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Summary. This paper applies the stochastic calculus of multiple Wiener-It6 integ- 
ral expansions to express the number of crossings of the mean level by a stationary 
(discrete- or continuous-time) Gaussian process within a fixed time interval [0, T]. 
The resulting expansions involve a class of hypergeometric functions, for which 
recursion and differential relations and some asymptotic properties are derived. 
The representation obtained for level-crossing counts is applied to prove a central 
limit theorem of Cuzick (1976) for level crossings in continuous time, using a 
general central limit theorem of Chambers and Slud (1989a) for processes expressed 
via multiple Wiener-It6 integral expansions in terms of a stationary Gaussian 
process. Analogous results are given also for discrete-time processes. This approach 
proves that the limiting variance is strictly positive, without additional assump- 
tions needed by Cuzick. 

1. Introduction 

There is now a very well-developed stochastic calculus for smooth functionals of 
stochastic integrals with respect to Wiener process (Kallianpur 1980), which has 
been applied extensively to problems on diffusions and counting processes. This 
calculus could also be applied to the study of nonlinear functionals of stationary 
Gaussian processes, as has been remarked by Kallianpur (1980, Chap. 6), by using 
the representation of such functionals as multiple Wiener-It6 integral expansions. 
The paper of Chambers and Slud (1989b) is one effort in this direction. Indeed, 
since the celebrated Diagram Theorem of Dobrushin and Major (1979) can be 
viewed as a representation theorem for polynomials of multiple Wiener-It6 integ- 
rals, there is every hope that some nonsmooth nonlinear functionals of stationary 
Gaussian processes could be represented explicitly as multiple Wiener-It6 integral 
expansions. The nonsmooth functionals studied in this paper are the counts of 
level-crossings. 
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350 E. Slud 

There are two reasons for interest in explicitly defined multiple Wiener-It5 
integral expansions. First, it has been known at least since the work of Versik (1962) 
(see also Chap. 13 of Sinai 1977, for clarification) that spectral ergodic-theoretic 
properties such as weak-mixing and mixing for a functional ("factor" in the 
language of ergodic theory) of a stationary Gaussian process, can be expressed in 
terms of the absolute-continuity equivalence class of the underlying spectral 
measure together with the multiple Wiener-It6 integrands. A second way to exploit 
Wiener-It5 integral expansions has been developed by Taqqu (1975), Dobrushin 
and Major (1979), Maruyama (1976) and Chambers and Slud (1989a, b) among 
others�9 These authors prove general (functional) central and noncentral limit 
theorems for such expansions�9 In the present paper, central limit theorems of 
Chambers and Slud (1989a) will be applied to the level-crossings counts. 

Our general references for multiple Wiener-It5 integrals are the monograph of 
Major (1981) and Chapter 6 of Kallianpur (1980)�9 The relevant results from the 
general theory are summarized also in each of the papers of Chambers and Slud 
(1989a, b). 

In this paper, X~ is a mean-0 and variance-1 stationary Gaussian process, either 
in discrete or continuous time as specified. Its correlation function will be denoted 
by r(t), and its spectral measure (assumed nonatomic) by (~ (either on [-7~, re] 
or on JR). On the spaces L 2 (JR k, o "k, sym) of complex square-integrable functions f 
which are symmetric in their k real arguments (xl . . . . .  Xk) and which satisfy 
f ( - x ) = f ( x ) ,  the multiple Wiener-It6 integral operators are denoted 
Ik:LZ(IR k, a k, sym) --* IR, and the constant function with value 1 in the domain Oflk 
is denoted 1 k. 

2. Representation results and limit theorems 

The starting point is to recognize that the indicator ltx, x~+ 1 <o] that X t and Xt+ 1 are 
of different signs, is the sum of products Itxt<oj.IExt+ , >ol and Itxt>o].Ifx,+ ~ <o] of 
functionals which depend only on single coordinates of the underlying process X~. 
After expressing the functional Itx o > o] as a multiple Wiener-It6 integral expansion 
and expressing products of expansions through the Diagram Theorem, we obtain 
the first Proposition and Corollary. 

Proposition 1. Define p = r(1), S ~ =- S ~ =- l for L > 1, and for j > 1 

Then 

where 

C , . , j ( p )  = 

1 _ < n i < . . .  <nj<L 

1 1 ( -  1)" 12m SJ2mCm, j(P) , Irxoxl<ol - 2 ~ m=O ) 

(_  1),_1 p" ( j + o t - 1 ) ! ( 2 m - j + o r  2_a_m+ 1 

�9 2 
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Corollary 1. For positive integers T, 

= ( _ ] ) m - 1  
I[xjx~+~ < o] ~ 1 

/ = 0  7t = 

/ e iT( '~ l  + ' + 't2m) - -  1 2,. "~ 
"I2mI . . . . . . . .  E SJ2mCm,J(P)J " 

\ e i ( ~ , + ' ' + ~ ) -  1 j=o 

Since the main point of this paper is to give explicit multiple Wiener-It6 integral 
representations for functionals related to level-crossings counts ~ Itxkxk+ , < 01' it is 

k 
important to catalogue some basic properties of the family {Cm,j(')} of special 
functions. It will be proved in Sect. 3 below that the functions Cm, j are hypergeo- 
metric functions, and each of the following properties will be seen to derive from 
known relationships among such functions. 

