in the natural way - at each stage one chooses a new 
cube neighboring some good cube (according to our cluster-growing algorithm) 
and declares this new cube to be either "good"  or "bad." We shall make this 
procedure rigorous, and show that, under the hypothesis that 0~(p)>0, the 
associated (dependent) percolation process is supercritical. It will follow that 
there is a positive probability of being able to find an infinite network of good 
cubes; the existence of such a network implies that the original percolation 
model in the quarter-slice QK is supercritical. 

Most of the work lies in showing that the hypothesis O~(p)> 0 is sufficient 
to build (with large probability) appropriate open paths across a large cube. 
In doing this, we shall first work on a smaller scale, showing the existence 
of "occupied bricks" which may be used to construct such paths (see Figs. 7 
and 10 for an indication of what this means). More particularly, we use the 
hypothesis in question to understand the geometry of open paths within a paral- 
lelopiped of dimensions 2L x 2L x ... x 2L x/-/ for some L and H;  we shall 
have no control over the ratio L / H  for an occupied brick, a fact which will 
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later turn out to be significant. We shall then build paths by carefully positioning 
a sequence of bricks within a larger cube. 

Two difficulties arise in building such paths. First, for geometrical reasons, 
we require different strategies depending on whether L/H is small or large; 
we shall end up using different arguments depending on whether L__< H or not. 
Secondly, in putting the bricks together there is a degree of uncertainty about 
the exact placement of particular bricks. As a consequence of this we cannot 
normally expect to reach sites exactly on a specified face of a specified cube. 
Instead we make do with reaching near the face by defining a "target region" 
near the center of the face and stopping the brick construction when we arrive 
in this target area. 

We have now reached the end of the outline of the argument. In Sect. 2 
it is established that occupied bricks exist with high probability. Sect. 3 contains 
the geometrical constructions for connecting the bricks to build the cube crossing 
events. In Sect. 4 we combine these results to give the proof  of part i) of Theo- 
rem 1.2. 

2 Existence of occupied bricks 

By the term "br ick"  we mean a d-dimensional box B(L, H) in Z d with side- 
lengths 2L, 2L, ..., 2L and H, for some L and H. Our aim in this section is 
to describe an event which is measurable on the interior of the brick B(L, H) 
and useful in constructing long open paths, and to show the existence of (deter- 
ministic) L and H for which this event has large probability whenever 0~(p)> 0. 
We begin with some notation. Bricks come in four varieties: north, south, east 
and west, which are translates of the boxes 

BNorth(L,H)={--L , ..., L) ~-1 x {0 . . . . .  H}, 
Bsoutl~(g , H ) = { - - C ,  ..., L} d-1 • {--H, ..., 0}, 
Bz~t(L,H ) = { - - L ,  ..., L} a-2 x {0 . . . . .  H} x { - -L  . . . .  , L} and 
Bw~s,(L,U) = { - L  . . . .  , L} d-2 x {--H,  ..., 0} x {--L, ..., L}, 

respectively. (The terminology arises from ignoring the first d - 2  coordinates, 
The distinction between north and south bricks, and between east and west 
bricks, will become clearer after the notion of "occupied brick" is introduced.) 
For  simplicity we restrict our attention (for the time being) to north bricks, 
and while operating under this restriction we will generally drop the 'Nor th '  
subscript, 

The top of the brick B(L, H) can be divided (see Fig. 1) into 2 e- i congruent 
regions: 

Zl (g, H ) =  {0, ..,, L} d-1 x {U}, 
T2(L,H)={0, - - . ,  C} d-2 x { - - L , . . . ,  0} x {H} . . . . .  

T 2 d _ I ( L , H ) : { - L  . . . . .  O} d-1 X {H}. 

Similarly, the sides can be divided into 2 ( d - 1 ) U  -2 subregions: 

S l ( r , n ) = { c }  • {0, . . ,  L} • {0 . . . .  , H ) ,  

S2(L,H)={L} x {0, . . . ,  L} a -3  x { - - g ,  . . . ,  0} x {0 . . . . .  H},  . . . ,  

S(e_t)2,-I(L,H)={--L . . . .  ,0} ̀ -2 x { - L }  x {0, ..., H}. 
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Fig. 1. The brick BNo~h(L, H) in d=3 dimensions 

119 

(We will simply refer to the regions as Si and Tj. when the dimensions L and 
H may be taken from the context.) Letting 

D={--L, ..., L} d-1 x {0}, 

S=S(L,H)=U~Si, and T=T(L,H)=UjT i 

denote the bot tom,  sides and top of the brick, we can write the boundary  of 
the brick as OB(L,H)=DwS~T. By a connection in B*(L,H) we will mean 
an open path  between sites in B(L, H) which is accomplished without making 
any use of "boundary  bonds." A boundary bond in B(L, H) is a bond between 
two sites in 8B(L, H). A connection in B'(L, H) will mean a connection which 
does not use any bond between pairs of sites in the bo t tom D of the brick. 

Let k be a positive integer. A hyperblock is a translate of 

bm(k)={-k . . . .  ,k} m-l  x {0} x { - k ,  . . . ,  k} e-m where m,{1 ,  ..., d}. 

The hyperblock x+b~,(k) is said to be open if all of the sites in x+bm(k) are 
connected to one another  by open bonds lying entirely in the hyperblock. If  
xeSi for a unique value of i, we denote the hyperblock centered at x and parallel 
to S~ by x+b,,(x)(k). If  x~S~ for more than one such i, we arbitrarily choose 
one such value of i and define x + bm(x)(k) accordingly. Eventually we will remove 
this arbitrariness by only considering sites in S which are not on any hyperedge. 
For  y s T, we consider the hyperblock y + be (k). 

Suppose L>=k and H>2k. We define the brick B(L, H) to be occupied (see 
Fig. 2) if there exists at least one site xi~S i (and yjeT~) for each i=1 ,  ..., 
( d - 1 ) 2  d-1 (resp. j =  1, ..., 2 d- l )  which is the center of an open hyperblock 
xi+b,~.~o(k ) contained in S [resp. yj+bd(k) contained in T]  and which is con- 
nected in B'(L, H) to bd(k). Note that  this definition does not require the initial 
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Fig. 2. An occupied north brick in d=3 dimensions and some of its attachment sites. Each 
small shaded region represents an open hyperblock. The bold lines represent paths of open 
bonds 

hyperblock bd(k) to be open. We refer to the centers of the open hyperblocks 
on S and Twhich  are reached from bd(k) as the attachment sites of the brick. 

The requirement that occupied bricks have many  at tachment  sites will be 
used in Sect. 3. There we construct long paths of open bonds having certain 
properties by sequentially placing occupied bricks at appropriately chosen 
at tachment sites of other occupied bricks. The ability to choose an at tachment  
site from any S~ or Tj will be essential, even though we will never use more 
than two at tachment  sites of any brick. 

We can now state the existence theorem for occupied (north) bricks. 

Proposition 2.1 Suppose that there is percolation in the half-space (i.e., OR(p)> 0). 
Then for each 8 > 0  there exists a hyperblock length k( > 0), a brick length L( > k), 
and a brick height H ( >-_ 2 k) such that 

(2.1 a) Pv(BNorth(L, H) is occupied) > 1 - e. 

Furthermore, there also exists J > 0 such that 

(2.1 b) Pv - ~ ( B N o r t h  (L, H) is occupied) > 1 - e. 

We first note that  (2.1b) is an immediate consequence of (2.1a) since the event 
{BNorth(L,H) is occupied} depends on the states of only finitely many  bonds, 
and hence its probabili ty is a continuous function of p. 

Before plunging into the details we present an overview of the proof. The 
basic idea is quite simple. By making k very large we can guarantee that there 
is a large probabili ty that bd(k) contains a site z which belongs to an infinite 
cluster in IH* (i.e., IH with the bonds in 2g d- 1 x {0} removed). If this event occurs 
for some z, then (in the limit as L, H ~ o9) the number  of sites on the union 
of the sides S and the top T of B(L, H) which are connected to z in B*(L, H) 
is a.s. unbounded. An appropriate  choice of a sequence of (L, H)'s will then 
ensure that there are as many  of these sites as may be required on both the 
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sides and the top. If there are enough sites xeS (and y e  T) which are connected 
to z in B*(L, H), then one can sample enough disjoint sets of bonds in S (resp. 
T) to ensure that there is high probability of finding open hyperblocks containing 
some of these sites. Finally, if bd(k) is connected with sufficiently large probability 
to an open hyperblock in both S and T, then it will be connected with large 
probability to at least one open hyperblock in each subregion S~ and T~. (The 
last step uses a standard argument based on the Harr i s -FKG inequality; it 
is presented in the proof  of Proposition 2.1 following Corollary 2.7 below.) 
Therefore, the basic strategy to prove (2.1a) is first to choose a large k and 
then to show that bd(k) is connected in B*(L, H) to at least M sites in both 
S and T, where M is large enough that in any collection of M sites in S (resp. 
T), there will be a huge number of disjoint hyperblocks in S (resp. T) with 
each hyperblock containing at least one of the M sites. 

We next explain exactly how k and M are chosen. There are two separate 
cases to consider in choosing k (the first of which is, a posteriori, eliminated). 
Let the e > 0 of Proposition 2.1 be given and take qe(0, �89 later we shall choose 
t / in terms of ~. 

1. Suppose Os~(p)= 0 for every h > 0. (The asterisk in S~ indicates that "bound-  
ary"  bonds are not considered in determining the cluster of the origin.) Then 
choose k =  k(q) so that 

(2.2a) P(bd(k)~-+oo in I-I*)> 1- t /2 .  

2. If 0s~(p)>0 for some values of h, then arbitrarily pick such a value ho and 
take k so that 

(2.2 b) P (bd (k) *-+ m in N~o ) > 1 - t/2 . 

In either case we fix k for the remainder of the proof of Proposition 2.1 and 
abbreviate bm (k) to b,,. 

