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1 Introduction 

Throughout this paper, X1,X2 .... denotes a sequence of  independent, iden- 
tically distributed random variables, distributed over a Polish space (Z, N z )  
with common distribution Px. Here, N z  denotes the Borel o--field o f  Z. Let 
Ln = ~N~=lrx~ denote the empirical measure o f  the sequence {X. ni}i=l, and for 
any two measures/~, v, let H(#lv ) denote the relative entropy of  # with respect 
to v. 

A common situation is the following. One is given an observation of  the 
empirical measure (usually, in the form of  some averaged "energy"; for pre- 
cise definitions, see Sect. 2). One wishes then to deduce information about the 
distribution o f  the random sample conditioned on this observation. 

The simplest situation in which such a set up occurs is in the "Gibbs condi- 
tioning principle" o f  statistical mechanics. Let A(a, 3) = {co : n - lN~_l f (X/ )  C 
[a - 3, a + 3]}, for some measurable function f (  �9 ). Under suitable conditions 
on Px and f (  �9 ), the Gibbs conditioning principle is the statement that, for 
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2 A.  D e m b o ,  O.  Ze i toun i  

any Borel set B E Nx, as soon as EPx(f)=ga, one has 

lim lira P}(X1 EBIA(a,(5))=7*(B) (1.1) 
6---+0 n---* oo 

where 7* minimizes the relative entropy H( �9 IPx) under an energy constraint, 
and satisfies d7*(x)/dPx(x)= eU(X)/Z~, with Z~ = frJf(x)Px(dx) and fl = 
fi(a) is chosen such that E~.(f)  = a. (For precise statements in this direction, 
see, e.g., [3, 5, 13, 16]). 

Statements of the form (1.1) are a particular case of what we refer to as 
the "Gibbs conditioning principle", which is the recta-theorem which under 
the conditioning that the empirical measure belongs to some "rare set" A, the 
law of X1 converges to the law which minimizes the relative entropy sub- 
ject to the constraint of belonging to A. There exist a few approaches to the 
derivation of such principles. For some remarks on the history of the problem, 
see the introduction section in [16]. One of the most successful solutions to 
this question is via the theory of large deviations. Indeed, Gibbs conditioning 
served as a motivation behind Lanford's subadditive approach to the theory of 
large deviations. Using the latter, one typically obtains weak convergence of 
the conditional measure appearing in (1.1) to 7", and one may also extend the 
statement (1.1) to the statement that the law ofX1,. . . ,Xk under the previous 
energy constraint converges weakly to (7*)k, with k fixed, namely, 

lim lira P~ ((X1 . . . . .  Xk) c CIA(a, 6)) = (7*)k(C) (1.2) 
6---+0 n - ~  

for any C C Nw One may also obtain Markov analogues of these results (see, 
e.g., [3,6,15,16]). 

In fact, statements like (1.2) hold for quite general type of constraints, for 
appropriate 7* which solve the variational problem of minimizing the relative 
entropy subject to the constraint. When convexity is present in the constraint 
(like in the case of energy conditioning described above), a combination of 
large deviations ideas with geometrical analysis allows Csiszfir (see [5]) to 
obtain a much stronger mode of convergence. Namely, he proves that the 
convergence is actually in divergence, which implies convergence in variation 
norm. These results have been extended to the Markov case by Schroeder [15]. 

Our goal in this paper is to obtain extensions of (1.2) which allow for 
a growth of k with n, in the case that some convexity is available in the 
conditioning. In physical terms, this means that one is interested not in the 
behavior of individual "particles" under the conditioning but rather in the be- 
havior of increasingly large "sub-systems". Obviously, k(n) cannot grow too 
fast (in particular, one cannot have k(n)= n and still hope to have (1.2). 
Actually, we show in Proposition 2.12 that, under mild conditions, in order 
for (1.2) to hold, it is necessary that k(n)= o(n)). Our approach to finding 
growth rates of k(n) which preserve (1.2) is based on the observation that 
Csiszfir's results may be extended to deal with increasing k = k(n) as soon 
as one has refinements of Sanov's theorem. It seems beyond hope to be able 
to obtain such refinements in full generality. On the other hand, such refine- 
ments are available (with some efforts) in several particular (important) cases, 
and lead to the corresponding extensions of the Gibbs conditioning principle. 
The particular examples in Sect. 2 are intended to serve as an illustration to 
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this general phenomenon. A corollary of our results (see Corollary 2.7 for the 
precise conditions) is that (1.2) remains valid (in the sense of convergence 
in variation norm) if k(n)log n/n ---+,--+0 0 and, under additional restrictions, as 
soon as k(n)= o(n), the sharpest rate possible (see Proposition 2.15). Simi- 
lar results hold for the case with interaction (where the conditioning is with 
respect to U-statistics, namely the energy is described by a quadratic form in- 
volving pairs of points in the sample X1,...,Am, see Corollary 2.11). These 
results form the core of Sect. 2. For the sake of better readability, we have 
postponed many proofs which interrupt the flow of the presentation in Sect. 2 
to a separate section. 