Proposition 2. The functions Cm, j(p)  arising in Proposition 1 satisfy the following 
identities and recursion relationships: 
(0) Co, o(p)= arcsin(p). 
(1) For allO <=j <__ 2mandm >__ 1, Cm,j(p) -- Cm,2m_](p),and(1 -- p2),.-1/2 C,.d(p ) 
is a polynomial in p which for 1 <= j <__ 2m - 1 has degree at most m - 1. 

(2m - 2)! p 
(2) For m > 1, Cm, 2(P) - (m - 1)!2 m-1 (1 - p2),.-1/2 and 

(2m - 2)! 1 
Cm, 1 (p) = ( m -  1)!2 " -1  (1 - - p 2 ) , . - 1 / 2  �9 

d 
(3) For all 0 < j <-_ 2m - 2, with m > 1, ~pp C,,-1,~(p) = -C,, , j+~ (p). 

(4) For 0 <__j <= 2 m -  1, Cm+I,j(P) = 2 ( m - j )  Cm, j(p) + Cm+x,i+2(P). 

1, j (2(m--j))!  d j p 
(5) F o r j < = m -  l, C=+l , j+2(p)=( -  ; ( m Z j ~ J d p  ~ ( l _ p 2 ) m _ j + l / 2 .  

In the following theorem, asymptotic normality has been proved by Ho and 
Sun (1987) and also follows easily from Theorems 1 and 2 of Chambers and Slud 
(1989a) using the representation of Proposition 1. The positive lower bound for the 
asymptotic variance is apparently new. 

Theorem 1. Suppose that the covariances r(n) = E { X (O)X (n) } of the discrete-time 

Gaussian process X( t )  are such that ~ r2(n)< oo. Then 
- -  o D  

a ccos  ,) o 
x / T  j=o I[xjxj+'<~ ~ ' 

where the asymptotic variance a 2 satisfies 

4 
a2 > 7r(1 - p 2 )  ~ [P  - c ~  d)" > 0 

for p = r(1), and where the spectral density f ~ L 2 is defined a.e. by the mean-square 

convergent series f (x) = (2zr)- 1 s e - i~  r(n). 
- - e l 3  



352 E. Slud 

For the remaining results, take t to be a continuous time parameter. We assume 
from now on the condition which Cramer and Leadbetter (1967) and Geman (1972) 
respectively showed to be sufficient and necessary for the number of zeroes of X, in 
[0, 1] to have finite variance, namely that r"(0) is finite and that 

i r"(t) - r"(O) dt < oe for some e > 0 (2.1) 
o t 

Theorem 2. For a mean-O, variance-l, continuous-time stationary Gaussian process 
X~ satisfying (2.1), the number of axis crossings within the unit interval [0, 1] has the 
representation 

,/ - r"(o) { 1 +  ~ 12., / ~ 1 + - " + ~ "  
7l; m = l  

An immediate but very interesting consequence of this representation is that, 
under the hypotheses of the last theorem, the number N x ( T )  of axis-crossings in 
[0, T]  by the process Xt is an integral functional: 

Corollary 2. Under the hypotheses of Theorem 2,for each T~(O, ~ ) 
T 

Nx( T) = SOs ~ Zo ds, 
0 

where 0 s is the time-shift map on ( g?, o~, p) and Z o is the square-integrable functional 
of { Xt} with the explicit representation 

Z o 1 +  --  12, " m=l , rW'(O) (m-- l ) !2  m-i 

2 , , '  �9 �9 2,2,] 1 (2.2) 
l < n , <  . . . < n 2 t < 2 m  / )  

Corollary 3. The random variable Z o of (2.2) is equal to 

,/  i r ~ ~O~ 

- - 7 l ! ( m  l ) !  ' ( 0 )  
_ _ H2,,_ 2l(X0) 
7I" m = l / = O  - -  - -  

(2.3) 

where Hk(X) denotes the k'th Hermite polynomial normalized to have leading 
coefficient 1, and where X'o denotes the mean-square derivative of the process Xt at 
t = O :  

d X, 7=0 X~ = ~ ~ I , ( i2 ) .  

