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Summary. Strong approximation theorems for continuous time semimartingales 
are obtained by combining some techniques of the general theory of stochastic 
processes with some of the direct approximation of dependent random variables 
by independent ones. Continuous processes with independent increments whose 
variance functions increase polynomially or exponentially are considered as 
approximating processes. The basic assumptions of the main results only contain 
rates of convergence for certain probabilities. In particular, moment assumptions 
are not required. Some almost sure invariance principles for partial sum pro- 
cesses with nonlinear growth of variance and for functionals of Markov processes 
are derived by applying the main results. 

Introduction 

Almost sure invariance principles for stochastic processes have been derived 
under various dependence assumptions. Most of the results concentrate on dis- 
crete time processes, in particular on the approximation of partial sum processes 
by a Brownian motion with variance parameter o -2. With a sufficiently small 
error term, such as a term of the form O (t ~- ~), such an almost sure invariance 
principle essentially implies all classic fluctuation results (cf. [27], Chap. 1). 

In this paper, strong approximation theorems for continuous time semimar- 
tingales are derived. This class contains most of the stochastic processes relevant 
for applications such as partial sum processes, diffusions, point processes and 
local martingales (cf. [18, 23, 30]). As reference processes, i.e. as approximating 
processes, we consider continuous processes with independent increments, whose 
variance functions are polynomial or exponential. The error term O(t ~-z) is 
replaced by O(f(t)�89 In this term, the natural coupling of the "inner time 
scale', i.e. of the variance function f of the reference process, with the approxima- 
tion rate is expressed. 

The basic assumptions which allow the approximation of the semimartingales 
are given in convergence rates for certain probabilities only. Having the canoni- 
cal decomposition of semimartingales in mind we actually consider three terms: 
First, the probability for the big jumps, second, the probability for the deviation 
of the two time scales, and third, the probability for the deviation of the truncated 
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trend parts. In particular, no moment assumptions are required, which is an 
essential feature distinctive from many strong approximation theorems known 
so far (cf. [1, 5, 25, 27]). 

Our main result concerning polynomial time scales (Theorem 1) is stated 
in the next chapter. The fundamental approach in deriving this theorem is based 
upon approximating dependent random variables by independent ones accord- 
ing to a result of Berkes and Philipp [1] on the one hand, and upon some 
ideas taken from the proof of the weak invariance principle for semimartingales 
by Liptser and Shiryaev [21] on the other hand. From this result we deduce 
some conclusions. 

Chapter 2 is devoted to the discussion of results for exponential time scales 
(Theorem 3). In Chaps. 3 and 4, we prove Theorem 1 and Theorem 3. 

In Chap. 5, a strong invariance principle for discrete time partiaI sum pro- 
cesses with nonlinear growth of variance is derived by applying Theorem 1. 
This result is a substantial improvement of the almost sure invariance principle 
for martingales by Morrow and Philipp [24] and thus emphasizes the right 
choice of the assumptions in our main results. In verifying the conditions of 
Theorem 1, it is essential to consider probabilities only and not more global 
conditions such as statements on the order of moments. 

Using Theorem 2 an almost sure invariance principle for functionals of Mar- 
kov processes is deduced in Chap. 6. 

The theorems are phrased by means of the general theory of stochastic 
processes. Therefore, the required terms and definitions are shortly explained 
in the following. For this, the notations from [18] and [23] are mainly used. 
For further studies see [6, 7, 13, 15]. 

Let (/2, 9/, P) be a complete probability space and o ~ =(~),_>_o a nondecreas- 
ing right-continuous filtration. We use the notation X = (X, i f )  for an i f -adapted 
stochastic process X =(Xt)t>_0 with right-continuous paths having limits from 
the left. As usual, Jllioo (~-) ( ~ 2  (~-)) denotes the class of all local (locally square- 
integrable) martingales M =(M, i f )  with respect to ~-. We also write "U(ff), 
respectively ~oc (if)  for the set of processes V= (V, Y) with paths of finite, respec- 
tively locally integrable variation over every compact  interval of N. + ..= [0, oo). 

A stochastic process X=(X, ~ )  is called a semimartingale with respect to 
~- if it admits a representation X = M + V  where M~JCll~oc(ff) and Ve V( 2 ) .  
If a semimartingale has a decomposition X = N + V  where NeJ/l~=(o~) and 
V ~ o = ( g )  it is called a special semimartingale (with respect to if) .  

We denote the predictable a-field of subsets of IR + x Q by ~ = N ( o  ~ )  which 
is generated by the continuous i f -adapted processes. Moreover, a process X 
is called predictable if the mapping (t, co)~ X,(co) is ~-measurable. 

For every special semimartingale X = (X, Y) a uniquely determined predict- 
able process ASdlo=(ff) with A o = 0  exists such that X--AeJ~llo=(~). This pro- 
cess A is called the compensator of X. Here and in all the sequel we identify 
processes which are P-indistinguishable. 

In particular, if M~J/12=(~ -) we denote the compensator of M = by (M> 
and call it quadratic characteristic of M. 

Now let X = (X, ~ )  be a real semimartingale with respect to f t .  Write ~ + (~) 
for the Borel-a-field of N+0R) and define 

S > O  
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for A e N  + Q N .  Here e~ denotes the Dirac measure at a and A X ~ , = X s - l i m X  u 
uTs  

the jump of X at time selR +. The random measure # is called the random 
measure associated to the jumps of X. For  this random measure /~ a unique, 
positive, predictable random measure v called the compensator of # exists such 
that for every ~ | N-measurable mapping W: f2 x N + x N. ~ ~ +  

and for all c0ef2, t > 0  v(cn, P, + x{0} )=0  and 0<v(co, { t } x l R ) < l  (see [18], 
Theorem II.1.8 and Proposition II.l.17(b)). 

We consider the following process associated to the semimartingale X: 

1 

x~l):=Z(AXs)l{[aXsl>a}= f ~ x#(ds, dx), 
s < t  0 {Ix]> 1} 

t>0 .  

The process X - - X  (1) is also a semimartingale, has jumps bounded by i and 
is therefore a special semimartingale. Thus the compensator B = (B, ~')E ~or (@) 
of X -  X (1) exists. 

Further, we denote the continuous local martingale part of X by X c = (X ~, Y )  
(see [18], Proposition 1.4.27) and its quadratic characteristic by (X~). 

This triple (B, (X~), v) uniquely determined by the semimartingale X is called 
the local characteristics of X (associated to the truncation function h(x) 
:=x l~lxl_< 1~, xelR). 

In terms of this triple and the random measure /~, the semimartingale X 
has the following decomposition (cf. [15], Corollary III.3.78): 

X=Xo+X~+~ ~ x(#-v)(ds, dx)+~ ~ x#(ds, dx)+B. 
{Ixl_<l} {Ix[> 1} 

This decomposition is called the canonical representation of the semimartingale 
X. 

If a semimartingale X is a process with independent increments there is 
a version of the triple (B, (XC), v) which is not  random and, conversely, if a 
semimartingale has deterministic local characteristics this process has indepen- 
dent increments. 

Especially, if Z = (Z, ~ )  denotes a continuous process with independent incre- 
ments, two deterministic functions W and f on ~ +  exist such that the local 
characteristics are given by (W,f, 0), the process M = Z - - W  is a martingale, 
and its quadratic characteristic ( M )  is f The function W is called the drift 
of Z and f is called the variance function of Z. 

Finally, we introduce two processes which we use in a suitable way in order 
to control the inner time scale of the semimartingale considered in the following 
chapters. Therefore, let a constant p > 0  and a positive increasing function f 
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on ]R + be given. We define the processes V(X,f ,  p) and V(X) (with values in 
[0, oe]) for tslR + by 

v(x,f, ;),:=<xc>,+ i I x = ~(d~, ax) -  y~ [ I x v({s}, dx)Y 
0 {x2~f(a)S  o} S<=t {xZ<=f(S)S-P} 

and 
t 

v(x) ,=(x% + I I x~ v(ds, dx)-  Y [Ix u({s}, dx)y. 
0 s<t  

These processes are of course quadratic characteristics of suitably truncated 
local martingale parts of X. 

1. Results for polynomial time scales 

Let W=(W,)t>_0 be a real-valued function and f a nondecreasing one on R + 
with fo = 0. In this section we assume that f grows polynomially, i.e. there is 
some 2oe(0, 1] and some sufficiently large t * ~ R  + such that for t>t*  the map- 
pings t ~ f ( t ) t  -z~ and for all ~ > 0  t ~ t ~ - l o g f ( t )  are increasing. In order to 
avoid trivial problems, let us assume for the rest of this paper that f ( 1 ) > 0 ,  
X o = 0  and AX~=O for all ss[0,  1]. 