We remark that Bolthausen [2] has results related to the refinements ob- 
tained in this work. However, he works under smoothness assumptions which 
are not satisfied here, and it is not clear how to extend his results to our setup. 

We conclude this introduction with some comments and open problems. 
First we note that our bounds are not always optimal, and it is of interest to 
find the maximal rate of growth of k(n) which still yields conditional inde- 
pendence. (Note that even in the simplest situation treated in Corollary 2.7, 
the gap between the rate of growth of k(n) and the necessary condition of 
Proposition 2.12 is closed in Proposition 2.15 only under special conditions). 
This gap is even larger when one considers truly "infinite dimensional" condi- 
tioning by a countable number of constraints: there, under appropriate condi- 
tions, one has conditional independence with k(n)= o(v/n) (details available 
from the authors), but it is not clear whether this is the optimal rate. Next, by 
an extension of Csiszfir's triangle inequality and information theoretic identity, 
the results extend in a straightforward manner to the case of Markov chains. 
It should carry over to Markov random fields with local interaction, but we 
do not carry through this extension. Finally, conditions for the applicability of 
Proposition 2.8 for general conditioning sets are needed. It is expected that 
such conditions could be derived based on the yet unavailable local CLT's for 
empirical measures, thus motivating further study of the latter. 

2 Conditioning, and refinements of Sanov's theorem 

Let B(E), Cb(2) denote the space of bounded measurable (respectively, bounded 
continuous) functions on I;. Let M1(22) denote the space of probability mea- 
sures on 1;, equipped with the weak (Cb(N)-) topology which makes it into 
a Polish space. Recall that a set / / C  M1(22) is completely convex if for ev- 
ery probability space ((2,N,/1) and Markov kernel v from (g2,N) to ( E , ~ x )  
such that v(co, �9 ) E H for each co E •, the probability measure #v defined by 
#v( �9 ) = f v(x, �9 )l~(dx) also belongs to / /  (see [5, Definition 2.3]). A con- 
vex set H C MI(22) is almost completely convex if  there exists a monotone 
increasing sequence //~ of completely convex subsets o f / /  such that every 
atomic v C H with a finite number of atoms is also in OkHk. 

For any measure Q, let Qn denote the n-fold product of Q. We use 
l~n 6 PLn E M1(Ml(1;)) to denote the law of the empirical measure Ln = ~ i=1 x, 

in M1(22). Whenever PL,(H') > 0, let Pxk[n , denote the law of (2(1,...,Xk) 

conditioned on the event L, E H / (here, k < n). 
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We shall make throughout the following assumption. 

Assumption (A-l)/7~ is a measurable subset of  an almost completely convex 
/7 C MI(Z), with PL,(/7') > 0 and H(/7 [ Px ) = infpcn H(P I Px)  < oo. 

Here, /7~ measurable means that {(Xl, . ,x ,)" -1 n . .  n Ei=l~Xi E F i t }  ~ ~ z n (  = 

( ~ s ) ' )  for all n. 
Let P* be the generalized /-projection of Px on /7. That is, P* is the 

unique element of MI(Z) such that if Pm C/7 satisfy 

H(Pm[Px) ~,-~o~ inf H(P[Px) 
PCII  

then Pm -+ P*, with the convergence holding in variational norm (see [4] for a 
proof of the existence and uniqueness of the generalized/-projection, and note 
that i f / 7  is variation-closed then P* E /7  and H(f l IPx)  = H(P*IPx) by [5, 