Just as we obtained Theorem 1 from Proposition 1 by means of the general 
central limit theorem of Chambers and Slud (1989a), so from Theorem 2 follows the 
central limit theorem of Cuzick (1976) for numbers of axis-crossings in large 
intervals by continuous-time Gaussian processes. 
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T h e o r e m  3. Suppose that X t is a mean-O, variance-l, continuous-time stationary 
Gaussian process satisfyin9 (2.1), and assume in addition that both r( t ) and r"(t) are 
Lebesgue square-integrable functions on IR. I f  Nx(  T) denotes the number of axis- 
crossings by Xt on the interval [0, T], then 

where the asymptotic variance a 2 is finite and satisfies 

a z > ( - r " ( 0 ) ) ~  1 +  ( 2 ) d 2 > 0  
= rc r"(0) J 

with the L 2 function f defined by the mean-square convergent integral 
(2~z) -1 ~ e-irZr(t)dt. 

Again the conclusion of positive asymptotic variance is new. Cuzick (1976, 
condition (A3) of Theorem 1) needed additional assumptions (such as his Lemma 5) 
to obtain it. In this continuous-time case, an explicit integral formula for the 
asymptotic variance a 2 in terms of the covariance function r(t) is known, due to 
Schultheiss et al. (1955) and Cramer and Leadbetter (1967). Indeed, these authors 
provide a corresponding formula for the exact variance of Nx( T ) / x /T ,  and the 
assumption of square-integrability for r"(t)  then ensures that the asymptotic 
variance remains bounded as T-* ~ .  

3. P r o o f s  

Proof o f  Proposition 1. Observe first that if 

d k 
Hk(X ) = (-- 1) g eX2/z (e-X2~2) 

denotes the k'th Hermite polynomial (normalized to have leading coefficient 1), 
then EHZ(Xo) = k! and lk(lk) = Hk( Xo)/k!.  Since the polynomials Hk(Xo) /x /k!  
form an orthonormal basis of L2(Xo), 

o~ 1 
= ~ - - H k ( X ) ~ e  -x / dx ILxo=>Ol k~=O H k ( X o ) ~ .  ~ 1 1 2'2 

o ~/k! x/2n 
Now f o r k > l ,  

d k 
j Hk(x)e ~2/2 dx = ~ (-1) k ~ (e-~2/2)dx 
0 0 

d k -  1 

= (_l)k-  x dx k- 1 (e-X2/2)lx=o -- H~_, (0) 

which is 0 unless k is odd. Moreover, since 

~, (2n)! 
eX,_~2/2 = H,,(x) t m implies H2,(O ) = (-1)" 2"n~ 

m=o m! 
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we conclude that 

1 1 ~o (-l)" (2n)r 
ItXo>-O, = ~ + ~ . ~ o  H2"+ t(X~ + 1)! 2"n! 

1 t ~ (_1),,(2n)11z.+a(12.+~) 
= 2 + ~ . = o  2"n--7. 

Now 

1 ( 1)( +3 I[xox~<ol- 2 

"lzk+ 1(12k+ 1)12,,+ 1(12n+ 1 e i (a~  + " +;~ . . . .  1) 

which we re-express by the Diagram Formula (Major 1981, p. 42). The double-sum 
must have finite expected square because Itxox ~ <ol does. In what follows, the free 
interchange of orders of summation can be justified rigorously by first replacing 

k 
K N K N 

by E and ~ by E ,  next projecting E E onto the range-space of the 2mth 
k = l  n n = l  k = l  n = l  

order multiple Wiener-It6 integral operator I2,., and finally taking limits as K and 
N go to oc. With S[ as defined in Proposition (2.1), 

(1 ) rc ~-I~xox1<ol = ~ ( - 1 )  k+"(2k)!(2n)!2(k +1 2k l 
. 2k+"k!n! ~=o 

. ( 2 n ;  1)c~!(~ei(x~+.. .+~o,a(dxl). . .a(dx,,) .  

(2(k + n + 1 - e))! I2(k+o+l-,)(ei()l + ...+x ..... .  )) 
(2k + 1)t(2n + 1)! 

2'k^")+l p ' ( 2 ( k  + n+ l--~ 
= 2 . + 1  n r  

.(2k)!(2n)!2k+.k!n! I2(k+.+ l - g )  \o2~+z.+2- 2 . / \  2n + l ~<x 

which, after the change of summation-indices p = 2n + 1 - e, q = 2k + 1 - c~, 
becomes 

\ ] \  J 2 2 

where the summations ~ '  run over all nonnegative integers p, q for which p + 
and q + c~ are odd. Now with a new summation index defined as m = (p + q)/2, the 
assertion of Proposition 1 follows. [] 

Proof of Proposition 2. We first give explicit formulas showing that the functions 
Cm,j(p) are of hypergeometric type. Indeed, substitute into the series defining 
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C,.,j (p) the "duplicat ion formula" 

zl _ F(z+l )  2 z ( z 2 1 )  

respectively for z = j + c~ - 1, 2m - - j  + e - 1, and a, to find 

1 1)=_ 12.,_ 1 r((j  + ~)t2)r(m - ( j  - ~)/2) p" C"`,j(p)- > ~ ( -  (3.1) 
x/~ ==O:,+~odd F((~ + 2)/2)F((~ + 1)/2) 

