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Summary. A limit theorem is proved for the waiting time till each of a given set of 
length n patterns occurs as a run in a sequence of i.i.d, random variables distributed 
uniformly on { 1, 2 , . . . ,  d}. A heuristic approach called the independence principle 
is introduced which can be applied to similar problems connected with waiting 
times. 

I. Introduction 

Let H be a finite alphabet; we can suppose H = {1, 2 . . . .  , d}. Let H" denote the set 
of words of length n over H. Consider a sequence X1, X2 . . . .  of i.i.d, random 
variables distributed uniformly on H. For  any word A s H" define 

T(A) = inf{m: (Xm-,+lXm-,+2 �9 �9 Xm) = A},  

the waiting time till A appears as a run in the sequence of repeated experiments. 
Problems connected with runs and waiting times are very popular in the 

classical theory of probability, for they can be formulated without difficult notions 
or involved technical terms, their solutions, however, are far from being trivial, and 
they help to understand the nature of randomness (Erd6s and R6nyi (1970) or 
Erd6s and R6v6sz (1976)). They are also appealing for combinatorists (Guibas and 
Odlyzko 1981). Recently this topic is being applied at an increasing rate in several 
fields such as computer science (complexity theory), Monte Carlo methods and 
simulation (generating pseudorandom numbers, tests for randomness) or molecu- 
lar biology (statistical analysis of long DNA and RNA molecules). These applica- 
tions constitute a constant source of inspiration and orientation for the research 
(Shukle and Shrivastava 1985). 

The aim of the present paper is to find the limit distribution of the maximum of 
several waiting times. Given a subset H ,  c H" we are interested in the number of 
experiments needed till each word from H,  occurs as a run at least once. Let 
W, = max{T(A): A e l l ,} .  Our main result is the following theorem, to be proved 
in Sect. 3. 
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Theorem 1. Suppose 

Then 

for every real y. 

l i m  I / - / . I  : + o o  . 
tl--+ oo 

lim P ( d - " W ,  - log I/-/,I ~ y) : e -e " 
n ---~ ao 

T.F. M6ri 

2. Independence principle: a heuristic approach 

We now attempt to enlighten the background of Theorem 1 by presenting an 
intuitive method which can often be applied to problems connected with the 
waiting times T(A). 

A most simplified description of the joint distribution of these waiting times, 
which we shall call the independence principle says that they can be regarded as 
independent, exponentially distributed random variables with common expecta- 
tion d", unless something tells against it. It is easy to see that Theorem 1 lies within 
the scope of this principle. Let us see its motivation as well as the limits of its 
applicability. 

Concerning a single T(A) it is not so difficult to see the approximate exponen- 
tiality of its distribution. This was done in M6ri and Sz6kely (1984), together with 
some extensions to joint distributions in a special case. Their method of proof was 
based on the characteristic "lack of memory" property of the exponential distribu- 
tion. This method was refined in M6ri (1985) in order to obtain general estimations 
for the joint distribution of several T(A)'s. It turned out that the joint asymptotic 
distribution of a couple of waiting times had independent exponential marginals as 
far as the pairwise overlapping between the words was negligible, otherwise the 
dependence was of Marshall-Olkin type. The results were formulated to cover large 
deviations, too. These papers can be considered as the mathematical justification of 
the heuristic independence principle. 

Let us recall some details which we shall need in the sequel. 

Lemma 1 (Mdri 1985). For A 1 , A 2 , . . . ,  A r e H "  let Z = min T(Ai) and b = 
nrd-" < �89 Then for every y > 0 

( 1 - 4 b  ) (E@Z) ) _ _ < ~ - 4 b  _y 
exp 1 5b y --< P > y 5be . 

