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Summary. In this paper, it is shown that all expected lifetimes of h-processes 
in D are finite if and only if the area of D is finite if D = {(x, y): qS_ (x) < y < q5 + (x), 
--oo<x<oo}, where qS_<~b+ are two Lipsehitz functions. We show that  if 
O is a bounded convex region in the plane, there is an h-process in O with 
expected lifetime at least c area(O). We also give an example of a planar domain 
D of infinite area such that the expected lifetime of each h-process in D is 
finite. 

1. Introduction 

This paper  studies the lifetime of conditioned Brownian motion in simply con- 
nected planar  domains, often domains of infinite area. If D is a domain in 
R 2 and Zt, t>O is a stochastic process, we define - % = i n f { t > 0 :  Ztr If  g 

g g is a positive harmonic function in D, we use ~ ,  Ex, to denote probabili ty and 
expectation for the h-process associated with g, started at x. This process will 
be discussed in more detail later. For  now, we observe that for g=K(., w), 
w~OD, the Mart in  kernel function, the process is a standard two dimensional 
Brownian mot ion started at x and conditioned to exit D at w. We denote by 
Pff the above h-process and also by P~(Q) the probabil i ty that the h-process 
hits Q before leaving domain D for any subset Q of D. The lifetimes of h-processes 
have been studied by many  authors. In 1983, Cranston and McConnell  [3] 
proved that there is a universal constant c > 0  such that for any domain D 
in R 2, 

(1.1) sup Eh zo~clDI, 

where x E D, [D[ is the area of D, and the sup is taken over all positive harmonic 
functions in D. F rom now on, we will use sup to denote the supremum over 
all variables in the expression. We also always assume h is a general positive 
harmonic function in the related domain. Other related results on the lifetime 
of h-process may  be found in [1], [-2] and [4]. These papers show that sup EhzD 
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< oo for domains in various classes. In this paper, we investigate whether some 
kind of converse inequality to (1.1) holds. For  a class of domains with some 
regularity, as defined below, it does. We prove 

Theorem 1. Let  ~'2 c R 2 be the domain {(u, v): c~ _ (u) < v < (o + (u), u e R } , where the 
functions O-  (u) and 0 + (u) f rom R to R satisfy 

(1) qS_ (u) < qS+ (u), -- oo < u <  c~, 

(2) there exists M > 0 such that 

]~b- (ux)-- ~b- (u2) l < M  lul --u2 ] 
and 

I~b+ ( u 0 -  ~b + (u2) l < M  lul -u21 

for  all u 1 , u2ER. 
Then, there is c >0,  which depends only on M,  a positive harmonic function 

h in 0 such that 

sup Eh~_-->clf~l. 
x~(2 

In the case that If21 is infinite, Theorem 1 is to be interpreted as saying 
sup E~ a z n = oo. 

In Theorem 1, the constant c depends on Lipschitz constant of the domain. 
For  convex domains, we have a universal constant for the converse inequality 
to (1.1). In fact, we have 

Theorem 2. Let  0 be a convex planar domain. Then, there is a universal constant 
c > O, a positive harmonic function h in f2 such that 

sup Ehzo_>--clOI . 
x~O 

In general, this kind of converse to (1.1) does not hold. 

Theorem 3. There is a simply connected domain f2 o f  infinite area such that 

sup E~ zn < oo. 

We now briefly sketch the ideas involved in the proofs of Theorems 1 and 
2. A square Q in D is called a Whitney square if Q satisfies that d iam(Q)<  
dist(Q, ~?D)<=4diam(Q), where OD is the ordinary Euclidean boundary  of D. 
Any domain is a union of a countable number  of Whitney squares with disjoint 
interiors (see [,11]). In Davis [-5], the local occupation time of h-process in 
a Whitney square has been studied. He proved the following theorem: 

Theorem A. Let  D be a simply connected domain in R 2. Then, there are two 
universal constants c, C such that for  any Whitney square Q in D, x e D ,  y~3D,  

(*) cPX(Q) IQI<=E~ TQ<=CP~(Q)IQI. 

In the proof  of Theorem 2 we pick x and y at " the opposite ends" of ~2. We 
find, with the aid of a theorem we prove in Sect. 4 to the effect that Whitney 
squares are almost preserved under conformal mapping, a collection 
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Q~, Q2, ..., Q, of Whitney squares in the middle of t? such that P~(Qi)>p and 
Z[Q~I > c  1(21, where p and c are absolute positive constants. Theorem 2 now 
follows immediately from the left side of (,). The proof  of Theorem 1 is similar. 

2. Notation and preliminaries 

All notation in Sect. 1 is retained. We usually identify R 2 with the complex 
plane 112, and denote by R2+ the upper half plane. We will use c, co, c1, c2, ..., 
for absolute positive constants which may be different from one line to another 
and even in the same line, and c(#) means that the constant depends on #. 
We denote by Mo the 6-neighborhood of domain M, that is, M~={y~R2: dist 
(y, x)<6 for some x~M}, where dist(x, y) is the Euclidean distance between 
x and y. For  any xER 2, we denote by 6(x, D) the Euclidean distance from 
x to the Euclidean boundary of D, usually abbreviate it by 6(x). Let W be 
the underlying sample space of all functions on [0, 00) which take value in 
~ w  A and are right continuous and have left limits in Martin topology, where 
A is a trap state; the distance of A to each point in t12 is defined to be 1 
and A is an absorbing state to which a killed process is sent upon its death 
(see [6]). Let Zr(co)=cot, VcoEW. If Zt(co)#:A , let Xt(co)=Re(Zl(O~)) and Yt(co) 
=Im(Zt(co)). Let P~ or P, be the probability on W which makes Zt a standard 
Brownian motion respectively starting at z or with initial measure # on ~.  
Let D be a simply connected domain in R 2, and let Z~, t > 0 be a two dimensional 
Brownian motion. If P~ (x, y) is the transition density of Zt killed when it leaves 
D and h is a positive harmonic function in D, then the h-process is determined 
by the following transition density functions: 

p h (X, y) = p D (X, y) h (y)/h (x), 0 < t < or, x, y e D. 