Using " 4 "  instead of the Landau symbol "O(. . . )"  we have the following 
strong approximation theorem for semimartingales: 

Theorem 1. Let X = (X, ~ )  be a real semimartingale with respect to ~ ,  (B, (X~),  v) 
its local characteristics and 12 the random measure associated to its jumps. Suppose 
constants 6, ~b, ~9, y > 0  and ps(0, 2o) exist such that 

(1.1) 
(X 2 > f iS)S- P} 

(1.2) 

and 

(1.3) 

P(I V ( X , f  P)t-f(t)l>=>-~(t) t - * )~  t -~ 

( ~ dx)-w~ ) P sup B~+~ I xv(du, >-f(t)~t -~ ~ t  -~. 
\ s < t  0 {t <x2<=f(u)u-'~} 

Then the semimartingale X can be redefined on a richer probability space together 
with a continuous process Z=(Zt)t>=o with independent increments, drift W and 
variance function f such that with probability 1 

X t  - Zt  ~ f  (t) ~ t -  ~ 

for all 2e(0, rain{f, 0, 7, 117p/278, 13 ~/34, 13 20/34}/26). 

Often one wishes to formulate all assumptions in terms of the local character- 
istics. For  this reason, condition (1.1) is checked under this aspect in the following 
proposition. For  the sake of brevity, we use notations of the form "(n.k) is 
valid" for n, k =  1, 2, 3, ... instead of "(n.k) is valid for appropriate constants 
~p, 6, p,O,y>O". 
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Proposition 1.1. (i) I f  there are constants p, 3, Y > 0 such that 

(1.4) 
{x2 > f ( s ) s -  o} 

then (1.1) is valid. 
(ii) Assumption (1.1) implies (1.4),/f 

(1.5) E [sup I A Xs I1 ~f(t) ~ t-~ 
s<=t 

holds for some e > O. 

Proof of Proposition 1.1. From [18], Theorem II.1.8(i), for all finite ~ - s topp ing  
times r follows 

(1.6) E l i  ~ ]xl#(ds, dx ) ]=E[ i  ~ l x l v ( d s ,  dx)]. 
(x2 > f ( s ) s -  o} (x2 > f ( s ) s -  o} 

Thus the stochastic integral ~ Ixl l(x2>f(s)s ~ ~(ds, dx) is dominated in the sense 
of Lenglart by the corresponding integral with respect to v and vice versa. 
(i) The Lenglart inequality (cf. [-181, Lemma 1.3.30(a)) and (1.4) yield 

~ t - ( a - ~ ' ) + P  S Ix[v(ds, d x ) ~ ( t )  t -~ ~ t  ~' 
{X 2 • f ( s ) s -  o} 

for 0 < 6 ' < 6 ,  0 < y ' < m i n ( b - - 6 ' ,  7) and large t, i.e. (1.1) is valid. 
(ii) Assume (1.1) and (1.5). By the definition of the random measure # and 
(1.5) we get 

E[sup  S [xl#({s},dx)l<=E[suplAXsll<f(t) �89 
s<t  {x2> f(s)s-O} s<t  

Because of (1.6) we can use the Lenglart inequality again, but now in the form 
of [181, Lemma 1.3.30(b). Thus we obtain from (1.1) 

P ( f  ~ ]xE v(ds, dx)>--f (t) ~ t-~') 
{xZ > f ( s ) s -  p} 

<-<_(f(t)~ t-~')-t {f(t)~ t-~ + E[sup 
s<=t {x2> f ( s ) s -p}  

{X2 >- f ($) s - p} 

<t -~ '  

Ixl u({s}, dx)]} 

for 0 < 6 ' < 3  Ae, 0 < 7 ' < m i n ( 6 - - 6 ' ,  ~--~', y) and large t, i.e. (1.4) holds. 
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After condition (1.4) has in the following proposition been replaced by a 
more global assumption which is a little stronger but often satisfied in applica- 
tions the two other conditions of Theorem 1 can equivalently be rephrased. 

Proposition 1.2. Let the jumps of the semimartingale X satisfy the regularity 
assumption 

for some p > O, then: 
(i) Condition (1.4) is fulfilled. 

(ii) Assumption (1.2) is equivalent to 

(1.8) P(] V (X)~-- f (t) [ > f (t) t-g') ~ t - ' .  

(iii) Assumption (1.3) is equivalent to 

( (1.9) P s u p  ~ xv(du, >f(t)~t -~ ~ t  -~. 
\ s< t  0 {x2 > I} 

Remark 1.3. Assumption (1.7) is equivalent to 

(1.10) E[f , y2f(s)-~sPv(ds, dy)]<oo. 
{y2> f ( s )s  o} 

This remark is an immediate consequence of [18], Theorem II. 1.8 (i). 

Proof of Proposition 1.2. Let t be sufficiently large and, without loss of generality, 
p<2o.  
(i) By the Markov inequality and (1.10) we obtain 

P ( i  ' Ixlv(ds'dx)>f(t)4t-a) 
ix2 > f(s)s- o} 

{xa >f(s)s o} 

] < t ~-0/2 E I x 2 f ( s ) -  1 s o v(ds, dx) 
~- 1 {x2 >f(s)s- o} 

~ t  -y for 6e(0, p/2) and 7e(0, p/2--6]. 

(ii) In an analogous way we get 
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from (1.10) for ~s(O, p) and 7e(O, p - ~ ] .  Since 

IZ[Ixv({s},dx)] -E[ I xv({s},dx)] l 
8=_<t $ ~ t  (Jr =< f ( s ) s -  P} 

--<E{E I xv({s),dx)] 
s<=t {x2> f(s)s-o) 

+21 I X V({S}, dx)l "1 I x v({s}, dx)l} 
{x z > f ( s ) s  - o} {x  2 < f ( s ) s  - o} 

--< 2 { I x 2 v({s}, d x ) + 2  ~ Ix l f (s )~s  -pIe v({s}, dx)} 
s_-< t {x2 > f ( s ) s -  o} (x 2 > f ( s ) s  - o} 

< 3 i ~ X 2 v(ds, dx), 
0 { x 2 > f ( s ) s - p }  

we conclude the equivalence claimed in (ii) from the triangle inequality and 
(1.11). 
(iii) For  the equivalence of (1.3) and (1.9) it is sufficient to show that for appro- 
priate O, 7 > 0 

P ( s u p  i ~ xv(du,  dx) >=f(t)~t-~)~t  - ' .  
\ s<- t  0 { x 2 > f ( u ) u - O }  

Since 

i i sup ~ xv(du,  dx) < ~ Ix[ v(ds, dx), 
S ~ t  {jr > f (U)U-  O} ( x 2 > f ( s ) s - p }  

the inequality above immediately follows from (1.4) for 0 = ~5 E (0, p/2) and 7 ~ (0, p~ 
2 -  0] (see also Proof of (i)). 

As we are going to see in the next theorem, the regularity assumption (1.7) 
does not only guarantee the convergence of the big jumps in the sense of (1.4) 
but it is also the condition that yields the local square-integrability of semimar- 
tingale X (cf. [18], Definition II.2.27). The reason for this is the fact that a 
semimartingale is a locally square-integrable semimartingale if and only if the 
process supX~ is located in ~oc(~-) (see [18], Lemma II.2.28), which is implied 

s_.~. 

by (1.7) in addition to condition (1.4). 
Using the special semimartingale property, the assumptions (1.8) and (1.9) 

are rewritten in a more compact manner which helps phrasing the following 
strong approximation theorem. 

Theorem 2. Let X = ( X ,  ~ )  be a real semimartingale with respect to ~ .  Suppose 
that the random measure # associated to its jumps satisfies (1.7)for some p > O. 

Then X is a locally square-integrable semimartingale, i.e. a uniquely determined 
predictable process A = (At)t>= o ~ S~loc (o~) with A o = 0 and a square-integrable local 
martingale N = (N, ~ )  exist such that X = N + A. 

Furthermore, assume there are constants ~, O, Y > 0 such that 

(1.12) P(I ( N ) t -  f (t)l >-J (t) t -e)  ~ t -~ 
and 

(1.13) P(sup I As - W~ ] ->_J'(t) �89 t -~) ~ t -  ~. 
8=<t 
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Then the semimartingale X can be redefined on a richer probability space together 
with a continuous process Z=(Zt)t>=o with independent increments, drift W and 
variance function f such that with probability 1 

x , -  z , , e f  (t)~ t - ~ 

for some 2 > O. 

Proof of  Theorem 2. Without loss of generality we can assume p < 2 0. 

(a) Defining for each n e N  the o~-stopping time R. by 

R. =inf{t  > 0: sup X 2 + Z (A X,) z > n}/x n. 
s<=t s < t  

we get from (1.7) and the definition of # 

E [ sup X, z ] < E [ sup 2 {X 2_ + (A X~)2}] 
s < R n  s < R , ,  

_-< 2E [ sup X~ + sup {(A Xs) 2 I{(AX~)2 <=~(,)~-p} + (A Xs) 2 l{(~xs)2> f(~) ~ p}}] 
s < R , ~  s<=Rn 

<_2n+2f(n)n-~ ~ x2f(s)- lsP,u(ds,  dx)]<oo. 
{x2 > f ( s ) s -  o} 

Consequently, the process sup X~ is locally integrable. Hence, we see from [-18], 

Lemma II.2.28, that X is a locally square-integrable semimartingale, i.e. it admits 
a unique decomposition X = N + A with N e Jg2 c (~)  and predictable A e dloo (~)  
with A 0 = 0. 
(b) Denote the local characteristics of X by (B, (X~), v). From [,18], Proposition 
II.2.29(a), Eqs. 2.30 and 2.31, we know that the process A is given by 

(1.14) At=Bt + i ~ xv(ds, dx) 
0 (x2> 1) 

and that the quadratic characteristic of N can be calculated thus 

(1.15) 
t 

( N>t = ( X~)t + ~ ~ x 2 v(ds, d x ) -  ~ [~ x v({s}, dx)] 2 = V(X)t. 
0 s < t  

Introducing (1.14), respectively (1.15) in (1.13), respectively (1.12), we obtain the 
validity of (1.8) and (1.9), respectively. From Theorem 1 and the equivalences 
of Proposition 1.2 we conclude the assertion of Theorem 2. 