(1.6)]). Henceforth we let f = ~og" ?V;xae* _ H(P*IPx), so that f E LI(P*) with 

fTdP* :o.  
A remarkable observation of Csiszfir is the following 

Theorem 2.1 [5, Theorem 1] Assume (A-l). Then, 

~H(P~nlmI(P*)" ) < logPL,( /7 ' ) -  H(IYIPx ) 
1 

n 

1 
_ _  - - - -  / 7 1  . < log P L , ( ) - H ( P * f x )  (2.2) 

n 

In particular, since for any # E Ma(Zn), v E MI(S), with ]./i denoting the 
marginal of # on the ith coordinate (see [5, (2.10)]), 

1 ~H(&-lv) ~ 1H(~lv"). (2.3) 
n i= 1 n 

Csiszfir, using the exchangeability of the random variables X~. under the condi- 
tioning, concludes that 

H(P~xllmlP.) --_< __1 logPL.(H')  - H(HIPx) .  
n 

(2.4) 

We say that H ~ satisfies the Sanov property (with respect to Px and /7) 
as soon as the right-hand side of (2.4) converges to zero. In particular, if 
//~ = H is a closed set with nonempty interior such that infpcno H(P]Px) = 
infp~n H(PIPx), the Sanov property is a direct consequence of Sanov's theo- 
rem. Whenever the Sanov property holds, one obtains the convergence of the 
conditional measure of)(1 to the measure P*, in a divergence sense which is 
even stronger than convergence in variational norm. 

Our starting point is the following, well-lamwn refinement of (2.3). Let 
n,k(n) be such that n/k(n) is an integer. Consider blocks of length k(n), 

�9 k(,,)cMI(Zk(.)) the law of the j th  block and for any p E M1 (~'n), denote by ~j 

(that is, p~(')(A)=#(A • sn-k(n)), and in general #~.(')(A) = IA(Z (j-l)k(n) • A X 
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X n-jk(~)) for every Borel set A C 27k('0). Then, (2.3) reads 

n/k(~ ) 
Z =< H( lv") . (2.5) 
j=l 

Again by the exchangeability of the k(n) blocks, it follows that when (A-l) 
holds 

Csiszfir has actually observed (2.6) for k ( n ) =  k independent of n, and in 
this context concluded that as soon as the Sanov property holds, any fixed 
number of variables X/behave, under the conditioning, like independent random 
variables. Note, however, that more information is contained in (2.6): namely, 
whenever one may prove refinements of Sanov's property, one immediately 
obtains independent-like behavior for blocks of length related to the accuracy of 
the refinement. Our goal therefore in this section is to present several situations 
where such refinements may be obtained, leading to a "Gibbs" statement for 
n-dependent blocks. 

The following simple corollary of (2.6) applies to the conditioning on 
the empirical mean of F,t-valued statistics, i.e., conditioning on the event 
{n- l~=l~(Xi)  E C}, where ~ : E - - +  IR t is a Borel measurable map. Let 
Qx = Px o ~-1, and A(2) = log f e(ZX>Qx(dx). 

Corollary 2.7 Let II' = {~ : v o ~-1 o f  compact support, f ~ dv E C}, for 
a convex set C C Ill I such that C ~ intersects the interior o f  the convex 
hull o f  the support o f  Qx. Suppose further that Qx is either lattice or 
strongly nonlattice, that {2 : A(2) < oc} is an open set, and f xQx(dx)  r C. 
I f  n - l k (n )  logn --* 0, then H(Px~(,)I~,I(P*)k(") ) ~ O. 

(Strongly nonlattice means that the modulus of the Fourier transform of Qx 
equals one only at the origin). 

Remark. It is shown in [5, (2.36)] that in this setting aP* = exp((2*, ~( �9 )) - 

A(2*)) where 2* ~ IR e attains the maximum of h(2) = infx~c(2,x) - A(2). 

Proof  See Sect. 3. [] 

The rate in Corollary 2.7 is in general not optimal. As will be shown 
below (el. Proposition 2.12), k ( n ) =  o(n) is necessary for the conclusion of 
Corollary 2.7. Under additional assumption, it can be shown (by a somewhat 
different technique), that o(n) is actually sufficient (see Proposition 2.15). 