Let ~ ,  t > 0  be the usual completed a-fields of Zt. All stopping times in this 
article will be stopping times with respect to ~t, t>0 .  The shift operator 0t 
from W to W is defined by Ot(co)(s)=co(t+s), s>O. In this paper, we always 
assume the decompositions of Whitney squares {Qi: i d }  of the related domains 
are fixed. Let Q~, Qj be two Whitney squares. We say that 

Qi = Q o - - ' Q  1 ~ Q 2 - - ' - - - ~ O .  = Qj  

is a chain of length n between Qi and Qj if all Qk, k=0 ,  1, 2...n are Whitney 
squares and Qk and Qk+l have touching edges, k=0 ,  1, 2 . . . n - 1 .  

Define 

dl (Q~i, Q j)= inf{n: there is a chain of Whitney squares of length n 

connecting Qi and Q j}, 

d2(x, y)=inf~{! ~ ldzl}, 

where the infimum is taken over all rectifiable curves 7 in D which join x and 
y. It can be checked that dt and d2 are equivalent on the space of Whitney 
squares [8; p. 44]. If f is a nonnegative function on I which is measurable 
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w.r.t, the Borel field on 1 and 0 < ~  f ( t )d t<o% we use N( f )  to denote the 
I 

normalization of f, i.e., N ( f ) = f / ~  f( t )dt .  For a positive harmonic function 
I 

h, let Z h be the h-process corresponding to h, ~ h  be the usual completed a-field 
of Z h. Let P~ or P~ be the probability on W which makes Z h an h-process 
started at z or with initial measure/~ on IIL If q is a stopping time and A6~-01), 
then 

(2.1) P~'h(A c~ {q < zD} ) = ~ h(Z,)/h(z) dP~. 
An{n<rD}  

See Doob  [6, p. 672] for a proof. 

3. Some lemmas 

Let Sz={z~(E: 0 < R e ( z ) < 2 ,  0<I ra (z )<1) .  Let Lo={Z~C:  Re(z)=0}C~gz, 
where $2 is the closure of $2 in the Euclidean topology. Define HLo=inf{ t>0 :  
Zt~Lo}; if ( . . . } = ~ ,  HL~ oe. Let I and J be two intervals. If ~(t), seI, t eJ  
is a nonnegative Borel-measurable function of (s, t) on I x J and v is a measure 
on the Borel subsets of / ,  then we say g(t)= ~ ~( t )dr(s)  a mixture of the function 

~ .  The following two lemmas come from Davis [-5], pp. 405-406. 

Lemma 3.1. Let ~ ,  s~I and g be as above and suppose all these functions have 
positive and finite integrals. I f  ~ and fl are two functions on J such that 

c~<N(~)<fl, s~I, 
then, 

~<N(g)<=fl. 

Lemma 3.2. Let fz be the density of {ZnLo; HLo<ZS2 } under p s2 with respect 
to linear Lebesgue measure. Then, there is c6(O, 1) such that 

(1 -- c) N(f~) < N(fw) < (1 + c) N(fz) 
for any z, w6L 1 . 

Let S-{ zOl ; :  - - o e < R e ( z ) < o o ,  0 < I m ( z ) < l } .  Let Qk--tzEffr k--13 
k 1 2 

<Re(z)  < ~ ,  ~ < I m ( z )  <~},  k=0 ,  ___ 1 ___2 .... Define (p: S~R2+ by cp(z)= e ~,  z6S. 

It is obvious that cp is a univalent conformal mapping. Let 

k Im(z)~(O, �89 ak={Z~l~: Re(z) = ~ ,  

k Im(z)e(L 1)} bk={Zeffr Re(z) = ~ ,  

k Im(z)6(0, 1)} Mk ={ze(12: Re(z) = ~-, 

C k = Mk\(a k t.3 bk), k = 0 + 1 + 2... 
Then, we have 
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Lemma 3.3. Suppose K(x,  y), xeS ,  yeOS are Martin kernels for S. Then 

sup K(x , y )<c-  inf K(x,y)  
X ~ a k  kJ b k x ~ C  k 

k 
for all k ~ Z  and all yEaS satisfying that Re(y) -~ -  __> 1, where c is an absolute 
constant. 

Proof The proof is easy. By the ratio invariance of Martin kernels under confor- 

mal mapping, if Re (y) > ~ + 1, 
.3 

f K  (u, y). v e Ck} sup ~ .  u ~ a~ ~ b~, 

{ u~ / ~ . 
=sup ( u _ l ) ~ + ~  ( ~ _ g ~ + ~ . u ~  ~ 

�9 n 2 n  . n 

= {(Vl--1) z+v2 2 2 v~+va=e ~ "/ , l u l l> �89  sup~(Ul__ l)2 +u~:  Ul.q_U2 = 2 2(Re(y)--k/~t 

k 
Similarly, if R e ( y ) < ~ -  1, it sti11 hotds that 

fK(u, y). U~ak t3bk ' reCk}<=8" sup~m~ , y)" 

Therefore, Lemma 3.3 holds. []  

Lemma 3.4. Let H k = inf{t > 0: Z t ~ M k } .  Then, there is 6 > 0 such that 

P• (Zuk e Ck) > 

for all k ~ Z  and all x and y such that x c S  and yE~S are on opposite sides 
of M k and dist(x, Mk)> 1 and dist(y, Mk)__> 1. 