Remark 1.4. For local martingales, Theorem 2 is especially useful. Because of 
its uniqueness the predictable process A of Theorem 2 equates the compensator 
of process X and therefore it vanishes identically in the case of local martingales. 
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So, the validity of (1.7) and (1.12) suffices for a strong invariance principle for 
local martingales. If in addition X is continuous the jump condition (1.7) is 
trivially satisfied. 

Remark 1.5. The relevance of the assumptions (1.7), respectively (1.10) and there- 
fore of condition (1.1) in particular becomes clear if a partial sum process of 
the form X , =  ~ (,, t > 0, is considered for a sequence ((,),>__ 1 of real-valued 

n < t  

random variables. 
In the case of almost-sure invariance principles for such time-discrete pro- 

cesses with Brownian motion as reference process and error term O(t�89 a 
(2 + 6)-moment (3 > 0) of these random variables being uniformly bounded is 
a standard condition (cf. [-5, 10, 19, 25, 27]). This boundedness implies assump- 
tion (1.7) (with f ( t )  = t). 

If (~,),>_ a even is a sequence of identically distributed random variables this 
moment condition on the other hand ensues from (1.7), i.e. in this case the 
regularity assumption (1.7) is equivalent to the existence of a (2 + 6)-moment. 

In this context one should not leave unmentioned that this moment condition 
is necessary for such a strong invariance principle (see [-4], Theorem 2.6.4). 

Proof of Remark 1.5. (a) Let ((,), > 1 be an arbitrary sequence of random variables 
with 

supE El ~,]z +a] = C <  
n > l  

for some 3>0.  Then we have for p:=6(4+26)  -1 and all h e n  

l~a . . . .  o},~ j<EEIGI2+a]n- ( l - ' )~+~ -(~+~ 

Summing over n yields (1.7). 

(b) Let ((,), __> 1 be a sequence of identically distributed random variables satisfy- 
ing (1.7) for some pc(0, 1). Then for 6.'=2 p/(1 - p )  

E[-IG 12+~ ~ ~ P((~>n z/cz+~ 
n>__O 

_<2+ ~ E[(~ 1(~ .-2/(2+0)] - -  ~ .  n 2 / ( 2  + ~i )}  I t  - I  

n>2  

{x2 > sl - o} 
oC. 

2. Results for exponential time scales 

In this chapter, we denote a real-valued function on N + by W and an increasing 
one by f with )Co = 0. Further, we assume that f grows exponentially, i.e. there 
are constants f l > e > 0 ,  C > 0  and t * > 0  such that for all t> t*  the function 
t ~ exp {:} f ( t ) -  1 is decreasing and the inequality exp {:} f ( t ) -  1 > C is satisfied. 
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Theorem 3. Let X =(X, ~,~) be a real semimartingate with respect to ~ ,  (B, (X~),  v) 
its local characteristics and # its random measure associated to the jumps. Suppose 
that constants ~, O >= 6 fl, ? > 6 f l  and ~b, p >= 16fl exist such that 

(2.1) 

(2.2) 
and 

(2.3) 

P ( f  ~ IxJ#(ds, dx)>=f(t)-~t-a)~t - ' ,  
(x  2 > f ( s ) s -  o} 

P (I V(X, f p) t - - f  (t) l ~ ( t )  t-O) ~ t-~ 

( s ) 
P sup B , + ~  ~ xv(du,  d x ) - W ,  >__f(t)~t -~ ~ t  -~. 

\ s<=t 0 {l<x2<=f(u)u P} 

Then the semimartingaIe X can be redefined on a richer probability space together 
with a continuous process Z=(Zt)t_,_ o with independent increments, drift W and 
variance function f such that with probability 1 

Xt - Zt ~f(t)  ~ t -  ~ 
for some 2 > O. 

In analogy to Chap. 1, corresponding propositions and remarks on Theo- 
rem 3 can be phrased. Furthermore, strong invariance principles for semimar- 
tingales with Brownian motion as reference process and logarithmic approxima- 
tion rate can be derived from Theorem 3 by means of time changes. 

3. Proof of Theorem 1 

The proof follows a method developed by Berkes and Philipp [-1] based on 
the approximation of dependent random variables by independent ones with 
prescribed distributions. We are going to approximate the semimartingale X 
at suitable chosen time points by a continuous process with independent incre- 
ments and after that we include the intermediate points with appropriate maxi- 
mal inequalities. 

Let the process X--(Xt)t>_ o satisfy the assumptions made in Theorem 1. With- 
out loss of generality we can assume that 6, ~OE(0, 2o), ~, 0~(0, 12o) and t*=  1. 

We put a~=6,5(min{6, O, 7, 117p/278, 13 ~/34}) - t  and define for k e n  

tk,=U (to:=0), lk,=tk--tk_l and hk'=f(tk)--f(tk_O. 

Lemma 3.1. As k-~ co we have 

k -1 ~hkf( tk)  -1 ~ k  -�89 

Proof of Lemma 3.1. Since the function t ~ f ( t )  t -z  is increasing for all 2~(0, 2o), 
the definition of t, yields 

f (tk- ,) f (tk)- 1 ~_~ (tk/tk- 1)- Z = [k/(k-- 1)] - z~ = (1 -- k -  1)z~ 

for all k > 2. Therefore, we have 

hk f  (tk) - t = 1 - - f  (tk- O f (tk) -1 >= 1 - - ( l - - k -  ~)z~ >> k-  1 
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Furthermore, if we set ~c.'=(2c0 -1 the function t ~ t K - l o g f ( t )  is nondecreasing 
and we get f ( t  k_ 1)f( tk)-  1 > exp ItS_ 1 -- t~]. Together with the definitions of tk 
and K we conclude 

h k f  (tk)- 1 = 1 - - f  (t k_ 1 ) f  (tk)- 1 ~ 1 - - exp  ITS,_ 1 - -  t~] _--< t~-- t~_ t ~ k-3 .  

Denoting the continuous local martingale part of X by XC= (X c, if) ,  we get 
the following decomposition of X: 

Lemma 3.2. For all t6]R +, Xt  admits the representation 

x~=x~+ i ~ x(~-v)(ds, dx) 
0 { x 2 < f ( s ) s - O }  

+ Bt + i ~l  <~<=f(s)~-o~xv(ds, dx) 
0 

+ i ~ x,u(ds, dx) a.s. 
0 {X2~'f(s)S-P} 

This decomposition is a slightly more general form of the well known canonical 
representation of the semimartingale X (see [18], Theorem II.2.34). Since the 
proof  follows analogous lines, it is left to the reader. 

In the following let k e N  and t~lR + be arbitrary. We define the filtration 
~ k  = ( ~ t k ) t  ~ 0 by 

(3.1) g? . -= ~ , ~ _  1 +,~ ^ ,~ 

and we set 
(3.2) X k:= hk ~ {X(t~_~ + o ̂  ~ -- Xt~_~ } 
and 

c X c (3.3) ~'tYk . . . .  "--"kt'-~ {X(t,,_,+t)^t,~-- ,,,_,}. 

Therefore, the process xk=(x~)~>=O is a semimartingale and xk'~=(X~'~)~>_O is 
a continuous local martingale with respect to o~k. Further, by pk, respectively 
v k denote the random measure associated to the jumps of X k, respectively the 
compensator of #~ and define the function g(k, ") by 

(3.4) g(k, s) '=hk 1 f ( ( t k -1  + S) A t,) [(tk- 1 + S) A tk] -o 

for s > 0. Thus, because of Lemma 3.2, (3.2) and (3.3) we obtain the decomposition 

(3.5) x~, = x~ 'c + i ~ x (#k_ ~k)(d s, d x) 
0 {x2~g(k,s)} 

0 

t 

+ I ~ x ~(ds, dx) a . s .  

0 {x2>g(k,s)} 

x vk(ds, dx) 
{h,y 1 <xZ<g(k , s ) }  
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If we write 

(3.6) 

t 

(3.7) V/'.'=B~ + .[ j" xvk(ds, dx) 
0 {hffl<x2<=g(k,s)} 

and 

(3.8) M~"=X~ '~+ i S ~(~-v~)(ds, d~), 
0 {xZ<=g(k,s)} 

(3.5) yields the representation 

(3.9) X~ = M~ + Vt k + i t 
0 {x2>g(k,s)) 

xl?(ds, dx) a.s. 