We need to find a number M =  M(k, tl) so that given M or more sites {xr} 
in S, we can choose a set of sites {zr} in S so that xrez~+bm(=,)cS, and such 
that there are enough disjoint hyperblocks in the collection {z~+ b,,(z.)} so that, 
with large probability, at least one of them is open. 

Thus M must satisfy a requirement of the form 

(2.3 a) [-1 -- P(bd is open)] N1 < 7, 

where Nl=[M/(6k+l) d] with [-x] being the smallest integer greater than x. 
The term (6k+ 1) d is a geometric "packing factor" which will be used (see the 
discussion preceding Lemma 2.6) to guarantee that there are enough sites {x,.} 
so that many disjoint hyperblocks {z~ + b,,(=r) } are available. 

Similar considerations for a collection of sites {y~} in T show that if M 
satisfies (2.3a), then there will be enough disjoint hyperblocks in T if there 
are at least M sites in the collection. However, for technical reasons (see the 
proof of Lemma 2.5), we require also that 

(2.3 b) P (fewer than M successes in N 2 Bernoulli 
trials with sucess probability p) < t/, 

where N2 = [2 M/p-] and p is the density of open bonds. 
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The proof  of Proposit ion 2.1 is broken up into several lemmas of which 
the first follows. Let Yh be the number  of sites on the " t o p "  hypersurface (~d - 
x {h}) of the slab Sh which are connected strictly within Sh to sites in bd by 
open bonds:  

(2.4) Yh = I{Y ~Zd-1 • {h}: b d ~ y  in S~}[. 

The first lemma is a sort of zero-one law for the random variables Yh which 
is used directly in the proof  of Lemma 2.3 below, and whose method of proof  
will be used in proving Lemma 2.5. 

Lelnma 2.2 With probability one, either there exists a (random) height H so 
that gh = 0 for all h > H, or else lira Yh = oo. 

h ~ o o  

Proof. Define a new random variable 

Zh(n)=l(j<=h: 0 <  Yj < n}l. 

It suffices to show that  Z~(n) = - lira Zh(n)< oO a.s. for all n__> 1. 
h ~ c o  

The idea is as follows: if Zoo (n) is infinite then there are infinitely many hypersur- 
faces ;g~-I x {h} which are connected to bd in IH* but which contain fewer 
than n sites connected to bd in S~. Each time that such a hypersurface 2g ~- 1 x {h} 
is reached, there is probabil i ty at least (1-p)(2~-  t), that none of these sites 
are connected to the next hypersurface 2U-1 x {h + 1}. Therefore, the latter event 
occurs for some h a.s., so that Pp(Z~ (n)= ~ ) =  0, as required. 

More rigorously, we define for each n > 1 a sequence of random variables 
{W~}~>__ 1, where ~ is the smallest height h for which Zh(n)=r (and W ~ = ~  
i fZ~(n)<r) .  Then for each r 

P (Zoo (n) < ool Z ~ (n) > r)= P (Z~o (n) < ool W~ < oo ) 

>=P(Yw~+I =01 w~< ~)~(1 _py2~- 1).. 

Letting r-~ oo, we see that P(Z~  (n)< oo)= 1, since for any random variable Z, 

l i m P ( Z < o o l Z > r ) = { 1 ,  if P ( Z < o o ) = l  
~ .  0, if P ( Z < o o ) < l .  []  

Lemma 2.3 I f  0~q(p)>0, and k and N2 are chosen as above, then there exists 
an Ho = Ho (tl) such that 

(2.5) P(Yh > 2N2) > 1 --t/ 

for all h >= H o. 

Proof. There are two cases to consider: 
a) 0s~(p)=0 for alI h, 

and 
b) 0s~(p)>0 for some h. 
(Again, a posteriori, the first possibility can eventually be disregarded.) 
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a) From Lemma2.2  (w.p.1) either Yh~OO as h ~ o o  or else Yh=0 eventually. 
Because 0s~(p)=0 for all h, the events "Yh--,oO as h ~ o c "  and "ba+--,oo in ~ * "  
can only differ by a set of bond configurations of measure zero. Thus 

P(Yh > 2Nz)> P(Yh > 2Nz[ Yj--+oo asj ~oe) P(bd~--~oe inN*) .  

The conditional probability on the right-hand side (RHS) of this inequality 
can be made larger than t-~7 2 by taking h sufficiently large, and the other 
probability on the RHS is larger than 1 - q  2 by (2.2a). For  such values of h, 
(2.5) holds since r/<�89 

b) Take H o = h o ,  where h o is as in (2.2b). For  each h>ho, consider the nested 
sequence of boxes {B, = B(k + n, h)},_> 1. Now algorithmically grow the "cluster 
of ba" in S* using a minor variant of the procedure described in Sect. 0: deter- 
ministically order all of the bonds of S~, at time 0 take be to be the initial 
collection of sites, and at later times check the bond with lowest order (not 
already checked) which could connect another site to the current "cluster" - 
adding the site to the cluster if the bond is open. Upon reaching the first site 
in ~B,\OB~_ i, call it x, ,  observe that none of the bonds along the line 

{y = (y(1), ..., y (d)): y(1)= x,(1), ..., y ( a -  1)= x , ( d -  1)} 

have yet been examined. With probability ph all of the bonds along this line 
which also lie in S~ are open, in which case bd is connected to the site on 
the top hypersurface 2U-1 x {h} directly "overhead"  of x, .  It follows that every 
time that the "cluster of ba" reaches the boundary of a new box B,, it has 
at least probability ph of being connected (in OB,\t3B,_ 1) t o  the overhead site 
on Z a - l x  {h}. Thus, conditional on the event that bd~-~oo in S*,  ba(k) must 
also be connected in N* w.p.l to infinitely many sites on Zd-~X {h}. Since 
k was chosen so that bd(k)+--~oo in S*o (and hence also in S*) with at least 
probability 1 -  tl 2, we have just shown that 

P(Yh= 00)> 1--q 2 

[-and hence (2.5) is valid] for all h > h o. [] 

Now define Yl,h to be the number of sites on the top of the brick B(1, h) which 
are connected to (sites in) bd by open bonds - not using the boundary bonds 
of B (t, h): 

Y~,h = ]{Y~ T(l, h):bd~--~y in B*(I, h)} I. 

Clearly, Yg,h ~ Yh as l--+ 0% and combining this fact with Lemma 2.3 shows that 
for every h > H0, there exists a length L o = Lo(h ) for which 

(2.6) P(~,h_-> x2) > 1 - 2 ~  

whenever l>L o. We now "fine-tune" the height h so that there are just barely 
N 2 sites on the top of B(1, h) connected to ba in B*(l, h). This fine-tuning will 
be used shortly in order to prove that there must be many sites on both the 
top and the sides of the brick which are connected to bd in B*(l, h). 



(2.7a) 

and 

(2.7b) 
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Lemma 2.4 For every I>= Lo (Ho) there exists a height H I = H1 (l)> H o so that 

P(Yt,Hi- I > N2)> I - -  2rl 

P(Y~,m > N2) < 1--2~/. 

Furthermore, H i (1) ~ oo as 1 -+ oo. 

Proof. To demonstrate the existence of such an H1 it suffices to show that 
Yl,h--+0 as h--+oo, because we already know from (2.6) that (2.7a) is satisfied 
with H i = H o + 1. If a subsequence of the random variables {Yz,h}h>Uo were not 
to tend to zero for some value of l>Lo(Ho) ,  then there would necessarily be 
percolation in { - 1  . . . . .  l } d - ~ x ~ + ,  an event with zero probability. Therefore 
Eqs. (2.7) are satisfied for some Hi  > Ho ; henceforth let H1 (1) denote the minimal 
value of Hi  (above Ho) satisfying those equations. 

To see that I-I~(1) diverges as 1-* c~, first observe that H 1 is nondecreasing 
in l. I f H  1 does not diverge then it has a finite limit H~ (oo). Since Y~,~(l)~ Y~(~o) 
as l--+ o% it follows from (2.7 b) that 

P(YH~(~)> N : ) N 1 - -  2~ 

which clearly contradicts (2.5). Therefore H~(I) must diverge as 1 4  oo. [] 

We now introduce the random variable Xe, h which counts the number of sites 
on the sides of B(l, h) which are connected to ba by open bonds in B* (l, h): 

X~, h = ]{xES(1, h): ba+-+x in B*(I, h)}l. 

We shall next show that the fine-tuning of Lemma 2.4 guarantees the existence 
of values of I and h so that, with high probability, both X~, h and Yt,h are large. 

There exists a length L1 >Lo(Ho) so that Jor all l>=L 1 , Lemma 2.5 

(2.8a) 

and 

(2.8b) 

P(Xlm,(o>=M)> 1--11 

P(YI, Hlm ~ M) > 1-3/7.  

Proof. Since it is simpler, we prove (2.8b) first. From inequality (2.7a) of Lem- 
ma 2.4, it follows that for every l~  L o (H0) 

P(Yz,HI(~)>=M)>=P(YI,u,m-~ :>N2) P(Yzm,(o--> M I Yl,/h(O- 1 >=N2) 

>(1 --2~/) P(Y~,H~m>M[ Y~,m(o-1 >N2). 

One way in which the event {Y~,m(zl)>M} can occur is for at least M of the 
sites that are counted in Y~,mm-1 to be directly connected (i.e., by single open 
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bonds) to their nearest-neighbors  on the upper  hypersurface { - l ,  . . . ,  l} a 1 
x {H 1 (l)}. Thus  

P ( Yt, ~ (0 > M) > (1 -- 2 ;7) P (at least M successes in N2 Bernoulli  trials) 

_->1-3;7, 

where the last inequali ty was obta ined from (2.3 b). 
Fo r  the p roof  of (2.8a), assume for the momen t  that  there exists an L~ 

> L o (Ho) so that  

(2.9) P(XI,~,(o+ YI,HI(o>M+N2)> 1 --2~/2, 

for all l > L~. Then  taking l >  L 1 and using the F K G  inequali ty we have that  

2q2> p(x;,nl(o <M, YI,HI(1) <Na)>=P(X;,nI(o <M) P(Y;,n,a) <N2). 