Proof By the translation invariance of Brownian motion, it suffices to show 
the case k=6 .  For  simplicity, we may assume that R e ( x ) < l  and Re(y)>3,  
and x e S  and ysOS. Let g~, z ~ M  3 be the same density as before. There is 
a measure p~ o n  M 3 such that 

(3.5) P#(z~,o;n6<:s)= f g~m(dz). 
M3 

We have by Lemma 3.2 and symmetry of BM that there is 0 < c < 1 such that 

(3.6) p s  ( H  6 < zs ' Zt_l 6 e C6) ~ c pS ( H  6 < .Cs). 
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Since PxY(H6 <Zs)-= 1, by (2.1), 

Now, 

K(ZIt6,  Y) 1= j dP s 
H6<~ K ( x , y )  

K(Zu6 ,  Y) f dP s + 
~ K ( x , y )  < ~ s , ~ o  . . . .  ,,6 H6 < rS, Zl~r6eC6 H6 

- I + I I .  

I I  <_ c inf K (w, y) p s ( H  6 < Zs, ZIf6 C a 6 w b6) 
--  w~c~ K (x, y) 

<_cI. 

K(z~o, y) 
K (x, y) 

d~ 

The first inequality comes from Lemma 3.3. The second is from (3.6). Therefore, 

Thus 

K (ZH6, 3') dps  >_ 1 
K(x, y) - 1 + c  

H6 < TS;, ZFI6~C6 

1 
PxY(Zt16GC6)~ l + c  =--~>0. [] 

The following corollary follows immediately. 

Corollary 3.7. There is (~ > 0 such that for  any Qk, 

PxY(Qk) > 6 

i f  xES ,  y~9S ,  and x and y are on the opposite side of  Qk and min(d(x, Qk), 
d(y, P_k)) > 1. 

Now, from Corollary 3.7 and Theorem A, we obtain the special case of Theo- 
rem 1. 

Corollary 3.8. Let  S be as defined. Then, 

sup E~ rs = oo. 

Proo f  Let ysOS,  x ~ S  be very far apart such that there are at least N Whitney 
squares Qi of sidelength �89 in the middle of S between them. By Corollary 3.7 
and Theorem A, the total time of K(. ,  y)-process started at x in these squares 
is greater than a constant times the area of N- -6  squares of the N squares. 
Therefore 

supE h z s =  oo. [] 

Lemma 3.9. Let Y2 be a proper convex domain. Then, there are two functions 
4) + and O-  f rom some interval I to R ~ { -- o~ } such that 

(**) •=  {(x, y): q5 (x)<y<~b+ (x), x e I } ,  



Lifetime of conditioned Brownian motion 475 

where I =(0, diam(~)) / f f2  is bounded; I= (0 ,  oo) or I = ( -  0% oo)/fs is unbounded 
and (#+ (x) is real-valued and concave and (a_ (x) is convex on 1 or identical to 
- - 0 0 .  

Proof. Since f2 is a proper subdomain of R 2, 8f2 is not empty. First, we claim 
that for any point T in 3f2 and C in f2 the line segment from C to T completely 
lies in f2 except T. 

Since f2 is convex, there exists r0 such that B(C, ro) is in f2. Then the convex 
hull generated by B(C, to) and T must be in f2 except T. So, the claim holds. 

Now, fix a point O~ in g2. Let 3(T) be the distance from O l to T, co(T) 
be the direction of O 1 T, for all TeOO. There are several possible cases. 

Case 1. If 6(T) is bounded on ~2, then Of 2 is compact. So, there are two points 
A, B e0f2 which satisfy d(A, B)= diam (f2). Choose rectangular coordinates such 
that A is at the origin and B is on the positive x-axis. Under  this coordinate, 
it is clear that there are two functions ~b+ and ~b_ on I=(0 ,  diam(f2)) such 
that Q = {(x, y): 4_ (x) < y < q~+ (x), xeI} .  

Case 2. If 3(T) is unbounded on Of 2, then there is a sequence of points {T,} 
on 0(2 such that 3(T,)--,oo and ~(T,)---,c~ o for some ~o~[0, 2~c) as n ~ o o .  The 
ray at O, with direction s 0 completely lies in f2. Choose a rectangular coordinate 
system with origin at O~ and the positive x-axis coincided with the ray. There 
are several possible cases. 

(1) Assume that the x-axis completely lies in f2. 
(i) If ~(2 is above the x-axis, then a~2 is a line which is parallel to the 

x-axis. If to the contrary there were two points A(1) and A(2) on ag2 such 
that the line passing through these two points intersects the x-axis at A(3). 
This contradicts to the first claim. By the simply connectedness of f2, f2 can 
be given by two functions as in the Lemma and in this case, q5 + is a positive 
constant function on R and ~b_ is identical to - oo. 

(ii) If as has some points above the x-axis as well as below. By the same 
argument as in (i), there are two lines which are parallel to the x-axis above 
and below the axis respectively. So, q~+ and ~b_ are two constant functions 
on R. 

(iii) If Of 2 lies below the x-axis, choose a proper rectangular coordinate. 
Then f2 must be given the same as in (i). 

(2) Assume that 0f2 has some common point with the negative x-axis at (a, 0). 
(i) If ~f2 has one common point with the y-axis, say (0, b), b>0 ,  choose 

a new system with the origin at (a, 0) and the y-axis coincided with the ray 
from (a, 0) to (0, b). Let B be the farthest point in Of 2 from the y-axis. Translate 
the system to the point B. Then the Lemma holds in this coordinate system. 

(ii) If af2 intersects with the y-axis on both sides, let (0, a), (0, b), a < 0 < b  
be the two points. Then for each y~(a, b), there is unique x such that (x, y)~?fL 
By the convexity of ~2, there exists (x o, yo)~0s such that xo=inf{x :  (x, y)eO~?, 
ye(a, b)}. Translate the coordinate at O 1 to the point (Xo, Yo)- Under  this new 
system, since ~f2 has two common points with the y-axis, there are two intersec- 
tion points of Of 2 with the line x = c  for any c>0 .  By the convexity of fL there 
are two functions q5+ and ~b_ on (0, oo) such that the Lemma holds in this 
case.  [ ]  

Let f2~ denote the convex domain corresponding to I as in Lemma 3.9 for 
I finite or (0, oo). Then we have 
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Lemma 3.10. Let f2 and I be as in Lemma 3.9. 