Since the method of obtaining refinements based on (2.6) is relatively sim- 
ple to apply, it is of interest to note that in general (2.6) is not tight even 
when (2.2) is. Consider Px = Qx, the standard Normal law on I2 = JR, with 
C = [1, oo) and ~( �9 ) being the identity map. In this setting P* is the law of 
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a Normal (1,1) random variable, and the event L~ C H ~ corresponds to condi- 
tioning on n-lE~=lX, . > 1. Using the special structure of the Normal law, it 
follows as in Proposition 2.15 that k(n) = o(n) suffices for k(n)-independence. 
A direct computation reveals that the difference between the right-side and left- 
side of (2.2) is at most 1/n but for k(n)/n --~ 0 while n- lk(n) logn -+ cc the 
right-side of (2.6) is unbounded yet the left-side of (2.6) converges to zero. 
The cause of this lies in (2.5) where we ignored the contribution due to the 
conditional dependence among the k(n)-blocks. 

In [9, Theorem 1.6], Diaconis and Freedman deal with point conditioning, as 
in the above example when C = { 1 }, and prove that then H(Pxk L n' [(P* )k) __+ 0 

iff k(n)/n ~ 0 (their results are phrased in terms of the variation norm, but 
the estimate of [9, Lemma 3.1] suffices for convergence in divergence). In 
the setting of [9], P}"ln' = (P*))nln' by sufficiency theory for exponential 
families, allowing one to let Px = P* to begin with. On the other hand, P~c, ln' 
is then singular making (2.2) useless. In contrast, for C = [1, oc) in the above 
example H((P*)), /m I(P*) ") < log2 by (2.2), demonstrating the dependence 
of the conditional distribution on the parameter of the relevant exponential 
family. 

For arbitrary measurable set H', Diaconis and Freedman show in [8, 
Theorem 13] that the variational distance between P]c"IU' and the set of mixture 

laws {Q c MI(Z k) : Q( �9 ) = f pk( . )#,(dP), t~, E MI(MI(Z))},  is at most 
k2/n, and in [8, Proposition 31] give an example o f / 7  ~ for which this rate is 
tight. In comparison, our results deal with stronger notion of divergence dis- 
tance, with #~ = 6e* which is degenerate and independent of n, but cover only 
some special classes of sets/7 ~ where typically a much better convergence rate 
is achievable. 

The next proposition is suitable for analyzing the more general setting not 
covered in Corollary 2.7. As mentioned before, the required tool is a refined 
lower bound on PL,(FF). The main idea is to perform a change of measure 
in the proof of the large deviations lower bound to a point which may be an 
interior point, but which converges with n to a boundary point. This allows to 
have a ball wholly contained inside the conditioning set, and hence to avoid the 
need for "local" results, which are generally cumbersome and known only in 
finite dimensions. On the other hand, this procedure introduces a discrepancy 
in the exponent which needs to be controlled. Our main application, in this 
paper, of Proposition 2.8 uses c~ = 0. 

Proposition 2.8 Assume (A-l). Suppose that for some Q c MI(Z) with 
H(Q[Px) < cc there exist c~ c [0, 1], p, > 0 and k(n) such that k(n)(c~ + 
p~) ~ 0 and 

l i rn~f  k ) l og  (O~,)" L, e H ' , n - l ~ ( f ~ , ( X i ) - f f ~ , d O ~ , ) < p ,  = 0  
i=1 

(2.9) 

where Q~=~Q+(1 - ~)P* and f ~ = l o g  ~ .  Then, H(P~k(n~ln, l(P*)k(n) ) --+ O. 
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Proof Fix Q as in the statement of the proposition, and observe that since 
H(QIPx) < oQ, by convexity of the relative entropy 

H(Q~]Px) <-_ MJ(QIPx)+ ( 1 -  ~)H(P*IPx) < ec, 

dQ: for all c~ E [0, 1], so that f~ = log ~ E LI(Q~) with f f ~ d Q ~  = H(Q~IPx). 
Fix any measurable representation of f~ in LI(Q~) and let 

II;,~ = {v : f~ E Ll(v), ff~ dv - ff~ dQ~ < p} A H ~ . 

(Although IIp,~ may depend on the particular representation of f~ chosen in 
its definition, (Q~)L,(17p,~) does not). 