Combining  this inequali ty with the bound  (2.7b) of L e m m a  2.4 shows that  

P (XI ,~  (0 < M) <_ ~/ 

which is what  we wanted to show. It remains only to verify (2.9) for some 
sufficiently large L 1 . Fo r  this, note  that  

2 ( m ) =  I{J: O<Xj,,,(j)+ Yj, m(j) < m}l 

is a.s. finite (see the related p roo f  of L e m m a  2.2) so that  the events 

{XI,HI(I)"JF YI,HI(I)---)'(~) as l -~oo}  and {ba+-~oo i n N * }  

agree up to an event of zero probabil i ty.  Therefore,  

P (X;, H~ (1) + Yz, r~ (l) > M + N2) 
>=P(XI,HI(I)-}- YI, H,(t)~M + N2)IXj, H,(j)-F- Yj, HI(j)-->GO as j -~oo)  

�9 P(ba+-*oo in ~-I*). 

Let t ing I -* oo and using (2.2), we obtain (2.9). [ ]  

Now, given a set it~ containing M or more  sites in S, it is easy to see that  
one m ay  find a set 3=3(:~) containing NI(=[M/(6k+ 1)a]) sites in S with the 
propert ies  (i) for all z e 3 ,  there exists x e 5  such that  [ ]x-zl]  
d e f  

=max{Ix(i)-z(i)l: i = 1 ,  . , . ,  d}<=k, and ( i i ) the  hyperblocks  {z+b,,(z):ze3} are 

disjoint and lie entirely in S. 
By proper ty  (ii) above, the events {{z + b,,(~) is open}" z e 3 }  are independent .  

Since there are more  than  N1 sites in 3 ,  (2.3 a) implies that  

(2.10a) P(3 a site z~3(3~) for which z+b,,(~) is open in S)>  1 - r / ,  

for every collection X of at least M sites in S. 
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The definitions and arguments of the preceding two paragraphs may be 
repeated for the top of the brick with 5, S, 3,  z, x and re(z) replaced by ~), 
T, 213, w, y and d, respectively. Thus we also have that 

(2.10b) P(3asitewEfZB(gO)forwhich w+bdisopenin T)> l - q ,  

for every collection ~ of at least M sites in T. 
We are nearly ready to prove Proposition 2.1. We introduce a pair of random 

variables which are analogous to X~, h and Yt,h, with the difference being that 
these new variables count the attachment sites of B(l,h) instead of the sites 
connected to bd in B*(t, h): 

and 

U~,h = I{xeS(1, h): x + b,,(x)is an open hyperblock contained 

in S which is connected to b a in B'(1, h)}l 

Vz,h = I{y~ r((l, h): y + be is an open hyperblock contained 

in Twhich is connected to bd in B'(l, h)}l. 

Lemma 2.6 For all l> L 1 (with L 1 as  in Lemma 2.5) 

(2.11a) 

and 

P(U~,~,(o> 1)> 1 - 2 r /  

(2.11 b) P(Vz,H,(I)_> 1)> 1 -4 t / .  

Proof. The probability on the LHS of (2.11a) can be no smaller than the proba- 
bility that U~,u, r > 1 in the following specific manner: be is connected in B* (L, H) 
to a collection X of at least M sites in S, and there is at least one site ze ; ] (~)  
for which z + bin(=) is open. Conditioning on the set of sites to which ba is con- 
nected in B*(L, H), we have 

P(Ul,~,Ct)>_-- 1)> ~ P(~asitez~3(~)forwhichz+bm(z)isop enin 
~S:lXl__>M 

SIZ= {x~S: x+-~ba in B*(L, U)}) 

�9 P(3; = {x~S: x~-~bd in B* L, H}). 

The conditional probabilities above are all of the form P(GIF) where F depends 
only on the nonboundary bonds of B(L, H) and G depends only on the boundary 
bonds; thus F and G are independent and P(GIF)=P(G). Using (2.10a) and 
(2.8a), we obtain 

P((U~,~,(z) > t )>(1  --t/) P(Xt,,I(z)>M)>(1 -tl) 2. 

This proves (2.11a), and a similar argument using (2.10b) and (2.8b) proves 
(2.11b). [] 

As a consequence of Lemma 2.6, we have a result whose proof serves as a 
model for the proof of Proposition 2.1. 
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Corollary 2.7 Suppose that 0~(p)>0. Then for  each 5> 0 there exist positive 
integers k, L and H so that 

(2.12)P(BNmh(L, H) has at least one attachment site in S and one in T)>  1 --5. 

Proof. Take q=e /6  and let k, L = L  x and H = H I ( L 1 )  be as given above in 
(2.2), Lemma 2.5 and Lemma 2.4, respectively. Then 

P(BNorth(L, H) has at least one attachment site in S and one in T) 

= P(UL,u> 1, VLm> 1)=> 1 -- P(UL,u=O)--  P(VLm=O) 

> 1- -2 t / - -4 r /=  1--e. [] 

Corollary 2.7 is a little weaker than Proposition 2.1. In the next section we 
shall require some control over the positions of the attachment sites. To this 
end we define a final set of random variables: 

~J(i)L,H____ I{ x ~Si(l, h): x + bin(x) is an open hyperblock contained in S 

w h i c h i s c o n n e c t e d t o b d i n B ' ( I , h ) }  [ for i=1,  . . . , ( d - i ) 2  d-1 

and 

VL ) -- [{y ~ Tj(l, h): y + bd is an open hyperblock contained in T ,lw[ - 

which is connected to ba in B' (l, h)} [ for j = l ,  ..., 2 ~ 1 

These random variables now enable us to complete the proof  of Proposition 
2.1 by utilizing a type of argument first introduced by Russo (1978). 

Proof  of  Proposition 2.1 Choose q so that f(t/) = e where 

f(t/) = (d - 1) 2 a-1 (2t/)a,- d/(e- 1)+ 2 e- 1 ( 4 y / ) 2 1  a 

Then take k, L = L , ,  and H = H I ( L 1 )  as in (2.2), Lemma 2.5 and Lemma 2.4, 
respectively. By symmetry it follows that 

P (U(LOu = n) = -" "(1) , P(tJL,, =n)  

for every n > 0  and every iE{1, ..., ( d -  1) 2~- 1}. The key observation is that 

(d-- 1 )2  a 1 
p(  r ( 1 ) - -  ) ] (d - - I )2  d-1 p t r r ( i ) - 0 )  . u t , .  - 0  ~ = H , . - L , . -  

i = 1  

<= P(U(~!rq = 0 for  all ie  {1 . . . . .  ( d -  1) 2 a -  *}) 

= P ( U L m = 0 ) < 2 q ,  

by the Har r i s -FKG inequality and Lemma 2.6. Hence 

(2.13 a) P(U(i,) H = 0) < (21/)2~-,/(a-z) 

for each i; a similar argument shows that 

(2 .13 b) P (V2,~)n = 0) < (4 t/) 21- ~ 
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for each jE{ t  . . . . .  2 d- t}. The bounds (2.13) imply that 

P(BNorth(L, H) is occupied for the hyperblock length k) 

V, (j) - 0 for some j) = 1 --n(UL(i,)n = 0 for some i or L,H-- 

> 1 - f ( q )  = 1 --e, 

which completes the proof. [] 

We conclude this section by briefly returning to discuss south, east and west 
bricks. Basically, the south brick Bsouth(L, H) is a north brick BNorth(L, H) which 
has just been reflected across the hypersurface x a=0  in ~a, and an east (or 
west) brick is a north brick which has just been rotated 90 ~ clockwise (resp. 
counterclockwise) in the x a - ~ - x a  plane of 2U. The " tops"  and "sides" of these 
bricks are the images of the " t op"  and "sides" of Byorth(L, H) under these map- 
pings. We use the natural notation TNorth, SNorth, Tso,,th, Sso~th, TEa~t, etc. The 
top (and the sides) of any of these bricks can be divided into 2 d- ~ [-resp. (d 
-1 )  2 d- 1] congruent subregions T . , j  (resp. S.,i), where @ can be either North,  
South, East or West. The brick x+Bsomh(L, H) is said to be occupied (for a 
given value of k) if the hyperblock x+bd is connected in x+B'so~th(L,H) to 
attachment sites in every subregion x+Sso~th, i and x+Tso~th,j, and the brick 
x+BEast(L, H) [resp. x +Bw~t(L, H)] is said to be occupied (for the hyperblock 
length k) if the hyperblock x+ba-1 is connected in x + B ' ~ t ( L , H  ) [resp. x 
+B'w~t(L,H)] to attachment sites in every subregion x+SEa~t,i and x +  TEa,t,j 
[resp. x +Sw~t,i and x +  Twest,j ]. We conclude this section with an immediate 
consequence of Proposition 2.1. 

Proposition 2.8 I f  O~(p) > 0 and e > O, then there exist ~ > 0 and positive integers 
k, L and H so that 

(2.14) Pp- o (B ~ (L, H) is occupied) > 1 - ~, 

where @ E{North, South, East, West}. 

3 The crossing constructions 

3.1 Preliminary remarks and the reduction to two dimensions 

In the preceding section we showed that if O~(p)> 0, then there is a good proba- 
bility of being able to produce occupied bricks BQ(L,H) [where | can be 
any of the subscripts: North,  South, East or West]. In the first part of this 
section we will show that these bricks possess convenient 'stacking'  properties. 
The following series of examples illustrates how the bricks may be stacked, 
introduces some necessary notation, and also explains various conventions which 
will be used below. In attaching one brick to another to form stacks, we will 
not allow overlaps or more than one attachment per face. We will also need 
to control the placement of the new bricks so that the stacks do not stray 
outside of certain prearranged regions. 
i) Suppose that the brick Be(L,  H) is occupied. Then the hyperblock b,,(e ) at 
the center of the bot tom of B e (L, H) [m(~)  = d if G e {North, South} and re(O) 
= d -  1 if �9 ~ {East, West}] is connected in B'~ (L, H) to attachment sites y ~  Te, j 
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Fig. 3. The brick y i+BNorth(L, H) attached to the brick BNortla(L , H )  

- if there is more than one at tachment  site in the region Te4, then pick the 
earliest in some fixed ordering of such sites and call it Yr" For  any fixed 
j~{1, . . . ,  2d-l}, we can now examine the brick yj+Be(L,H ). If this second 
brick is also occupied, then the hyperblock bin(e) is connected [ through yj 
+bm~e)] to at tachment  sites on the top and all of the sides of y~+Be(L,H ). 
(See Fig. 3 for the case where | is North.) 