In order to apply this lemma we must know how to calculate E(Z), the expected 
number of experiments needed till any of r competing words appears as a run. This 
expectation is provided by the so called "magic" Conway algorithm. In his paper 
(1980) Li gave an elegant proof to a generalization of the Conway algorithm. This 
algorithm defines a measure of overlapping between two words A = (a~ a2 �9 �9 an) 

and B =- (btb2 �9 . �9 b,) as A * B  = ~ ~;i d i ,  where ei = 1 if the words ( a n - i +  1 . . �9 a,) 
i = 1  

and (bl . . �9 bi) are identical, otherwise ei = O. A , B  is called the leading number of 
A over B. 
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Lemma 2 [Li (1980)]. Let  A 1 . . . .  , Ar and Z as above and let Pi = P(T(A~) = Z), 
the probability that A~ is the f irst  to appear. Then for  every j = 1, 2 . . . .  , r 

~ piAi* Aj  = E(Z)  . 
i = 1  

That  is, Pl . . . . .  Pr and E(Z)  are the solution of a system of r + 1 linear 
equations (the (r + 1)st is that Pl + �9 " " + Pr = 1). In particular, when r = 1, we 
have E(T(A))  = A . A. 

When the overlapping is negligible, Ai* Aj ~ 0 (i =~ j), thus the j ' th  equation 
gives pjE(T(Aj ) )  ~ E(Z).  Hence 

E(Z)-I ~ ~ E(T(Ai))-i , ( 1 )  

i = 1  

which is in accordance with the approximate independence of the waiting times 
T(A~). In fact, the regular behaviour of the minima is equivalent to that of the 
waiting times themselves. 

Let us see a counterexample, where the independence principle does not work. 
If, instead of the maximum, one asks the minimum of T(A) as A runs over H, ,  

for H ,  = H" the independence principle says that it is of exponential distribution 
with expectation 1, but obviously it is identical with n. The irregular behaviour of 
the minimum waiting time cannot be excluded by imposing restrictions on the 
growth of [H,]. Of course, there are regular subsets (in the sense of (1)); it can be 
shown by the help of Lemma 2 that most subsets of H" are regular. However, for 
any r, 2 < r < d', one can find a set H ,  c H ' ,  IH,[ = r, such that 

E(Z) -1  < 2d + 3 
2d + 4 ~ E ( T ( A ) ) - I  " (2) AEHn 

For  the construction consider first a directed graph with set of vertices H " - 1  
and set of edges H". Edge (al �9 �9 �9 a,) points from vertex (al �9 . .  a , -1 )  at vertex 
(a2 . . .  a,). Then every vertex has indegree d and outdegree d, thus the graph is 
Eulerian, that is, the length n words over H can be arranged in a cycle C in 
such a way that every word is overlapped by its cyclic successor in n - 1 letters. 
For  any given r, 2 <_ r <-d', let H ,  consist of r consecutive in C words: 
H,  = {A1, A2, �9 �9 A~}. We can suppose that E(T(A~)) > E(T(Ai)) ,  1 <= i < r. IfAi 
overlaps itself in length l > 1, then it also overlaps Ai-~ in length 1 -  1. Hence 
Ai * Ai <= d + dAi_ 1 * Ai if Ai * Ai >= d" + d, and Ai * Ai <= dAi_ 1 * Ai if Ai * Ai = d'. 
In both cases 

A~-I*Ai>= d " +  = d + l  ' = 

From Li's equation it follows that 

E(Z)  >= p l A I  * AI  

) E ( Z ) > = P i - I A I - I * A i + p I A I * A i  >- _ P ~ - I + P i  A i * A i ,  l < i = < r .  

Dividing the i'th equation by A~. A~ = E(T(A~)), then summing up one obtains 

E(Z) E(T(A,)) -~ >=1+ d +1  d + l p~  (3) 
i = 1  
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Here 

Pr < E (Z ) /Ar*Ar  <= I~E(Z) ~ E(T(Ai))  - t  �9 
F i = i  

Substituting this into (3) we arrive at (2): 

( ~ 1 ) / (  ~ 1  1 ) ) > 2 d + 4  
E(Z)  E(T(A~)) -1 >= 1 +  l + r ( d +  = 2 d + 3 "  

i = 1  

Since the independence principle fails even in natural cases, it would be 
desirable to characterize all functionals 

cp, = q),(A1, A2, . �9 �9 , Aa,) 

to which it is applicable. This problem seems hard and so far I haven't found the 
answer. 