W h e n j  is odd, let the running index ~ in (3.1) be 2n for n = 0, 1, 2 , . . .  ; w h e n j  is 
even, we take ~ = 2n + 1. In both  cases, the infinite sum has a simple expression in 
terms of the classical hypergeometr ic  series 

r(a + n) r(b + n) r(c) z" 
F(a, b, c, z) = 

.=o ~ r(a) r(b) r(c + n) nt 
for parameter  c not  equal to a negative integer, namely 

2 m - l r / j ~ r / m  j ~ . / j  j 1 ) 
~ -  t ~)  t - - 2 ) r t 2 ' m - - 2 ' 2 ' P Z  j o d d  

c"`,j(p)= 2"`rfJ+lhrfm j - l l  F/J+I j -1  3 2) 
t ) '  - ' m  2 

(3.2) 

j even 

Here we adopt  the convent ion that  F(~ + n)/F(e) - 1 for any c~ when n = 0, and 
F(e + n)/F(e) = 0 if ~ is a negative integer with e + n > 1. 

Our  general reference for hypergeometr ic  functions is the Bateman Manuscript  
Project  (1953), rot.  1, chap. 2, which we cite as BMP.  We prove properties (_0) to (5) 
of the Proposi t ion by reference to known relationships among hypergeometr ic  
functions, given by formula numbers  from Sects. 2.8 and 2.9 of BMP.  
(_0) By (3.2) and formula (2.8.13) of BMP,  

( 13 
Co, o(p)=pF ,~ ,~ ,p  = a rcs in (p )  . 

(1) Formula  (3.2), like the formula defining C"`d(p) in Proposi t ion 1, is evidently 
unchanged if j is replaced by 2 m - j .  Moreover ,  formulas (2.9.1-2) of BMP,  
with z = p  2 and a=j/2, b = m - j / 2 ,  c= 1/2 for j odd and a = ( j +  1)/2, 
b = m - (j  - 1)/2, c = 3/2 for j even, show that  

( 1  - -  p2)m-1/2 C"` , j (p)  = 

 even 
(3.3) 

Since F(a, b, c, z) is a polynomial  of degree (at most) k in z whenever a or b is a 
negative integer - k ,  the r ight-hand sides of (3.3) for j - - 0 ,  1, 2 . . . . .  2m are 
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polynomials in p, and for all values o f j  other than 0 and 2m, the degree in p is at 
most m - 1. 
(_2) follows immediately from (3.3) upon substituting j =  1 or 2, since 
F(a, b, c, z) - 1 w h e n a o r b = 0 .  
(3) For j odd, we have 

p2, (2n+j).T (2n+ 2m ~2__--_j)!2_2n m 

which can also be seen via (3.2) and formula (2.8.20) of BMP. Fo r j  even, put z = p2 
d d 

and use the chain rule ~pp = 2p dzz in formula (2.8.22) of BMP, to obtain 

- -  - - F  F m -  dp Cm,j(p)= ~ 2 / 

"dzz zl/ZF - -  m ~ , 2 , z  

2" ( j @ )  ( ~ )  ( 2 1, j - - 1  1 ) = ~ F F m -  F J ~ m  2 ' ~ ' z  

= -C, ,+I , j+I(p)  

(4) When j  is odd and less than 2m, it is easy to check via (3.2) that Property (4-) is 
equivalent to: 

_ ~ , ~ , p 2  = ( m - - j ) F  , m - - ~ , ~ , p  2 

+ F + 1, m - ~ , ~ , p  2 

and this relation holds by formula (2.8.32) of BMP with a = j/2, b = m -  j/2, 
c = 1/2. Similarly, for evenj  < 2m, Property (4-) is equivalent to formula (2.8.32) of 
BMP with a = (j + 1)/2, b = m - (j - 1)/2, c = 3/2. 

. d j 
(_5) For 0 =<j < m -  1, Cm+I,j+2(P)= ( -1 ) J~27C"+I - j , 2 (P)  by (3), and the re- ap 
sult follows immediately by formula (2) for Cm+l_j,z(p). [] 

Proof of Theorem 1. For the Central Limit assertion, we apply Theorem 2 of 
Chambers and Slud (1989a) to the representation given in Proposition 1, with 

arc cos (p) 
Y=-I~xoxl<o~ = ~ Ik(fk), and with Hermite rank m of 2. It is 

7~ k ~ 2  

important to remark here that, although the assumption (A.1) of Chambers and 
Slud (1989a, p. 326) apparently requires that a be absolutely continuous with 
respect to Lebesgue measure on [ - ~ ,  ~], in fact the proof of Theorem 2 of 
Chambers and Slud makes use (via their Lemma 4) only of the existence of some 
bounded positive functions 9M(') on [ -  ~, ~] whose m'th convolutions converge 
uniformly as M-~  ~ to the density of a*". But under the assumption 

~ [r(n){"< oo, which is here in force, the density of a *~ is bounded and 
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continuous and is given by (2re) -1 Z rm(n)e -i"~. Then the functions 

gM(x) -- (2g) -1 ~'~ r(n)e -inx-z~n2 
- o o  

are bounded and continuous, and by the Dominated Convergence Theorem 9 "  
converges uniformly as M --, oe to the density of a*". 