( i )  Assume I is finite. Let r~ < �88 be fixed. Let f2~ = {(x, y): qS_ (x) < y < ~b + (x), 
dr~ < x < (i - r/) d}, where d = diam (f2). Then, 

IGl_>-c(r/)lOl, 
and c(r/)~l as tl--*O. 

(ii) Assume I=(0 ,  oe). Let c~=min j4 ,  tan-lqS_(1), tan-lq~+(1)~. Let f2~ 
% M 

= {(x, y): ~b_ ( x ) < y <  qS+ (x), lYl <c~x, x~(0, oe)}. Then, [f2~[ = oo. 

Proof of (i). Let P~ = (d r/, q5 + (dr/)) and Q~ = (d n, ~b _ (dr/)). Let R be the intersection 
of the line through B and P~ with the y-axis, and S be the intersection of the 
line through B and Q, with the y-axis, where B is as in the proof of Lemma 3.9. 
Then, 

Area(ABP, Q, _ (1 _q)z  

Area(ABRS)  1 

So, by the convexity of O, 

I((x, y): 4_(x)<y<4+(x), 0<x<dr/}l< 
1 - - ( l - - r / )  2 

O--r/Y I~l. 

By the same argument, we have 

I{(x, y): 4 -  ( x ) < y <  q~+ (x), ( 1 - r / ) d < x < d ) [ <  
1 - ( 1 - ~ ) 2  

( l - r / )  2 

Therefore, 
1 - 6 r / + 3 q  2 

[GI_- > O_r/)z I~l. 

The second part of the lemma is obvious because the area of g2 is infinite. [] 

4. The proofs of Theorems 1 and 2 

Let us introduce some more notation. Let 

u r {(x, y/: - ~ < x < ~ )  

u(yl .  y2) = {(X, y): Yl < Y < Y z ,  - -  oO < X <  o0} 

v(xl ,  x2)= {(x, y): O<y< 1, xl <x<x2} 

for all O < y < l ,  O < y ~ < y 2 < l  and x~<x2.  Let a be a point 112 such that dist 

(a, O)> 0. Applying the conformal mapping q5 (z)= - 1 for certain branch 

to f2, where O is defined as in Theorem 1, we can have that ~b(g2) is a bounded 
simply connected Jordan domain. By Caratheodory's theorem [9] there is a 
univalent conformal mapping ~, from q~(f2) to the unit disk D1 at 0 such that 



Lifetime of conditioned Brownian motion 477 

~9 continuously 1 -- 1 maps  the closure of ~(f2) to the closure of D1. Therefore, 
there is a univalent conformal mapping  F from S to f2 such that 

(4.0.0) 

and 

F(u(1))= {(v, 4+ (~)): r e ( -  0% oo)}- u(1) 

(4.0.1) F(u(0)) = {(v, 4 -  (v)): w( - -  ~ ,  oo)}- V(0). 

If  f2 is a convex domain, by Caratheodory 's  theorem there exists a conformal 
mapping from S to f2 such that (4.0.0) and (4.0.1) hold with ( - o o ,  oo) replaced 
by one of the I 's  as in Lemma 3.9. So, whether O is defined as in Theorem 1 
or a convex domain, there exists a conformal mapping F satisfying (4.0.0) and 
(4.0.1). 

Let 0-- 0 (v) = ~b + ( v ) -  ~b_ (v), 7 j - ~g(v) = �89 (q5 + (v) + ~b_ (v)), v �9 Io, where I o = R 
if f2 is as in Theorem 1 or 10 equals to one of the I 's  as in Lemma 3.9 if O 
is convex. 

Definition. A set H c O is called a Harnack  region with bound c > 1 in O if 
H is connected and for any positive harmonic function h in O, 

_~ h(z) 
C < h~-~<c  

for any z, we l l .  
The Harnack  region is invariant under conformal mapping. Let 01 and 

O~ be two domains in II; and q5 be a conformal mapping  from g21 to 02. If  
H is a Harnack  region with bound c in O1, then qS(H) is also a Harnack  region 
with the same bound c in 0 2. Any compact  set f 2 3 c O  is in some Harnack  
region with some bound which depends on the relationship between 0 3 and 
O. Conversely, if H is a Harnack  region with bound c in f2, then H has compact  
closure in O. Furthermore,  we have 

Theorem 4.0. Assume f2 is a simply connected domain in R 2. Suppose Hcocf2 
is a Harnack region of g2 with bound co. Then Hco can be covered by K Whitney 
squares {Qi}~= 1, where K depends only on c o. 

Proof. Step 1: We claim that for any xo~Hco, there exists M o >0 ,  which is inde- 
pendent of Xo and f2 such that 

CO 
P~ ( z ~  e ~ 0 c~ B (Xo, Mo a (Xo))) > o c - - ' l  + 

where 6(Xo)=-6o=dist(xo, 0 c) and B(xo, M6(xo)) is the ball with center at Xo 
and radius M 6 (Xo). 

Let A (M, Xo) = 00  c~ B(xo, M 6(xo) ). We say that the Brownian mot ion makes 
a complete loop around a bounded subset S of R 2 in time t if the Brownian 
path Zs; O<s<t  separates S from oo. For  any yeS(O, 1), let 

p = Pr(B makes a complete 

loop between S(0, 1) and S(0, 2) before leaving B(O, 2)) 
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By the rotation invariance of Brownian motion, p is independent of y. tt  is 
clear that p is positive. So, by the scaling of Brownian motion, 

=< 1 - inf P~(Z makes a complete loop between 
zeB(xo, 6(xo)) 

S(x o, 6(xo)) and S(xo, 2 ~(xo)) before leaving B(xo, 2 6(xo)))= 1 -p .  