3. Proof of Theorem 1 

The aforementioned estimation for the departure of the joint distribution of the 
waiting times from independence and exponentiality cannot be applied to the 
whole set H,,  since its accuracy decreases with the increase of the number of words 
under consideration. It seems better to use the inclusion-exclusion formula, which 
expresses the distribution function of W, in terms of the distribution functions of 
partial minima of the T(A)'s. Further, it may be regarded as an expansion into 
alternating series, which can be well approximated by its sections. But what we in 
fact need is the graph-sieve of R6nyi, which allows us to leave "bad" subsets (with 
significant overlapping) out of consideration. 

For the sake of convenience let us denote log[H,[ by m. Let the considered 
words be numbered from 1 to [H.[ and let C~ denote the event {T(Ai)> x}, 
1 -< i -< [H,[, where x = d"(m + y). Then 

P ( d - " W ,  - m < y) = P (  (~ C i )  . 
i<lH~l 

Let ~ = e, be fixed positive numbers tending to 0 slowly enough: 
d - 1  

e-4m 2 IH.I-d+ ~ = o(1). (4) 

A word A E H. is said to be bad if 

A * A >= d n + ~,3m- 2dn , 

otherwise good, further, the ordered pair (A, B), where A, B ~ H,, A 4= B, is said to 
be bad if 

A * B  >= em- ld"  . 

Let the exceptional set E, defined as 

E, --- {(i,j): 1 =< i < j  =< [H,], not all of Ai, Aj, (A~, Aj), (Aj, Ai) are good}. 

Let S* - - ~ *  P(C~ 1 c~ . . .  c~ C~r), where ~ *  denotes that the summation runs 
over all r-tuptes of indices 1 < il < . . .  < ir < IH, I which do not contain any pairs 
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from E, (for r = 0 let S* = 1). Finally, for r => 2 let S** = z.,,V** P~C-, ,~ ~ . �9 n C~), 
where ~ * *  indicates summation over r-tuples containing exactly one pair from E,. 
Then the graph-sieve of R6nyi (see Galambos (1978), Theorem 1.4.2) implies 

P C i  - -  (--1)rSr ~ < Sk*+l + ~ S** ,  k < ]H,I .  (5) 
\ i =  Hn r=O r=2 

1 
The proof of Theorem 1 will be carried out by showing that S* ~ r!e -~y and 

S** ~ 0  as n-~ oo. 

Lemma 3. (a) The number o f  bad words is tess than raze -4. (b) For any given A E H,  
the number o f  words B for which the pair (A, B) (resp. (B, A) ) is bad, is less than me -2. 

Proof  (a) Suppose the maximum overlapping of A with itself is of length l (apart 
from the fact that A is identical with itself which can be interpreted as overlapping 
of length n), and let k be the minimum of I as A runs over the bad words�9 Then 

d"(1 + e3m -2) __< A * A < d n + d k + d k-1 + �9 " �9 + d < d" + 2d g , 

from which d "-k < 2m2~ -3. The number of words A e l l "  that overlap themselves 
in length l is d"-t, thus the number of bad words is not greater than 

d n-k -{- d n-k-1 -]- �9 �9 �9 q- d < 2d "-k < 4m2e -3 < m2e -4 . 

(b) Similarly, let k be the minimum of the longest overlapping between A and 
B (resp. B and A) as B varies in such a way that (A, B) (resp (B, A)) is bad. Then 
e m - l d ,  < 2d k. The number of words B e H" that overlap A in length I is d"-z again 
and the proof can be completed in the same way as above�9 

Lemma 4. Let [~**l and J~,**[ denote the number of  terms o f  the correspondin9 
sum. Then 

and 
1 

l~**l  < (r - 2 ) ~  IH"I~-I me-Z if r > 2 .  

Proof  Estimation of ]~* t. Let us forget the increasing order of indices il . . . .  , it, 
this will give us a multiplier r!. Now the upper bound [H, r  is obvious�9 For  the 
lower bound delete first all the bad words from H,  (by Lemma 3 (a) there are at 
most mZe -4 of them), then choose All. Fixing All one can find at most 2me -2 bad 
pairs through it. Thus the number of words that can be chosen as Ai2 has decreased 
by at most 2me -2 more, hence A~2 is to be chosen from a set of size 
> IH,[ - 2m2e -4. Here we used that 2me - 2  <= m 2 e  - 4 "  - -  1 for large enough n. 