Lemma 3.3. The process M k= (Mk)t > 0 is a square-integrable local martingale with 
respect to ~ k  and its quadratic characteristic at time t is given by 

(3.10) (Mk)t=(xk 'r  i ~ X a vk(ds, dx) 
0 (x2~g(k,s)} 

- 2 E  ~ ~v~((s),dx)l ~. 
SNt  {x2<~g(k,s)} 

Having in mind the strong orthogonality of the continuous and purely discontin- 
uous local martingale part of M k, the assertion of this lemma can easily be 
deduced by applying [181, Theorem II.1.33(a), to the function Uk(t,x) 
: = X  l{x2<=g(k,t)} (t>=O, x~]R). Therefore, we omit the proof. 

Let us define the ~-k-stopping time z k by 

Zk,=inf{t>----_O: (M~)t> 1)/x lk. 

The quadratic characteristic of the stopped local martingale ~k .... t~rk,~ ~w "--l, l w t  ) t>O 

�9 .=(M~,,~)~ o~ J ~ ( ~  k) at time t~]R + is in view of (3.10) given by 

(3.11) 
t A T  k 

k,'r u k,c X 2 

0 {x2 =<g(k,s)} 

- 2 E ; xe((s},dx)l . 
s<=t ~, ~k (xa <_g(k,s)) 

We eventually apply [11, Theorem 1, to the sequence (X~-Wl~)k$1 where the 
deterministic process wk=(wtk)t>O is given by Wtk,=hZ~{W(t,_l+t)At~ 
--Wt~_ 1} (t>0). If we put Tk:=k49/48,we need a suitable estimate for 

(3.12) Zk-'= sup E[[E[exp{iu(X~-- W~)} - exp{  --lu2} [Yo ~] [l- 
lu[~ Tk 

For this purpose let k be a fixed and sufficiently large integer. 
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First we consider the term 

(3.13) 2(k ~), = sup E [-IE [exp {i u (X~ - wlk~)} -- exp {i u ML} I~o k] I]. 
lul < Tk 

Defining ek:=k -5"25 and Fk:={[X~-- w~k _ M,~k ] < 3 ek} e ~  ' we get 

(3.14) 2(k 1) < sup E [1 exp {i u(X~k- Wzk~)} -- exp {i uML} l] 
lul <- Zk 

= sup [~ lp~ l exp {i u(X~.-- W~-- M~)} -- 11 dP 
lul < Tk 

+ I 1F~ lexp{iu(X~-  Wzk~--M~)} - I I dP] 

== 2P(FkC) + Tk ~ 1F~ k k k IX~--W~--M~kldP 

< 2P(F{)+ aek Tk. 

To evaluate P (F{) we split X~ according to (3.9). Hence follows 

(3.15) p(FD ~ p ( i  Vz~_ W kl >~k)+ k k P(IMz.-M~kI>ek) 

( l~ dx) ) +P ~ I x#k( ds, >ek �9 
0 {x2>g(k,s)} 

Now we estimate the summands  of the right hand  side separately. 
F r o m  (3.4), (3.6) and (3.7) we obtain 

P(I vlkk - wzkkl >~k) 

tk 

= P Bt k -  Bt~_ ~ + 
t k -  1 

x v (d s, d x ) -  Wt~ + Wtk , > hk ek) 
{1 <x2<=f(s)s-P} 

tk 

<=P B,k+I f 
0 { l < x 2 < = f ( s ) s - o }  

xv(ds, d x ) -  Wt~ >�89 

t k -  1 

+P Bt~ , +  I I 
0 { l<x2<=f ( s ) s -P}  

1 ~  ) x v (d s, d x ) -  W,~ , > ~ hk ek �9 

Since the definition of t k and L e m m a  3.1 together with e 0 > 6,5 imply 

- •  0 5 , 2 5 k - ~ k ~ O  k ~  s,75>~k3/4 ' e k h k f ( t k )  ~ t k >~ k 

we have �89  ~>  �89 - ~> ekhk = f  (tk) tk = f  (tk-1) ~ t[-~ Consequently,  from assumption (1.3) 
we get 

(3.16) P(I k k _ VZk-- W~kl > e ~ ) r  t ; ~ l .  
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To estimate the second term we apply [16], Corollary 1.3.21 to S=zk ,  T=Ik, 
= ek and ~/= 2 e~. We have 

(3.17) P ( sup k k ] M t - -  m,~ ] > ek) 
z k ~ t ~ l k  

<= 2 ek + P(< Mk)l,, - < Mk),~ > 2 e2) 

<2ek+P(]  <Mk)lk - 1] > e~)+ P(] <Mk)~ - 1[ __>e~). 

Because of Lemma 3.3, Eq. (3.10), follows 

P(I ( M * ) , ~  - 11 >ek a) 

( =P <xk'r + i I 
0 (x2<g(k,s)) 

x 2 vk(ds, dx)  

s<lk (x2<=g(k,s)) 

= P(I V ( X , f ,  P ) , k -  V ( X , f ,  P)tk_, - hk I >= hk e~) 

hk ek ) <=P(IV(X, f  p)t~--f(tk)] >=1 a 

1 =~hkek)" +P(lV(X,f,p),~_ - - f ( tk -1) l  >1 3 

Since Lemma 3.1, ~ ~h >= 17 and the definitions of t k and e k imply 

hk e2 f (tk) - 1 t[ >> k -  16,7s k~0~ >> k+ 

i h ~3 and thus ~ k k ~ ( t k ) t [  ~ >f(tk-1)t~-r from the inequality above together with 
(1.2) we get 

(3.18) n (1 (Mk) t~- -  11> e~) 

< P (] V(X ,  f P)t~ - - f  (tk)] > f  (tk) t~ ~') 

+ P(I V ( X , f ,  P)tk- i  - - f ( t k -  1 )]>f ( tk -  1) tk--~l) 

~ t~ ~ + t~-~l ~ t~-Vl . 

Furthermore, taking into account the definition of "c k < I k we have 

P(I (Mk)~k - 11 _-__e2) 
-~ n ( ( M k ) ~  - 1 >= e 3, Zk < Ik) d- n(] ( M k ) l k  - -  i[ __> e~, z k = lk) 

~, zk < lk) + <__P((Mk),~ - 1 >= P(] (Mk) ,~ - 1[ _>--~, Zk=lk) 

< P(I (Mk) t k - -  11 > s2). 

Because of (3.18) this means 

(3.19) P(I ( M ~ ) ~ -  11 > ~2) ~ t;-~l. 

Introducing (3.18) and (3.19) in (3.17) we conclude 

(3.20) P( sup I M ~ - - M ~ l > e k ) ~ k + t ~ s  
Z k ~ t ~ I k  
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Now we consider the third summand of (3.15). We have 

)C e I f x#k(ds, dx) >ek <=P I 
0 {x2>g(k,8)} {x2>f(s)8 -p} 

0) [xl I~(ds, dx)> h~ e k . 

Lemma 3.1 and the relation e 6__> 6,5 imply h k e k f ( t k )  ~ ~k~,~ , and, consequent- 
ly, f(tk) ~ tk <= h~ ek" Together with assumption (1.1) we obtain 

(3.21) 

Finally, inserting (3.16), (3.20) and (3.21) into (3.15) for the probability of fk ~ 
follows 

(3.22) P(F;) ~ tS1 + ek. 

Recalling (3.14), this means for 2(k 1) 

(3.23) ;(i),~ ,'t, k tk_~l ~ - e  k r k .  

Next, we consider the term 

2(k z) (u):=E [1E [exp {i u M~,} 1~-o ~] -- exp { -- �89 u 2 } 13 

for lul<Tk, u~N.  For this purpose, let u~IR with ]u]<Tk be arbitrary, but 
fixed. 

A main tool in our proof is: 

Lemma 3.4. (a) With probability 1 we have 

(3.24) u 2 ( Mk)vk < [1 + g(k, Ik) 3 rk 2 <~ 2 rk 2 < (30 

and 
(3.25) sup [urr A M~,'~ I < 2 rk g(k, lk) ~ < �88 

t>O 

(b) Let ~l k be the compensator of the random measure associated to the jumps 
of M k'~k, then the process A k-- (A~) t => o, defined by 

t 
(3.26) A k :=�89 u 2 (xk'c'> + , ,t^~k Iy(e i"X-- l - - iux)  ~ff(ds, dx), 

0 

is predictable with respect to ~ k  and has paths of finite variation over each 
compact interval of ~ +. 

Furthermore, the process k k Z =(Zt)t_>o, given by zk- '=l  and 

(3.27) Z k .'=exp {i u M k" ~) ~?1 (A k) (t > 0), 

represents a uniformly integrable ~k-martingale with 

(3.28) E [ Z k [ Y  k ] = l  a.s. 
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Here the process g (A k) = (g~ (Ak))t >= o is defined by go (Ak) '= 1 and 

gt(A k) ,=exp {A~. I~(1 + A Ask) exp { -- A Ask} 
s < t  

(t > 0). 

Proof of Lemma 3.4. (a) Because of (3.4) and Lemma 3.1 we know that g(k, lk) 
tends to zero as kToe. Therefore, (3.11) and the definition of Zk imply 

u2(Mk)~k<Tk2(Mk)~<Tk2[l+g(k,  /k)]_--__2Tk2<Oe a.s. 