The functionsfk in the multiple Wiener-It6 integral expansion for Y - I[xox , < ol 
- rc -1 arccos(p) arefk(2) = 0 for odd k, and 

2n 

fk(_2)=~-l ( - -1)  "-1 ~ S�89 C,j(p) for k=2n,  n> l 
j = O  

Thusfk(_2 ) is bounded and continuous. The hypothesis (A.3) of Theorems 1 and 2 of 
Chambers and Slud (1989a) follows easily, and by Lemma 2.3 of Chambers and 
Slud (1989a), for k = 2n 

T~oo k \  ei(2,+. +27f--ifk(-2) 

- k!~I  E s{ ,c , , j (p)  f ( , h ) . . . f ( ~ ) d ~ l  . . .  d ; ~ _ ~  
j = 0  - -41 . . . .  2 k - 1  

with the last integral taken over [-re ,  n]k-1. Moreover, a general argument of Ho 
and Sun (1987, (2.6)-(2.9)) using only the property that ltxox , < ol depends on 
finitely many coordinates of Xt, implies that for all large T, all k > 2, and some 
constant M, not depending on k or on T, 

Var(T-1/2Ikf  e 'T(Z'+ii~)-~?fk(2_)))<MiVar(Ik( fk))  
k e , ( 2 ~ "  = 

An immediate consequence of the last two displayed formulas is the assumption 
(A.2') of Theorem 2 of Chambers and Slud (1989a). That theorem now implies the 
asserted central limit convergence of the present Theorem. 

To prove the lower bound on the limiting variance ~e, observe first that the pair 
of random variables 

1 T-1  1 T - I  oo 

~/T t=oZ 12(ei'(21+a2'f2(2-)), ~ t~=o n~2 Ien(eiaZ'++2"-")f2"(~)) 

are jointly asymptotically normal and independent as T--+ oo by the central limit 
theorems of Chambers and Slud, with asymptotic variances adding to cal. By 
Lemma 2.3 of Chambers and Slud (1989a), the asymptotic variance of the first of 
the displayed variables is 

2re lim I + x21 < h]a(d22)a(d2,) 
h ~ O +  - ~  - = 

= ~ i I A ( ~ , , - ~ x ) 1 2 f ( - ~ ) Y ( ~ x ) d ~ x  
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N o w  we make  use of  the special form for fz(_2) at (2~, - ) .1) ,  namely  

1 
f2 ( ' ~ 1 , - - / ~ 1 )  = - -  { C l , o ( P )  @ ( e'z~ + e-'Z~)C~,l(P) + C1,2(P)} 

7"C 

1 
- rex/1 _ p2 {2p - 2cos().1) } 

where we apply  Propos i t ion  2.(1)-(2) to find that  C l , o ( p ) =  C1,2(p)=p(1 
_ p2)-1/2 and Cl, l(p) = - (1 - p2)-1/2. Substi tut ing for f2(21, - 2 1 )  , we have 

proved  that  

~2 __> ~(1 p2) _ 4{p -- cos().)}2f2(,~0d2 

which is strictly positive because f i s  a well-defined and nontrivial  Lebesgue square- 
integrable function on I - r e ,  re]. [] 

Proof of Theorem 2. Lett ing 

=- Z + ' + 

1 < h i  < " ' "  < n j < = L  

we find 

0 = L2-1im I[xox ~ < ol 
e ~ O +  

= L/_lim 1 1 ( -  1)"Iz,. ~' S�89 
~ o +  2 ~Zm=o j=o 

which implies that  for all m > O, 

( 2 . ,  ) 
0 = L / - l imI2~  ~ S~m(~)C,,,j(r(~)) 

e ~ O +  \ j = O  

= I2m lim 2 SJ2m(~)C,.,J(r(e)) 
\ ~ , 0 / = 0  

where the limit inside I2,.(. ) is taken in the sense 

{fe L2(IR TM, ~r2") : fsymmetr ic  in )-1 . . . . .  22,. and f ( - _ 2 )  = f(_2) } 
Define now for p e ( 0 ,  1) and _2 - (21 . . . . .  ).z,,)e N 2" 

(3.4) 

of LZ(a 2~, sym) = 

2m 
Gin(p; 2_) = ~ S)2mCm, j(p) 

j=O 

Then our  results of Propos i t ion  2 on the form of the functions C,, , j(p) imply that  
Gin(p; t2__) is analytic and bounded  in the real a rgument  t and is equal, for each fixed 
t and 2, to (1 - pZ)-m+ 1/2 multiplied by a polynomia l  in p. The  ma in  par t  of our  
p roof  consists of two Proposi t ions  describing the top-order  (i.e., order  e) behavior  
of  G,.(r(e); ~-2) for each _2 as e ~ O. 