Continuing in this way we see that less than m% -4 words should be deleted at 
every stage. 

Estimation of lY',** 1- Again, r-tuples in account can not contain any bad words, 
or else they contained more than one pairs from E,. By Lemma 3(b) there are at 
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most  IH, Irne - z  bad pairs to choose, while for the other  r - 2 indices we have at 

most  \ r  - 2 ]  choices. 

Lemma 5. Let  A1, A2 . . . . .  A r c H " ,  Z = min T(Ai). 
(a) Suppose Ai* Ai <= (1 + 6)dn for  1 <- i <_ r and Ai* Aj  <= (3dn for  i ~ j. Then 

1-d" < E(Z)  < @ + a )  d" 

(b) Suppose the conditions of(a) are met with the only exception Ak * A1 = cd", c > 6. 
Then 

__I - ea d.  =< E(Z)  =< 1 + ra d .  . 
r -- c I~--e 

(C) Suppose the conditions of(a) are met with the only exception Ak * Ak = (1 + c)d", 
c > 6. Then 

[ (  Cc) l l d " < _ E ( Z ) <  6 +  r d ~ 
r l + c  - = 1 +  ' 

Proof  These assertions are simple consequences of Lemma 2. 
(a) F rom Li's equations 

pj < d - " E ( Z )  < pj(1 + 6) + ~ p ~  = p~ + 6 .  (6) 

Summing up for j = 1, 2 , . . . ,  r one obtains the desired estimation. 
(b) The l ' th inequality in (6) must  be replaced by 

Pz + pkC <= d -"E(Z)  <= Pl + pkC + 6 . 

Adding up these inequalities we get 

1 + pkC < r d - " E ( Z )  <= 1 + r6 + pkC <= 1 + re3 + c d - " E ( Z ) ,  

from which the upper bound  immediately follows. On  the other hand, 

d - " E ( Z )  - 6 < Pk , 
thus 

1 + cd - "E(Z )  -- c6 <= r d - " E ( Z ) ,  

hence the lower bound.  
(c) For  j = k (6) changes into 

pk(1 + C) < d - " E ( Z )  < pk(1 + c) + ~ .  

Dividing it by 1 + c then summing up we arrive at 

1 <  r - l +  d - " E ( Z ) < I +  r - - l +  , 

which was to be proved. 

1 
Lemma 6. For r > t S* ~ r! e -  ~y as n -~ oo. 
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Proof Let first r = t. F r o m  L e m m a  1 

S~= ~ P(T(A)>x)< 1 - 4 b  ( x ) 
a~n, = 1 -- 5b A~n, ~ exp A * A 

1 - 4b _ ]H,[_ 1 ~, exp(d_ ,xA*A-  d"'] 
- 1 - 5 b  e Y \ -A--*~t / '  

A~Hn 

where b = nd -n. 
The sum is divided into two parts  accordingly that  A is bad  or good. G o o d  

words  give 

IH,  I 1 ~2 exp(d-,x A*A-d" ' ]  Agooa \ ;4*A- / <  IHo[-1A ~gooa exp(e3m-2d-'x) 

= 1 + o(1),  

since d-"x ~ m. 
The bad words '  contr ibut ion is 

,H.,-I ~ exp(d-'x A - A - d " )  
A b a d  A-:gA < [H'l-lmZe-4exp((m + y)/d) 

= O ( m 2 e - 4 l H , , l - ( a -  1)/d)  = o(1) . 

d 
Here  we used first L e m m a  3, then the fact that  A * A < d T 1  d", finally (4). 

Hence  

s*  __< e - ' 0  + o(1)). 

On the other  hand,  L e m m a  1 implies that  

S*= ~ P(T(A)>x)> ~ exp( l - 4 b  x ) 
A ~ H .  A e H .  1 5b A * A 

> ] n o l e x p ( -  (1 + O(b))d-nx) = e-Y(1 + o(1)) .  