Now, if y is any fixed site in Te4, then the event El ,  that B| is 
an occupied brick with a t tachment  site yj = y, is independent of the event Ez, 
that y+Br is an occupied brick. Thus if 0~(p)>0  and k, L and H are 
as in Proposit ion 2.8, then by a simple conditioning argument,  we see that there 
is a probabil i ty exceeding ( l - e )  2 that bin(e) is connected to the a t tachment  
sites of some second G-br ick  thus placed. However  if for some zET.(z+-y) 
we define E 3 to be the event that z+Br is an occupied brick, then it 
is readily seen that E2 and E 3 are generally dependent with the implication 
that we shall not be permitted to at tempt the placement of two bricks atop 
the same occupied brick. 

ii) So far we have only discussed attaching two bricks by placing a brick on 
top of an occupied brick of the same type. To simplify later discussions, we 
introduce the concept of codirection: the two codirections of a given direction 
| are its two orthogonal  directions - for example, the codirections of north 
are east and west. Although we will never try to at tach a south brick to a 
north brick (or vice versa) or the corresponding operation with east and west 
bricks, we will sometimes find it necessary to attach @-bricks to the sides of 
O-br icks  (where • and @ are codirections). For  the sake of definiteness, we 
shall consider the operat ion of attaching an east brick to the side of an occupied 
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Fig. 4. The brick x.~ + Be,st (L, H) attached to the brick BNorta (L, H) 

north brick (see Fig. 4), since each of the other seven ways of attaching two 
unlike bricks can be obtained by reflecting and/or  rotating this procedure. 

If the brick BNorth(L , H) is occupied, then there are 2 e-2 subregions SNorth,ni 
of SNorth lying in the brick's "eastern" face FNorth,E,st={--L, ..., L} e 2x  {L} 
x {0 . . . . .  H}, and each S,, contains an attachment site x,,,. Again, in the event 

that there is more than one candidate for xn~, we will use some given fixed 
rule to pick the attachment site which will be so identified, and we will only 
consider brick attachments which are made at these selected sites. If xn, 
+BEast(L,H) is also occupied, then the original hyperblock be is conneted 
through the open hyperblock x , , + b e _ l  to all of the attachment sites of x,~ 
+ BEast(L, H). As in the case of attaching two bricks of the same type, for any 
x~S,,~, the events {BNorth(L, H) is occupied with attachment site x~S,,~} and {x 
+BEast(L, H) is occupied} are independent, while the events {x+BEast(L, H) is 
occupied} and {x'+BE,st(L,H ) is occupied} are generally dependent for x 
+ x' ~FNorth,East" In general, the same procedure can be used for placing a G-brick 
beside an occupied @-brick (where �9 and @ are codirections) with the natural 
definition of F |  the �9 side of the brick B| (L, H). 

iii) In order to avoid problems of dependence, we will not attach more than 
one brick to any given face of a first occupied brick. However, attaching one 
brick to each of two different faces of a first brick is permissible - provided 
that the two bricks being attached do not overlap each other. Sometimes it 
will be necessary to attach to a brick of type �9 both a brick of the same 
direction and a brick of one of the two eodirections. The pair of attachments 
can be made without encountering dependency difficulties, if sufficient care is 
exercised in the placement of the second O-brick. For  example, suppose that 
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Fig. 5. The bricks y + BNor~h(L, H) and x + BEa~t(L, H) attached to the brick BNorth(L, H) 

we wish to at tach both a north brick and an east brick to the north brick 
BNorth(L , H) - see Fig. 5. We can make the occupation events for the upper  
north brick and the east brick independent by requiring that the a t tachment  
site in TNort h for the upper north brick belongs to the western half of the top: 
TNorth, West= {--L,  ..., L} e-2 x {--L,  ..., 0} x {H}. Simple geometric considera- 
tions show that if y + BNorth(L, H) is a brick with y ~ TNorth, West and x + BEast (L, H) 
is a brick with x ~ FNorth ,Eas t  , then the intersection of these two bricks (if nonempty) 
must lie in the hypersurface ~ d - 2 X  {L} x N. Hence the events {y+BNorth(L, H) 
is occupied} and {x + BEast (L, H) is occupied} are independent, since they depend 
only on the states of bonds which are in the interiors of the bricks concerned. 
A similar discussion is valid for the more general case of attaching both a 
@- and a @-brick to an occupied @-brick, where G and @ are codirections 
and T| ~ is interpreted as the O-ha l f  of the top of the brick B| (L, H). 

This example (and the "reflected" example of attaching east and north bricks 
to a north brick) shows the necessity of being able to find at tachment sites 
in either of the two halves TNorth, West and TNorth, East of the top. In the next example 
we will exert more control over the positions of the at tachment  sites by utilizing 
the subsections Tj of the top and S i of the sides. 

iv) Suppose that starting from the initial brick Bo=BNo~ta(L,H), we were to 
pile up a sequence of north bricks B.  - one on top of another. For  each n > 0, 
B. + 1 = Y. + BNo~th (L, H) where y. is an at tachment  site in the top T. = y._ 1 + TNorth 
of the brick B.. If the y. 's are chosen capriciously, then we have little control 
over the first d - 2  coordinates of y. (for large n) - in the sense that these 
coordinates are only guaranteed to satisfy the trivial (and not very useful) bounds 
]y,(r)l < n L  for r =  1 . . . .  , d - 2 .  However, there is a simple rule for choosing the 
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a t t achment  sites with the result tha t  ly,(r)l < 2 L  for r = 1, .. . ,  d - 2  and  for every 
d-2  

n > 0 :  choose y,  f rom one of the two subregions  in y~_ ~ + X I,(y,_ 1) x A x {H} 

where ~ = 1 

j ( { - L ,  . . . , 0}  if Yn_l(r)~O 
/~(Y"- ~)=),{0 . . . .  , L} if y , _ l ( r ) < 0 ,  

and A =  { - - L  . . . . .  L}. If  it is necessary that  the a t t achment  site y ,  be chosen 
f rom y,_  1 + TNorta.East (resp. Yn- t + TNorta,we~t), then take A to be {0 . . . .  , L} (resp. 
{ -  L . . . .  ,0}), in which case the subregion  of T,~ f rom which y ,  comes  is uniquely 
determined.  Of  course there are ana logous  rules for a t taching  south  (or east 
or west) bricks together  so as to never  s t ray outside of the slice 
{ - 2 L ,  . . . ,  2L} d-2 x7Z 2. I t  is easily seen tha t  these rules can also be extended 
to ensure tha t  if {B,} is any  sequence of occupied bricks with initial br ick 
B e (L, H), where the bricks are a t tached  as in the above  examples,  and  if {z,} 
is the sequence of a t t achment  sites at which the a t t achments  are made,  then 
there is no loss of general i ty in assuming tha t  Iz,(r)l<2L for r = l  . . . .  , d - 2  
and  for every n > 0. 

Hencefor th ,  we will call a sequence of occupied bricks which are a t tached  
to one ano the r  in accordance  with all of  the rules and  examples  found above  
an allowed " sequence"  of  (occupied) bricks. 

We note that  i fB 0 = u + B e (L, H) is an occupied brick in { - 2L, ... ,  2L} e-  z x ~2, 
then there are four part icular  ways in which another  brick B 1 can be a t tached 
to Bo so that  {B o, B1 } is an allowed sequence of bricks. Fo r  the sake of definiteness, 
we shall assume that  Bo -- u + Byorth(L, H), in which case we can 

1) a t tach  ano the r  nor th  br ick Bl=y+Byorth(L,H ) at  some a t t achmen t  site y 
in the eastern half  of the top of B o (i.e., yeu + TNorth,East), 
2) a t tach  B1 = y + BNo~th(L, H) at  some a t t a chmen t  site y e u + TNo~th,West, 

3) a t t ach  B ~ = x + BEast(L, H)  at  some a t t achmen t  site x e u  + FNorth,East, or 

4) a t tach  B~ = x + Bwana(L, H) at some a t t achmen t  site xe u + FNo~th, We,t. 

In  each of the four cases, the subregion of SNort a or TNorta f rom which the a t tach-  
ment  site is to be chosen is uniquely de te rmined  (by the choice of  the case, 
and  by  the rules for keeping the br icks inside the slice { - - 2 L ,  . . . ,  2L} d-2 x 2E2). 
N o w  each of these subregions  has only a single a t t achmen t  site at which an 
a t t achmen t  m a y  be made.  Observe  tha t  if the br ick Bo is projected on to  some 
plane parallel  to the x ( d - 1 ) - x ( d )  plane, say {0} d-2 x2E 2, then one of these 
four a t t achmen t  sites projects  on to  each of  the four  line segments  {~ 
-1- "FNorth,*, ~ + ffNorth,*: @ E {East, West}} where  the tilde signifies project ion 
onto  {0} d-2 x 7/,,2, i.e., g = (0, . . . ,  0, u ( d -  1), u (d)), TNorth,E,s t = {0}d- Z 
X {0 . . . .  , L} x {H}, etc. Similar considera t ions  apply  when Bo has a different 

orientat ion.  
We  shall conta in  our  cons t ruc t ion  process in a two-d imens iona l  slice by 

project ing bricks on to  the x ( d - 1 ) - x ( d )  plane. F o r  this purpose  we require 
m o r e  notat ion.  