Observe that for every n, e E [0, 1] and p > 0 

Pr,(H') > PL,(IIp,~) > exp[-n(p+ f f~dQ~)] f exp[n f f~dL,]dPL, 
Flp,~ 

= e x p [ - n ( p  +H(Q~IPx))] f d(Q~)L~ 
FI p, 

> exp[-nH(P* [Px)] exp[-n(p + ~H(QIPx))] 

• (Q~)L,(IIp,~). (2.10) 

Since f~ E La(Ln) a.e.-(Q~)", the proof is complete by combining (2.6), (2.10) 
and our assumptions on an, p, and k(n). [] 

Remark. In the case ~, = 0, (2.10) is related to [10, Theorem 2.1]. 

Proposition 2.8 applies in the following special case of conditioning by a U- 
statistics. Let U : ~,2 __+ [ 0 , m ]  be a continuous, symmetric, bounded function, 
such that: 

(C-l) f U (x, y )( Q1 - Q2 )( dx )( Q1 - Q2 )( dy ) > 0 for every Q1, Q2 c MI ( S ). 
(C-2) f U(x,y)Px(dx)Px(dy) > 1. 
(C-3) There exists Q E MI(S) such that H(QIPx) < ec and f U(x,y) 

Q(dx)Q(dy) < 1. 

Corollary 2.11 Assume that (C-1)-(C-3) hold. Let II=II~={v : f U(x,y) 
v(dx)v(dy) < 1}. Then, H(Pxk(,)ln,](P*)k(~))--~O provided that n-~k(n)logn 
----+0. 

Remark. The conditioning L, E H ~ corresponds to n 2E~,j_IU(X/,Xj)< 1. 

Proof See Sect. 3. 

Having spent some effort in obtaining convergence statements for the con- 
ditional law Pxk(,)ln,, we next show that under mild conditions, k(n)= o(n) 

is necessary for H(P~k(n)ln, I(P*) k(n)) -+ 0. 

Proposition 2.12 Let H be convex and such that H(HIPx) < oo. Let P* 
denote the generalized I-projection of  Px on 1-1 with 7 = log(dP*/dPx)- 
H(P*IPx ). Assume that f c L2(P*), that 

1 i ogPL,(/7 ) + nH(P*IPx) > -#(n)  (2.13) 
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for some positive sequence p(n) = o( x/~), and that the characteristic function 
- - - -1  

of  P* o f is in Lp(IR), some p E [1, oo). Then, for k(n) = fin, any 1 > 
fi > 0 fixed, one has 

l i m ~ f  H(Pxk(,)ln, l(p,)k(n)) > O.  (2.14) 

Remark. (2.13) holds, in particular in the setting of  Corollaries 2.7 and 2.11. 

Proof See Sect. 3. 

In the situation described by Corollary 2.7, one may under further assump- 
tions actually close the gap between the sufficient rate k ( n ) =  o(n/ logn) and 
the necessary rate k(n) = o(n). Indeed, we have the following result. 

Proposit ion 2.15 In the setup of  Corollary 2.7, assume that the characteristic 
function of  P* o ~-1 is in Lp(]Rl); some p E [1,(xD). Further assume that, for 
some m < 0% 

n-l~2 
PLn(Ht)e nH(P*[Px) > - -  (2.16) 

= M 

Then, for any k(n) = o(n), 

IIPxk(~ n ,  - (P*)k(n)llv.r > o .  (2.17) 
n---> O 0  

Proof See Sect. 3. 

Remarks. (1) Conditions for (2.16) to hold are given in [11, 14]. In particular, 
(2.16) holds for d = 1 and, for f > 1, as soon as H / is a convex polytope 
with P* belonging to the relative interior of  an (v ~ -  1)-dimensional facet. 

(2) I f  Qx possesses a bounded density, then the characteristic function of  
P* o I~ - 1  is i n  Lp(]R t)  for some p E [1,cx~). 

(3) In Proposition 2.15 we may find other assumptions replacing (2.16) (cf. 
Remark 3.1). 

Proof See Sect. 3. 