Thus, 

Therefore 
P~o(Z~,(~o. ~(~o,, 6Q) < (1 _p)U. 

P~o(Z~neA(M, Xo))-- > - 1 --(1 _p)U. 

So, there exists Mo such that the claim holds. 

Step 2: We claim that there exists No>0, independent of xoeHco, such that 
dist(xo, y)< No Mo 8(Xo) for all y~Hco. 

Let S~ and $2 be two concentric circles with radii 1 and 2 respectively. 
For any yeS2, let 

q = Pr(Z makes a complete loop around S~ before hitting S 0. 

Again, q is independent of y, and clearly q > 0. 
If [ y--  xo I > 2~ Mo ~5o, we have 

~(z~,~s A (Mo, Xo)) 

< EoY (e~z~s, . . . .  ~-11"o ~o, (Z~, s A (Mo, Zo)) Ir ,xo,~-' ~o ~o, < ~ )  

<(1 --q) sup P f ( Z ~  ~A (Mo, Xo)). 
weS(xo 2 N -  1Mo~o) 

Therefore, 

Pr ~ (Z~, ~ A (Mo, Xo)) < (1 -- q)N. 

Note that Py~ (Mo, Xo)) is a positive harmonic function. So, 

P2(Z,neA(Mo,xo))> 1 + %  1 
Pyo(Z~A(Mo,xo)) = Co ( l - q )  N" 

Since YeHco, then there exists No > 0 such that claim 2 holds. 

Step 3: We claim that for any y~Hco 

1 

6(Y)--> 2NoMo 6(x~ 

1 
If to the contrary, there is Yo ~Ho such that ~5 (Yo)<2 

No Mo 
6(Xo), by claim 2, 

dist (Yo, Xo) < No Mob (Yo) < �89 (5 ( Xo ). 
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So, 

1 

(Xo) < dist (Xo, Yo) + 6 (Yo) < 2 N O Mo - -  6 (Xo) + �89 6 (Xo) < 6 (Xo). 

This is a contradiction. So, claim 3 holds. 

1 
- -  Ro = No Mo. We claim that there exists Step 4: Assume 6(xo)= 1, c =  2 N o M  ~ , 

M > 0  depending only on Co such that for any y~H~o, there is a rectifiable 
curve 7 in H 2 defined below connecting y and x o and 

Arc (7) =< M 6 (Xo). 

Let H1=(y6s 6(y)=>c, dist(xo, y)=<Ro} and H 2 = j y ~ ( 2 :  ( 6(y)>=4, dist(xo, y) 

} c 
_-<Ro �9 There are N uniform balls {BI}/N= 1 with radii ~- which cover the closure 

of B(xo, Ro) and N depends only on c and R o. Let ~ = { 2 B i :  2Bic~f2~=O 
i-- 1, 2, ...N}, where 2 Bi is the ball with radius two times the one of B i and 
concentric to Bi. Therefore, 

H~oCHl= ~ ~ i c H 2  �9 
2 B ~  

Since//co is connected, there is a path in Hco from y to xo. So, there are finitely 
many balls in J~ covering the path. Then, there is a rectifiable curve 7 in H2 
from x o to y such that Arc(7)__<coNm By scaling, step 4 and the equivalence 
of distance d~ and d2, it follows that 

dl (xo, y) <= 2 

for some constant N which depends only on co. Therefore, Theorem 4.0 
holds. [] 

For  fixed So>0, let Dt={(x,y): I x l ~ o y } ,  D2={(x,y): Ixl<%(y-1)), D 
=D~\D2, I=  {(x, y): x = 0 ,  0 < y <  1}. 

Define for each 0 < # < k, 

Obviously, 
q (#)= sup {Im(z): P~(Z,,~ODa)> 1 - # ,  zaI}. 

q (#)~0, as #-o0. 

So, there is $ > 0  such that c1(#)< �88 for all 0 < # < ~ .  

Lemma 4.1. (i) Let s be as in Theorem 1, and let F be as described at the beginning 
of this section. Then, there is a constant fl such that 

(4.1.1) 0 < fl < I m  (F (Z))o(Re(F(z)))-- ~V(Re (F (z))) 
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for zeu(#) or zEu(1--#)  when 0 < # < ~ ,  where fl depends only on # and M. 
In fact, fl---,�89 as #--+0. 

(ii) Suppose (2 is a described in Lemma 3.9 with I finite, and again let F 
be as described and q>0.  Then there is ~p>0 and fl(I ~) defined for 0 < # < ~ ,  
where fl depends only on g and tl, such that (4.1.1) holds whenever 
Re (F (z)) s (d #, d (1 - #)). 

(iii) Suppose (2 is as described in Lemma 3.9 with I=(0 ,  Go). Let ~ be as defined 
and F as described before. Then there is ~ > 0  and fl(p) defined for 0 < p < O  
such that (4.1.1) holds whenever Arg(F(z ) )~( -e ,  c 0, where tp and fi depend on 

Proof of (i). Let (2 be as in Theorem i. Let a o = t a n - l M .  Fix #e(0, ~). We 
will prove the case that z belongs to u(#). The other case follows similarly. 
For  simplicity, let v = Re (F (z)), u = I m  (F(z)) and z ~u (#). Assume Z is a Brownian 
motion starting at z in S. With probability 1 -  #, Z exits from S at some point 
on u(0) and with probability # on u(1). By the invariance of Brownian motion 
under conformal mapping up to time-scaling, Brownian motion starting at F(z) 
will exit f2 on U(0) with probability 1 - #  and on U(1) with probability #. 
Let Fl(V, ~) and Fz(v, ~) denote the cones which open up and have aperture 

at points (v, r _ (v)) and (v, r + (v)), respectively. Let e = %. Then, the Brownian 
motion started at F(z) will exit FI\F2 on 0F1 with probability at least 1 - # .  
By scale-invariance of BM, it follows that 

7~(v)-u 
1 c 1 ( p ) < - -  
2 O(v) 

Similarly, if zEu(1 --#), 

u -  O(v) > 1  
O(v) = ~ -  c1(~). 