Since C,.,j(p) is a meromorph ic  function of p, we can define 

2m , 
h~ -~ lim (1 - p2)1/2 2 . Cm,j(p) for m > 0 

p ~ l - -  j=O J 
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It follows immediately from Propos i t ion  2.(0) that  h o = 1, and direct calculation 
using the recursion relations in Proposi t ion 2.(4) shows that h~ = 1, h2 = 3, and 
h 3 = 15. 

2 m 
Proposition 3. For m > 1, hm = (2m -- 1)(2m - 3 ) . . .  1 = ~ F(m + �89 

Lemma 1. lira (1 - p2)(,- 1)/2 ~. C",j(p) exists for each 
. ~ 1 -  j=o k j 

k = 0  . . . . .  2m and has the value 0 for odd k, -hm for k = 0 ,  and 

(2~) (112) l,fork=21,1> i. - -  ( - - 2 )  1 hm_ l = 

Proposition 4. 

1 2m 
lim - ~ sJ"(e)Cm, j(r(~)) = lim 1 Gm(r(8),e~_) 
~ 0  ~ j=O e ~ O  /3 

x }] 2pl . . .  2p~,. 
i < p i <  . . .  < p 2 1 < 2 m  

We proceed to prove Proposi t ion  3, Lemma  1, Proposi t ion  4, and then return 
to Theorem 2. 

ProofofProposition3. When _2 = Q, S{" = ( 2 ; ) ,  so that  

Gm(p; 0)  = Y~ C, . j (p)  
1=0  

By Proposi t ion 2.(1), (1 - p 2 ) m - 1 / 2  G,,(p;O) is a polynomial  in p, but  by (3.4), 
Gin(p; O) has the value 0 at p = 1. Therefore the function 

Rm(p)  -= (t  - p 2 ) " - 1 / 2 ( 1  _ p ) - m G ~ ( p ;  0)  = (1 + P)"O - p2)-1/2 G"(p; 00) 

is a polynomial  in p. By l 'H6pital 's  rule applied to G,.(p; O)/~/(1 - p2), 

- 2 - t u R i n ( I - )  = lim (1 - p2)1/2 d 

2,, / 2m'~ 
= lim ( 1 - p 2 ) ~ / 2  ~ { ) C ~ , j ( p ) = h " .  

p ~ l -  j=O\J / 

But since (1 -- p)m Rm(p) = (1 - p2 ).-l/ZGm(p ; 0_), we have 

d m 
m ! ( -  l)"Rm(1 - )  = d ~  {(1 - p2 ) " -  1/2 G"(p; 0_)},= 1 _ 

and 
1 ~ / 2 m \  d" 

- p ) c . , j ( p ) } . = l _  h . =  - - 2 - " ( - - 1 ) m ~ .  v j~O L J ) d ~  {(1 2 m - l / 2  
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By Proposition 2.(1) and (2), the only terms which contribute to the last sum are the 
two (equal) terms with j = 0 and j = 2m. Thus 

1 d "  
h,, = 2 - " + ' (  - 1) "+1 - -  - -  {(1 - p2)m-1/2C=,o(p)}p= 1 (3.5) 

m! dp m 

In the rest of this proof, we refer again to formula numbers in the Bateman 
Manuscript Project (BMP) chapter on hypergeometric functions. Combining (3.3) 
and (3.5), we find that 

2mF(m+�89 m! dp" l ' l - m ' ~ .  'p2 o=1 

which by BMP formula (2.11.9) is 

2 m(--1)m+l d" { ( 3 l @ p )  
- m ! ( 2 m 2 ~  dp m F 1 , 1 - 2 m , ~ - - m ,  

l+p ] 
-F l,a-2m,~-m, T J ; o : l  

Using BMP formula (2.8.20) to re-express the derivatives yields 

� 89  + 1, 1 - m , ~ , 0 ) -  2-"F(m + 1, 1 - m,~, 1)} { m'( )} = _  _ 1 w m + ~  3 1 1 (-- F m +  1 , - r n ; ~ , l  (by BMP (2.8.33)) 2 " - 1 / 2  

{ } 1 1 + ( -  1)m(2m + 1) r(�89 - m)r(~ + m) (by BMP (2.8.46)) = 

and this final expression is equal to 1, completing the proof. [] 

Proof of Lemma 1. The Lemma is true by definition of hm for k = 0. We proceed by 
induction on k. Assume that we have already proved the Lemma for all values of 
k < 21, 1 > 1. Then by the identity Cm,i = Cm,2,,-j, for k = 21 + 1 

j=O 

is thesumofpolynomialsinjofevendegree2Imult ipl iedby(~)C", j(p) ,andis  

therefore of order (1 - p2)-~+ 1/2 as p increases to 1. It follows that as p ~ 1 - ,  