3 Proofs 

Proof o f  Corollary 2.7. Let I (z)  = supj~e~e [(2,z) - A(2)]. Note that PL,(FI') = 
Qx n rn - l~n  y, ~- i=1 i C C), where Y/=O(X,-) are i.i.d. Qx. It follows from [14, (3.4)] 
that for some finite cl > 0 and n large enough 

where 

n-I  logPLn(II') >= ~I + n-1 log(cln-t/2) , 

1 ( n )  
r / =  lira - l ogQ~(  n - : ~  i E C  >= - i n f I ( z )  > - o o ,  

n ---+ o o  n i = 1  zEC~ 

and the inequalities follow from Crambr 's  theorem and the support condition 
On Qx. 
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In [5, (3.36) and Lemma 4.3], it is shown tha t /7  = {v : v o @-1 of compact 
support, f ~kdv E C}, is almost completely convex. As n-lk(n)log(cmn -t/2) 
0, the proof is completed by (2.6) provided that H(II/Px) > infzec o I(z). To 
this end, note that by [5, (3.5) and Theorem 3], 

H ( II/Px ) = inf H(QIQx ) 
{Q of compact support, fxQ(dx)e~} 

= inf H(QIQx ) . (3.1) 
{Q of compact support, fxQ(dx)CC ~ 

Note that if  dQ/dQx = f is of  compact support, then f [x[Q(dx) < oo and 
for every 2 C ]R ~, 

H(QIQx) = (2, f xQ(dx)) - f l / > 0 f  log(e(~':O/f)Qx(dx) 

> (2, fxQ(dx))  - A(2), 

implying that H(Q[Qx) > I ( fxQ(dx)) .  Consequently, using (3.1), H(/7[Px) 
> infzcc oI(z). [] 

Proof of Corollary 2.11. 11 =/7'  is closed with {v: f U(x,y)v(dx)v(dy) < 1} 
C/7o (see [7, Lemma 7.3.12]). By (C-l)  and the boundedness of  U, /7 is 
completely convex, with H(/7[Px) < H(II~ < cc by (C-3). Hence, by 
Sanov's theorem PL,(II') > 0 for all n large enough. It was shown in [16] (see 
also [7, proof of  Theorem 7.3.16]) that P* = 7/~* C H where for all fi > 0, ~ 
is of the form 

dv fl _ 
dPx exp ( - /3 (UT~(x)  - e (H))  + H(~IPx)) 

with 

UT/~(x ) = f U(x, y)y~(dy), g(fi) = f U(x, y)?~(dx)y#(dy). 

and/~* = inf{/3 > 0 " g(/?) < 1}. In particular [7, Lemma 7.3.14], g(/~*) = 1 
and by (C-2), /3" > 0. Let f (x )  = ](x)//~* = 1 - U?~,(x) and (/(x,y) = 1 - 
U(x,y) - f (x )  - f (y ) .  Define Zn = n-1/2E~=lf(Xi) and Yn = n-lE~=l En j=l 
U(Xi,Xj). Note that {L, E /7 '}  = {2Z~ +n-1/2Yn > 0}. Thus, for all C > 
c >  0, 

(P*)n ( Ln E /7t' ~ ( X i )  < Cfi*l~ 

= (P*)n(--O.5n--1/2Yn <= Zn < Cn-1/Zlogn) 

> (P*)'(cn-1/21ogn < Z, < cn-m/21ogn) 

_ (p,)n(y, < - 2 c l o g n ) .  (3.2) 

Denoting hereafter expectations under (P*)~ = (7~,)~ by E*( �9 ), we see that 
E*(f(Xi)) = 0, and for all i+ j  also E*(U(X/,Xj)[X/) = E*(U(Xj,X/)[Xi) = 0. 
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By the Berry-Esseen theorem (cf. [1, Theorem 12.4]), for all n large enough 

(P*)n(cn-1/21ogn < Zn < Cn-1/21ogn) > ( C - c ) l o g n  _ O(n_l/2) " 
(M + 1 ) ~  

(3.3) 
Let F,(  �9 ) denote the distribution function of Y~. Then (see [12]), 

sup lUg(x) - F~(x)I < O(n -1/2) 
X 

where F ~  denotes the distribution function of the random variable 0 = 
E*(O(X,X))+E~_12j(x ~ -1 ) ,  with 2j deterministic, square summable, and 
xj independent standard Normal random variables. It follows that 

(P*)~(Yn <-_ -2c logn)  __< P(O < -2clogn)+O(n 1/2). (3.4) 

Due to the square summability of the 2j there exists 20 > 0 such that Cl = 
E(exp(-2oO)) < e~. Hence, using Chebycheff's inequality, 

P(O < -2c logn)  < Cl e-z2~176 . (3.5) 

Choose now C > c > 1/(42o), and combine (3.5) with (3.4) and (3.3) to 
conclude that (3.2) implies, for some t/ > 0 and all n large enough, 

(P*)n ( Ln E H'' ~- f(Xi)  C/~*logn) >= tln-1/21ogn. 