Moreover, using (3.8) and Lemma 3.1 

sup lul [ A M~t'~I <2Tk g(k, lk)~= 2 Tkh~ f (tk)~ t;o/z ~ k ~9/48 k }-p~/2 
t > o  

" ~ k - 6  ~ 1 a . s .  

(b) Since the local characteristics of M k'~k a r e  given by (0, (X k ..... ), ~k), the pre- 
dictability and the properties of the paths of A k follow in the same way as 
in [18], Sec. II.w 1., p. 85-86. 

Now, let t>=0 be arbitrary. Using the elementary estimate [e iux- 1 - i u x l  
N �89 u2 x 2 we get 

and 

(3.29) 

IAA~I ~�89 j x  2 r dx)~�89 <Mk'~k), 

A (Mk'~@t__< j x 2 Vk({t}, dx)<=g(k, t) 
{X 2 ~ g (k, t)) 

from (3.11). Thus we obtain 

[AA~l<�89 Tk] g(k, lk)~k-~2<�88 a.s. 

Since we know from [18], Theorems 1.4.61 and II.2.47(a), that g-~ (A  k) is well 
defined and Z k is a local ~k-martingale, it suffices to show for the remaining 
assertions of the lemma that the process ] Zk[ = I g - ~ (Ak) l is uniformly bounded 
by a deterministic constant. But this is shown in analogy to the proof of [21], 
Lemma 2, p. 675. 

Applying Lemma 3.4 we get from (3.27) and (3.28), recalling the definition 
of g (A k) 

2(k 2) (U3 = E [I E [exp {i u M~} I~g] - exp { - 1 u2}. E [Z~ I ~-ok3 [3 

= E [I E [exp {i u M~k } �9 (1 -- exp { -- �89 u2} �9 g ~ l  (Ak)) [ ~0k] I] 

<__E 1--exp - �89189 S J - 1 - i u x ) t l k ( d s ,  dx) 
0 

" H (1 + A Ask) -1 exp(A Ask) 1. 
S~lk A 
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Since t/k is the compensator of the random measure associated to the jumps 
of M k'~ we have 

lk 

<M~,%,= <X~,~>~+ j" j'~ ,?(ds, d~) 
0 

for all t e n  + and therefore 

(3.30) 2(k2)(u)<=E [1--exp {�89 uZ((Mk'~k)t~-- l) 

lk 
(e  iux -- I~  - - 1 - - i u x + � 8 9  t l k (ds 'dx )  

0 

s<Ik 

In the following lemma we estimate the absolute values of the stochastic integral 
and the sum from the right hand side: 

Lemma 3.5. With probability 1 

and 
I? I iux (e - 1 - - i u x q - l U Z X  2) tlk(ds, dx) <2 Tk 3 g(k, Ik) ~ 

I ~ {AA]--log(l+AA~)}l<2Tk4g(k, Ik) 
s<lk 

hold. 

Proof of Lemma 3.5. Since the jumps of M k'~ are bounded by 2g(k, lk) ~ (see 
proof of Lemma 3.4, (3.25)), we have qk(An(l l+  x {x~N~: ]xl>2g(k, Ik)~}))=0 
for all A~M + |  and with (3.24) 

Observing that 

Ik 

~o S(eiU~-- l - - i u x  + �89 u2 x2)~lk(ds, dx) 

lk 

< I ff ~luxl3~k(ds, dx) 
0 ([xl<2g(k, lk)f} 

lk 

__<�89 [u[ 3 g(k, Ik) ~ I S x2 ~k( ds, dx) 
0 

<�89 ]u] g(k, lk) ~ bl 2 ( M k ' ~ ) l  k 

<2 Tk 3 g(k, lk) �89 a.s. 

IAA~[ <1u2 I x 2 qk({s}, dx)_--<2 Tk 2 g(k, lk)<�89 
{Ixl ~ 2g(k,/k)~'} 
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for all s > 0, with the estimate I z -  log(1 + z)[ < [z [z (I z[ < �89 and (3.24) we finally 
get 

] Z {AAk- - I~  
s<=lk 

< ~, IAA~I2<2T~g(k ,  Ik) ~ IAA~I 
s<=lk s<=lk 

_-__ V g(k, Ik) Z u2S x2 ~k({s}, dx) 
s<=lk 

< Tk2 g(k, lk)u2 (Mk'~k)l~<_2Tk4 g(k, Ik) a.s. 

Now we consider the difference [ (Mk) ,~--  1]. 
Since on the set {(Mk)tk>_--l} the inequality (Mk)~ >1  holds, (3.29) and 

the definition of z k imply 

On the other hand the equality Zk= lk is valid on {(Mk)t~< 1}; hence follows 

I (Mk)~ - -  I I I{<M~>~ < 1} 

= (1 - -  ( M k ) z ~ )  { 1(o =< <M~>,~ < ~ - ~  + 1 (1 - ~  ~ <*t~>,~ < 1}} 

3 ----< I{o__< <Mk>,k < I -~}  + ek <= i{i <M~>,~- 11 >e~} -}- e3" 

Putting these two inequalities together we obtain 

E El <Mk>~-- 1 [] _-< e 3 + P([ <Mk)l~-- 11 > ek a) + g(k, lk). 

Because of (3.18) this means 

(3.31) E [1 (Mk)~  -- 1 I] ~ ek a + t;-~l + g (k, lk). 

Therefore, using (3.30), (3.31) and Lemma 3.5 we get 

,~ '(u) ~ ~ [I �89 u ~ (<M ~'~>,~- 1) 1 

lk 
+ ! S(e i'x -- 1 -- i u x + a2 u 2 x 2) tlk(ds, dx) 

+[ ~ {A Ask--log0 + A Ask)} [1 
s<Ik  A 

2 3 - 7  --1 ~ {~, + tk_~ + g(k, l~)} + T~ ~ g(k, l,)~ + T? g(k, l,) 

for all [u[< Tk. Now, (3.23) and the definitions of 2k, 2~ 1) and 2~2)(u) yield 

(3.32) )~k~ekrk+rk2{e3k+tk21+g(k,  Ik)}+rk3g(k, Ik)�89 lk). 

Since t[  ~ < t[21 ~ k -  ~ ~ k -  6,5 and, by Lemma 3.1 and (3.4) 

g(k, lk)- -hkl  f ( t k ) t k P ~ k t - " ~ 1 7 6  ~ k  14, 
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the estimate (3.32) results in 

)bk ~ Tk 3 g(k,  lk)�89 ~ k  - s99]144. 

By [1], Theorem 1, without loss of generality on this probability space a 
sequence of independent standard-normal distributed random variables (Yk)k__> x 
exists such that 

where 
~ rk -~ log ~ + , ~  rk +P(IN(0, 1)1>=�88 rk)~k -97/96. 

Thus the Borel-Cantelli lemma implies 

IXfk-- ~ k-97/96 Wlk-- YRI'~ a.s. 

Taking [1], Lemma A1, into account we can assume that on this probability 
space there is a continuous process Z=(Zt)t>__o with independent increments, 
drift W and variance function f satisfying 

Yk + Wzk=h;�89 

for all keN.  Consequently, for N > 1 we obtain 

x , ~ - z ,  = Z h~(X,~-w?- ~)~ Z h~ k-97/~ 
k<N k<=N 

= ~ f(tk)~(hkf(tk)- 1)3 k-  97/96 
k<N 

~,f(tk)~ tkl/4~k -97/96 a.s. 
k<N 

by Lemma 3.1. Since (4 ~)-1< �89 20 , the mapping t ~ f ( t )  �89 t-1/(4,) is nondecreas- 
ing and therefore we conclude 

(3.33) Xt~ , -Z tN~f ( tN)  �89 t~ ~/4~ a.s. 

Our proof is finished if we show that 

(3.34) sup hk IX k - Z k [ "~f (tk) ~ tk ~ 
O<_t<_lk 

with probability 1 holds for all 2e(0, (4 ~)-t), where 

zk :=hk �89  A tk - -Z tk_ l } ,  t~_~O. 