Let f l = � 8 9  (#). Therefore, part (i) holds. 

Proof of (ii). Let (2 be as in Lemma 3.9. Assume zeu(p) and rE(rid, (1-~/)d). 
For  any P on 0(2, let Po be the projection of P on the x-axis. 

Since 

[APol qa 
> __>r/, tan / APPo= [PPol = PPo 

/ APPo>=tan-l~, 

where A is as in the proof  of Lemma 3.9. Let ~ -- t an-  1 ~]. Then,/7_ (v, ~) intersects 
with 0(2 only on {(v, u):u = ~p + (v), v e(O, d)} and F+ (v, ~) only on {(v, u):u = r  (v), 
re(0, d)}. By the same argument as in the Proof  of (i), the second part of the 
lemma holds. 

Proof of (iii). The proof of (iii) is similar to the proof of (ii). []  

Lemma 4.2. (1) Let (2 be as in Theorem 1. There is c>O and ~ > 0  such that 
for all O < p < ~ ,  

(4.2.1) IF(u(#, 1--/~))l>c.ig]l,  
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where c depends on # and M. In fact, c ~ l as # ~0 .  

(2) Let f2 be a bounded convex domain. Then, there exists a universal constant 
c such that (4.2.1) holds. 

(3) Let g2 be as in Lemma 3.9 with I=(0 ,  ~) .  Then, there is # > 0  such that 

I F ( u ( # ,  1 - # ) )1  = ~ .  

Proof We just prove part (1) of the lemma, since the rest parts easily follow 
from Lemmas 3.10 and 4.1 by a similar argument. By Lemma 4.1, 

So, 
F (u (#, 1 -- #)) __ {(u, v): k~(v)- fl 0 (v) < u < tP(v) + fl 0 (v)}. 

IF (u (# , l -# ) ) l>2 /~  ~ O(v)dv=2Hlf21. 
- c o  

Therefore, the first part of the lemma follows from Lemma 4.1. [] 

In the rest of this section, f2 can be either as in Theorem 1 or in Theorem 2. 
Now, fix # sufficiently small. Because u(#, 1-#)c~v(x,  x +  1 - 2 # )  is a Har- 

nack region of S with bound c3 which is independent of x, F(u(#, 1 - # )  c~ v(x, x 
+ 1 -  2 #)) is also a Harnack region in f2 with the same bound c a. For conve- 
nience, let W(x, #) =F(u(#,  1 -#)c-~v(x, x +  1-2#)) ,  xeR .  By Theorem 4.0, there 

K 

are K Whitney squares {QI}~= 1 such that W(x, #)c__ U Qi and K depends only 
j = l  

on #. Let ~c~a(x)= {Q~: Q ~  {Qj}~c= 1 such that W(x, #)c~ Qi*0}. For each Q~sL, F(x), 
] Q/] cannot be very small when compared to I W(x, #)1. In fact, we obtain 

Lemma 4.3. There exists c which depends only on # such that 

IQil>=c.lW(x,#)l 
for any Qi e 2 '  (x). 

Proof We claim that for any two Whitney squares Qt and Q2 if Qlc~Q2:t=O, 
there is c > 0 such that 

IQll/IQ21<c. 
Since if Q1 c~ Q2 #0,  

diam (Q 1) < dist (Q~, 0f2)__< diam (Q2) + dist (Q 2, 0f2) 

_-<�88 diam(Q2). 

So, 

I Q21 =\4]  " 

Since there are at most K Whitney squares which cover the connected region 
W(x, #), the ratio of the area of the largest Whitney square to the smallest 
in s in fact is less than (�88 Therefore, there is c>0 ,  which depends on 
#, such that ] Qil >= c. I W(x, #)1. [] 
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Let S(x)= F - l ( Q )  Q). Since ~ Q is a Harnack  region in f2 with bound 
Qe..L~ (x) Qe.~ (x) 

c which depends only on #, S(x) is a Harnack  region in S with the same bound 
c. Therefore there are at most  LWhi tney  squares which cover S(x) and Ldepends  
only on #. So, S(x) is contained in the L-neighborhood of u(#, 1 - - # ) n  
v(x, x +  1 - 2 # ) .  

The Proofs of Theorems I and 2. If Q = R 2, Theorem 2 obviously holds be- 
cause in this case, h=constant and E~rD=E~rR~= Go. If (2 is as in Lemma 3.9 
with I = ( - c o ,  co), then, f2 is identical either to a half plane or an infinite strip. 
If ~ is a half plane, by Stegenga [10] we have s u p E ~ z e = o o .  So, Theorem 2 

x E ~  

holds. If f2 is an infinite strip, by Corollary 3.9, Theorem 2 still holds. So, we 
just need to show Theorems 1 and 2 for the convex domains as in L e m m a  3.9 
with I finite or (0, co). 