Let  us turn to the case r __> 2. Put t ing  b = rnd-', (5 = e/m and combining 
L e m m a  1 with L e m m a s  4 and 5(a) we have 

1 - 4 b  1 
S* < tn, l" exp(-rd-"x(1 + e/m) -1) 

-- 1 -- 5b r! 

= (1 + o(1))l[H.Irexp(-r(m + y)(1 + o(1/m))) 

= (1 + o ( 1 ) ) l e  -ry , 

and at the same t ime 

1 - 4 b  . . ' X  mr* => ~,(I/-/.I- rm~-')" exp ~ ~rd-  x)  

= (1 + o(1))~.lH.(exp(--r(m + y)(1 + o(1/m))) 

1 _ 
= (1 + o ( 1 ) ) = e  " .  

r! 
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Lemma 7. For  r > 2 S** --, 0 as n ~ oo. 

Proof. Let first r > 2. Any r-tuple of indices taken into summation contains exactly 
one pair from E,, say (i,j). Then both Ai and Aj have to be good, further, (Ai, A j) 
and (A i, Ai) cannot be bad at the same time, since if both pairs were bad, i.e. 

A i * A j  >= d"e/m and A j .  Ai  >= d"s/m , 

then A~ would overlap Aj and conversely, at least in length k, where 
d 

d - 1 dk > d%/m. But this would imply that Ai overlaps itsetfin length not less than 

2k - n, and consequently, 

Ai*  A i -  d ~ > d 2k-" > eZm-Zd ~ > earn-2d" , 

contradicting the goodness of Ai. Now let us apply Lemmas 1, 4 and 5(b) with 
= s/m. We shall separately treat the summands whose bad pair (A,, A:) 

is of maximal leading number d ~ - 1 +  d , - 2 + . . . +  d. There are d a of them, 
because in these pairs the same letter has to stand at every position but the 
first in A, and the last in Aj. All the other pairs have leading number 

d 
Ai*  A j  <= d "-  ~ + d ~-3 + d ~- 5 + �9 �9 �9 < ~ - ~ _ 1  d~. Hence 

1 d 3 ] H ~ [ r _ 2 1 - 4 b  ( ( 1 ) ) 
S * * < ( r _ 2 ) ~  1 ~ e x p  - d - " x  r d -  1 ( l + r e / m )  -1  

) 1 1 - 4 b  - d - " x  r (1+ + ~  me-2[//"lr-1 1 5b exp d e - 1 re~m)-1 " 

Since d - " x  ~ m, the first term can be transformed into 
1 

O(IH, I-=+3=r), 

while the second one into 
1 

O( I  H n l  - l + d ~ i - -  l m ~ -  2) . 

Both expressions tend to 0 by (4). 
In the case r = 2 we can't come to the conclusion that both words should be 

good. For this reason the sum ~**  will be divided into three parts. Summands, 
where both words are good, can be treated in the same way as for r > 2. If one of 
the words is good, one is bad and the pair they form is good, whatever be their 

1 
order, then Lemma 5(c) with c < )-~-~, 6 = e/m gives 

The number of such summands is less than rn2s-4[H,[. By Lemma 1 this part of 
~**  is bounded by 

1 - 4 b  _ { , (2dd  1 ~ ) - 1 )  m2~-4lH,[  ~ e x p ~ - d -  x + = O(IH~l-(a-1)/dm2e -4)  = o(1). 

(We applied (4) again.) 
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Finally, there are summands where either both words are bad or one of them 
is bad and the pair is also bad in some order. The number  of these summands is 
bounded by 

(/T/2g--4) 2 -~- 2mZg-4mg -2 < 3m% -8 . 

1 
For  such pairs Lemma 5 (a) with 6 - d - 1 gives 

d + l  
- -  d" 

E ( z )  < 2(d - 1)  ' 

hence their contribution is less than 

1 - 4 b  ( 2d-"x d -  1 ~ O([[Hn[_aWTm2g_4]2)d-1 3m4e - s  1 - 5 ~  exp ' , -  ~ j  = = o(1) . 