(1 -- p2)(k 1)/2 Z Cm,j(p) ~ 0  for k = 21 + 1. 
j=O 

Next, fork=21+2,(1-p2) '+t/2j~=o~k C,,,j(p) differs from 

2m j ( j _  1). .  ( j - / ) ( 2 m  - j ) ( 2 m  - j  - 1) . .  (2m - j  - l) 
( _ i ) , + ~ ( i  _ pZ)t+l/2 ~ k! 

j=O 
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by a te rm of order  (1 - p2); thus our  L e m m a  will be proved  if we show that  as p 
increases to 1, (3.6) converges to 

+ 1 ) ( / +  1)! 

Still mainta in ing  k = 21 + 2, we find that  (3.6) is equal to 

(--1)1+1(1 -- P2) z+1/2 Z kf Cm,j(P) 
j=1+i j - l -  

which by Propos i t ion  2.(3) applied I + 1 times is equal  to 

( l _ p 2 ) l + l / 2 ( 2 m  ~ d l*l 2 m - l - l (  2 m - - k  
\ k J~i-pl~l E Cm_l_l,j-l_l(p) (3.7) j=t+l  \ j - t -  1,] 

With the index of summat ion  changed to r = j - 1 - 1, (3.7) becomes 

Finally, we know for all n that  for p in the ne ighborhood  of 1, 

~ (2;)C,,r(p)+h~(1-p2,'/2 
r = 0  

is equal  to (1 -/))3/2 multiplied by some smooth  function of p. It  follows that  for 
j __< n, as p increases to 1 

(,_p2)j-1/2dpJ~:o dj ~ (2;)C,,r(p,__._2j-1/e21/2h,(_l,i(1;2)j , 

Substi tut ing m - l - 1 for n and l + 1 for j, we find that  the limit of (3.8) as p 
increases to 1 is 

-a l +  1 / ( l +  1)! 

and our  induct ion is completed,  proving the Lemma.  [] 

Proof of Proposition 4. Recall that  the function ( 1 - p : ) m - t / 2 G , , ( p ; t . 2 )  is a 
po lynomia l  in pc (0 ,  1) and analytic in t for fixed _2. N o w  for small e, 1 - r2(e) is 
a sympto t ic  to - r"(0) e 2, so that  eemGm(r(e); t )  tends to 0 as e does. Since we have 
proved  in L e m m a  1 that  (1 - p2)- 1/2. G,,(p; 0_) converges to - h , ,  as p increases to 
1, we expand  the terms S~,~(~) in powers  of  e to find 

2m 2m 
lim e-lGm(r(~);e.2 ) = -(-r"(O))i/Zhm + lim e-1 ~ y '  
, s~O ~:~0 j = O k = a  

~k 

i~()~., + �9 . .  + ~,,,)~ ~ c ~ , ~ ( r ( ~ ) )  
l<nl<...<nj<=2m 

Each term (2,, + �9 - - + 2,~) k can be expanded  as a sum of monomia l s  in 2~ of the 
form K(d, k ;q )  2~*, . . .  2~] where 0 < Pl < " "  < Pa < 2m, where the positive 
integer powers  a I . . . . .  a a sum to k, and where the integers K(d, k;a) do not  

depend on j. Moreover ,  within the sum ~ (2,, + �9 �9 �9 + 2,,) k, each 
l < n l < - ' '  <nj < 2ra 
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term K(d, k ; q ) 2 ~ . . .  2 ~  which appears must  appear  precisely f | 2 m -  d |  \ = 
\ j - d ]  

( 2 m ) ( J  ) / ( 2 m )  d d 

1__<n1< . . .  < n j  =<2m 

d~a - K(d, k; a) ~ 2~11 . .. 2p~ 
l < p l  < . - ,  <pd<=2m d 

where the outer summat ion  ranges over all d = 1 . . . .  , k and all positive integers 
a 1 . . . . .  a a which sum to k. Finally, by Lemma 1 we learn that  for fixed d < k, if 
either d < k or  k is odd then 

lira e k-1 ~ Cm,~(r(~)) = 0 
~-~o ;=o j d 

N o w  change the summation-index for even k to l, where k = 2 / ;  observe that  the 
constant  K(d, k;a) for a = (1 . . . .  ,1) and d = k reduces to k!; and apply Lemma 1 
once more  to find 

lim e-lGm(r(e);e2_) = - ( -  r"(O))l/2hm + ~ ( -1)  l ~ 2pl . . . 2p2 , 
e ~ O  1 = 1  1 < p l  < " ' "  <p21  < 2m 

2m / 2 m  \ tJ~ 
"lim~Zt-~ ~o ~ ) ( ~  
,-~o j j 

1 = 0  1 < P l  < ' ' '  <P2t<= 2m 

"(--r"(O))l/2-l(--2)t(1/2) h m - l l ' l  

Our  Proposi t ion is proved. [] 