The  briquette ft + B .  (L, H) is defined to be the project ion on to  {0} e -  2 x ;g2 
of the br ick u +  B e (L ,  H), There  are four i m p o r t a n t  por t ions  of  the b o u n d a r y  
of ~ + / 3 e ( L , H ) :  these are the line segments  a + T . , |  and  t~+f f . , |  where | 
ranges over  bo th  codirect ions of O.  If  u + B , ( L , H )  is occupied, then we say 
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that ~ + B ~ ( L , H )  is a successful briquette and it has four connection sites - 
one in each of the subregions of the boundary listed above - which are the 
projections of the four attachment sites previously discussed. We shall say that 

is connected to each of the connection sites of fi + / 3 .  (L, H) with the understand- 
ing that this is a statement about the brick u + B . ( L , H ) ,  and not a statement 
about  the actual configuration of bonds in the briquette. Suppose now that 

N {B,},= o is an allowed sequence of occupied bricks in { - -2L  . . . . .  2L} a-2 x7Z 2 
with B n = un+ B . , ( L , H ) .  If the brick B i is attached to Bi, we say that the corre- 
sponding briquette B i is connected to /~j. A connected sequence of successful 
briquettes which corresponds to an allowed sequence of occupied bricks is called 
a successful briquette sequence. So if g is a connection site of any briquette 
in the successful sequence {/3,},N=o, then ~o is connected to ~ - in the sense 
of briquette connections. 

For  any fixed configuration of bonds in the slice {--2L,  ..., 2L} a-2 x ~  2, 
the rules for constructing allowed sequences of occupied bricks are such that 
there is a one-to-one correspondence between the sequences of bricks and their 
briquettes (given the initial site uo of the first brick). It is clear that the bricks 
uniquely determine the briquettes. To reconstruct the brick sequence from the 
briquettes, first note that the briquettes and the last two coordinates of u o 
determine the bricks up to their first d - 2  coordinates. These coordinates are 
then determined by the remaining coordinates of u0 and the rules given in 
i) iv) above. Thus it is possible to reduce the problem of building connections 
between the 

"sou th"  ( { - 2 L ,  ..., 2L} a-a x {--K, ..., K} • {--1}) ,  

"no r th"  ({--2L, ..., 2L}  a-2 x {--K,  ..., K} x {K}), 
"eas t"  ({--2L, ..., 2L}  a-2 x {K} x { - -K  . . . . .  K}) 

and "west"  ({--2L, ..., 2L}  a-a x {--K} x {--K, ..., K}) 
faces of the "cube"  { - 2 L  . . . . .  2L} a-2 x {--K, ..., K} 2 

out of allowed sequences of occupied bricks to the problem of building connec- 
tions between the corresponding faces of the "square"  {0} a-2 x { - K ,  ..., K} 2 
out of sequences of successful briquettes. 

In the light of this reduction to two dimensions, we restate Proposition 2.8 
using the terminology of briquettes. 

Proposition 3.1 I f  there is percolation in the half-space (i.e., O~(p)>0) ,  then for  
every ~ > 0 there exist ~ > 0 and integers k, L and H such that 

(3.1) Pv - ~ ( B * ( L, H) is successful) > 1 -- ~, 

where G ~ {North, South, East, West}. 

It should be noted that the hyperblock length appears implicitly in (3.1) - in 
the definition of successful briquette. 

Henceforth we assume that e>0 ,  and that k, L and H are as in Proposi- 
tion 3.1. We shall ignore the first d - 2  coordinates, with the consequence that 
the projection of the "cube"  is now the square { - K  . . . .  , K} 2. The first coordi- 
nate [-formerly the ( d - 1 )  th coordinate] will be refered to as the "x-coordinate," 
and the second (formerly the d th) will be called the "y-coordinate." In demon- 
strating percolation in a quarter-slice of the original d-dimensional space, we 
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can restrict out attention to nonnegative x and y coordinates. To abbreviate 
the notation further, we write z for the site (x, y) in 2~ 2 , and (when the dimensions 
will be clear from the context) D e for the b r i q u e t t e / ~  (L, H). 

In the remainder of this section we shall suppose that 292+ has been divided 
into squares which are translates of S = { - K ,  . . . ,K}  2 by vectors ((2nl 
+I)K, (2n2+I)K where nt,n2c2g+, and K is a function of L and H which 
will be specified later. Each such square, which can be identified with the site 
(nl,n2)e7Z,2+, is also the projection of a "cube"  in the quarter-slice 
{ - -2L  . . . .  ,2L} e-z  x Z { onto the x ( d -  t ) - x ( d )  plane. Every square has at most 
four neighboring squares and shares one face with each neighbor. We are inter- 
ested in examining the squares in the context of the cluster-growth algorithm 
outlined informally in Sect. 1. 

Specifically, if a square has a neighbor which has previously been declared 
to be "good,"  then we wish to show that the square in question has a high 
probability of being found to be ~176 should the cluster-growth algorithm 
ever call for it to be checked. In Sect. 4, we shall define what it means for 
the square with nj = n 2 = 0 to be good. For  the case of a square with (nl, n2) 
4=(0,0), we say that the square is good if (i) it has a good neighbor [when 
a square has more than one neighbor already declared to be good, a single 
one of them (the one having the lowest deterministic order) is treated as the 
good neighbor], (ii) it is called upon to be checked by the cluster-growth algo- 
rithm [for the dependent percolation process on ~ 2 ] ,  and (iii) a particular type 
of briquette "ne twork"  is successful. A briquette network is a union of briquette 
sequences connected together in such a way that every connected subsequence 
would be successful if all of its briquettes were successful; if every briquette 
in the network is in fact successful, we say that the network is successful. The 
special network referred to above is called the crossing network (from the good 
neighbor square) and it is contained entirely in the square and a small portion 
of its good neighbor. 

For  ease of notation, we will explain the rules for constructing the crossing 
network for the square S from its southern neighbor 

s ' = { - K  . . . . .  K } x { - 2 K  . . . . .  - K } .  

By translation invariance, and invariance under reflections and 90 ~ rotations, 
it follows that the probability of S being good given that S' is its good neighbor 
is the same as the probability of any square S" being good given that S'" is 
its good neighbor. In this particular example we would like to have a procedure 
for building a successful network of briquettes that connects a given connection 
site in the common face of S and S' to connection sites in the north, east 
and west faces of S. However, in building the briquette sequences which make 
up the network, although we have some potential for "steering", there will 
always be a degree of uncertainty about the exact position of the final briquette. 
We cannot be certain therefore, in building a network to traverse a large square, 
of being able to hit the target faces exactly; we may undershoot by a small 
amount. To deal with this, we introduce "target regions," (see Fig. 6) which 
are parts of the square bordering the faces which the briquette network is trying 
to reach. We shall be content with proving that there is a high probability 
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Fig. 6. The square S, its southern neighbor S', and the relevant target regions for a briquette 
crossing of S from S'. I -  Boundary of a square, i "  Boundary of a target region. 
K=5H+7L, e= 4H+5L  and fl=K--H+I when H>L. 
K=l lL+l lH,  e=9L+9H and fi=K-L--2H+I when L>H. 
The target regions are of size (2a) • (K--fi) or (K-fi) x (2c0 

of being able to construct briquette crossings from a given starting point in 
the target region of a square S' to all the target regions of one of its neighbors S. 

Our principal ingredient for building paths across a large box is the briquette 
/~e (L, H). Unfortunately, we have no control over the ratio H/L, and this lack 
of knowledge leads to some geometrical complications. It turns out that there 
are two cases, depending on whether H/L is small or large. For  each of these 
cases we shall describe a construction for building successful crossing networks. 
An important feature of these geometric constructions is that there exists a 
finite upper bound R, independent of H and L, on the number of briquettes 
required for a square-crossing. Since Proposition 3.1 says that a briquette size 
can be found so that each briquette in the crossing network (conditionally) 
has probability at least 1 - e of being successful, it follows that the entire crossing 
network is then successful with probability at least ( l - e )  R - which of course 
may be made as close to 1 as desired by an appropriate choice of ~. 
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Fig. 7. A sample crossing sequence for the case H>L with x,<0. l The final briquette from 
the previous crossing sequence; [] Briquettes from either of the two north centering sequences; 
[ ]  EtBriquettes from the east and west centering sequences;D[]Briquettes from the bifurcation 
sequence; - - I  Centering lines; ...... Triggering line; Q Portions of the alleys not filled by 
briquettes 

3.2 The crossing construction for H > L 

In this section we suppose that H > L. The reader will fiad it helpful to occasion- 
ally refer to Fig. 7. We take K = 5 H + 7 L  and use target regions which have 
dimensions ( 8 H +  10L)x ( / - / -1) .  In the particular example of constructing the 
crossing network from S' to S, we must describe a procedure for building a 
successful network of briquettes that connects a given connection site in the 
north target region of S' 

( { - 4 H - S L ,  ..., 4 H + S L }  x { - K - - H + I  . . . .  , - -K}) 

to connection sites in the north, east and west target regions of S: 

and 

{ - 4 H - 5 L , . . . ,  4 H + 5 L }  x { K - - H +  1,..., K}, 

{ K - - H +  1, .. . ,  K} x { - - 4 H - - 5 L ,  ..., 4 H + 5 L }  

{ - K ,  ..., - K + H - - 1 }  x { - - 4 H - - 5 L ,  ..., 4 H + 5 L } ,  

respectively. 
The rules for constructing crossing networks are divided into two sets which 

we call "centering" rules and "bifurcat ion" rules. All rules are of the form: 
connect a specific type of briquette to an earlier briquette at a specified connec- 
tion site. It is always implicitly assumed that the new briquette is successful; 
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if at any step an unsuccessful briquette is obtained, the crossing procedure is 
terminated and the square S is declared to be bad. 