By Lemma4.2 ,  there is a sequence of squares {Si}~= 1 in u(#, 1 - # )  with 
sidelength 1 - 2 # such that 

(1) Si+l is on the right side of Si, 
(2) dist(Si, Si+1)=2L+2, i =  I, 2, 3 . . . .  and 

(3) there is c > 0 such that 

F S > c ' [ O l ,  
i 

where c depends only on # and M if f2 is as in Theorem 1 or only on p if 
~2 is as in Lemma 3.9 with I finite, and in the case that ~2 is as in Lemma 3.9 

w i t h I = ( 0 ,  co), F(  @_ S~) =co. - -~  - 

Then, we have 

(4.6) P~i~(~)(F(Zt) hits F(Si) before leaving g2) 

=P~s'w(z z hits Si before leaving S) 

for any zeS, weOS. 
Let w be fixed on ~S so that w is on the left side of $1 and at least a 

distance 2 away from S~. Then, by Corollary 3.7 and (4.6), 

P r ~  (w) (F (Zt) hits F (Si) before leaving g2) > 3 

if z is on the right side of Si and a distance 2 away from Si. 
Let K {Qij}j= 1 be the collection of Whitney squares of f2 which cover F(Si). 

By Theorem A and Lemma 4.3, 

i n  I 

- -  ~ F ( z )  ~ . ~  i ,  j ~  , 
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Since F -  1 (Qi,j) is in the L-neighborhood of Si, { Qi,;: Qi,j c~ F(Si) # r are disjoint 
in the sense that they have disjoint interiors. Thus, 

EO, V(w).. ~ ~o,f(w) F(z) %0 --- ~ ~F(z) TQ,,j 
l<=j<=K,l<_i<_m 

aF(z) \~i,j] 
l <=j<K,l <_i<_m 

> c ~ I F(S~)IP~is 
i=1  

>c~  ~ IF(S')I, 
i=1  

if z is on the right side of L-neighborhood of Sm and at least distance 2 away 
from it. Therefore, 

sup E~vi~(w)za>c6 ~ ]f(S~)l > c ~  I~21. 
i = i  

Thus, Theorems 1 and 2 hold. []  

Remark 1. If the two curves u = r + (v), u = q~_ (v) in Theorem 1 satisfy condition 
(2) when I v I is large enough and the area of the domain is infinite, then Theorem 1 
still holds. 

5. The proof of Theorem 3 

Let SM={zelU: 0 < R e ( z ) < M ,  0 < I m ( z ) < l }  for any positive integer M. Let 
L ,={ze lU:  Re(z)=a} C~gg for any real number a, where Sg is the closure of 
Sg  in the Euclidean topology. Define HL~  ZteL ,} ;  if { . . . } = ~ ,  HLa 

l + c  
= or. Let c*-- where c is a fixed constant for which Lemma 3.2 holds. 

~ - - C '  

From now on, all density functions will be density functions with respect to 
linear Lebesgue measure on various line segments. Let g~ be the density function 
of {ZHL,_, HL~ < Zs2} under pSi. By the symmetry of $2 and Brownian motion 
Z, it follows that N(g~) (0 + iy) = N (s (2 + iy) for y ~ (0, 1) and z e Lt .  

Lemma 5.1. Let M > 4 and 4 < n < M. Let g~, be the density of 

under p s i .  Then 

Proof Define 

{ZHL 2 OOHL" +tlL. , HL2 00HL. -~- HL.  < "CSM } 

(c*)- ~ N(gw) < g N(g,,z)<c* N(gw), z, w ~ L  1 . 

Zo = inf{t > HL,: Zt~L3}, 

zl = inf{t >'c o : Zt ~L2 kJ L4} , 

z2i = ~o (0~2,_ 2) + ~2i- 1, 

z2i+l =z1(O~2,)+z2i , i=1 ,  2, 3, .... 
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Let  vj=p~S~(Y~j; z2;<'csM Y~ . . . .  eL4Vi<j) j=O,  1, 2, Since M . . . .  g,,~ is the density 
of  

co 

ZPzS'~(Y~=;+~" "C2j< 'CSM , Yz2j+IEL2, Yz . . . .  ffL4, V i < j )  
0 

and the j t h  t e rm in the series is a mixture  of f with vj over  L 3 by the s t rong 
M a r k o v  p rope r ty  of  Z, it follows f rom L e m m a  3.1, L e m m a  3.2 and  the t ransla-  
t ion invar iance of Brownian  m o t i o n  tha t  

(c*)-~N(gw)<N(g~z)<=c*N(gw), Vz, w~La. [] 

Then  we have  

L e m m a  5.2. Let f2 = {z e (I;: 0 < Re  (z) < 1, 0 < Im (z) < 1 } vJ {z e C:  0 < R e  (z) < 2 -  M, 
- - 2 M < I m ( z ) < 0 } .  Let Ik={Zetl2: 0 < R e ( z ) < 2  -M, Im(z )=k .2  M}, k=0 ,1 ,2 ,  
3, ...4 M. Let  2 a2,z be the density of Znt ~, Hl~<'c a and )o,~z the density of 
{ZHl2oOHln+ Hln , Ht2oOHt q- Hl  < "cO} over l 2 under ~o, zef2. Then 

2~ < c* (1/2) "-~ 2~,~ 

for all 4__<n<4 M and z satisfying Re(z)~(0, 1) and Im(z)~(0,  1). 

Proof. Let  g~ and  M,~ g,,~ be defined as g~  and  g g . . . . .  respectively, on c. S with 
L k replaced by C.Lk for k~Z.  By scale invar iance of Brownian  mot ion ,  g~z = g~ 

M , c  M for all zsS2,  and g . . . .  - g , , ~  for all Z~SM. 