For this purpose let kEN be sufficiently large and 2~(0, (4 a)-~) be arbitrary. 
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(3.35) 

Defining G k ..=Z k -  W~ k, t_> 0, and splitting X k according to (3.9) we get 

k k ~ --2 P( sup h~[Xt -Z t l>4f ( t k )  t k ) 
O <=t<=lk 

< P( sup I Vt k -  wtkl>= hk~f(tk) ~ tk ~) 
O<--t~lk 

+ P (  sup [M~l>=hZ~ f(tk)~t~ ~) 
O<--t<--IIt 

+ P (  sup [Gktl>--_h~�89 f(tk)~t~ z) 
O<--t<--lit 

{x2 > g(k,s)} 

In view of the Borel-Cantelli lemma it suffices to show for (3.34) that the expres- 
sions on the right hand side of (3.35) are at most of order k-2. Now, we consider 
these terms separately. Since 0 < 2 < (4 e)- 1 < c5/26 < ~ and 

lit tk 

0 {x2>g(k,s)} 1 {x22>f(s)s P} 

a.s., 

from assumption (1.1) we find 

P(iit ~ Ixl#k(ds'dx)>=h~ f(tk)~tZz) ~t[~k-2" 
{X2 i> g(k,s)} 

Further, since 0<2<(4e)-1<0/26__<0 and therefore ltkZ>=t~_al>=tk~, we 
obtain 

P( sup IV?- w?[= > hk-~f(tk) ~ tk ~') 
O<_t<_lk 

< P (  sup S xv(ds, dx)--Wt]>f(tk)~tk 
\ O < t < t k  0 {l < x 2 < f ( s ) s - O }  

( ) -W, l_>_f ( tk_  0 tk-_~l + P  sup ~ xv(ds, dx) > 
\ 0 < t < t i t  l 0 {l <x2<=f(s)s -o}  

~t~21 ~k  -2 

from definition (3.7) and assumption (1.3) using the triangle inequality. Moreover, 
the process Gk= (G~)t>_o is a continuous martingale satisfying (Gk)tk = 1. By [29], 
Remark II.2.5, Ineq. (1), p. 26 (see also [23], Chap. 6, Example 1), we get 

P( sup [G~[>h~f ( tk )  ~t~ ~) 
O<~t<~lk 

P ((Gg)lit > (h[ ~ f (tk) ~ t[ ;.)2 (4 log k)- 1) + 2 exp ( -- 2 log k) 

= 1(1 >_h~ If(tit)t,2 2A(41ogk)- 1} -~- 2 k - 2 .  
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Hence follows 
P( sup ]Gt k] >hk~f(tk)~tkZ)~k -2, 

O<_t~Zlk 

since by Lemma 3.1 h~- lf(tk ) t[ 2z > (6 log k) 2 > 4 log k for large k. 
These last considerations and the inequality 

P( sup ]Mktl>h;~f(tk)-~t[~)<P( sup [M~l>61ogk) 
O<_t<lk 0 <--t<--lk 

= P (  sup M~>61ogk)+P( sup ( -Mk)>61ogk)  
O <t<_lk O <=t<=lk 

show that it is sufficient to prove 

(3.36) P( sup (uMtk)>61ogk),~k -2 
O<_t<=lk 

for ue{ + 1, -1} .  For this let ue{ + 1, - 1 }  and k be a sufficiently large integer. 
We have 

P( sup (uMkt)>61ogk) 
O <=t<=lk 

< P (  sup (uMk--�88 3 logk)+ P((Mk)t~> 4 logk) 
O<_t<_lk 

=<P( sup exp(uM~-�88 (Mk)zk - 11 _>_4 l o g k -  1). 
O<_tNlk 

By (3.18) we know that 

P(I ( M k ) t k  - -  11 => 4 log k -- 1) < P(I ( M k ) t ~  - -  11 ~ e2).~ tk--h ~ k- 2. 

From the inequality above we obtain 

(3.37) P( sup (uM~)>61ogk)~k-2+P(  sup exp(uMkt--�88 ). 
O<=t<--lk O<t<-lk 

In order to estimate the second summand we prove: 

Lemma 3.6. Let N=(Nt)t>=o be a square-integrable local martingale with respect 
to a right-continuous filtration (q = (~t)t>_ o with No = 0 and 

sup I A N~I < q) =< �89 log(3/2). 
t>__o 

Denote the quadratic characteristic of N with respect to (q by <N); then for 
all finite (q-stopping times S 

E [exp {N s -  �88 <N)s}] < 1 
holds. 
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Proof of Lemma 3.6. By assumption, 

(3 ~o) -2 [exp {3 ~o} -- 1 --3 ~o] =(3 q))-2 2 (3 (p)"(n!) -~ _< �89 {3 qo} < 3 .  
n>__2 

Applying [29], LemmaI.1.4, we find that the process L..=exp{N 
--(3 ~o)-a[exp{3ep}-l--3 (p]<N)} is a positive supermartingale with respect 
to fr and Lo = 1. Note that the completeness of the filtration fr which is assumed 
in the quoted lemma is not needed for that proof. Hence for all finite N-stopping 
times S we conclude 

E [exp {Ns - �88 <N)s}] _-__ E [exp {N s -  (3 ~o)- 2 [exp {3 ~o} - 1 - 3 (p] (N>s}] < 1. 

Now, we apply Lemma 3.6 to the local martingale N:=(uMk)EJ#2o(~ k) and 
the ~k-stopping time 

Sk:=inf{t<Ik: exp(uM~-�88 k 2} A (Ik+ 1) (inf0.-=oo). 

From (3.8) and Lemma 3.1 we see that 

sup IA(uMk)~[ =sup  l ~ x(pk--vk)({t}, dx)l 
t >= O t >_ O {x2 <=g(k,t)} 

< 2 g (k, lk) ~ = 2 hk ~ f (tk) �89 t[ p/2 ~ 1 log (3/2). 

Since (u M k) = ( Mk), Lemma 3.6 implies 

E [exp (u Mks,-- �88 ( M  k )s~)] < 1. 

Furthermore, the jumps of the process (uMk- �88 are bounded by 
2g(k, lk)~+�88 Ik)<3g(k, l k ) ~ k  -4 for large k and thus the set {Sk<lk} con- 
tains { sup exp (u Mt k -  �88 (Mk)t) > k 3 }. Consequently 

O <=t<=lk 

P( sup exp(uM~-�88 3) 
O<_t~lk 

_--<E[l{sk<l J 

__< E [ 1 (s~ < z~exp (u Mw - �88 ( M k ) s~)] k - 2 

_<_ k-  2 E [exp (u Mks~ -- �88 ( Mk)s~)] 

___k -2. 

Finally introducing this estimate in (3.37), we obtain the validity of (3.36). This 
concludes the proof of Theorem 1. 

4. Proof of Theorem 3 

In this proof we will reuse some parts of the derivation of Theorem 1; but 
here the assumptions (2.1)-(2.3) take the places of (1.1)-(1.3). For the sake of 
brevity we only state the essential changes. 
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Wi thou t  loss of generali ty we can assume that  7<73f l /12 ,  X 0 = 0 ,  t * = l  
and A X s = 0  for all s e [0 ,  1]. There  is a substantial  dist inction in the definition 
of tk. We set 

Z-'=�89 + 6 fl/7)e [145/146, 1) 
and define 

(4.1) tk ' .=f- l (exp{kZ})  (to :=0), 

(4.2) lk := tk -- tk- t 
and 

(4.3) hk :=f (tk) - - f  (tk -1 )" 

for k e N .  Here  f - 1  denotes  the inverse funct ion o f f .  

L e m m a  4.1. For large k we have 

(4.4) exp {t~} ~f( tk )  = exp {k z} ~ exp {t~}, 

(4.5) k z/~ ~ tk ~ k z/~ 
and 

(4.6) �89 k z-1 < h k f ( t , ) - I  ~ k z -  1. 

Proof  of  Lemma 4.1. The  exponential  behavior  of f immediately yields (4.4). 
Taking the logar i thm shows t~ ~ k z and kZ~  t~; consequently,  by raising to the 
power  1/c~ respectively 1/fl we get (4.5). 

Now,  let k be a sufficiently large integer. Then  by (4.1) 

h k f  (tk ) -1  = 1 - - f  (tk- 1) f ( tk)-i  = 1 -- exp { ( k -  1) z -  k z} 

< k Z - ( k - 1 ) Z ~ k  z-1  ~ O. 

Further ,  since (1 - t) z < 1 - Z t for small t > 0, k x -  ( k -  1) z = k z [1 - (1 - k -  1)z] 
> Z kZ- ~ follow and thus 

hk f (tk) - 1  = 1 - -  exp { - [k x - (k - 1) z] } __> 1 - exp { - Z kZ -1 }. 

Using the well known estimate 1-e-t__> t - 3  t 2, t=> O, we conclude 

hk f ( t k ) - l  > z k Z - ~ - -  3(zkZ-1)2>=�89 zkZ-1"  

In the following we use the nota t ions  made  in the p roof  of Theorem 1 for 
the quantit ies not  explicitly defined. 

Let  k be a sufficiently large integer. Putt ing 

(4.7) T k .'=k 1 + 3(~ - 6fl)/32fl = k(1 + 3 r/8 fl)/4, 

we can verbat im repeat  the p roof  of Theorem 1 from L e m m a  3.2 to the estimate 
(3.15) of P(F[). At  this point  we argue somehow different: 

Since O => 6 fl, f rom (4.5) and (4.6) we see 

�89 - � 8 9  8 - 5 , 2 5  k�89 ekhkf(tk)  tk>~k 1)k~Z/P=k-5,75+z~�89 ~ 

a �89 �89 • -~a and consequent ly  2 ~ k h k ~ ( t k )  t[a>____f(tk_O~tk 1" Thus  we obtain (3 .16) jus t  
as in the p roo f  of Theorem 1. The verification of  (3.18) can be carried out  in 
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the same way as in tha t  proof,  since the needed inequali ty lhke3>--_~f(tk) tkO 
> f ( t k -1 )  tk21 follows f rom the relat ion ~ > 16 B, L e m m a  4.1 and  

hk e3 f ( tk)- 1 t~ >> k Z- 1 k -  15,75 kOZ/p = k -  16,7s +z(1 + ~,/B)I, Go. 