The construction procedure is as follows (see Fig. 7). First, the centering 
rules are used to build a briquette sequence which proceeds "nor thward"  from 
the north target region of S' into the square S, while not wandering too close 
to the east and west sides of S. After the briquette sequence has progressed 
sufficiently far into the square S, the centering rules are (temporarily) abandoned 
and the bifurcation rules are applied to connect a particular sequence of nine 
briquettes (the bifurcation sequence) to this centering sequence. The bifurcation 
sequence is such that it will be possible to find three connection sites correspond- 
ing to the north, east and west target regions of S, and the centering rules 
can be used to connect each site with its target region. Finally, the rules guarantee 
that if the initial centering sequence, the bifurcation sequence and the three 
final centering sequences are each successful, then their union is a successful 
briquette network. 

We now present the centering rules in the context of their initial usage. 
Let Z l = ( x l , y l )  denote the initial connection site (in the north target region 
of S') for the crossing of S, and attach the north briquette /~1 =Zl"JrBNorth to 
the site z 1. (As will be explained below, the site z 1 is uniquely determined. 
In general, it is the connection site of a successful briquette/~s, in S', and the 
sequence {/~s,,/~1} is successful if/~1 is successful; when S' is the square corre- 
sponding to the origin in 292+, z 1 is just the midpoint of the north face of 
S'.) N o w / ~  must have (under the assumption that it is successful) a connection 
site in each of the two halves of its top. If x 1>0,  choose the next connection 
site ZZ=(X2, Y2) to be the connection site in z 1+ Tyorth, West; if x 1 <0,  take z 2 
to be the connection site in z I + TNorth, East- In either case, the north briquette 
/~2 ~-Z2-}"/~North is attached to/?~ at z 2. This method for choosing the connection 
site for connecting the next briquette is referred to as "centering along the 
line x = 0." Now continue piling north briquettes on top of one another using 
the centering criterion (x i>0  implies zi+ 1Ezi+ 7"North,We~t and xi<O implies 
zi+ 1 ~z~ + 7"North,~a~t ) to decide which connection sites are to be used - until some 
briquette reaches the "triggering line" y = - 4 H - - 5 L .  

The triggering line marks the southern boundaries of the east and west 
target regions of S. Once the initial centering sequence reaches this line, begin 
the bifurcation procedure to "split off" sequences which will eventually reach 
those target regions. Suppose that the briquette crossing the triggering line is 
/~, = z, + BNor,h, with -- 5 H - -  5 L < y, < -- 4 H - -  5 L. For  the rest of this subsection 
we will operate under the assumption (for the sake of definiteness) that x, < 0; 
in the complementary case (i.e., x,  > 0) one only has to reverse all future references 
to east and west. 

A pictorial version of the bifurcation sequence can be found in Fig. 8. A 
more formal description follows below. Begin by taking Zbl to be the connection 
site of/~,  on the western half of its top (i.e., Zbl~Z,-]-TNorth,West), and attaching 
the first bifurcation briquette Bb~ =Zb~ +/~Yorth at Zbl. Then connect the second 
briquette Bb2=Zbz-~-BNorth to /~bl at zb2, where Zb2 is the connection site of 
/?ha on the western half of its top. For  i~{3, 4, 5}, take Zb~ to be the connection 
site of /~b(k 1) in Zb(~_~)+ TNo~th,~.~t, and attach the next bifurcation briquette 
Bbi=Zbi+BNorth there. Then choose Zb6 to be the connection site of /~bS on 
its eastern side, and connect the sixth briquette Bb6=Zb6-~-BEast to /~b5 at Zb6. 



138 D.J. Barsky et al. 

ZNI ~ ZE1 

z~v~ I 

I 
z ~  

Fig. 8. The bifurcation sequence for the/-/> L algorithm in the case x n < 0. 
O Portion of a bifurcation briquette; @ Portion of the triggering briquette; �9 Connection 
site of a successful briquette 

Finally, take zbi(ie{7, 8, 9}) to be the connection site in the northern half of 
the top of/3b(i-i) and attach the next bifurcation briquette Bbi = Zbi +/~Ea~t there. 

It is easily seen (from Fig. 8), that if each of its briquettes is individually 
successful, the bifurcation sequence can fail to be successful only if there is 
a prohibited intersection between one of the five north briquettes and one of 
the four east briquettes. Now note that if z=(x,y) is any site in any of the 
last four briquettes, then 

(3.2) y>=Yb6--L>=Ybs+k--L>Ybs+k--H=Yb4+k>yb4. 

(The second inequality uses the fact that if Zb6 is  a connection site of the briquette 
/~bs, then it corresponds to a an attachment site of a brick /3b5 which cannot 
be any closer to the bot tom of/3b5 than the hyperblock length k.) Thus there 
cannot possibly be an intersection between the first three north briquettes and 
the east briquettes. Also Observe that - as in example iii) above no intersection 
between either of the bricks corresponding to/364 and Bb5 and the bricks corre- 
sponding to the east briquettes is prohibited. Thus, if each of the nine briquettes 
Bbl,'", Bb9 is successful, then the bifurcation sequence is successful. It is also 
easily seen that the union of the initial centering sequence and the bifurcation 
sequence is successful if each of these briquettes is successful, since 
{/~1, -..,/3,,/3bl, ...,/365} is just a sequence of north briquettes with each bri- 
quette attached atop its predecessor, and (3.2) implies that there is no intersection 
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between any of the briquettes in the centering sequence and the east briquettes 
in the bifurcation sequence. 

The last part of the bifurcation process is the identification of the three 
connection sites from which the final centering briquette sequences will be con- 
structed. The connection sites corresponding to the western, eastern and north- 
ern target regions are labeled Zwl=(xwl ,Ywz) ,  ZEI=(XEI,YE2) and zN1 
=(XN1, YN2), respectively. We take Zw~ to be the connection site on the western 
face of Bbz, zE~ to be the connection site on the southern half of the top of 
/~b9, and zN1 to be the connection site on the northern face of/~b9- 

We shall give a careful treatment of the westward centering sequence, fol- 
lowed by sketches of the northward and eastward sequences. (See Fig. 7.) Let 
{/~wl,/~w2,-..,/~w,w} be a sequence of west briquettes with initial site Zw~ 
which is centered along the line y = y w z + L ,  and which stops as soon as some 
briquette reaches beyond the line x = - - K + H ;  the centering procedure is as 
described above for the initial sequence except that west briquettes are used 
in place of north briquettes. We note the following. 
a) Once the construction has been fully described it will be apparent that the 
x-coordinate x~ of the initial site satisfies the bound x,  > - 4  H - 4 L .  The center- 
ing rules (as applied to the initial briquette sequence) then imply that x , >  
- 4 H - 4 L  also, which in turn implies that Xwl > - - K + H .  Since the westward 
sequence does indeed begin to the east of its "finish line" x = - K + H - - 1 ,  it 
is not vacuous. 
b) The centering rules and the choice of the centering line for the westward 
sequence tell us that every briquette in that sequence lies in the "alley" Aw 
= {(x, y) ~ S: x < xw ~ ; Yw, -- L < y < Yw2 + 3 L} - see Fig. 7. This fact has several 
implications. First, the bounds just given on the y-coordinates of sites belonging 
to briquettes in the westward sequence can be combined with the (easily derived) 
relations 

y b 2 < Y w l < Y b z + H ,  Yb2=Ybl+H and - - 4 H - 5 L < = y b l < - - 3 H - - 5 L  

to show that the " top"  of the last west briquette is actually contained entirely 
within the west target region of S. 
c) Another consequence of the westward sequence being confined to the alley 
A w is that it cannot overlap the initial sequence - since Y>Yb~ for any site 
(x,y) in the alley, while Y<=Yv~ for every site (x,y) belonging to a briquette 
in the initial sequence. Also, the intersection of the westward sequence with 
the bifurcation sequence is a subset of the "bo t tom"  of/~w~; thus as before 
the brick occupation events are conditionally independent. 

Similarly, the northward (resp. eastward) sequence {/~Ni} (resp. {/~Ei}) is 
defined by starting at the connection site zN1 (resp. zm), centering north (resp. 
east) briquettes along the line x = x N a - - L  (resp. y=y~a- -L) ,  and stopping when 
some briquette reaches beyond the "finish-line" y = K - - H  (resp. x - - K - - H ) .  It 
is easily verified that the northward (resp. eastward) sequence is not vacuous 
since YN~ < 2 H -  L (resp. x ~  < 4H + 4L). The centering rules tell us that the 
briquettes of the northward (resp. eastward) sequence all lie in the alley 

AN= {(x, y)~S: XN1 -- 3 L < x<--XN1 + L, Y >= YN1} 
[resp. A~= {(x, y)sS:  x > x ~ ,  y~x --3L<=y<ye~ +L}],  

and it is easily checked that neither AN nor A~ overlaps either the initial briquette 
sequence or Aw (and hence the westward sequence). Additionally, the pairwise 
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intersections between the bifurcation sequence, the northward sequence and 
the eastward sequence are subsets of the bottoms of/~N1 and /~E1, which is 
allowed. Thus the union of all five sequences - initial, bifurcation, westward, 
northward and eastward - is a successful network (call it the crossing network) 
if all of its briquettes are successful. Furthermore,  the alley bounds may be 
combined with the estimates - - H - - 5 L < X N I < 4 H + 4 L  and - - 6 L < y E I < 2 H  
- - 2L  to show that the tops of the final briquettes /~Nn~, and /~n~ lie inside 
their corresponding target regions. 