Conclusion of proof of Theorem 2. Under  the condit ion (2.1), the sequence of  
r andom variables 

= - - arc sin (r(~ + - ( - 1)ml2m 
j = O  ~ 7~ m = l  

�9 e "~+ '"  +~") -  1 S{,~(e)Cm,;(p 
e i e ( ~ +  . . ,  + 2 2 m )  1 j 

increases monotonical ly  for z along the sequence ~ = 2 - "  to the square-integrable 
r andom variable equal to the number  N,(0, 1) of axis-crossings by the process X t 
for t e [0, 1]. I t  follows that convergence takes place also in mean square, and that  
the same sequence of  variables or thogonal ly  projected onto  the subspace range 
(Iem) = HEm must  correspondingly be uniformly square-integrable and converge in 
mean square. This reasoning shows that  for each m, and for e = 2 -~, the functions 

2m 
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converge as e ~ 0 (n ~ oo) in L2(a 2", sym). To identify the limit, it suffices to find a 
a TM  a.e. limit (for fixed 21 . . . . .  22"). First observe that the function 
e(e ,~+. . .  + ~ ) _  1)/(ei,(a~+ .,. +z~m) _ 1) is bounded, uniformly for e in a small 
neighborhood of 0, and converges pointwise as e--*0 to - i ( e  "z~+' ' '+  z~") 

- 1)/(2~ + �9 - - + 22,,). Thus the Theorem follows from the pointwise convergence 
of 

2 "  

e-lG"(r(e);e2_) = e-1 ~ S{"(e)C"d(r(~)) 
j = O  

proved in Proposition 3. [] 

Proof of  Corollaries 2 and 3. By inspection, if Z o is given by (2.2), then ~TO~oZo ds 
agrees for all T with Nx(T)  as expressed in Theorem 2. Next observe that X o and 
X'o/~/-r"(O) are jointly Gaussian and independent with unit variances. All Her- 
mite polynomials Hk(Xo) and Hj(X'o/x/--r"(O)) are therefore uncorrelated, and 
are given respectively by k! Ik(lk) and j!Ij(2 t . . .  2fiJ(--r"(O))-J/2). By a simple 
case of the Diagram formula, 

I 2 " (  ~ 2,,...~.,2,/(--r"(0)) t ) 
1 <=nl  < " ' "  < n 2 1 < 2 "  

-(2m)!l ( 2m)  (21) ! I21(2 t '21  "" 221(r"(O))-t)(Zm -- Zl)!12"-2~(12m-2t) 

1 1 
- ( 2 0 !  r"t0   2,(Xo). . ./(2m - 21)! 

To complete the proof of (2.3), substitute into (2.2) using the identity 

(lj2) ,2, 
1 = . ( 1 / 2 ) ( - 1 / 2 ) ' " ( - ( 2 1 - 3 ) / 2 ) = ( - 1 ) - ~ + ~ 2 2 2 - 2 ( 1 -  1)!/! [] 

Proof of  Theorem 3. The asserted asymptotic normality follows from Theorem 2 of 
Chambers and Slud (1989a), now in a continuous-time setting and applied to the 

functional Z 0 - ~ I2"(72,,) of (2.2). Assumption (A.1) of Chambers and Slud 
m = 0  

holds in modified form exactly as in the first paragraph of the proof of 
Theorem 1 above, and (A.3) again follows without difficulty from continuity of the 
integrands ~2,,. Finally, (A.2') follows as in the proof of Theorem 1 from 
Lemma 2.3 of Chambers and Slud together with the key observation that 
T-1 Var(ST i2,,(72"(2)exp(it(2~ + . . . + 22")))dt)is bounded by a constant M1 
times VarI/,,(72"(_2)) , uniformly in m and 2". This last fact follows from the 
previously-cited argument of Ho and Sun (1987, (2.3), (2.6)-(2.9)): in their argu- 
ment, replacej by 2m, dG by da, ~i(x,,1 . . . .  , xfl by 72,,(xI . . . .  , x2m ), d and 3 by 2, 
and put hl(x ) = 1, h2(x ) = i x / x / - r  (0). 

Just as in the proof of Theorem 1, we find 

T~limoo Var(Nx(T)) /T  > r~limco Var~ Iz ~ . . . . . .  i(2~ + 22)x/T Y2 ()o~, 22) 
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which  by L e m m a  2.3 of  C h a m b e r s  a n d  Slud is equa l  to 

2~t. �89 172(21, -,a. x)l zf(2~)f(-21)d21 

a n d  is precisely the lower  b o u n d  given in  T h e o r e m  3. [] 

Acknowledgments. I am grateful to the referee for the suggestion to relate the functions C,,,j to 
known special functions, and to Professor Frank Olver for the observation that they are of 
hypergeometric type. 
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