Let  e = 2  -M. As in L e m m a  5.1, there are two measures  #~ ~ and  # ,  ~ on 
with #1 z and 2 ~  a mixture  of  g4 , with l 1 such tha t  2 ~ is a mix ture  of  g~ " , , " ' ~. ~' " 2,g 

#,, : .  By L e m m a s  3.1 and 5.1, it similarly follows tha t  

c* N(; O =< X c* 
Then,  

P~(H~: o Ore, + H1, < "ca) 
;~.,~<c 22,= pzO(Hh < "ca) 

Fo r  any z such that  Re(z)e(0,  1) and  Im(z)s(0 ,  1), 

p o (H a o Out, + Hr, < Zo) = P~ (H a < Hz~, Ha ~ Out, + Hr, < %) 

O a o . H = E~ (Pzrh: (Ha Ogl + In < "ca) I(nz~ <,~)) 

= <'ca) I(S,  <'co)) 

< P~a (Hi2 < "co) sup P~(H h < %). 
w~/n 

The second and third equat ions  come f rom the s t rong M a r k o v  p rope r ty  of  
killed Brownian  mot ion .  Thus,  to p rove  L e m m a  5.2, it suffices to p rove  tha t  

sup P~(HI2 < "co) < (�89 - 1. 
w~ln 
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For any w ~ I n ,  

So, 

0 f l  P~ (H~ < ~ )  = P;  (Hz._, < Ht~ < ~) 

~ (Hl~ < = E~ (PzHI~_ ~ ~ )  I{nt,-~ < ~m) 

_-< sup P~O(Ht~<'cr~).P~(Ht._, <re)  
z a l n  - i 

___�89 sup P2(/-/,~<~). 
z f f ln  - 1 

sup P~(Hz2 < He) <= �89 sup Pf(Hz2 < zn). 
W~ln z ~ l n  1 

Therefore, Lemma 5.2 holds. [] 

Remark. In the proof of Lemma 5.2, we never used any property of the square 
{zsC: Re(z)e(0, 1), Im(z)E(0, 1)}. So, Lemma 5.2 still holds if we attach an arbi- 
trary subdomain of R 2 to the corridor {z ~ 112: 0 < Re (z) < 2-  g, - 2 M < Im (z) __< 0} 
so that the portion {z: 0 < Re(z)< 2-M, Im(z)= 0} is in the resulting domain. 

Now, we describe the domain f2 that will be used to prove Theorem 3. 
Let 

g2 o -  {ze(Eg 0<  Re(z)< 1, 0 < Im(z) < 1}, 

$1 = {zelE: 0 < R e ( z ) <  1, - 2<Im(z)<0},  

$2 =(z~lE:  / 1 1 1 ~ < R e ( z ) < ~ + ~ ,  - 2 2  <Im(z) N0}, 

Sk={Z6iE :k-1 1 1 _2g<im(z)=<0 } 

(0) Finally, let f2 = fl o w Sk �9 Then, f2 is a simply connected domain in II? and 
oo \ k =  1 / 

Inl=ln01+ F~ ISkl=oo. 
k = l  

From Lemma 5.2, the Brownian motion Z, started from some point outside 
the corridor has a small chance of walking very far along the corridor and 
coming back to the main region. It will be seen that the same phenomenon 
arises when the Brownian motion is replaced by an h-process. 

Now we show sup E~z < 0% completing the proof of Theorem 3. 
For  each k_> 1, let 



486 J. Xu 

By the r emark  above  and  (2.1), if z~f2o, 

(5.3) R a'hI" 

1 
I h(Zntk~ OH +nt )dP~ r~ 

, ~ l k , u  k , n  h(z) {~ .  o0m~. +m~. < ~  } 

1 
<= h(z) i c*(�89 "-~ h(Znt~, )dP2 

{ H l k , 2  < z ~ }  

<C*( �89  " -  ~ 

for all 4 < n < 4  k and  k >  1. Let  M o be an posit ive integer s.t. c* < 2  M~ Let  nk 

= 2 k +  1 + M o ,  M~ = 4  + lv~ 1 ~ ~  . Then  
Z 

aod 

So, all l(k)jKnk, k =  1, 2, 3, are conta ined  in the M r - n e i g h b o r h o o d  of f2 o, j ~ . . .  

(+) denoted  by f21. Let  f22=O1c~Q and O ( n ) = O o w  Sk , n = l ,  2 . . . . .  I f  ZCOo, 
then \k = 

h h . h . E~ za(.) = E~(za(.), z~(.) < za2) + E~(za(.), za(.) > za2 ) 

<__ E~(~2) + E2(EL~ 2(ca(.))1(~ <~(.))) 

by the strong Markov property of h-processes. Since h is a positive harmonic 
function in g2, it is positive harmonic in (22. By Cranston-McConnel]'s result, 
the first term on the R.H.S of the above inequality is less than c]f221<M2c. 
So, it suffices to control the second term on the R.H.S. Let i be the index 
of Sj which contains Z,r~. Let dj be the semicircle in g20 over 0Sj~0~20 and 
Haj be the hitting time of Z on dj. Then, 

h h h i I + E~(Ez~m(Ez~u d (z~(-~) l~a~<~.,~) (~a~<~.,~) 
N 2 c + sup Eh('ce(.)).E~(pzh(Hd, < ze(.)) I{~e~ < ~,,~}) 

w ~ - Q o  

< 2 c + sup E~(ra(.)).k~ 
W ~ a O  = 1 

= 2 c + � 8 9  sup h Ew "C ~(n) . 
wEf'~O 

The first inequali ty comes  f rom the s t rong M a r k o v  p rope r ty  of  h-processes. 
The  second is f rom (1.1) and the last is f rom L e m m a  5.2, (5.3) and  (5.4). 

So, 
sup E~za(~)<=3(M~h 2 +2)c .  
wEg'2 0 
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h h Since t2(n),~f2 as n~oo, Ew(zm,)),TE~,(za). So, 

ifz~Sk for s o m e  k=> 1, 

The re fo re  

sup  Ehzo<3(M2+2)c. N o w ,  
W ~ o  

h h h h E~ z~ <= E~ H~ + E~(EZndk.C~ i (Hd k < Z~) 
< 2 c +  sup  Ehzr~ 

wEf20 

<=3(M2+2)c+2c. 

Ez ~f~ < cg~. sup  h 
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