The last step in the crossing construction is the determination of the connec- 
tion sites Zw,w+ 1, ze,~+ 1 and zE,~+ 1 which may serve as the initial connection 
sites for the crossings of the three neighboring squares of S besides S'. The 
prescription is to choose final connection sites on the tops of the briquettes 
Bw~w, BN,~, and /~E,E according to the centering rules which would be used 
to construct the initial briquette sequence in the neighboring square. For  exam- 
ple, if yw,w<O, then take ZWnw+l~ZWnw-i-Twest,North; otherwise take 
ZWnw + 1 GZWnw q- Twest,South" 

Here is a final note about the construction. We claimed at one point that 
if x~ <0,  then Xl > - 4 H - 4 L  - this inequality was used directly to prove that 
Zwl was not already in the west target region, and later used implicitly to 
show that XN1 > - - H - -  5 L (which in turn implied that ZN,N + TNorth was contained 
in the north target region). Now the top of the final briquette in the northward 
sequence is contained in the north target region, so if (x, y)~zN.~,+ TNorth, then 
- 4 H- -  5 L < x < 4 H + 5 L. Combining this inequality with the centering rules 
for the choice of zN,~,+l shows that - 4 H - 4 L < x u , ~ , + ~ < 4 H + 4 L ,  which is 
what we assumed above. For  the other target regions, a similar argument shows 
that YE,~+ I, yw,~+ l ~ ( - 4 H - 4 L  . . . . .  4 H + 4 L } .  

Having reached the end of the description of the crossing construction, we 
make some final remarks before moving on. First, as we have seen in our exami- 
nation of the overlaps between the various subsequences, the crossing network 
is successful if each of its five constituent subsequences is successful. Second, 
as claimed at the beginning of the description of the construction, it is clear 
that no briquette used in crossing S intersects any briquette used in crossing 
S' (except, of course, in the bot tom of the first briquette in S). Thus, (i) the 
union of the crossing network in S with the crossing network in S' is successful 
if each crossing network is individually successful, and (ii) conditional on ever 
examining S, the probability that S is declared to be "g o o d "  is at least ( 1 - e )  R 
where R is a uniform upper bound on the number of briquettes necessary for 
a crossing of S. We may take R = 47 since 24 briquettes suffice to cross from 
the north target region of S' to the north target region of S and 23 briquettes 
suffice for crossing from the west target region of S to the east target region. 
Note that the number of successful briquettes required for a square crossing 
does not depend on L and H (as long as H__> L). 

We conclude by remarking that there exist simpler algorithms for crossing 
squares with 2L x H briquettes in the case H > L .  Our choice of construction 
was motivated in part by a desire to give a construction which could be modified 
in a natural way to handle the case L > H .  For  any c>0 ,  one can design a 
variant of the above construction which works when H > c L .  Unfortunately, 
under this hypothesis, the number Rc of briquettes required for a briquette 
crossing diverges as c tends to 0. Since we have no non-trivial bound on the 
ratio of H to L, this naive approach does not work. 
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Fig. 9. The crab C N o r t h , E a s t .  ~ Portion of the body of the crab; (~ Portion of the claw 
of the crab 

3.3 The crossing construction for L > H 

In this section we suppose L > H. Since the crossing construction of this subsec- 
tion is based on the construction of the preceding subsection, we shall be some- 
what briefer here in our explanations. The reader is encouraged to refer to 
Fig. 10. The north, east and west target regions of S are 

and 

{ - 9 L - 9 H ,  ..., 9 L + 9 H }  x { K - L - - 2 H + I ,  ..., K}, 

{ K - L - 2 H + I ,  . . . ,K}  x { - - 9 L - 9 H  . . . . .  9 L + 9 H }  

{ - K  . . . . .  - K + L + 2 H - 1 }  x { - - 9 L - 9 H  . . . . .  9 L + 9 H } ,  

respectively, where now K = 11 (H + L). 
To guarantee that we can cross squares with a bounded (independently 

of the ratio H/L) number  of briquettes, we must devise a way of using the 
length of the briquette, and not (as we did in subsection 3.2) its height to accompl- 
ish the crossing. The method which we use is to combine the bricks into triplets 
called "c rabs"  which play the role which was held by the individual briquettes 
when H_> L. 

Crabs come in eight varieties: labelled Ce |  for |  East, West, 
South} and | a codirection of @. To construct the crab of type Cr174 at the 
site z 1 (i.e., z 1 + C �9 | begin with the briquette/31 = z i +/3 r Then attach another  
briquette of the same type / ~ 2 ~ z 2 + / ~ .  at the connection site z2ez~+YFe, | 
Finally connect the briquette B 3 = z 3 + B  | to B2 at the connection site zsez  2 
+ Fr o"  The first briquette in the crab is called its "body,"  and the third briquette 
its "c law"  (see Fig. 9). We say that a crab is successful if each of its three 
constituent briquettes is successful. 

Crabs have stacking properties somewhat  like those of briquettes. For  exam- 
ple, if z~ + Cr174 is any successful crab and �9 is a codirection of O,  then taking 
z2 to 6e the connection site on the �9 face of the claw, one can attach a second 
crab z2 + C a .  to the first crab so that their intersection is confined to the bo t tom 
of the body of the second crab. Thus the union of the two crabs is a successful 
briquette sequence if each crab is successful. 
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Fig. 10. A sample crossing sequence for the case L > H  with xbl <0 

Most  of the square crossing in the case H > L  was accomplished by the 
four centering sequences. A key property of these sequences was that the connec- 
tion of each additional briquette advanced the sequence a distance H - which 
was the principal length scale - in the direction along the centering line. Crabs 
have a similar property in the situation when L > H :  the attaching of each 
additional crab in a sequence of Ca |  and C a .  crabs (where | and �9 are 
the two codirections of |  advances the sequence at least a distance H + L  
(actually, at least H + L + k  Where k is the hyperblock "length") in the �9 
direction. 

We define a centering sequence of crabs by example. An eastward sequence 
- - Z  n of crabs centered along the line y = 29 is a sequence of crabs { C i -  i + CEast| a 

with | ~ {North, South} for i >  1 and z i = (xi, Yi) the connection site in the eastern 
face of the claw of C~_ a for i>  1. One centers the sequence through the choice 
of the | We take |  Nor th  if Yi<29, and we choose |  South if Yi > 29. 
It  is clear how one defines centering sequences of crabs in other directions. 
A difference between a centering sequence of briquettes when H > L and the 
corresponding sequence of crabs when L > H  is that the crabs will generally 
wander further away from the centering line. More precisely, every site in a 
centering sequence of briquettes (when H > L) is within distance 2L of the center- 
ing line, whereas the sites in a centering sequence of crabs (when L >/-/) could 
be as far as a distance 3 L + H (actually, as far as 3 L + H - 2 k )  away from the 
centering line. (Indeed, the very name "c r ab"  was suggested by the manner  
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in which these centering sequences shuffle from side to side as they slowly 
advance.) It is because of these larger deviations from the centering lines that 
we must use a larger square and larger target regions than in Sect. 3.2. 

The "overhangs"  of the claws of crabs lead to a more fundamental difference 
between sequences of briquettes and crabs. By way of example, observe that 
in a centering sequence of north briquettes, every site (except those in the bottom) 
of the (n+ 1) th briquette has a y-coordinate strictly greater than that of any 
site in the n th briquette. However, the analogous statement for crabs may be 
false. It is precisely because of this overhang effect that we define a square 
to be good only if the particular crossing network of briquettes defined below 
is successful. If we only required the existence of some network of crabs, then 
the overhangs could cause dependence difficulties at the point where we would 
try to link up the crossings in two adjacent squares. We note that this presents 
no difficulty in the case H > L ,  and so we could relax the requirement that 
the briquette crossing be accomplished by the particular network described in 
subsection 3.2, replacing it (for a crossing originating in the south) by the simpler 
condition that the initial connection site z 1 be connected to some final connection 
sites ZE,final, Zw,fina 1 and ZN, finaI in the three target regions of the square by 
a successful briquette network contained in {(x, y): Xe, final<X <= X w,fln,1, Y l <Y  
~N,fi,,1}" We chose not to use this definition when H > L ,  so that we could 
give both cases a similar treatment. 

We are now ready to present the crossing construction. As in the previous 
subsection, the crossing network is divided into five subsequences initial, bifur- 
cation and three final sequences. However, because the centering sequences of 
crabs display greater lateral motion than the briquettes of the previous subsec- 
tion, we must use a larger bifurcation sequence to separate the (wider) alleys 
of the final sequences from each other, and from the initial sequence. 

Starting with a connection site zl in the north target region of S', an initial 
sequence of crabs is centered along the line x =0.  When (the north face of 
a claw in) the sequence reaches (or passes) the "triggering line," y = - 9  L - 9  H, 
the centering sequence is stopped and the bifurcation sequence is begun. Without 
loss of generality, we may assume that the connection site Zbl on the northern 
face of the claw of the triggering crab has x-coordinate xbl < 0. (The case Xbt > 0  
will be handled by reversing all references to east and west in the treatment 
of the case Xb~ < 0  below.) 

The bifurcation sequence is a sequence of seventeen briquettes, {/3bi}]_-vl (see 
Fig. 11). The first three briquettes are the briquettes of the crab Zbl + CNorth, East. 
The fourth briquette is a north briquette connected to that crab at the connection 
site Zb4 in the northern face of its claw (i.e., /3b4=Zb4+/3North with Zb4~Zb3 
-[-/~East,North)- The fifth briquette is another north briquette connected to /364 
at the connection site Zb5 in the western half of the top of/3b4. The sixth briquette 
is also connected to Bb4. We take /366 =Zb6 +/3E,st where Zb6 is the connection 
site on the eastern face of/324. The next two briquettes are also east briquettes; 
attach Bb7~--Zb7 "~-/~East to Bb6 at the connection site ZbT~-.Zb6"-}-rEast,Narth, and 
Bbs=Zb8-[-/3East to Bb7 at the connection site Zbs~ZbT+ rEast,North- The eight bri- 
quette is the first of a sequence of ten briquettes which form a "staircase." 
For  ie{1,  2, 3, 4, 5}, the briquette /3b~2~+ 7) i s a north briquette connected to the 
northern face of the east briquette Bb(2~ +6) at the connection site Zb(2~ + 7), and, 
for i~{2 ,3 ,4 ,  5}, the briquette /3b(2~+6) is an east briquette connected to the  
eastern face of the north briquette Bb(2~ + 5) at the connection site Zb(2~ + 6)" 
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Fig. 11. The bifurcation sequence for the L>H algorithm in the case xbl<0. Q Portion 
of a bifurcation briquette; O Portion of the claw of the triggering crab 

We claim that there is no prohibited overlapping of briquettes in the bifurca- 
tion sequence. The only part  of this last statement which might not be immediate- 
ly clear is that there is no intersection between the briquettes /~b5 and /3b9- 
To see that such an intersection cannot occur, we argue as follows. Either L > 2H, 
or else L < 2 H. If L > 2 H, there cannot be an intersection because simple geome- 
try shows that for a site (x,y) to be in /365, we must have y<=yb4+2H; but 
(x,y)~/~b9 implies that y > y b 4 + L + k .  On the other hand, in the case L < 2 H  
we see that for (x,y) to be in /~bs, we must  have x < x b 4 + L ;  but (x,Y)~/~b9 
implies that x > xb4 + 2 H  + k. 