The proof is completed by applying Proposition 2.8 for ct~ = 0 and Pn = 
Cfi*n -l logn. [] 

Proof of Proposition 2.12. Let a 2 = f 72 dP* and f = f/or. Then f f dP* = 
0 and f f 2 d P * =  1, and, for any v C II', (f,v} > 0 (see [5, (1.5)]). Let 

T, = kx/~(f.Lk(,)) and 

V, = = T, + ~ ~=k(n)+l 

Denote the law of T~ (respectively, V,) under (P*)~ by P~,T (respectively, 
P ~ ) .  Then, under our assumptions (cf. [1, Theorem 19.1]), P~,r and P~,~ 
possess densities denoted, respectively, by pn, r(t) and pn,-~(v), and, with 

~9(X) = ( V ~ ) - l e  -x2/2, 

sup [p,,r(t) - qb(t) I = o(1) 
tCIR 

sup ]p,,V(v) - q~(v)l = o(1). 
vEIR 

Thus, it follows that the conditional law of Tn, conditioned on V, = v, possesses 
a density p~(tlv), and, furthermore, denoting 

~( t ,  v) = (~/27c(1 - fl))-I exp [ - ( t  - fly)2/2(1 - fl)], 
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one has that 
sup [p.(tlv ) - ~p/~(t,v)l = o (1) .  

Itl,lvl_-<l 

(The appearance of  the density ~b~(ttv ) is anything but mysterious: it repre- 

sents the density of  T conditioned on T + V/(1 - /~ ) / /~V  = v, where T,V are 
independent standard Normal).  

Define now Fn(v) = exp [ -a  kv/~v](P*)~(L. C Fl'l(f ,Z. ) = [3v/ kv/~). 
Then F.(v) : 1R -+ [0, 1] and Fn(v) = 0 for v < 0. Let g(x) = l(-l__<x__<l}. 
Then, denoting by Pn(v,t) the joint law of  Vn, Tn under (P*)",  

E(g(T.)IL . ~_ 11') = f g(t)F.(v)dP.(v, t) 
fFn(v)dP.(v, t) 

= fg(t)dQ~(v, t) 

where 
dQn(v,t) Fn(v) 
dP.(v, t) fF.(v)dP.(v)  

is independent o f  t. Note that, by (2.13), 

fFn(v)dPn(v, t) = PL.(H') exp [nil(P* ]Px)] > e -~(") �9 

Therefore, taking #1(n)x/-fi/max(p(n), 1)---+n~oo co but # 1 ( n ) =  o(1), one has 
that 

f dQ.(v,t) > 1 - e x p [ # ( n ) -  a k v / ~ # l ( n ) ]  --+.~oo 1 
v_--<Ul(n) 

implying that 

f g(t)dQn(v,t) > inf E(9(Tn)[V. = v ) -  o(1) 
ff~ O<v< #l(n) 

= inf  fo( t )p . ( t lv )d t  - o(1) 
0<v<a~(n) R 

> inf  fa(t)g,a(t,v)dt - o(1) 
0=<v=<#l(n) R 

--+n-~oo f 9(t)~t/~(t, O)dt > f 9(t)c~(t)dt 
R 

where the last inequality is due to the fact that ~/~( �9 , 0) is the density of  Nor- 
mal (0, 1 - fl) law. On the other hand, by a standard CLT, (P* )n ( -1  __< Tn < 
1 ) - - ~ n ~  f~ e(t)•(t)dt. One concludes that the variational distance between 

Pxk(n)ln, and (p*)k(n) is bounded away from zero, yielding, using [7, Exercise 

6.2.17], the assertion (2.14). [] 

Proof of  Proposition 2.15. By [5, (2.36)] f is an affine function of  ~9 and 
since { 2 : A ( 2 )  < oo} is an open set, all moments of  P*o ~p-1 are finite. 
I f  the covariance matrix of  P*o ~b -~ is singular, then for some 2 E P-.~ the 
random variable (2, ~b(X)) is constant Px-almost-surely.  By removing all such 
deterministic relations from the definition of  H '  we may and shall assume 
without loss of  generality that this covariance matrix is positive definite. Hence, 
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by an affine transformation of  IR e, we may assume hereafter that f ~9 dP* = 0 
and f ~ ~' dP* is the identity matrix. This transformation can be done such that 