An  ana logous  a rgumen t  shows 

- �89 ~ -5 ,25k �89  " ekhkf( tk)  tk>~k k-5,75+z(~+~ 

and hkek>=f(tk)-~tk~; therefore, the es t imate  (3.21) is deducible jus t  as in the 
p roo f  of  T h e o r e m  1. 

Because in this setup (see (4.7) and L e m m a  4.1) we have  p _>_ 16 B, 7 _-< 73 fl/12 
and 

(4.8) 2 Tk g(k, lk) �89 = 2 T k hk~ f (tk) �89 tk p/2 "~ k �88 + 3 ~/32fl k(1 -z)/2 k-PZ/2fl 

= k3/4+ 37~32B-Z(1 +p/B)~2 ~ k -  7,6+3~/32fl ~ k -  7 ~ 1 ,  

we can copy  the p roo f  of  T h e o r e m  1 f rom (3.22) until  (3.32). Thus  (see (3.32)) 
we get 

2k ~ e  k Tk + Tk2 {e3 + tk21 + g(k, lk)} + Tk 3 g(k, lk)~ + T~* g(k, lk). 

The definitions of  g(k, lk), tk, ek and T k and the relat ion p => 16fi together  with 
L e m m a  (4.1) yield 

}~k ~ k -  5 + 3y/32B § k -  t5,25 + 3")'/16B 

§ k�89 37/16fl-z7/fl  .j_ k3/2 + 3 }ff16fl -z(1  +p/B) 

§ k5/4 + 97/32/J -�89 +p/B) § k 2 + 37/8//-z(1 +p/fl) 

,,.~.k- 5 + 37/32B w k - 1 5 , 2 5  + 3v/16# 

§ k � 8 9  ? ( z -  3/16)/fl § k3/2 + 3 y/16fl- 17z 

§ k5/4+ 97/32fl - 17z/2 § k2 + 37/8fl - 17z 

Since 6 fl < 7 < 73 fl/12, 1 > X > 145/146 follows. Therefore,  by e lementary  c o m p u -  
ta t ions  we obta in  

,~.k ~ k ~ - e ( z -  3/16)/fl = k - ( 2 , 5  + 5 ,//16fl) 

Now,  if we cont inue following the p roo f  of  T h e o r e m  1 we conclude 

C~k4 Tk -1 log Tk+2~ Tk + P ( [ N ( 0 ,  1)[ > 1  Tk ) 

k -  {1 + 3(7 -- 6fl)/32fl} log k + k -  (2,5 + 5 ~/16fl)/2 k 1 + 3(r - 6fl)/32fl 

k - ( 1  +(v-  6//)/16fl} § k - i t 3  + 7/B)/16 

k - ( 5 / 8  + 7/16B) 
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and finally from (4.5) and (4.6) 

(4.9) Xt~,-Z,~,~ Z h~ k-(5/8+~/16#) 
k < N  

Z f ( tk)~- k�89 (Z - 1 ) - 5/8 - y/16 fl 

k<N 

= ~ f(tk)-l- k3/8 -7/16fl k-t1 +~0 -zn 
k<_N 

~f(tn)~ t~v~/16t- 3/8)/z ~' k-[1 +�89 -Z)] 
k<N 

~ f  (tiv)~ t~ ~(~/16~-3/s)/z a.s. 

for large N e N .  By our choice of Z we have 1 - Z < 7 / 8 f l - 3 / 4  and thus I(Z--1 
- 1) ~ < ~(7/16 f l -  3/8)/Z. Therefore, it is sufficient to show that with, probability 1 

(4.10) sup hk IX k -  Z k [ ~f(tk) ~ tk ~ 
O<_t<_lk 

1 7 - 6 f l  
h~ f~ 0 < 2 < 1  (Z- 1 -1 )  e -  2 7 + 6 ~  e" 

For this purpose, let k e n  be large enough and ,It(0, �89 1)c0" 
From the relations 6 fl < 7 __< 73 fill 2 and 145/146__< 2 < 1 we get 

and 

2 < 2 ? - 6 / /  ? + 6 ~  ~ < a/288 < ~ < 6 f l < 6 / x  0 

hk 1 f (tk) tk 2 Z (log k)- 2 >> k 1 - x(1 + 2 ~/~) (log k)- 21, 00. 

Especially, this yields 6 log k < h i  -~ f (tk) ~ t[  4. 
Furthermore, by Lemma 4.1 we obtain t ;  ~<= tZ_~l ~ k-~zm ~ k-2 and (see also 

(4.8)) 
g(k, t) ~ = h~-~ f (tk) ~ t ;  p/2 ~ k ~ - x)/2 -px/2fl ~ k - 4  _~1 log (3/2). 

Now, using these estimates we conclude (4.10) in the same way as we deduced 
(3.34) in the proof of Theorem 1. So, Theorem 3 is completely proved. 

5. Application to partial sum processes 

In this section we apply our strong approximation theorem for polynomial 
time scales to the special case of discrete time partial sum processes with nonlin- 
ear growth of variance and a standard Brownian motion as reference process. 
The resulting invariance principle is a substantial improvement of the invariance 
principle for martingales of Morrow and Philipp [24]. 

Theorem 4. Let (~n)n>l  be a sequence of real random variables and (~L~n),>_l an 
increasing sequence of a-fields such that ~, is ~,-measurable and 0 < E [(2] < oo 
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for all n~N. Denote the trivial a-field by ~o and the conditional expectation 
with respect to ~oc~i_ 1 by Ei ['] and assume that 

V, == L E, [ ( 2 ]  ~ oo a.s. 
i=1 

for n-~ oo. Further, suppose pe(O, 1) exists such that 

(5.1) F, E[~. ~ I~>~-0~ v. -~-~3  < oo 
n>l  

and 

(5.2) ~ E [I E,, [~,, t {r < v,,, o}l V,,- ~ - ~,)/2 l l < oo. 
n=>l 

Then without changing its joint distribution the sequence (ffn)n~l can be redefined 
on a richer probability space on which a standard Brownian motion B=(Bt)~o 
exists such that with probability 1 

(5.3) ~ (, l(v,,<=t}--Btr ~-'~ 
n=>l 

for 2~(0, p/104). 

Remark. (a) If (5.1) holds, (5.2) is equivalent to the condit ion 

(5.4) ~ E E I E ,  E~.] I gn -(1 -p)/2]  < O(3. 
n> l  

(b) Since martingale difference sequences trivially satisfy (5.4), we obtain the 
strong invariance principle of Morrow and Philipp (see [241, Theorem 1) as 
a corollary of Theorem 4. 

Proof of Remark (a). The stated equivalence follows immediately since by (5.1) 

E[IE, , [ ( .  l{r -(~-p~/2] _-<E[I(.I V~ (~-p)/2 l{r  

_< E [~2 Vn-(1 -p) 1{~ > v~- o}] 

holds for all n~N.  

Proof of Theorem 4. Let t~lR + be arbitrary but fixed and define 

a t. '=inf {n > 0: V, + 1 > t}. 

Then, at is a stopping time with respect to S =(~e,),==o and for k >  1 we have 

Vk =inf{s  >0 :  as=k}. 

Putt ing o ~ , = ~ t  and Xt,= ~', ~,, we get X t =  ~ ( ,  1w.__<~ }. 
n~O" t n>= 1 

From [ 16], Proposit ion III. 1.45, we know that  f f  = (~) t  > 0 is a right-continu- 
ous filtration and the continuous time process X =(Xt),>__ o is a semimartingale 
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(5.6) 

(5.7) 

and 
(5.8) 

adapted to ~ .  Moreover, its local characteristics (B, (X~), v) and its random 
measure associated to the jumps/1 are given by 

n ~ r  t 

( x g = 0 ,  

v((0, t] x A ) =  ~ P(O#(,eAI~,_O 
n~fft 

~((o, t] • E 1~o.~,,~. 
n ~ r  t 

for t~IR + and A e ~ .  
In the following we verify the assumptions (1.1)-(1.3) of Theorem 1 with 

f ( 0 := t .  For  this purpose let t > 0  be sufficiently large and set D 
= E E K.  ~ 1~>~,_~ v. -~l-~q. 

n ~ l  

(i) Since X has jumps at the times {Vk: keN}  only and AXvk=~k, from (5.1) 
we get 

E j" x2s -(1-") #(ds, dx) = e [  ~ ~2 l{~.~>v.~-o} V~ -~ = D <  0% 
{xZ>s  1 p} n>=l 

i.e. (I.7) is fulfilled. Just as in the proof  of Proposition 1.2(i) we see that (1.1) 

holds for P 6=~-=7 .  