The connection site for the westward centering sequence is Zwl~Zb5 
+ FNorth, west. A West-North  crab is attached to the bifurcation sequence at Zw~, 
and thereafter the sequence of crabs is centered along the line y = Yw~ + 2L  + H 
(see Fig. 10). The sequence stops when the (western face of the) claw of some 
crab reaches the region { x < - - 1 0 L - - 9 H } .  It is easily verified that every crab 
in the sequence is contained in the alley 

Aw--= {(x, y)~S: x<=xwl, Ywl --L<=y<=Ywl + 5 L + 2 H }  

{(x, y)eS:  Xwl < X< Xwl + L - H - k ,  Ywl + L < y <  yw~ + 2 L + H }  

- where the second part  of A w is an appendage which at most  contains the 
eastern port ion (overhang) of the claw of the first crab. The crude bound xvl >_ 
- - 9 L - - 9 H  implies that Xwl > - - 1 0 L - - 9 H  (and hence the sequence begins to 
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the east of the finish line x = - 1 0 L - 9 H - 1 ) ,  and the inequality - - 9 L - - 9 H  
< Ybl < -- 8 L- -  7 H implies that - 8 L -  7 H < ywl -<- -- 7 L- -  3 H (and thus the 
sequence will be in the west target region when it reaches the finish line). 

The connection site for the eastward centering sequence is z~eZbl  v 
+Fyorth, East" We connect an East-South crab to /~blV there, and continue the 
crab sequence by centering along the line y = y m - 2 L - H  until some crab 
reaches the finish line x = I O L + 9 H + I .  This sequence (which begins to the 
west of the finish line and which ends with a crab that has the eastern face 
of its claw in the east target region) is contained in the alley 

AE= {(x, y)~S: x >  xE~ , Ym - 5 L -  2H < y<  Ym +L} 

w {(x, y)~S: xE~ - L + H + k < - x < x E ~ ,  y ~  - -2L--H<y<=y~I  --L}. 

The last centering sequence is different from the other two final centering 
sequences in that it does not begin with a connection site of some briquette 
in the bifurcation sequence. Take zN1 to be the connection site on the northern 
face of the east briquette which is the body of the first crab in the eastward 
sequence. We begin centering a northward sequence of crabs from zN1 along 
the line x = x N ~ - 2 L - H  - the first crab must be of the North-West type - 
and we stop when some crab reaches the finish line y = I O L + 9 H + I .  The 
sequence of crabs begins south of the finish line, is contained in the alley 

AN= {(x, y)~S: xN1 - - 5 L - - 2 H < _ x  <_xN1 + L, YN1 <=Y} 

w {(x, y)~S: XN1 - 2 L - - H < - - x < x u ~  --L, YN~ - L + H + k < y < Y N 1 } ,  

and ends with the northern face of the claw of the last crab in the north target 
region. 

It is rather obvious how one should choose the final connection sites from 
which the crossings of the three neighbors of S other than S' may originate. 
We take the final connection site in, say, the eastward centering sequence to 
be the connection site on the eastern face of the claw of the last crab in the 
eastward centering sequence. Since both the final eastward centering sequence 
in S and the initial centering sequence in S " =  {K . . . . .  2K} x { - K  . . . . .  K} (the 
eastern neighbor of S) are sequences of East-North and East-South crabs, it 
is easily seen that the union of the crossing networks in S and S" is successful 
if each of the crossing networks is successful. Similar considerations apply for 
the final connection sites in the westward and northward sequences. 

Finally, one may easily verify that there is no prohibited overlapping of 
briquettes in the five subsequences, with the consequence that their union (i.e., 
the crossing network) is successful if each of its briquettes is successful. It can 
also be shown that the number of briquettes required to cross the square is 
bounded by some number which is independent of the length scales L and 
H provided that L > H .  One calculation yields R = 1 2 5  as an upper bound 
for this quantity. 

4 Robustness of half-space percolation 

We finally turn to the proof  of Theorem 1.2i). It has already been explained 
in Sect. 1 how the main result, Theorem 1.1, follows from this theorem. As 
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the proof has already been outlined in considerable detail, we shall be somewhat 
brief here. Afterwards, we shall comment on some rather minor extensions of 
Theorem 1.2. For a pair of major extensions, see Grimmett and Marstrand 
(1990); Bezuidenhout and Grimmett (1990). 

Proof of Theorem 1.2 i) Suppose that there is percolation in the half-space at 
bond density p, i.e., O~(p)>0. Let 8 >0  and choose 6, k, L and H (by Proposi- 
tion 2.8) so that 

Pp_a(B~ (L, H) is occupied)> 1 125 

for @ e {North, South, East, West}. "Part i t ion" the quarter-slice 

Q2L= { - 2 L ,  ..., 2L} d-2 x;g2+ 

into the "cubes" 

C(nl, ha)= { - -2L . . . . .  2L} a-2 x {2n 1 K . . . . .  2(nl + 1) K} 

x {2n2 K . . . . .  2(n2 + 1) K} 

where n 1 , n2e7Z 2 and 

K f 5 H + 7 L ,  if H > L  
= l l l H + l l L ,  if H<L.  

Observe that the origin can be connected to the open hyperblocks 

and 
{ - k ,  . . . ,  k} 2 x { K - - k  . . . . .  K + k} x {2K} 

{ - - k  . . . . .  k} x {2K}  • { K - k  . . . .  , K + G  

using only the open bonds in the region 

A =  {--2L . . . .  ,2L} d-2 x ({0 . . . . .  K + k }  2vo {K--k  . . . . .  K+k}  

x {K+k ,  ..., 2K}vo{K+k  . . . . .  2K} x {K--k  . . . . .  K+k}),  

with some positive probability ;Zo=no(p,K,k ). If such a connection from the 
origin to the two hyperblocks exists, we say that C(0, 0) is good. 

Using the crossing algorithms of subsection 3.2 or 3.3 [and assuming, for 
simplicity, that C(1, 0) and C(0, 1) are the first two cubes to be examined], 
we obtain 

and 

Pp_a(C(1, 0) is good] C(0, 0) is good) > (1 e ]125 

Pv_a(C(0, 1) is good] C(0, 0) is good) > 1 - 

since each crossing requires no more than 125 bricks. (Note that the definition 
of the region A is such that if L > H, any overhangs of the claws of the first 
crabs in the crossing networks for C(1, 0) and C(0, 1) will not use any bonds 
that might have been examined in order to determine that C(0, 0) was good.) 

Now algorithmically grow the cluster (of good cubes) of C(0, 0) in (D2L as 
described in Sect. 1. From Sects. 2 and 3 we know that if C(x, y) is the neighbor- 
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ing cube of some good cube C(x',y') [i.e., Ix-x ' l  + ly-y ' l  : 1], and C(x, y) has 
not yet been examined, then 

P,-a (C (x, y) is good]the algorithm calls on C (x, y) to be checked with 
C(x', y') as its specified good neighbor) > 1 - e. 

Choosing e so that 1 - e > 2c(292+) [where 2c(292+) is the critical density for indepen- 
dent site percolation in 2g 2 with percolation probability 0)~+ (2)], and recalling 
the coloring argument of Sect. 0, we see that there is at least probability 
~o(P, K, k)O~+ ( 1 - e )  of the cluster of good cubes being infinite. Since our tenor- 
realization is such that an infinite connected path of good cubes on the macro- 
scopic (i.e., renormalized) scale implies the existence of a corresponding percolat- 
ing network of open bonds on the microscopic (i.e., original) scale, we have 
succeeded in showing that there is bond percolation in the quarter-slice 1~2 L 
at bond density p - 6  for some L and 6 if there is bond percolation in the 
half-space ]H at bond density p. []  

The proof  of Theorem 1.2 ii) is similar to the proof of Theorem 1.2i). A major 
change needs to be made back in Sect. 2: we need slightly different notions 
of open hyperblock and attachment site. If 

IL= 0 . . . . .  hi x2ge-e - lx2g~  with e > l  and d - f > 2 ,  
i 

take the hyperblocks "of  length k" to be translates of 

. . . . .  

\ l / i =  

for m~{1 . . . .  , d - f } .  

For  definiteness, the attachment site corresponding to an open hyperblock may 
be taken to have all of its first f coordinates equal to zero. These different 
definitions of course lead to minor adjustments in the proof  of the analogue 
of Proposition 2.1, e.g., the packing factor in the constant N 1 of (2.3 a) will change, 
but the general structure of the argument remains the same. 

Simple extensions of Theorem 1.2 can be obtained by replacing the quarter- 
slice with a smaller subset (a "sector-slice" or "wedge"). Defining A(a) for 
a > 0 - to be the sector {(x, y): 0 < x, 0 < y =< a x} in 2g 2 , a variant of the argument 
given in the proof  above shows that percolation in the half-space at bond density 
p implies percolation in the wedge {--2L,  ..., 2L} d-2 x A(a) at bond density 
p - f i  for some 8 = ~ ( a ) > 0  (and a similar statement holds for half-slabs). The 
only major modification is that one needs to redefine "g o o d "  for cubes on 
the boundary of the wedge. 
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