= C~Ol for some c~ > 0, noting that then C _ {v �9 vl > 0}. Consequently, for 
any A C S k measurable, 

n pn 
P)~In,(A) = f d x~ln' 

A X s n - k  

f l{{e.,=lO(x,)ec} exp [ -  ElL1 c@l(xi)]d(P*)n 
A x Z n  k 

f l{l~7=l?,(xO~C} exp [ -  Ein=l  ~OI(Xi)]  d(P* )n 
s,n 

Let Vn = i ~ N i = I O ( X / )  for X/i.i.d. P* and 9~(v) = l { ~ d ~ c } e - d ~ l .  Denoting 

hereafter expectations under (P*)~ by E * (  �9 ), we see that 

dPx~tiT' -- hn(Vk ) - E*[gn(Vn)lVk] 
dp  *k E*[gn(Vn) ] 

and 

Since 

that 

n - P  Ilvar = Ihn(Vk)- 11 iiP~?l w .k E* o 

n ,k IIP~klw--1 - P  IIv.r is monotone nondecreasing in k, it suffices to show 

lira l im sup E * I h . ( V ~ n  ) - 11 = 0 .  (3 .6)  
~---+0 n---+ ec 

Under our assumptions, Vn possesses a bounded continuous density pn(v) which 
admits the asymptotic expansion 

sup (1 + [[vl]3)[p~(v) - qS(v)(1 + n-1/2H(v))[ = o(n -1/2) (3.7) 
vEIR~' 

where qS(v) is the standard Normal density on IRl and H(v) is a polynomial of  
degree 3 in v (cf. [1, Theorem 19.2 and (7.20)]). The joint density of  (V~,, Vn) 
is then 

p~(t, v) = p ~ ( t ) p  0_0 .  \ ~ / 

With 

bn = f 9n(V)pn(v)dv = PL.(FF)exp [nH(P*[Px)] > M - i n  -1/2 
N f  

it follows that 

E*Ihn(V~n ) - 11 

< Lf fg.(v)[p~(t,v) - p~.(t)p.(v)[dtdv (3.8) 
= bn 

PO-On (v - -x /e t '~  (1 - e) -~/2 - pn(V) d t d v .  < M x / ~ f  fg.(v)p~n(t) \ ~ j 

(3.9) 
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Due to the integrabitity of the error terms in (3.7), we may replace Pk( " ) by 
qS(. )(1 +k-1/ZH(  �9 )) when studying (3.9). Let ~ ( .  ) denote the centered 
Normal density for the covariance matrix 2/t. Note that r + IH(t)[) < 
C~(t)  for some C < cc and all t E IRe. Moreover, differentiating with respect 
to v ~ it is straightforward to check that for all ~ small enough, 

r q~ \{v---- v / ~ t ' ~  j (1 - ~)-~/2 _ r =< x/-~C-q(t)~(v) , 

for some C < oc and all t, v E IRt. Hence, for some Ci < oc independent of 
n and e, and for all e small enough and n large enough 

v ~ f  fg .(v)p~(t)  p(1-~)n \ ~ v~t'] (1 - e) -t/2 - p.(v) dtdv 

[ (v-,a,)] < o(1) + Cl(x/-~ + 1)ffg.(v)~(t) ~(v) + (1 - e)-e/2~ \ ~ j j  dtdv 

o o  

< o(1) + C2(v/-~ + 1 ) f  exp[ - v~ev l / 2 ]~ (v l )dV l  
0 

_-< o(1) + C3(~; 1/2 -}- n - l / z )  

implying (3.6) and the proposition. [] 

Remark. 3.1. Let d~(v) = f Ip~(t[v) - p~,(t)[dt < 2. For any compact K C_ 
IR e and all n large enough, infvcK p, (v)  > �89 inf~exr ) > 0. Therefore, by 
the same arguments as detailed before, 

lim lim sup sup d~(v) = O. 
~---+0 n---+oo v E K  

If q,(v)  = 9~(V)pn(v)/b, is a tight sequence in Ml(IR E) then 

lim lim sup fqn(v)d~(v) dv = O. 
~--+0 1/---+ O0 

By (3.8) we then get (3.6) and hence (2.17) even when (2.16) does not 
hold. The tightness of {q,( �9 )} can be phrased in terms of the contact of 
C with f O dP*. 
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