(ii) D e f i n e f o r t e l t  + B't,=Bt+ i ~ xv(ds, dx). 
O {X2> 1} 

Using (5.5), (5.7) and the Markov inequality, we obtain 

P (sup I B;I _-> t ~ - p/a) < t -  (~ - p/a) E [ E I E. [G] I] 
s<<_t n < a t  

<t-~ E[ ~ IE, ff ,] l  V. -~ 
n>=l 

t - -  p]4 

from (5.4), since V, =< t holds on the set {n < at}. So, conditions (1.9) and especially 
(1.3) are satisfied for 7 = 0 =p/4. 
(iii) Because of (5.1) and (5.2) we have 

(5.9) P ( E  (A B',) 2 > 1 t '  - 7pno) 

< n (  y, v.-"-"~{IE.[C,  l~a_<v.,. ~] I ~ 

+ E. [r 1~ a > v . '  j } > k t -  ~ ~/1 O) 

--<2 t -3on~ y~ {E[I e .  K.  1~.~__< ~,.- ~] t V.-"-~/~]  
n > l  

~t-3p/lo. 
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Moreover, by (5.7) the definitions of Vk and ot yield 

(5.1o) P ~x 2 v(ds, �89 1-vp/,o =P(t--  Va>=atl-7~176 

To evaluate this last probability we need: 

Lemma 5.1. We have 

P( ~ e.+l [~2+ a] l (a,=.}> = V~+~t./4)<__(1 +D) t-o/a. 
n>-O 

Proof of Lemma 5.1. Since with probability 1 

2 E , . I  [~, .  1] l(a~=,} 
n__>0 

=< Z l~a,=.~{v:+-~"+E.+l ~ ,~-(1- .n  v:+-?} 
.=>o 

= V~+f Z l~a~=,}{1 + E , + I  [~2+1 V,+(~ -~ l~,+,>v,~,;e}]} 
n>0 

<__ V#+f {I + Z E. [#2 V-(I-o) l(~.=>v.,-.}]}, 
n > l  

we conclude 
P( ~ E,+I [{2+ 13 1(at =,} >= V~+f t 0/4) 

n>0 

__<P(1 + ~, E,[~ 2 V. - ( ' - ~  l(~>v., 0}] > t 0/4) 
n=>l 

<=(l +D)t -pro. 

with the Markov inequality. Thus the lemma is proved. 
Applying Lemma 5.1, outside a set with probability (1 + D)t -p/4 we obtain 

va~= v~,+l - Y, ~.+1 [~.~+ d l~at=.~ >- - vo,+ 1(1 - t  "/4 vggo .  
n>_O 

Since Vat < t < Vat + 1, aside this small set we have 

t ~ gat~> Vat + 1(1 - - t  p/4 Vat-+P1)~ > t ( 1 -  [ -  3p/4) 

and therefore t -Va ,  < t 1 -3p/4. Hence, from (5.10) follows 
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for large t. Together with (5.6) and (5.9) this implies 

P(I V ( X ) , -  tl > t I - 7p/,o) 

(i, ) = P  x z v(ds, d x ) -  ~(A B;) 2 t t-vp/l~ 
s < t  

.~ t -  0/4. 

Thus conditions (1.8) and in particular (1.2) are met with 0 = 7 p/lO and 7 = p/4. 
Now, Theorem 1 implies that there is a standard Brownian motion B 

= (Bt)t > o without loss of generality on the given probability space such that 

X t - -  B t "~ t ~- ~ a.s. 
for 2e(0, p/104). 

Recalling the definition of X we conclude that 

~,l~v <=t~--Bt~t -~-z a.s. 
n>__l 

for 2e(0, p/104). Thus Theorem 4 is completely proved. 

6. Strong invariance principles for Markov processes 

In this chapter an almost sure invariance principle for integrated functions of 
Markov processes is deduced from Theorem 2. The assumptions are phrased 
in terms of the infinitesimal conditions. Therefore, we shortly introduce the 
basic terms in the following. For this, mainly the notations of [2, 3] and [9] 
are used. 

Let (s 9i) be a measurable space, ~--(~)~>= o a right-continuous increasing 
family of sub-a-fields of 92[, S a Polish space and N= N( S)  the Borel-a-field 
on S. 

Moreover, let X=(~2, ~l, ~ ,  (P~)x~s, (Xt)t>=o) be a progressively measurable 
Markov process with state space (S, N) and stationary transition probability 
function p =  {p(t, x, B): t e n  +, xeS ,  B e N }  having an invariant distribution m 
on (S, N), i.e. m(B)=~p(t,  x, B) m(dx) for all BeN.  

Define the distribution Pm on (f2, 92[) by P,,(A),=~Px(A ) m(dx)(Aeg.I) and de- 
note the expectation with respect to Px(Pm) by Ex [ ' ]  (Era [" ]). 

In view of the Chapman-Kolmogorov relation the transition operators 
(Tt)t ~ o, defined by 

(TJ)(x) ,=~f(y)  p(t, x, dy), t>=O, xeS ,  

form a semigroup of positive contractions on L 2(S,m). Let Bo 
= { f e E  2 (S, m)=]l T t f - - f  [I 2--' 0 as t $ 0} be the center of this semigroup. The infini- 
tesimal operator A of  (Tt)t>__o is defined on the domain D(A),={feBo:  [I t- l (Ttf  
- f ) - g t l e  ~ 0  for some geBo, as t~.0} by 

Af..=lim t -  1 ( T t f - f ) .  
t~o 

Denoting the range of A by R(A), i.e. R(A) ,={Ag:  geD(A)}, we have the 
following almost sure invariance principle for Markov processes: 
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Theorem 5. Let X = (s 9.I, ~ ,  (Px)x~s, (Xt)t>= o) be a progressively measurable Mar- 
kov process with state space (S, ~), stationary transition probability function p 
having invariant distribution m and infinitesimal operator A, and f~R(A) .  

Suppose there is an m-almost surely bounded g~D(A) such that f = A  g, 

g2eD(A) and o-2. '=-2~f(x)  g(x) m(dx)>O. 

Further, assume that 

(6.1) P,~( l i [ A g Z - - 2 f  g l (X , )d s -o -2  >=t-~ -~ 

for some 7, 4J > 0, then the process X = (Xt)t >= o can be redefined on a richer probabil- 
ity space together with a Brownian motion B = (Bt)t >= o with variance o-z such that 

i f ( X s ) d s - - B t ~ t  ~-x P,,-a.s. 
0 

for some 2 > O. 

Remark. If the Markov process X satisfies the assumptions made in Theorem 5 
with the exception of (6.1) and, in addition, if it is ergodic, the ergodic theorem 
yields the convergence 

! 
i [A gZ _ 2 f g  I (Xs) ds --. o-2 

t o 

P,,-almost sure and in L 1 (O, ~I, P,,) as t ~ oe (see, e.g., proof of [181, Theorem 
VIII.3.65). 

Condition (6.1) guarantees the necessary speed of convergence for the consid- 
ered approximation rate. 

t 

Proof of Theorem 5. Define the process Y=(Yt)t>o by Yr. "= y f(X~) ds, t>=O. 
0 

Thus, Y is a continuous process on (s 9.I, P~) with Y~oo(P, , ,  ~ ) .  
Now, Y is linked with a martingale suitable for our approximation: 

Lemma 6.1. There is an M~dg2(pm, ~-) such that 

(6.2) 
and 

Mt = Y t -g (X t )+g (Xo)  

(6.3) (M)t = i [A g2 -- 2 f g l  (Xs) ds 
0 

P~-almost sure for all t~lR +. 

The proof of (6.2) is a simple application of Fubini's theorem and Dynkin's 
formula (cf. [91, Chap. I, w 2, 1.3.C, Eq. (1.5)). Since the verification of (6.3) can 
be carried out in the same way as in the proof of [18], Lemma VIII.3.68, part (b), 
we omit this proof. 

In order to continue the proof of Theorem 5, we apply Theorem 2 to the 
martingale M=(M0t>__oe~2(ff,  Pro) given by (6.2) and the functions Wt=0 and 
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f ( t )=f f2 t ,  t>=O. Therefore ,  we check the a s sumpt ions  of  the t he o re m in this 
case:  Since by  (6.2) 

(6.4) I M , -  Y,[= I g ( X , ) -  g(X0)] < 2 C Pm-a.s., 

the j u m p s  of M are  Pro-almost surely b o u n d e d  by  a de te rmin is t ic  cons tant .  Thus,  
cond i t i on  (1.7) is fulfilled. F u r t h e r m o r e ,  by  (6.1) and  (6.3) 

Pm(l<M)~--aatj>=tl-O)=Pm ~ [ A g 2 - - 2 f g ]  = t  -0 
o 

~ t - ~ .  

Hence,  cond i t i on  (1.12) is satisfied. 
By T h e o r e m  2 a B r o w n i a n  m o t i o n  B=(Bt)t>=o with var iance  62 exists on  

the given p r o b a b i l i t y  space wi thou t  loss of  genera l i ty  such tha t  

M r - - B r a t  ~- ~ Pm-a.s. 

for some 2 > 0. 
Because the  process  M - - Y  has  r i gh t - con t inuous  pa ths  hav ing  l imits  f rom 

the left f rom (6.4) 

Yt-- Bt ~ t ~- ~ P,,-a.s. 

fol lows for some 2 > 0. This  conc ludes  the  p r o o f  of T h e o r e m  5. 
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