Thus the proof  of Lemma 7 is completed. 
Now we are in a position to complete the proof  of Theorem 1. Fixing k and 

applying Lemmas 6 and 7 to the terms of (5) we obtain that 

k 1 1 
E ( - 1 ) r  - - -  = ---- r=o ~ e  ry (k + 1)! e-(k+ 1)y < lim,_+~oinfP(d-" W,, - m < y) 

k 1 r 1 
_ < l i m s u p P ( d - ' W , - m < Y ) < ,  . . . .  ~ o ( - 1 ) r ~ e - r +  (k + 1)!e-(k+l)r " 

Letting k tend to infinity we can see that 

lim P(d-nW,, - m < Y) = i ( - - 1 ) r ~  e - ~ ' ,  
n- -+  oO r = 0  �9 

which was to be proved. 

4. Further results, remarks and problems 

Theorem 1 can be generalized in several ways. For  example, let W,,(k) denote the 
waiting time till all but k words of H ,  have been observed as a run. Clearly, 
IV, = W,(0). Then we have the following assertion. 

Theorem 2. Suppose 

lira IH.] = + oo. 
n--+ oo 

Then for k = O, 1, 2 . . . .  

k 1 
lim P(d-"W,(k) - log[H,[ =< y) = e -~-~ ~, r!e -~y . 

t t ~  r = O  

The proof  of Theorem 2 is similar to that of Theorem 1. The only change is that 
instead of the graph-sieve of R6nyi we have to apply its extension by Galamhos 
(1966) and the analogue of Lemma 7 needs a bit more technique and patience 
(increasing with k). 

Another way of extension is estimating the rate of convergence, taking also 
large deviations into consideration, then analysing the a.s. behaviour of the 
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sequence W,. Our  proof in Sect. 3, refined to a certain extent, is suitable for the 
above programme. I am planning to return to these questions in a forthcoming 
paper. 

Through the rest of the paper let H ,  = H". 
A quantity related to W, is M, ,  the maximal number that every word of length 

Mn was observed as a run in course of the first n experiments. An immediate 
consequence of Theorem 1 is the following assertion. 

Theorem 3. L e t k = I ! ~ 1 7 6 1 7 6  1 lo-g-d , where [. ] stands for integer part. Then 

l i m P ( M , = k o r k +  1 ) = 1 .  

Proof For  every real y and for k and n large enough, depending one on another as 
above we have 

dk(logd k + y) < n < dk+2(logd k+2 + y ) .  

In order to verify this let us rewrite the above definition of k into 

log d k < log n - log log n < log d k § 1 . 

Since log n -  log logn is increasing in n, it suffices to show that putting 
n = dk(log d k + y) we have log n - log log n < log d k, and conversely, 
n = dk+2(logd k+2 + y) implies l o g n -  loglogn => logd k+l. Details of this 
straightforward calculation are left to the reader. 

The random variables Wk and M,  

Wk <n 

Hence by Theorem 1 

are connected by the following relation 

iff M ,  > k . 

P ( M ,  >= k) = P(Wk < n) > P(d-kWk -- logd k < y) ~ e -e-~ , 
and 

P ( M ,  > k + 2) = P(Wk+2 < n) < P(d-k+2 Wk+2 -- logd k+2 < y) ~ e  -e -~ .  

Since y is arbitrary, the proof is completed. 
We should remark that Theorem 3 can be strengthened. It can be proved 

1 =Flo   1 log d or M,  [_ log d for large n with 

probability one. 
Another related problem is to find sharp bounds for E(Wn). If in Theorem 1 the 

variables d-"  W, - log d" were uniformly integrable, 

E(W,)  = d"(log d" + C + o(1)) 

would follow, where C = 0 .577 . . .  the Euler-Mascheroni constant. By another, 
direct method, in M6ri (1987) it is proved that 

E ( W , )  = d"(logd" + O(1)). 

Finally, we set a problem, which probably requires new ideas in addition to 
those of the present paper. 

What  can be said about  W, if X1,  X2 ,  � 9  are identically but not uniformly 
distributed on H? In this case the T(A)  are still exponentially distributed in the 
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limit,  but  no more  with the same expectat ion,  which p r o b a b l y  kills the graph-sieve.  
W h a t  remains  true is the C o n w a y  a lgor i thm and  the a sympto t i c  exponent ia l i ty .  
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